xref: /OK3568_Linux_fs/kernel/fs/jfs/jfs_dmap.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  *   Portions Copyright (C) Tino Reichardt, 2012
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17 
18 /*
19  *	SERIALIZATION of the Block Allocation Map.
20  *
21  *	the working state of the block allocation map is accessed in
22  *	two directions:
23  *
24  *	1) allocation and free requests that start at the dmap
25  *	   level and move up through the dmap control pages (i.e.
26  *	   the vast majority of requests).
27  *
28  *	2) allocation requests that start at dmap control page
29  *	   level and work down towards the dmaps.
30  *
31  *	the serialization scheme used here is as follows.
32  *
33  *	requests which start at the bottom are serialized against each
34  *	other through buffers and each requests holds onto its buffers
35  *	as it works it way up from a single dmap to the required level
36  *	of dmap control page.
37  *	requests that start at the top are serialized against each other
38  *	and request that start from the bottom by the multiple read/single
39  *	write inode lock of the bmap inode. requests starting at the top
40  *	take this lock in write mode while request starting at the bottom
41  *	take the lock in read mode.  a single top-down request may proceed
42  *	exclusively while multiple bottoms-up requests may proceed
43  *	simultaneously (under the protection of busy buffers).
44  *
45  *	in addition to information found in dmaps and dmap control pages,
46  *	the working state of the block allocation map also includes read/
47  *	write information maintained in the bmap descriptor (i.e. total
48  *	free block count, allocation group level free block counts).
49  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
50  *	in the face of multiple-bottoms up requests.
51  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
52  *
53  *	accesses to the persistent state of the block allocation map (limited
54  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55  */
56 
57 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
60 
61 /*
62  * forward references
63  */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 			int nblocks);
66 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
67 static int dbBackSplit(dmtree_t * tp, int leafno);
68 static int dbJoin(dmtree_t * tp, int leafno, int newval);
69 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 		    int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 		       int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 		       int nblocks,
77 		       int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 		       int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 			  int l2nb,
82 			  s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 		     s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 		      s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 		      int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 		      int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97 
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100 
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 			 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108 
109 /*
110  *	buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135 
136 /*
137  * NAME:	dbMount()
138  *
139  * FUNCTION:	initializate the block allocation map.
140  *
141  *		memory is allocated for the in-core bmap descriptor and
142  *		the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *	ipbmap	- pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *	0	- success
149  *	-ENOMEM	- insufficient memory
150  *	-EIO	- i/o error
151  *	-EINVAL - wrong bmap data
152  */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 	struct bmap *bmp;
156 	struct dbmap_disk *dbmp_le;
157 	struct metapage *mp;
158 	int i;
159 
160 	/*
161 	 * allocate/initialize the in-memory bmap descriptor
162 	 */
163 	/* allocate memory for the in-memory bmap descriptor */
164 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 	if (bmp == NULL)
166 		return -ENOMEM;
167 
168 	/* read the on-disk bmap descriptor. */
169 	mp = read_metapage(ipbmap,
170 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 			   PSIZE, 0);
172 	if (mp == NULL) {
173 		kfree(bmp);
174 		return -EIO;
175 	}
176 
177 	/* copy the on-disk bmap descriptor to its in-memory version. */
178 	dbmp_le = (struct dbmap_disk *) mp->data;
179 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183 	if (!bmp->db_numag) {
184 		release_metapage(mp);
185 		kfree(bmp);
186 		return -EINVAL;
187 	}
188 
189 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
190 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
191 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
192 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
193 	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
194 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
195 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
196 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
197 	for (i = 0; i < MAXAG; i++)
198 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
199 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
200 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
201 
202 	/* release the buffer. */
203 	release_metapage(mp);
204 
205 	/* bind the bmap inode and the bmap descriptor to each other. */
206 	bmp->db_ipbmap = ipbmap;
207 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
208 
209 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
210 
211 	/*
212 	 * allocate/initialize the bmap lock
213 	 */
214 	BMAP_LOCK_INIT(bmp);
215 
216 	return (0);
217 }
218 
219 
220 /*
221  * NAME:	dbUnmount()
222  *
223  * FUNCTION:	terminate the block allocation map in preparation for
224  *		file system unmount.
225  *
226  *		the in-core bmap descriptor is written to disk and
227  *		the memory for this descriptor is freed.
228  *
229  * PARAMETERS:
230  *	ipbmap	- pointer to in-core inode for the block map.
231  *
232  * RETURN VALUES:
233  *	0	- success
234  *	-EIO	- i/o error
235  */
dbUnmount(struct inode * ipbmap,int mounterror)236 int dbUnmount(struct inode *ipbmap, int mounterror)
237 {
238 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
239 
240 	if (!(mounterror || isReadOnly(ipbmap)))
241 		dbSync(ipbmap);
242 
243 	/*
244 	 * Invalidate the page cache buffers
245 	 */
246 	truncate_inode_pages(ipbmap->i_mapping, 0);
247 
248 	/* free the memory for the in-memory bmap. */
249 	kfree(bmp);
250 
251 	return (0);
252 }
253 
254 /*
255  *	dbSync()
256  */
dbSync(struct inode * ipbmap)257 int dbSync(struct inode *ipbmap)
258 {
259 	struct dbmap_disk *dbmp_le;
260 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
261 	struct metapage *mp;
262 	int i;
263 
264 	/*
265 	 * write bmap global control page
266 	 */
267 	/* get the buffer for the on-disk bmap descriptor. */
268 	mp = read_metapage(ipbmap,
269 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
270 			   PSIZE, 0);
271 	if (mp == NULL) {
272 		jfs_err("dbSync: read_metapage failed!");
273 		return -EIO;
274 	}
275 	/* copy the in-memory version of the bmap to the on-disk version */
276 	dbmp_le = (struct dbmap_disk *) mp->data;
277 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
278 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
279 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
280 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
281 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
282 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
283 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
284 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
285 	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
286 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
287 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
288 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
289 	for (i = 0; i < MAXAG; i++)
290 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
291 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
292 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
293 
294 	/* write the buffer */
295 	write_metapage(mp);
296 
297 	/*
298 	 * write out dirty pages of bmap
299 	 */
300 	filemap_write_and_wait(ipbmap->i_mapping);
301 
302 	diWriteSpecial(ipbmap, 0);
303 
304 	return (0);
305 }
306 
307 /*
308  * NAME:	dbFree()
309  *
310  * FUNCTION:	free the specified block range from the working block
311  *		allocation map.
312  *
313  *		the blocks will be free from the working map one dmap
314  *		at a time.
315  *
316  * PARAMETERS:
317  *	ip	- pointer to in-core inode;
318  *	blkno	- starting block number to be freed.
319  *	nblocks	- number of blocks to be freed.
320  *
321  * RETURN VALUES:
322  *	0	- success
323  *	-EIO	- i/o error
324  */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)325 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
326 {
327 	struct metapage *mp;
328 	struct dmap *dp;
329 	int nb, rc;
330 	s64 lblkno, rem;
331 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
332 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
333 	struct super_block *sb = ipbmap->i_sb;
334 
335 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
336 
337 	/* block to be freed better be within the mapsize. */
338 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
339 		IREAD_UNLOCK(ipbmap);
340 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
341 		       (unsigned long long) blkno,
342 		       (unsigned long long) nblocks);
343 		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
344 		return -EIO;
345 	}
346 
347 	/**
348 	 * TRIM the blocks, when mounted with discard option
349 	 */
350 	if (JFS_SBI(sb)->flag & JFS_DISCARD)
351 		if (JFS_SBI(sb)->minblks_trim <= nblocks)
352 			jfs_issue_discard(ipbmap, blkno, nblocks);
353 
354 	/*
355 	 * free the blocks a dmap at a time.
356 	 */
357 	mp = NULL;
358 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
359 		/* release previous dmap if any */
360 		if (mp) {
361 			write_metapage(mp);
362 		}
363 
364 		/* get the buffer for the current dmap. */
365 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
366 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
367 		if (mp == NULL) {
368 			IREAD_UNLOCK(ipbmap);
369 			return -EIO;
370 		}
371 		dp = (struct dmap *) mp->data;
372 
373 		/* determine the number of blocks to be freed from
374 		 * this dmap.
375 		 */
376 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
377 
378 		/* free the blocks. */
379 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
380 			jfs_error(ip->i_sb, "error in block map\n");
381 			release_metapage(mp);
382 			IREAD_UNLOCK(ipbmap);
383 			return (rc);
384 		}
385 	}
386 
387 	/* write the last buffer. */
388 	if (mp)
389 		write_metapage(mp);
390 
391 	IREAD_UNLOCK(ipbmap);
392 
393 	return (0);
394 }
395 
396 
397 /*
398  * NAME:	dbUpdatePMap()
399  *
400  * FUNCTION:	update the allocation state (free or allocate) of the
401  *		specified block range in the persistent block allocation map.
402  *
403  *		the blocks will be updated in the persistent map one
404  *		dmap at a time.
405  *
406  * PARAMETERS:
407  *	ipbmap	- pointer to in-core inode for the block map.
408  *	free	- 'true' if block range is to be freed from the persistent
409  *		  map; 'false' if it is to be allocated.
410  *	blkno	- starting block number of the range.
411  *	nblocks	- number of contiguous blocks in the range.
412  *	tblk	- transaction block;
413  *
414  * RETURN VALUES:
415  *	0	- success
416  *	-EIO	- i/o error
417  */
418 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)419 dbUpdatePMap(struct inode *ipbmap,
420 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
421 {
422 	int nblks, dbitno, wbitno, rbits;
423 	int word, nbits, nwords;
424 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
425 	s64 lblkno, rem, lastlblkno;
426 	u32 mask;
427 	struct dmap *dp;
428 	struct metapage *mp;
429 	struct jfs_log *log;
430 	int lsn, difft, diffp;
431 	unsigned long flags;
432 
433 	/* the blocks better be within the mapsize. */
434 	if (blkno + nblocks > bmp->db_mapsize) {
435 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
436 		       (unsigned long long) blkno,
437 		       (unsigned long long) nblocks);
438 		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
439 		return -EIO;
440 	}
441 
442 	/* compute delta of transaction lsn from log syncpt */
443 	lsn = tblk->lsn;
444 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
445 	logdiff(difft, lsn, log);
446 
447 	/*
448 	 * update the block state a dmap at a time.
449 	 */
450 	mp = NULL;
451 	lastlblkno = 0;
452 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
453 		/* get the buffer for the current dmap. */
454 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
455 		if (lblkno != lastlblkno) {
456 			if (mp) {
457 				write_metapage(mp);
458 			}
459 
460 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
461 					   0);
462 			if (mp == NULL)
463 				return -EIO;
464 			metapage_wait_for_io(mp);
465 		}
466 		dp = (struct dmap *) mp->data;
467 
468 		/* determine the bit number and word within the dmap of
469 		 * the starting block.  also determine how many blocks
470 		 * are to be updated within this dmap.
471 		 */
472 		dbitno = blkno & (BPERDMAP - 1);
473 		word = dbitno >> L2DBWORD;
474 		nblks = min(rem, (s64)BPERDMAP - dbitno);
475 
476 		/* update the bits of the dmap words. the first and last
477 		 * words may only have a subset of their bits updated. if
478 		 * this is the case, we'll work against that word (i.e.
479 		 * partial first and/or last) only in a single pass.  a
480 		 * single pass will also be used to update all words that
481 		 * are to have all their bits updated.
482 		 */
483 		for (rbits = nblks; rbits > 0;
484 		     rbits -= nbits, dbitno += nbits) {
485 			/* determine the bit number within the word and
486 			 * the number of bits within the word.
487 			 */
488 			wbitno = dbitno & (DBWORD - 1);
489 			nbits = min(rbits, DBWORD - wbitno);
490 
491 			/* check if only part of the word is to be updated. */
492 			if (nbits < DBWORD) {
493 				/* update (free or allocate) the bits
494 				 * in this word.
495 				 */
496 				mask =
497 				    (ONES << (DBWORD - nbits) >> wbitno);
498 				if (free)
499 					dp->pmap[word] &=
500 					    cpu_to_le32(~mask);
501 				else
502 					dp->pmap[word] |=
503 					    cpu_to_le32(mask);
504 
505 				word += 1;
506 			} else {
507 				/* one or more words are to have all
508 				 * their bits updated.  determine how
509 				 * many words and how many bits.
510 				 */
511 				nwords = rbits >> L2DBWORD;
512 				nbits = nwords << L2DBWORD;
513 
514 				/* update (free or allocate) the bits
515 				 * in these words.
516 				 */
517 				if (free)
518 					memset(&dp->pmap[word], 0,
519 					       nwords * 4);
520 				else
521 					memset(&dp->pmap[word], (int) ONES,
522 					       nwords * 4);
523 
524 				word += nwords;
525 			}
526 		}
527 
528 		/*
529 		 * update dmap lsn
530 		 */
531 		if (lblkno == lastlblkno)
532 			continue;
533 
534 		lastlblkno = lblkno;
535 
536 		LOGSYNC_LOCK(log, flags);
537 		if (mp->lsn != 0) {
538 			/* inherit older/smaller lsn */
539 			logdiff(diffp, mp->lsn, log);
540 			if (difft < diffp) {
541 				mp->lsn = lsn;
542 
543 				/* move bp after tblock in logsync list */
544 				list_move(&mp->synclist, &tblk->synclist);
545 			}
546 
547 			/* inherit younger/larger clsn */
548 			logdiff(difft, tblk->clsn, log);
549 			logdiff(diffp, mp->clsn, log);
550 			if (difft > diffp)
551 				mp->clsn = tblk->clsn;
552 		} else {
553 			mp->log = log;
554 			mp->lsn = lsn;
555 
556 			/* insert bp after tblock in logsync list */
557 			log->count++;
558 			list_add(&mp->synclist, &tblk->synclist);
559 
560 			mp->clsn = tblk->clsn;
561 		}
562 		LOGSYNC_UNLOCK(log, flags);
563 	}
564 
565 	/* write the last buffer. */
566 	if (mp) {
567 		write_metapage(mp);
568 	}
569 
570 	return (0);
571 }
572 
573 
574 /*
575  * NAME:	dbNextAG()
576  *
577  * FUNCTION:	find the preferred allocation group for new allocations.
578  *
579  *		Within the allocation groups, we maintain a preferred
580  *		allocation group which consists of a group with at least
581  *		average free space.  It is the preferred group that we target
582  *		new inode allocation towards.  The tie-in between inode
583  *		allocation and block allocation occurs as we allocate the
584  *		first (data) block of an inode and specify the inode (block)
585  *		as the allocation hint for this block.
586  *
587  *		We try to avoid having more than one open file growing in
588  *		an allocation group, as this will lead to fragmentation.
589  *		This differs from the old OS/2 method of trying to keep
590  *		empty ags around for large allocations.
591  *
592  * PARAMETERS:
593  *	ipbmap	- pointer to in-core inode for the block map.
594  *
595  * RETURN VALUES:
596  *	the preferred allocation group number.
597  */
dbNextAG(struct inode * ipbmap)598 int dbNextAG(struct inode *ipbmap)
599 {
600 	s64 avgfree;
601 	int agpref;
602 	s64 hwm = 0;
603 	int i;
604 	int next_best = -1;
605 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
606 
607 	BMAP_LOCK(bmp);
608 
609 	/* determine the average number of free blocks within the ags. */
610 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
611 
612 	/*
613 	 * if the current preferred ag does not have an active allocator
614 	 * and has at least average freespace, return it
615 	 */
616 	agpref = bmp->db_agpref;
617 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
618 	    (bmp->db_agfree[agpref] >= avgfree))
619 		goto unlock;
620 
621 	/* From the last preferred ag, find the next one with at least
622 	 * average free space.
623 	 */
624 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
625 		if (agpref == bmp->db_numag)
626 			agpref = 0;
627 
628 		if (atomic_read(&bmp->db_active[agpref]))
629 			/* open file is currently growing in this ag */
630 			continue;
631 		if (bmp->db_agfree[agpref] >= avgfree) {
632 			/* Return this one */
633 			bmp->db_agpref = agpref;
634 			goto unlock;
635 		} else if (bmp->db_agfree[agpref] > hwm) {
636 			/* Less than avg. freespace, but best so far */
637 			hwm = bmp->db_agfree[agpref];
638 			next_best = agpref;
639 		}
640 	}
641 
642 	/*
643 	 * If no inactive ag was found with average freespace, use the
644 	 * next best
645 	 */
646 	if (next_best != -1)
647 		bmp->db_agpref = next_best;
648 	/* else leave db_agpref unchanged */
649 unlock:
650 	BMAP_UNLOCK(bmp);
651 
652 	/* return the preferred group.
653 	 */
654 	return (bmp->db_agpref);
655 }
656 
657 /*
658  * NAME:	dbAlloc()
659  *
660  * FUNCTION:	attempt to allocate a specified number of contiguous free
661  *		blocks from the working allocation block map.
662  *
663  *		the block allocation policy uses hints and a multi-step
664  *		approach.
665  *
666  *		for allocation requests smaller than the number of blocks
667  *		per dmap, we first try to allocate the new blocks
668  *		immediately following the hint.  if these blocks are not
669  *		available, we try to allocate blocks near the hint.  if
670  *		no blocks near the hint are available, we next try to
671  *		allocate within the same dmap as contains the hint.
672  *
673  *		if no blocks are available in the dmap or the allocation
674  *		request is larger than the dmap size, we try to allocate
675  *		within the same allocation group as contains the hint. if
676  *		this does not succeed, we finally try to allocate anywhere
677  *		within the aggregate.
678  *
679  *		we also try to allocate anywhere within the aggregate for
680  *		for allocation requests larger than the allocation group
681  *		size or requests that specify no hint value.
682  *
683  * PARAMETERS:
684  *	ip	- pointer to in-core inode;
685  *	hint	- allocation hint.
686  *	nblocks	- number of contiguous blocks in the range.
687  *	results	- on successful return, set to the starting block number
688  *		  of the newly allocated contiguous range.
689  *
690  * RETURN VALUES:
691  *	0	- success
692  *	-ENOSPC	- insufficient disk resources
693  *	-EIO	- i/o error
694  */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)695 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
696 {
697 	int rc, agno;
698 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
699 	struct bmap *bmp;
700 	struct metapage *mp;
701 	s64 lblkno, blkno;
702 	struct dmap *dp;
703 	int l2nb;
704 	s64 mapSize;
705 	int writers;
706 
707 	/* assert that nblocks is valid */
708 	assert(nblocks > 0);
709 
710 	/* get the log2 number of blocks to be allocated.
711 	 * if the number of blocks is not a log2 multiple,
712 	 * it will be rounded up to the next log2 multiple.
713 	 */
714 	l2nb = BLKSTOL2(nblocks);
715 
716 	bmp = JFS_SBI(ip->i_sb)->bmap;
717 
718 	mapSize = bmp->db_mapsize;
719 
720 	/* the hint should be within the map */
721 	if (hint >= mapSize) {
722 		jfs_error(ip->i_sb, "the hint is outside the map\n");
723 		return -EIO;
724 	}
725 
726 	/* if the number of blocks to be allocated is greater than the
727 	 * allocation group size, try to allocate anywhere.
728 	 */
729 	if (l2nb > bmp->db_agl2size) {
730 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
731 
732 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
733 
734 		goto write_unlock;
735 	}
736 
737 	/*
738 	 * If no hint, let dbNextAG recommend an allocation group
739 	 */
740 	if (hint == 0)
741 		goto pref_ag;
742 
743 	/* we would like to allocate close to the hint.  adjust the
744 	 * hint to the block following the hint since the allocators
745 	 * will start looking for free space starting at this point.
746 	 */
747 	blkno = hint + 1;
748 
749 	if (blkno >= bmp->db_mapsize)
750 		goto pref_ag;
751 
752 	agno = blkno >> bmp->db_agl2size;
753 
754 	/* check if blkno crosses over into a new allocation group.
755 	 * if so, check if we should allow allocations within this
756 	 * allocation group.
757 	 */
758 	if ((blkno & (bmp->db_agsize - 1)) == 0)
759 		/* check if the AG is currently being written to.
760 		 * if so, call dbNextAG() to find a non-busy
761 		 * AG with sufficient free space.
762 		 */
763 		if (atomic_read(&bmp->db_active[agno]))
764 			goto pref_ag;
765 
766 	/* check if the allocation request size can be satisfied from a
767 	 * single dmap.  if so, try to allocate from the dmap containing
768 	 * the hint using a tiered strategy.
769 	 */
770 	if (nblocks <= BPERDMAP) {
771 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
772 
773 		/* get the buffer for the dmap containing the hint.
774 		 */
775 		rc = -EIO;
776 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
777 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
778 		if (mp == NULL)
779 			goto read_unlock;
780 
781 		dp = (struct dmap *) mp->data;
782 
783 		/* first, try to satisfy the allocation request with the
784 		 * blocks beginning at the hint.
785 		 */
786 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
787 		    != -ENOSPC) {
788 			if (rc == 0) {
789 				*results = blkno;
790 				mark_metapage_dirty(mp);
791 			}
792 
793 			release_metapage(mp);
794 			goto read_unlock;
795 		}
796 
797 		writers = atomic_read(&bmp->db_active[agno]);
798 		if ((writers > 1) ||
799 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
800 			/*
801 			 * Someone else is writing in this allocation
802 			 * group.  To avoid fragmenting, try another ag
803 			 */
804 			release_metapage(mp);
805 			IREAD_UNLOCK(ipbmap);
806 			goto pref_ag;
807 		}
808 
809 		/* next, try to satisfy the allocation request with blocks
810 		 * near the hint.
811 		 */
812 		if ((rc =
813 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
814 		    != -ENOSPC) {
815 			if (rc == 0)
816 				mark_metapage_dirty(mp);
817 
818 			release_metapage(mp);
819 			goto read_unlock;
820 		}
821 
822 		/* try to satisfy the allocation request with blocks within
823 		 * the same dmap as the hint.
824 		 */
825 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
826 		    != -ENOSPC) {
827 			if (rc == 0)
828 				mark_metapage_dirty(mp);
829 
830 			release_metapage(mp);
831 			goto read_unlock;
832 		}
833 
834 		release_metapage(mp);
835 		IREAD_UNLOCK(ipbmap);
836 	}
837 
838 	/* try to satisfy the allocation request with blocks within
839 	 * the same allocation group as the hint.
840 	 */
841 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
842 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
843 		goto write_unlock;
844 
845 	IWRITE_UNLOCK(ipbmap);
846 
847 
848       pref_ag:
849 	/*
850 	 * Let dbNextAG recommend a preferred allocation group
851 	 */
852 	agno = dbNextAG(ipbmap);
853 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
854 
855 	/* Try to allocate within this allocation group.  if that fails, try to
856 	 * allocate anywhere in the map.
857 	 */
858 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
859 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
860 
861       write_unlock:
862 	IWRITE_UNLOCK(ipbmap);
863 
864 	return (rc);
865 
866       read_unlock:
867 	IREAD_UNLOCK(ipbmap);
868 
869 	return (rc);
870 }
871 
872 #ifdef _NOTYET
873 /*
874  * NAME:	dbAllocExact()
875  *
876  * FUNCTION:	try to allocate the requested extent;
877  *
878  * PARAMETERS:
879  *	ip	- pointer to in-core inode;
880  *	blkno	- extent address;
881  *	nblocks	- extent length;
882  *
883  * RETURN VALUES:
884  *	0	- success
885  *	-ENOSPC	- insufficient disk resources
886  *	-EIO	- i/o error
887  */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)888 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
889 {
890 	int rc;
891 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
892 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
893 	struct dmap *dp;
894 	s64 lblkno;
895 	struct metapage *mp;
896 
897 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
898 
899 	/*
900 	 * validate extent request:
901 	 *
902 	 * note: defragfs policy:
903 	 *  max 64 blocks will be moved.
904 	 *  allocation request size must be satisfied from a single dmap.
905 	 */
906 	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
907 		IREAD_UNLOCK(ipbmap);
908 		return -EINVAL;
909 	}
910 
911 	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
912 		/* the free space is no longer available */
913 		IREAD_UNLOCK(ipbmap);
914 		return -ENOSPC;
915 	}
916 
917 	/* read in the dmap covering the extent */
918 	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
919 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
920 	if (mp == NULL) {
921 		IREAD_UNLOCK(ipbmap);
922 		return -EIO;
923 	}
924 	dp = (struct dmap *) mp->data;
925 
926 	/* try to allocate the requested extent */
927 	rc = dbAllocNext(bmp, dp, blkno, nblocks);
928 
929 	IREAD_UNLOCK(ipbmap);
930 
931 	if (rc == 0)
932 		mark_metapage_dirty(mp);
933 
934 	release_metapage(mp);
935 
936 	return (rc);
937 }
938 #endif /* _NOTYET */
939 
940 /*
941  * NAME:	dbReAlloc()
942  *
943  * FUNCTION:	attempt to extend a current allocation by a specified
944  *		number of blocks.
945  *
946  *		this routine attempts to satisfy the allocation request
947  *		by first trying to extend the existing allocation in
948  *		place by allocating the additional blocks as the blocks
949  *		immediately following the current allocation.  if these
950  *		blocks are not available, this routine will attempt to
951  *		allocate a new set of contiguous blocks large enough
952  *		to cover the existing allocation plus the additional
953  *		number of blocks required.
954  *
955  * PARAMETERS:
956  *	ip	    -  pointer to in-core inode requiring allocation.
957  *	blkno	    -  starting block of the current allocation.
958  *	nblocks	    -  number of contiguous blocks within the current
959  *		       allocation.
960  *	addnblocks  -  number of blocks to add to the allocation.
961  *	results	-      on successful return, set to the starting block number
962  *		       of the existing allocation if the existing allocation
963  *		       was extended in place or to a newly allocated contiguous
964  *		       range if the existing allocation could not be extended
965  *		       in place.
966  *
967  * RETURN VALUES:
968  *	0	- success
969  *	-ENOSPC	- insufficient disk resources
970  *	-EIO	- i/o error
971  */
972 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)973 dbReAlloc(struct inode *ip,
974 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
975 {
976 	int rc;
977 
978 	/* try to extend the allocation in place.
979 	 */
980 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
981 		*results = blkno;
982 		return (0);
983 	} else {
984 		if (rc != -ENOSPC)
985 			return (rc);
986 	}
987 
988 	/* could not extend the allocation in place, so allocate a
989 	 * new set of blocks for the entire request (i.e. try to get
990 	 * a range of contiguous blocks large enough to cover the
991 	 * existing allocation plus the additional blocks.)
992 	 */
993 	return (dbAlloc
994 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
995 }
996 
997 
998 /*
999  * NAME:	dbExtend()
1000  *
1001  * FUNCTION:	attempt to extend a current allocation by a specified
1002  *		number of blocks.
1003  *
1004  *		this routine attempts to satisfy the allocation request
1005  *		by first trying to extend the existing allocation in
1006  *		place by allocating the additional blocks as the blocks
1007  *		immediately following the current allocation.
1008  *
1009  * PARAMETERS:
1010  *	ip	    -  pointer to in-core inode requiring allocation.
1011  *	blkno	    -  starting block of the current allocation.
1012  *	nblocks	    -  number of contiguous blocks within the current
1013  *		       allocation.
1014  *	addnblocks  -  number of blocks to add to the allocation.
1015  *
1016  * RETURN VALUES:
1017  *	0	- success
1018  *	-ENOSPC	- insufficient disk resources
1019  *	-EIO	- i/o error
1020  */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1021 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1022 {
1023 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1024 	s64 lblkno, lastblkno, extblkno;
1025 	uint rel_block;
1026 	struct metapage *mp;
1027 	struct dmap *dp;
1028 	int rc;
1029 	struct inode *ipbmap = sbi->ipbmap;
1030 	struct bmap *bmp;
1031 
1032 	/*
1033 	 * We don't want a non-aligned extent to cross a page boundary
1034 	 */
1035 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1036 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1037 		return -ENOSPC;
1038 
1039 	/* get the last block of the current allocation */
1040 	lastblkno = blkno + nblocks - 1;
1041 
1042 	/* determine the block number of the block following
1043 	 * the existing allocation.
1044 	 */
1045 	extblkno = lastblkno + 1;
1046 
1047 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1048 
1049 	/* better be within the file system */
1050 	bmp = sbi->bmap;
1051 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1052 		IREAD_UNLOCK(ipbmap);
1053 		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1054 		return -EIO;
1055 	}
1056 
1057 	/* we'll attempt to extend the current allocation in place by
1058 	 * allocating the additional blocks as the blocks immediately
1059 	 * following the current allocation.  we only try to extend the
1060 	 * current allocation in place if the number of additional blocks
1061 	 * can fit into a dmap, the last block of the current allocation
1062 	 * is not the last block of the file system, and the start of the
1063 	 * inplace extension is not on an allocation group boundary.
1064 	 */
1065 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1066 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1067 		IREAD_UNLOCK(ipbmap);
1068 		return -ENOSPC;
1069 	}
1070 
1071 	/* get the buffer for the dmap containing the first block
1072 	 * of the extension.
1073 	 */
1074 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1075 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1076 	if (mp == NULL) {
1077 		IREAD_UNLOCK(ipbmap);
1078 		return -EIO;
1079 	}
1080 
1081 	dp = (struct dmap *) mp->data;
1082 
1083 	/* try to allocate the blocks immediately following the
1084 	 * current allocation.
1085 	 */
1086 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1087 
1088 	IREAD_UNLOCK(ipbmap);
1089 
1090 	/* were we successful ? */
1091 	if (rc == 0)
1092 		write_metapage(mp);
1093 	else
1094 		/* we were not successful */
1095 		release_metapage(mp);
1096 
1097 	return (rc);
1098 }
1099 
1100 
1101 /*
1102  * NAME:	dbAllocNext()
1103  *
1104  * FUNCTION:	attempt to allocate the blocks of the specified block
1105  *		range within a dmap.
1106  *
1107  * PARAMETERS:
1108  *	bmp	-  pointer to bmap descriptor
1109  *	dp	-  pointer to dmap.
1110  *	blkno	-  starting block number of the range.
1111  *	nblocks	-  number of contiguous free blocks of the range.
1112  *
1113  * RETURN VALUES:
1114  *	0	- success
1115  *	-ENOSPC	- insufficient disk resources
1116  *	-EIO	- i/o error
1117  *
1118  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1119  */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1120 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1121 		       int nblocks)
1122 {
1123 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1124 	int l2size;
1125 	s8 *leaf;
1126 	u32 mask;
1127 
1128 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1129 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1130 		return -EIO;
1131 	}
1132 
1133 	/* pick up a pointer to the leaves of the dmap tree.
1134 	 */
1135 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1136 
1137 	/* determine the bit number and word within the dmap of the
1138 	 * starting block.
1139 	 */
1140 	dbitno = blkno & (BPERDMAP - 1);
1141 	word = dbitno >> L2DBWORD;
1142 
1143 	/* check if the specified block range is contained within
1144 	 * this dmap.
1145 	 */
1146 	if (dbitno + nblocks > BPERDMAP)
1147 		return -ENOSPC;
1148 
1149 	/* check if the starting leaf indicates that anything
1150 	 * is free.
1151 	 */
1152 	if (leaf[word] == NOFREE)
1153 		return -ENOSPC;
1154 
1155 	/* check the dmaps words corresponding to block range to see
1156 	 * if the block range is free.  not all bits of the first and
1157 	 * last words may be contained within the block range.  if this
1158 	 * is the case, we'll work against those words (i.e. partial first
1159 	 * and/or last) on an individual basis (a single pass) and examine
1160 	 * the actual bits to determine if they are free.  a single pass
1161 	 * will be used for all dmap words fully contained within the
1162 	 * specified range.  within this pass, the leaves of the dmap
1163 	 * tree will be examined to determine if the blocks are free. a
1164 	 * single leaf may describe the free space of multiple dmap
1165 	 * words, so we may visit only a subset of the actual leaves
1166 	 * corresponding to the dmap words of the block range.
1167 	 */
1168 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1169 		/* determine the bit number within the word and
1170 		 * the number of bits within the word.
1171 		 */
1172 		wbitno = dbitno & (DBWORD - 1);
1173 		nb = min(rembits, DBWORD - wbitno);
1174 
1175 		/* check if only part of the word is to be examined.
1176 		 */
1177 		if (nb < DBWORD) {
1178 			/* check if the bits are free.
1179 			 */
1180 			mask = (ONES << (DBWORD - nb) >> wbitno);
1181 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1182 				return -ENOSPC;
1183 
1184 			word += 1;
1185 		} else {
1186 			/* one or more dmap words are fully contained
1187 			 * within the block range.  determine how many
1188 			 * words and how many bits.
1189 			 */
1190 			nwords = rembits >> L2DBWORD;
1191 			nb = nwords << L2DBWORD;
1192 
1193 			/* now examine the appropriate leaves to determine
1194 			 * if the blocks are free.
1195 			 */
1196 			while (nwords > 0) {
1197 				/* does the leaf describe any free space ?
1198 				 */
1199 				if (leaf[word] < BUDMIN)
1200 					return -ENOSPC;
1201 
1202 				/* determine the l2 number of bits provided
1203 				 * by this leaf.
1204 				 */
1205 				l2size =
1206 				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1207 
1208 				/* determine how many words were handled.
1209 				 */
1210 				nw = BUDSIZE(l2size, BUDMIN);
1211 
1212 				nwords -= nw;
1213 				word += nw;
1214 			}
1215 		}
1216 	}
1217 
1218 	/* allocate the blocks.
1219 	 */
1220 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1221 }
1222 
1223 
1224 /*
1225  * NAME:	dbAllocNear()
1226  *
1227  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1228  *		a specified block (hint) within a dmap.
1229  *
1230  *		starting with the dmap leaf that covers the hint, we'll
1231  *		check the next four contiguous leaves for sufficient free
1232  *		space.  if sufficient free space is found, we'll allocate
1233  *		the desired free space.
1234  *
1235  * PARAMETERS:
1236  *	bmp	-  pointer to bmap descriptor
1237  *	dp	-  pointer to dmap.
1238  *	blkno	-  block number to allocate near.
1239  *	nblocks	-  actual number of contiguous free blocks desired.
1240  *	l2nb	-  log2 number of contiguous free blocks desired.
1241  *	results	-  on successful return, set to the starting block number
1242  *		   of the newly allocated range.
1243  *
1244  * RETURN VALUES:
1245  *	0	- success
1246  *	-ENOSPC	- insufficient disk resources
1247  *	-EIO	- i/o error
1248  *
1249  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1250  */
1251 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1252 dbAllocNear(struct bmap * bmp,
1253 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1254 {
1255 	int word, lword, rc;
1256 	s8 *leaf;
1257 
1258 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1259 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1260 		return -EIO;
1261 	}
1262 
1263 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1264 
1265 	/* determine the word within the dmap that holds the hint
1266 	 * (i.e. blkno).  also, determine the last word in the dmap
1267 	 * that we'll include in our examination.
1268 	 */
1269 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1270 	lword = min(word + 4, LPERDMAP);
1271 
1272 	/* examine the leaves for sufficient free space.
1273 	 */
1274 	for (; word < lword; word++) {
1275 		/* does the leaf describe sufficient free space ?
1276 		 */
1277 		if (leaf[word] < l2nb)
1278 			continue;
1279 
1280 		/* determine the block number within the file system
1281 		 * of the first block described by this dmap word.
1282 		 */
1283 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1284 
1285 		/* if not all bits of the dmap word are free, get the
1286 		 * starting bit number within the dmap word of the required
1287 		 * string of free bits and adjust the block number with the
1288 		 * value.
1289 		 */
1290 		if (leaf[word] < BUDMIN)
1291 			blkno +=
1292 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1293 
1294 		/* allocate the blocks.
1295 		 */
1296 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1297 			*results = blkno;
1298 
1299 		return (rc);
1300 	}
1301 
1302 	return -ENOSPC;
1303 }
1304 
1305 
1306 /*
1307  * NAME:	dbAllocAG()
1308  *
1309  * FUNCTION:	attempt to allocate the specified number of contiguous
1310  *		free blocks within the specified allocation group.
1311  *
1312  *		unless the allocation group size is equal to the number
1313  *		of blocks per dmap, the dmap control pages will be used to
1314  *		find the required free space, if available.  we start the
1315  *		search at the highest dmap control page level which
1316  *		distinctly describes the allocation group's free space
1317  *		(i.e. the highest level at which the allocation group's
1318  *		free space is not mixed in with that of any other group).
1319  *		in addition, we start the search within this level at a
1320  *		height of the dmapctl dmtree at which the nodes distinctly
1321  *		describe the allocation group's free space.  at this height,
1322  *		the allocation group's free space may be represented by 1
1323  *		or two sub-trees, depending on the allocation group size.
1324  *		we search the top nodes of these subtrees left to right for
1325  *		sufficient free space.  if sufficient free space is found,
1326  *		the subtree is searched to find the leftmost leaf that
1327  *		has free space.  once we have made it to the leaf, we
1328  *		move the search to the next lower level dmap control page
1329  *		corresponding to this leaf.  we continue down the dmap control
1330  *		pages until we find the dmap that contains or starts the
1331  *		sufficient free space and we allocate at this dmap.
1332  *
1333  *		if the allocation group size is equal to the dmap size,
1334  *		we'll start at the dmap corresponding to the allocation
1335  *		group and attempt the allocation at this level.
1336  *
1337  *		the dmap control page search is also not performed if the
1338  *		allocation group is completely free and we go to the first
1339  *		dmap of the allocation group to do the allocation.  this is
1340  *		done because the allocation group may be part (not the first
1341  *		part) of a larger binary buddy system, causing the dmap
1342  *		control pages to indicate no free space (NOFREE) within
1343  *		the allocation group.
1344  *
1345  * PARAMETERS:
1346  *	bmp	-  pointer to bmap descriptor
1347  *	agno	- allocation group number.
1348  *	nblocks	-  actual number of contiguous free blocks desired.
1349  *	l2nb	-  log2 number of contiguous free blocks desired.
1350  *	results	-  on successful return, set to the starting block number
1351  *		   of the newly allocated range.
1352  *
1353  * RETURN VALUES:
1354  *	0	- success
1355  *	-ENOSPC	- insufficient disk resources
1356  *	-EIO	- i/o error
1357  *
1358  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1359  */
1360 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1361 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1362 {
1363 	struct metapage *mp;
1364 	struct dmapctl *dcp;
1365 	int rc, ti, i, k, m, n, agperlev;
1366 	s64 blkno, lblkno;
1367 	int budmin;
1368 
1369 	/* allocation request should not be for more than the
1370 	 * allocation group size.
1371 	 */
1372 	if (l2nb > bmp->db_agl2size) {
1373 		jfs_error(bmp->db_ipbmap->i_sb,
1374 			  "allocation request is larger than the allocation group size\n");
1375 		return -EIO;
1376 	}
1377 
1378 	/* determine the starting block number of the allocation
1379 	 * group.
1380 	 */
1381 	blkno = (s64) agno << bmp->db_agl2size;
1382 
1383 	/* check if the allocation group size is the minimum allocation
1384 	 * group size or if the allocation group is completely free. if
1385 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1386 	 * 1 dmap), there is no need to search the dmap control page (below)
1387 	 * that fully describes the allocation group since the allocation
1388 	 * group is already fully described by a dmap.  in this case, we
1389 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1390 	 * required space if available.
1391 	 *
1392 	 * if the allocation group is completely free, dbAllocCtl() is
1393 	 * also called to allocate the required space.  this is done for
1394 	 * two reasons.  first, it makes no sense searching the dmap control
1395 	 * pages for free space when we know that free space exists.  second,
1396 	 * the dmap control pages may indicate that the allocation group
1397 	 * has no free space if the allocation group is part (not the first
1398 	 * part) of a larger binary buddy system.
1399 	 */
1400 	if (bmp->db_agsize == BPERDMAP
1401 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1402 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1403 		if ((rc == -ENOSPC) &&
1404 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1405 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1406 			       (unsigned long long) blkno,
1407 			       (unsigned long long) nblocks);
1408 			jfs_error(bmp->db_ipbmap->i_sb,
1409 				  "dbAllocCtl failed in free AG\n");
1410 		}
1411 		return (rc);
1412 	}
1413 
1414 	/* the buffer for the dmap control page that fully describes the
1415 	 * allocation group.
1416 	 */
1417 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1418 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1419 	if (mp == NULL)
1420 		return -EIO;
1421 	dcp = (struct dmapctl *) mp->data;
1422 	budmin = dcp->budmin;
1423 
1424 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1425 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1426 		release_metapage(mp);
1427 		return -EIO;
1428 	}
1429 
1430 	/* search the subtree(s) of the dmap control page that describes
1431 	 * the allocation group, looking for sufficient free space.  to begin,
1432 	 * determine how many allocation groups are represented in a dmap
1433 	 * control page at the control page level (i.e. L0, L1, L2) that
1434 	 * fully describes an allocation group. next, determine the starting
1435 	 * tree index of this allocation group within the control page.
1436 	 */
1437 	agperlev =
1438 	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1439 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1440 
1441 	/* dmap control page trees fan-out by 4 and a single allocation
1442 	 * group may be described by 1 or 2 subtrees within the ag level
1443 	 * dmap control page, depending upon the ag size. examine the ag's
1444 	 * subtrees for sufficient free space, starting with the leftmost
1445 	 * subtree.
1446 	 */
1447 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1448 		/* is there sufficient free space ?
1449 		 */
1450 		if (l2nb > dcp->stree[ti])
1451 			continue;
1452 
1453 		/* sufficient free space found in a subtree. now search down
1454 		 * the subtree to find the leftmost leaf that describes this
1455 		 * free space.
1456 		 */
1457 		for (k = bmp->db_agheight; k > 0; k--) {
1458 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1459 				if (l2nb <= dcp->stree[m + n]) {
1460 					ti = m + n;
1461 					break;
1462 				}
1463 			}
1464 			if (n == 4) {
1465 				jfs_error(bmp->db_ipbmap->i_sb,
1466 					  "failed descending stree\n");
1467 				release_metapage(mp);
1468 				return -EIO;
1469 			}
1470 		}
1471 
1472 		/* determine the block number within the file system
1473 		 * that corresponds to this leaf.
1474 		 */
1475 		if (bmp->db_aglevel == 2)
1476 			blkno = 0;
1477 		else if (bmp->db_aglevel == 1)
1478 			blkno &= ~(MAXL1SIZE - 1);
1479 		else		/* bmp->db_aglevel == 0 */
1480 			blkno &= ~(MAXL0SIZE - 1);
1481 
1482 		blkno +=
1483 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1484 
1485 		/* release the buffer in preparation for going down
1486 		 * the next level of dmap control pages.
1487 		 */
1488 		release_metapage(mp);
1489 
1490 		/* check if we need to continue to search down the lower
1491 		 * level dmap control pages.  we need to if the number of
1492 		 * blocks required is less than maximum number of blocks
1493 		 * described at the next lower level.
1494 		 */
1495 		if (l2nb < budmin) {
1496 
1497 			/* search the lower level dmap control pages to get
1498 			 * the starting block number of the dmap that
1499 			 * contains or starts off the free space.
1500 			 */
1501 			if ((rc =
1502 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1503 				       &blkno))) {
1504 				if (rc == -ENOSPC) {
1505 					jfs_error(bmp->db_ipbmap->i_sb,
1506 						  "control page inconsistent\n");
1507 					return -EIO;
1508 				}
1509 				return (rc);
1510 			}
1511 		}
1512 
1513 		/* allocate the blocks.
1514 		 */
1515 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1516 		if (rc == -ENOSPC) {
1517 			jfs_error(bmp->db_ipbmap->i_sb,
1518 				  "unable to allocate blocks\n");
1519 			rc = -EIO;
1520 		}
1521 		return (rc);
1522 	}
1523 
1524 	/* no space in the allocation group.  release the buffer and
1525 	 * return -ENOSPC.
1526 	 */
1527 	release_metapage(mp);
1528 
1529 	return -ENOSPC;
1530 }
1531 
1532 
1533 /*
1534  * NAME:	dbAllocAny()
1535  *
1536  * FUNCTION:	attempt to allocate the specified number of contiguous
1537  *		free blocks anywhere in the file system.
1538  *
1539  *		dbAllocAny() attempts to find the sufficient free space by
1540  *		searching down the dmap control pages, starting with the
1541  *		highest level (i.e. L0, L1, L2) control page.  if free space
1542  *		large enough to satisfy the desired free space is found, the
1543  *		desired free space is allocated.
1544  *
1545  * PARAMETERS:
1546  *	bmp	-  pointer to bmap descriptor
1547  *	nblocks	 -  actual number of contiguous free blocks desired.
1548  *	l2nb	 -  log2 number of contiguous free blocks desired.
1549  *	results	-  on successful return, set to the starting block number
1550  *		   of the newly allocated range.
1551  *
1552  * RETURN VALUES:
1553  *	0	- success
1554  *	-ENOSPC	- insufficient disk resources
1555  *	-EIO	- i/o error
1556  *
1557  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1558  */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1559 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1560 {
1561 	int rc;
1562 	s64 blkno = 0;
1563 
1564 	/* starting with the top level dmap control page, search
1565 	 * down the dmap control levels for sufficient free space.
1566 	 * if free space is found, dbFindCtl() returns the starting
1567 	 * block number of the dmap that contains or starts off the
1568 	 * range of free space.
1569 	 */
1570 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1571 		return (rc);
1572 
1573 	/* allocate the blocks.
1574 	 */
1575 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1576 	if (rc == -ENOSPC) {
1577 		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1578 		return -EIO;
1579 	}
1580 	return (rc);
1581 }
1582 
1583 
1584 /*
1585  * NAME:	dbDiscardAG()
1586  *
1587  * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1588  *
1589  *		algorithm:
1590  *		1) allocate blocks, as large as possible and save them
1591  *		   while holding IWRITE_LOCK on ipbmap
1592  *		2) trim all these saved block/length values
1593  *		3) mark the blocks free again
1594  *
1595  *		benefit:
1596  *		- we work only on one ag at some time, minimizing how long we
1597  *		  need to lock ipbmap
1598  *		- reading / writing the fs is possible most time, even on
1599  *		  trimming
1600  *
1601  *		downside:
1602  *		- we write two times to the dmapctl and dmap pages
1603  *		- but for me, this seems the best way, better ideas?
1604  *		/TR 2012
1605  *
1606  * PARAMETERS:
1607  *	ip	- pointer to in-core inode
1608  *	agno	- ag to trim
1609  *	minlen	- minimum value of contiguous blocks
1610  *
1611  * RETURN VALUES:
1612  *	s64	- actual number of blocks trimmed
1613  */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1614 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1615 {
1616 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1617 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1618 	s64 nblocks, blkno;
1619 	u64 trimmed = 0;
1620 	int rc, l2nb;
1621 	struct super_block *sb = ipbmap->i_sb;
1622 
1623 	struct range2trim {
1624 		u64 blkno;
1625 		u64 nblocks;
1626 	} *totrim, *tt;
1627 
1628 	/* max blkno / nblocks pairs to trim */
1629 	int count = 0, range_cnt;
1630 	u64 max_ranges;
1631 
1632 	/* prevent others from writing new stuff here, while trimming */
1633 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1634 
1635 	nblocks = bmp->db_agfree[agno];
1636 	max_ranges = nblocks;
1637 	do_div(max_ranges, minlen);
1638 	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1639 	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1640 	if (totrim == NULL) {
1641 		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1642 		IWRITE_UNLOCK(ipbmap);
1643 		return 0;
1644 	}
1645 
1646 	tt = totrim;
1647 	while (nblocks >= minlen) {
1648 		l2nb = BLKSTOL2(nblocks);
1649 
1650 		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1651 		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1652 		if (rc == 0) {
1653 			tt->blkno = blkno;
1654 			tt->nblocks = nblocks;
1655 			tt++; count++;
1656 
1657 			/* the whole ag is free, trim now */
1658 			if (bmp->db_agfree[agno] == 0)
1659 				break;
1660 
1661 			/* give a hint for the next while */
1662 			nblocks = bmp->db_agfree[agno];
1663 			continue;
1664 		} else if (rc == -ENOSPC) {
1665 			/* search for next smaller log2 block */
1666 			l2nb = BLKSTOL2(nblocks) - 1;
1667 			nblocks = 1LL << l2nb;
1668 		} else {
1669 			/* Trim any already allocated blocks */
1670 			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1671 			break;
1672 		}
1673 
1674 		/* check, if our trim array is full */
1675 		if (unlikely(count >= range_cnt - 1))
1676 			break;
1677 	}
1678 	IWRITE_UNLOCK(ipbmap);
1679 
1680 	tt->nblocks = 0; /* mark the current end */
1681 	for (tt = totrim; tt->nblocks != 0; tt++) {
1682 		/* when mounted with online discard, dbFree() will
1683 		 * call jfs_issue_discard() itself */
1684 		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1685 			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1686 		dbFree(ip, tt->blkno, tt->nblocks);
1687 		trimmed += tt->nblocks;
1688 	}
1689 	kfree(totrim);
1690 
1691 	return trimmed;
1692 }
1693 
1694 /*
1695  * NAME:	dbFindCtl()
1696  *
1697  * FUNCTION:	starting at a specified dmap control page level and block
1698  *		number, search down the dmap control levels for a range of
1699  *		contiguous free blocks large enough to satisfy an allocation
1700  *		request for the specified number of free blocks.
1701  *
1702  *		if sufficient contiguous free blocks are found, this routine
1703  *		returns the starting block number within a dmap page that
1704  *		contains or starts a range of contiqious free blocks that
1705  *		is sufficient in size.
1706  *
1707  * PARAMETERS:
1708  *	bmp	-  pointer to bmap descriptor
1709  *	level	-  starting dmap control page level.
1710  *	l2nb	-  log2 number of contiguous free blocks desired.
1711  *	*blkno	-  on entry, starting block number for conducting the search.
1712  *		   on successful return, the first block within a dmap page
1713  *		   that contains or starts a range of contiguous free blocks.
1714  *
1715  * RETURN VALUES:
1716  *	0	- success
1717  *	-ENOSPC	- insufficient disk resources
1718  *	-EIO	- i/o error
1719  *
1720  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1721  */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1722 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1723 {
1724 	int rc, leafidx, lev;
1725 	s64 b, lblkno;
1726 	struct dmapctl *dcp;
1727 	int budmin;
1728 	struct metapage *mp;
1729 
1730 	/* starting at the specified dmap control page level and block
1731 	 * number, search down the dmap control levels for the starting
1732 	 * block number of a dmap page that contains or starts off
1733 	 * sufficient free blocks.
1734 	 */
1735 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1736 		/* get the buffer of the dmap control page for the block
1737 		 * number and level (i.e. L0, L1, L2).
1738 		 */
1739 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1740 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1741 		if (mp == NULL)
1742 			return -EIO;
1743 		dcp = (struct dmapctl *) mp->data;
1744 		budmin = dcp->budmin;
1745 
1746 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1747 			jfs_error(bmp->db_ipbmap->i_sb,
1748 				  "Corrupt dmapctl page\n");
1749 			release_metapage(mp);
1750 			return -EIO;
1751 		}
1752 
1753 		/* search the tree within the dmap control page for
1754 		 * sufficient free space.  if sufficient free space is found,
1755 		 * dbFindLeaf() returns the index of the leaf at which
1756 		 * free space was found.
1757 		 */
1758 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1759 
1760 		/* release the buffer.
1761 		 */
1762 		release_metapage(mp);
1763 
1764 		/* space found ?
1765 		 */
1766 		if (rc) {
1767 			if (lev != level) {
1768 				jfs_error(bmp->db_ipbmap->i_sb,
1769 					  "dmap inconsistent\n");
1770 				return -EIO;
1771 			}
1772 			return -ENOSPC;
1773 		}
1774 
1775 		/* adjust the block number to reflect the location within
1776 		 * the dmap control page (i.e. the leaf) at which free
1777 		 * space was found.
1778 		 */
1779 		b += (((s64) leafidx) << budmin);
1780 
1781 		/* we stop the search at this dmap control page level if
1782 		 * the number of blocks required is greater than or equal
1783 		 * to the maximum number of blocks described at the next
1784 		 * (lower) level.
1785 		 */
1786 		if (l2nb >= budmin)
1787 			break;
1788 	}
1789 
1790 	*blkno = b;
1791 	return (0);
1792 }
1793 
1794 
1795 /*
1796  * NAME:	dbAllocCtl()
1797  *
1798  * FUNCTION:	attempt to allocate a specified number of contiguous
1799  *		blocks starting within a specific dmap.
1800  *
1801  *		this routine is called by higher level routines that search
1802  *		the dmap control pages above the actual dmaps for contiguous
1803  *		free space.  the result of successful searches by these
1804  *		routines are the starting block numbers within dmaps, with
1805  *		the dmaps themselves containing the desired contiguous free
1806  *		space or starting a contiguous free space of desired size
1807  *		that is made up of the blocks of one or more dmaps. these
1808  *		calls should not fail due to insufficent resources.
1809  *
1810  *		this routine is called in some cases where it is not known
1811  *		whether it will fail due to insufficient resources.  more
1812  *		specifically, this occurs when allocating from an allocation
1813  *		group whose size is equal to the number of blocks per dmap.
1814  *		in this case, the dmap control pages are not examined prior
1815  *		to calling this routine (to save pathlength) and the call
1816  *		might fail.
1817  *
1818  *		for a request size that fits within a dmap, this routine relies
1819  *		upon the dmap's dmtree to find the requested contiguous free
1820  *		space.  for request sizes that are larger than a dmap, the
1821  *		requested free space will start at the first block of the
1822  *		first dmap (i.e. blkno).
1823  *
1824  * PARAMETERS:
1825  *	bmp	-  pointer to bmap descriptor
1826  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1827  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1828  *	blkno	 -  starting block number of the dmap to start the allocation
1829  *		    from.
1830  *	results	-  on successful return, set to the starting block number
1831  *		   of the newly allocated range.
1832  *
1833  * RETURN VALUES:
1834  *	0	- success
1835  *	-ENOSPC	- insufficient disk resources
1836  *	-EIO	- i/o error
1837  *
1838  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1839  */
1840 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1841 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1842 {
1843 	int rc, nb;
1844 	s64 b, lblkno, n;
1845 	struct metapage *mp;
1846 	struct dmap *dp;
1847 
1848 	/* check if the allocation request is confined to a single dmap.
1849 	 */
1850 	if (l2nb <= L2BPERDMAP) {
1851 		/* get the buffer for the dmap.
1852 		 */
1853 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1854 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1855 		if (mp == NULL)
1856 			return -EIO;
1857 		dp = (struct dmap *) mp->data;
1858 
1859 		/* try to allocate the blocks.
1860 		 */
1861 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1862 		if (rc == 0)
1863 			mark_metapage_dirty(mp);
1864 
1865 		release_metapage(mp);
1866 
1867 		return (rc);
1868 	}
1869 
1870 	/* allocation request involving multiple dmaps. it must start on
1871 	 * a dmap boundary.
1872 	 */
1873 	assert((blkno & (BPERDMAP - 1)) == 0);
1874 
1875 	/* allocate the blocks dmap by dmap.
1876 	 */
1877 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1878 		/* get the buffer for the dmap.
1879 		 */
1880 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1881 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1882 		if (mp == NULL) {
1883 			rc = -EIO;
1884 			goto backout;
1885 		}
1886 		dp = (struct dmap *) mp->data;
1887 
1888 		/* the dmap better be all free.
1889 		 */
1890 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1891 			release_metapage(mp);
1892 			jfs_error(bmp->db_ipbmap->i_sb,
1893 				  "the dmap is not all free\n");
1894 			rc = -EIO;
1895 			goto backout;
1896 		}
1897 
1898 		/* determine how many blocks to allocate from this dmap.
1899 		 */
1900 		nb = min_t(s64, n, BPERDMAP);
1901 
1902 		/* allocate the blocks from the dmap.
1903 		 */
1904 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1905 			release_metapage(mp);
1906 			goto backout;
1907 		}
1908 
1909 		/* write the buffer.
1910 		 */
1911 		write_metapage(mp);
1912 	}
1913 
1914 	/* set the results (starting block number) and return.
1915 	 */
1916 	*results = blkno;
1917 	return (0);
1918 
1919 	/* something failed in handling an allocation request involving
1920 	 * multiple dmaps.  we'll try to clean up by backing out any
1921 	 * allocation that has already happened for this request.  if
1922 	 * we fail in backing out the allocation, we'll mark the file
1923 	 * system to indicate that blocks have been leaked.
1924 	 */
1925       backout:
1926 
1927 	/* try to backout the allocations dmap by dmap.
1928 	 */
1929 	for (n = nblocks - n, b = blkno; n > 0;
1930 	     n -= BPERDMAP, b += BPERDMAP) {
1931 		/* get the buffer for this dmap.
1932 		 */
1933 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1934 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1935 		if (mp == NULL) {
1936 			/* could not back out.  mark the file system
1937 			 * to indicate that we have leaked blocks.
1938 			 */
1939 			jfs_error(bmp->db_ipbmap->i_sb,
1940 				  "I/O Error: Block Leakage\n");
1941 			continue;
1942 		}
1943 		dp = (struct dmap *) mp->data;
1944 
1945 		/* free the blocks is this dmap.
1946 		 */
1947 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1948 			/* could not back out.  mark the file system
1949 			 * to indicate that we have leaked blocks.
1950 			 */
1951 			release_metapage(mp);
1952 			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1953 			continue;
1954 		}
1955 
1956 		/* write the buffer.
1957 		 */
1958 		write_metapage(mp);
1959 	}
1960 
1961 	return (rc);
1962 }
1963 
1964 
1965 /*
1966  * NAME:	dbAllocDmapLev()
1967  *
1968  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1969  *		from a specified dmap.
1970  *
1971  *		this routine checks if the contiguous blocks are available.
1972  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1973  *		returned.
1974  *
1975  * PARAMETERS:
1976  *	mp	-  pointer to bmap descriptor
1977  *	dp	-  pointer to dmap to attempt to allocate blocks from.
1978  *	l2nb	-  log2 number of contiguous block desired.
1979  *	nblocks	-  actual number of contiguous block desired.
1980  *	results	-  on successful return, set to the starting block number
1981  *		   of the newly allocated range.
1982  *
1983  * RETURN VALUES:
1984  *	0	- success
1985  *	-ENOSPC	- insufficient disk resources
1986  *	-EIO	- i/o error
1987  *
1988  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1989  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1990  */
1991 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)1992 dbAllocDmapLev(struct bmap * bmp,
1993 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1994 {
1995 	s64 blkno;
1996 	int leafidx, rc;
1997 
1998 	/* can't be more than a dmaps worth of blocks */
1999 	assert(l2nb <= L2BPERDMAP);
2000 
2001 	/* search the tree within the dmap page for sufficient
2002 	 * free space.  if sufficient free space is found, dbFindLeaf()
2003 	 * returns the index of the leaf at which free space was found.
2004 	 */
2005 	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2006 		return -ENOSPC;
2007 
2008 	/* determine the block number within the file system corresponding
2009 	 * to the leaf at which free space was found.
2010 	 */
2011 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2012 
2013 	/* if not all bits of the dmap word are free, get the starting
2014 	 * bit number within the dmap word of the required string of free
2015 	 * bits and adjust the block number with this value.
2016 	 */
2017 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2018 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2019 
2020 	/* allocate the blocks */
2021 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2022 		*results = blkno;
2023 
2024 	return (rc);
2025 }
2026 
2027 
2028 /*
2029  * NAME:	dbAllocDmap()
2030  *
2031  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2032  *		of a specified block range within a dmap.
2033  *
2034  *		this routine allocates the specified blocks from the dmap
2035  *		through a call to dbAllocBits(). if the allocation of the
2036  *		block range causes the maximum string of free blocks within
2037  *		the dmap to change (i.e. the value of the root of the dmap's
2038  *		dmtree), this routine will cause this change to be reflected
2039  *		up through the appropriate levels of the dmap control pages
2040  *		by a call to dbAdjCtl() for the L0 dmap control page that
2041  *		covers this dmap.
2042  *
2043  * PARAMETERS:
2044  *	bmp	-  pointer to bmap descriptor
2045  *	dp	-  pointer to dmap to allocate the block range from.
2046  *	blkno	-  starting block number of the block to be allocated.
2047  *	nblocks	-  number of blocks to be allocated.
2048  *
2049  * RETURN VALUES:
2050  *	0	- success
2051  *	-EIO	- i/o error
2052  *
2053  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2054  */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2055 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2056 		       int nblocks)
2057 {
2058 	s8 oldroot;
2059 	int rc;
2060 
2061 	/* save the current value of the root (i.e. maximum free string)
2062 	 * of the dmap tree.
2063 	 */
2064 	oldroot = dp->tree.stree[ROOT];
2065 
2066 	/* allocate the specified (blocks) bits */
2067 	dbAllocBits(bmp, dp, blkno, nblocks);
2068 
2069 	/* if the root has not changed, done. */
2070 	if (dp->tree.stree[ROOT] == oldroot)
2071 		return (0);
2072 
2073 	/* root changed. bubble the change up to the dmap control pages.
2074 	 * if the adjustment of the upper level control pages fails,
2075 	 * backout the bit allocation (thus making everything consistent).
2076 	 */
2077 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2078 		dbFreeBits(bmp, dp, blkno, nblocks);
2079 
2080 	return (rc);
2081 }
2082 
2083 
2084 /*
2085  * NAME:	dbFreeDmap()
2086  *
2087  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2088  *		of a specified block range within a dmap.
2089  *
2090  *		this routine frees the specified blocks from the dmap through
2091  *		a call to dbFreeBits(). if the deallocation of the block range
2092  *		causes the maximum string of free blocks within the dmap to
2093  *		change (i.e. the value of the root of the dmap's dmtree), this
2094  *		routine will cause this change to be reflected up through the
2095  *		appropriate levels of the dmap control pages by a call to
2096  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2097  *
2098  * PARAMETERS:
2099  *	bmp	-  pointer to bmap descriptor
2100  *	dp	-  pointer to dmap to free the block range from.
2101  *	blkno	-  starting block number of the block to be freed.
2102  *	nblocks	-  number of blocks to be freed.
2103  *
2104  * RETURN VALUES:
2105  *	0	- success
2106  *	-EIO	- i/o error
2107  *
2108  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2109  */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2110 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2111 		      int nblocks)
2112 {
2113 	s8 oldroot;
2114 	int rc = 0, word;
2115 
2116 	/* save the current value of the root (i.e. maximum free string)
2117 	 * of the dmap tree.
2118 	 */
2119 	oldroot = dp->tree.stree[ROOT];
2120 
2121 	/* free the specified (blocks) bits */
2122 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2123 
2124 	/* if error or the root has not changed, done. */
2125 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2126 		return (rc);
2127 
2128 	/* root changed. bubble the change up to the dmap control pages.
2129 	 * if the adjustment of the upper level control pages fails,
2130 	 * backout the deallocation.
2131 	 */
2132 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2133 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2134 
2135 		/* as part of backing out the deallocation, we will have
2136 		 * to back split the dmap tree if the deallocation caused
2137 		 * the freed blocks to become part of a larger binary buddy
2138 		 * system.
2139 		 */
2140 		if (dp->tree.stree[word] == NOFREE)
2141 			dbBackSplit((dmtree_t *) & dp->tree, word);
2142 
2143 		dbAllocBits(bmp, dp, blkno, nblocks);
2144 	}
2145 
2146 	return (rc);
2147 }
2148 
2149 
2150 /*
2151  * NAME:	dbAllocBits()
2152  *
2153  * FUNCTION:	allocate a specified block range from a dmap.
2154  *
2155  *		this routine updates the dmap to reflect the working
2156  *		state allocation of the specified block range. it directly
2157  *		updates the bits of the working map and causes the adjustment
2158  *		of the binary buddy system described by the dmap's dmtree
2159  *		leaves to reflect the bits allocated.  it also causes the
2160  *		dmap's dmtree, as a whole, to reflect the allocated range.
2161  *
2162  * PARAMETERS:
2163  *	bmp	-  pointer to bmap descriptor
2164  *	dp	-  pointer to dmap to allocate bits from.
2165  *	blkno	-  starting block number of the bits to be allocated.
2166  *	nblocks	-  number of bits to be allocated.
2167  *
2168  * RETURN VALUES: none
2169  *
2170  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2171  */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2172 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2173 			int nblocks)
2174 {
2175 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2176 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2177 	int size;
2178 	s8 *leaf;
2179 
2180 	/* pick up a pointer to the leaves of the dmap tree */
2181 	leaf = dp->tree.stree + LEAFIND;
2182 
2183 	/* determine the bit number and word within the dmap of the
2184 	 * starting block.
2185 	 */
2186 	dbitno = blkno & (BPERDMAP - 1);
2187 	word = dbitno >> L2DBWORD;
2188 
2189 	/* block range better be within the dmap */
2190 	assert(dbitno + nblocks <= BPERDMAP);
2191 
2192 	/* allocate the bits of the dmap's words corresponding to the block
2193 	 * range. not all bits of the first and last words may be contained
2194 	 * within the block range.  if this is the case, we'll work against
2195 	 * those words (i.e. partial first and/or last) on an individual basis
2196 	 * (a single pass), allocating the bits of interest by hand and
2197 	 * updating the leaf corresponding to the dmap word. a single pass
2198 	 * will be used for all dmap words fully contained within the
2199 	 * specified range.  within this pass, the bits of all fully contained
2200 	 * dmap words will be marked as free in a single shot and the leaves
2201 	 * will be updated. a single leaf may describe the free space of
2202 	 * multiple dmap words, so we may update only a subset of the actual
2203 	 * leaves corresponding to the dmap words of the block range.
2204 	 */
2205 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2206 		/* determine the bit number within the word and
2207 		 * the number of bits within the word.
2208 		 */
2209 		wbitno = dbitno & (DBWORD - 1);
2210 		nb = min(rembits, DBWORD - wbitno);
2211 
2212 		/* check if only part of a word is to be allocated.
2213 		 */
2214 		if (nb < DBWORD) {
2215 			/* allocate (set to 1) the appropriate bits within
2216 			 * this dmap word.
2217 			 */
2218 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2219 						      >> wbitno);
2220 
2221 			/* update the leaf for this dmap word. in addition
2222 			 * to setting the leaf value to the binary buddy max
2223 			 * of the updated dmap word, dbSplit() will split
2224 			 * the binary system of the leaves if need be.
2225 			 */
2226 			dbSplit(tp, word, BUDMIN,
2227 				dbMaxBud((u8 *) & dp->wmap[word]));
2228 
2229 			word += 1;
2230 		} else {
2231 			/* one or more dmap words are fully contained
2232 			 * within the block range.  determine how many
2233 			 * words and allocate (set to 1) the bits of these
2234 			 * words.
2235 			 */
2236 			nwords = rembits >> L2DBWORD;
2237 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2238 
2239 			/* determine how many bits.
2240 			 */
2241 			nb = nwords << L2DBWORD;
2242 
2243 			/* now update the appropriate leaves to reflect
2244 			 * the allocated words.
2245 			 */
2246 			for (; nwords > 0; nwords -= nw) {
2247 				if (leaf[word] < BUDMIN) {
2248 					jfs_error(bmp->db_ipbmap->i_sb,
2249 						  "leaf page corrupt\n");
2250 					break;
2251 				}
2252 
2253 				/* determine what the leaf value should be
2254 				 * updated to as the minimum of the l2 number
2255 				 * of bits being allocated and the l2 number
2256 				 * of bits currently described by this leaf.
2257 				 */
2258 				size = min_t(int, leaf[word],
2259 					     NLSTOL2BSZ(nwords));
2260 
2261 				/* update the leaf to reflect the allocation.
2262 				 * in addition to setting the leaf value to
2263 				 * NOFREE, dbSplit() will split the binary
2264 				 * system of the leaves to reflect the current
2265 				 * allocation (size).
2266 				 */
2267 				dbSplit(tp, word, size, NOFREE);
2268 
2269 				/* get the number of dmap words handled */
2270 				nw = BUDSIZE(size, BUDMIN);
2271 				word += nw;
2272 			}
2273 		}
2274 	}
2275 
2276 	/* update the free count for this dmap */
2277 	le32_add_cpu(&dp->nfree, -nblocks);
2278 
2279 	BMAP_LOCK(bmp);
2280 
2281 	/* if this allocation group is completely free,
2282 	 * update the maximum allocation group number if this allocation
2283 	 * group is the new max.
2284 	 */
2285 	agno = blkno >> bmp->db_agl2size;
2286 	if (agno > bmp->db_maxag)
2287 		bmp->db_maxag = agno;
2288 
2289 	/* update the free count for the allocation group and map */
2290 	bmp->db_agfree[agno] -= nblocks;
2291 	bmp->db_nfree -= nblocks;
2292 
2293 	BMAP_UNLOCK(bmp);
2294 }
2295 
2296 
2297 /*
2298  * NAME:	dbFreeBits()
2299  *
2300  * FUNCTION:	free a specified block range from a dmap.
2301  *
2302  *		this routine updates the dmap to reflect the working
2303  *		state allocation of the specified block range. it directly
2304  *		updates the bits of the working map and causes the adjustment
2305  *		of the binary buddy system described by the dmap's dmtree
2306  *		leaves to reflect the bits freed.  it also causes the dmap's
2307  *		dmtree, as a whole, to reflect the deallocated range.
2308  *
2309  * PARAMETERS:
2310  *	bmp	-  pointer to bmap descriptor
2311  *	dp	-  pointer to dmap to free bits from.
2312  *	blkno	-  starting block number of the bits to be freed.
2313  *	nblocks	-  number of bits to be freed.
2314  *
2315  * RETURN VALUES: 0 for success
2316  *
2317  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2318  */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2319 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2320 		       int nblocks)
2321 {
2322 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2323 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2324 	int rc = 0;
2325 	int size;
2326 
2327 	/* determine the bit number and word within the dmap of the
2328 	 * starting block.
2329 	 */
2330 	dbitno = blkno & (BPERDMAP - 1);
2331 	word = dbitno >> L2DBWORD;
2332 
2333 	/* block range better be within the dmap.
2334 	 */
2335 	assert(dbitno + nblocks <= BPERDMAP);
2336 
2337 	/* free the bits of the dmaps words corresponding to the block range.
2338 	 * not all bits of the first and last words may be contained within
2339 	 * the block range.  if this is the case, we'll work against those
2340 	 * words (i.e. partial first and/or last) on an individual basis
2341 	 * (a single pass), freeing the bits of interest by hand and updating
2342 	 * the leaf corresponding to the dmap word. a single pass will be used
2343 	 * for all dmap words fully contained within the specified range.
2344 	 * within this pass, the bits of all fully contained dmap words will
2345 	 * be marked as free in a single shot and the leaves will be updated. a
2346 	 * single leaf may describe the free space of multiple dmap words,
2347 	 * so we may update only a subset of the actual leaves corresponding
2348 	 * to the dmap words of the block range.
2349 	 *
2350 	 * dbJoin() is used to update leaf values and will join the binary
2351 	 * buddy system of the leaves if the new leaf values indicate this
2352 	 * should be done.
2353 	 */
2354 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2355 		/* determine the bit number within the word and
2356 		 * the number of bits within the word.
2357 		 */
2358 		wbitno = dbitno & (DBWORD - 1);
2359 		nb = min(rembits, DBWORD - wbitno);
2360 
2361 		/* check if only part of a word is to be freed.
2362 		 */
2363 		if (nb < DBWORD) {
2364 			/* free (zero) the appropriate bits within this
2365 			 * dmap word.
2366 			 */
2367 			dp->wmap[word] &=
2368 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2369 					  >> wbitno));
2370 
2371 			/* update the leaf for this dmap word.
2372 			 */
2373 			rc = dbJoin(tp, word,
2374 				    dbMaxBud((u8 *) & dp->wmap[word]));
2375 			if (rc)
2376 				return rc;
2377 
2378 			word += 1;
2379 		} else {
2380 			/* one or more dmap words are fully contained
2381 			 * within the block range.  determine how many
2382 			 * words and free (zero) the bits of these words.
2383 			 */
2384 			nwords = rembits >> L2DBWORD;
2385 			memset(&dp->wmap[word], 0, nwords * 4);
2386 
2387 			/* determine how many bits.
2388 			 */
2389 			nb = nwords << L2DBWORD;
2390 
2391 			/* now update the appropriate leaves to reflect
2392 			 * the freed words.
2393 			 */
2394 			for (; nwords > 0; nwords -= nw) {
2395 				/* determine what the leaf value should be
2396 				 * updated to as the minimum of the l2 number
2397 				 * of bits being freed and the l2 (max) number
2398 				 * of bits that can be described by this leaf.
2399 				 */
2400 				size =
2401 				    min(LITOL2BSZ
2402 					(word, L2LPERDMAP, BUDMIN),
2403 					NLSTOL2BSZ(nwords));
2404 
2405 				/* update the leaf.
2406 				 */
2407 				rc = dbJoin(tp, word, size);
2408 				if (rc)
2409 					return rc;
2410 
2411 				/* get the number of dmap words handled.
2412 				 */
2413 				nw = BUDSIZE(size, BUDMIN);
2414 				word += nw;
2415 			}
2416 		}
2417 	}
2418 
2419 	/* update the free count for this dmap.
2420 	 */
2421 	le32_add_cpu(&dp->nfree, nblocks);
2422 
2423 	BMAP_LOCK(bmp);
2424 
2425 	/* update the free count for the allocation group and
2426 	 * map.
2427 	 */
2428 	agno = blkno >> bmp->db_agl2size;
2429 	bmp->db_nfree += nblocks;
2430 	bmp->db_agfree[agno] += nblocks;
2431 
2432 	/* check if this allocation group is not completely free and
2433 	 * if it is currently the maximum (rightmost) allocation group.
2434 	 * if so, establish the new maximum allocation group number by
2435 	 * searching left for the first allocation group with allocation.
2436 	 */
2437 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2438 	    (agno == bmp->db_numag - 1 &&
2439 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2440 		while (bmp->db_maxag > 0) {
2441 			bmp->db_maxag -= 1;
2442 			if (bmp->db_agfree[bmp->db_maxag] !=
2443 			    bmp->db_agsize)
2444 				break;
2445 		}
2446 
2447 		/* re-establish the allocation group preference if the
2448 		 * current preference is right of the maximum allocation
2449 		 * group.
2450 		 */
2451 		if (bmp->db_agpref > bmp->db_maxag)
2452 			bmp->db_agpref = bmp->db_maxag;
2453 	}
2454 
2455 	BMAP_UNLOCK(bmp);
2456 
2457 	return 0;
2458 }
2459 
2460 
2461 /*
2462  * NAME:	dbAdjCtl()
2463  *
2464  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2465  *		the change in a lower level dmap or dmap control page's
2466  *		maximum string of free blocks (i.e. a change in the root
2467  *		of the lower level object's dmtree) due to the allocation
2468  *		or deallocation of a range of blocks with a single dmap.
2469  *
2470  *		on entry, this routine is provided with the new value of
2471  *		the lower level dmap or dmap control page root and the
2472  *		starting block number of the block range whose allocation
2473  *		or deallocation resulted in the root change.  this range
2474  *		is respresented by a single leaf of the current dmapctl
2475  *		and the leaf will be updated with this value, possibly
2476  *		causing a binary buddy system within the leaves to be
2477  *		split or joined.  the update may also cause the dmapctl's
2478  *		dmtree to be updated.
2479  *
2480  *		if the adjustment of the dmap control page, itself, causes its
2481  *		root to change, this change will be bubbled up to the next dmap
2482  *		control level by a recursive call to this routine, specifying
2483  *		the new root value and the next dmap control page level to
2484  *		be adjusted.
2485  * PARAMETERS:
2486  *	bmp	-  pointer to bmap descriptor
2487  *	blkno	-  the first block of a block range within a dmap.  it is
2488  *		   the allocation or deallocation of this block range that
2489  *		   requires the dmap control page to be adjusted.
2490  *	newval	-  the new value of the lower level dmap or dmap control
2491  *		   page root.
2492  *	alloc	-  'true' if adjustment is due to an allocation.
2493  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2494  *		   be adjusted.
2495  *
2496  * RETURN VALUES:
2497  *	0	- success
2498  *	-EIO	- i/o error
2499  *
2500  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2501  */
2502 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2503 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2504 {
2505 	struct metapage *mp;
2506 	s8 oldroot;
2507 	int oldval;
2508 	s64 lblkno;
2509 	struct dmapctl *dcp;
2510 	int rc, leafno, ti;
2511 
2512 	/* get the buffer for the dmap control page for the specified
2513 	 * block number and control page level.
2514 	 */
2515 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2516 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2517 	if (mp == NULL)
2518 		return -EIO;
2519 	dcp = (struct dmapctl *) mp->data;
2520 
2521 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2522 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2523 		release_metapage(mp);
2524 		return -EIO;
2525 	}
2526 
2527 	/* determine the leaf number corresponding to the block and
2528 	 * the index within the dmap control tree.
2529 	 */
2530 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2531 	ti = leafno + le32_to_cpu(dcp->leafidx);
2532 
2533 	/* save the current leaf value and the current root level (i.e.
2534 	 * maximum l2 free string described by this dmapctl).
2535 	 */
2536 	oldval = dcp->stree[ti];
2537 	oldroot = dcp->stree[ROOT];
2538 
2539 	/* check if this is a control page update for an allocation.
2540 	 * if so, update the leaf to reflect the new leaf value using
2541 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2542 	 * the leaf with the new value.  in addition to updating the
2543 	 * leaf, dbSplit() will also split the binary buddy system of
2544 	 * the leaves, if required, and bubble new values within the
2545 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2546 	 * the binary buddy system of leaves and bubble new values up
2547 	 * the dmapctl tree as required by the new leaf value.
2548 	 */
2549 	if (alloc) {
2550 		/* check if we are in the middle of a binary buddy
2551 		 * system.  this happens when we are performing the
2552 		 * first allocation out of an allocation group that
2553 		 * is part (not the first part) of a larger binary
2554 		 * buddy system.  if we are in the middle, back split
2555 		 * the system prior to calling dbSplit() which assumes
2556 		 * that it is at the front of a binary buddy system.
2557 		 */
2558 		if (oldval == NOFREE) {
2559 			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2560 			if (rc)
2561 				return rc;
2562 			oldval = dcp->stree[ti];
2563 		}
2564 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2565 	} else {
2566 		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2567 		if (rc)
2568 			return rc;
2569 	}
2570 
2571 	/* check if the root of the current dmap control page changed due
2572 	 * to the update and if the current dmap control page is not at
2573 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2574 	 * root changed and this is not the top level), call this routine
2575 	 * again (recursion) for the next higher level of the mapping to
2576 	 * reflect the change in root for the current dmap control page.
2577 	 */
2578 	if (dcp->stree[ROOT] != oldroot) {
2579 		/* are we below the top level of the map.  if so,
2580 		 * bubble the root up to the next higher level.
2581 		 */
2582 		if (level < bmp->db_maxlevel) {
2583 			/* bubble up the new root of this dmap control page to
2584 			 * the next level.
2585 			 */
2586 			if ((rc =
2587 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2588 				      level + 1))) {
2589 				/* something went wrong in bubbling up the new
2590 				 * root value, so backout the changes to the
2591 				 * current dmap control page.
2592 				 */
2593 				if (alloc) {
2594 					dbJoin((dmtree_t *) dcp, leafno,
2595 					       oldval);
2596 				} else {
2597 					/* the dbJoin() above might have
2598 					 * caused a larger binary buddy system
2599 					 * to form and we may now be in the
2600 					 * middle of it.  if this is the case,
2601 					 * back split the buddies.
2602 					 */
2603 					if (dcp->stree[ti] == NOFREE)
2604 						dbBackSplit((dmtree_t *)
2605 							    dcp, leafno);
2606 					dbSplit((dmtree_t *) dcp, leafno,
2607 						dcp->budmin, oldval);
2608 				}
2609 
2610 				/* release the buffer and return the error.
2611 				 */
2612 				release_metapage(mp);
2613 				return (rc);
2614 			}
2615 		} else {
2616 			/* we're at the top level of the map. update
2617 			 * the bmap control page to reflect the size
2618 			 * of the maximum free buddy system.
2619 			 */
2620 			assert(level == bmp->db_maxlevel);
2621 			if (bmp->db_maxfreebud != oldroot) {
2622 				jfs_error(bmp->db_ipbmap->i_sb,
2623 					  "the maximum free buddy is not the old root\n");
2624 			}
2625 			bmp->db_maxfreebud = dcp->stree[ROOT];
2626 		}
2627 	}
2628 
2629 	/* write the buffer.
2630 	 */
2631 	write_metapage(mp);
2632 
2633 	return (0);
2634 }
2635 
2636 
2637 /*
2638  * NAME:	dbSplit()
2639  *
2640  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2641  *		the leaf from the binary buddy system of the dmtree's
2642  *		leaves, as required.
2643  *
2644  * PARAMETERS:
2645  *	tp	- pointer to the tree containing the leaf.
2646  *	leafno	- the number of the leaf to be updated.
2647  *	splitsz	- the size the binary buddy system starting at the leaf
2648  *		  must be split to, specified as the log2 number of blocks.
2649  *	newval	- the new value for the leaf.
2650  *
2651  * RETURN VALUES: none
2652  *
2653  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2654  */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval)2655 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2656 {
2657 	int budsz;
2658 	int cursz;
2659 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2660 
2661 	/* check if the leaf needs to be split.
2662 	 */
2663 	if (leaf[leafno] > tp->dmt_budmin) {
2664 		/* the split occurs by cutting the buddy system in half
2665 		 * at the specified leaf until we reach the specified
2666 		 * size.  pick up the starting split size (current size
2667 		 * - 1 in l2) and the corresponding buddy size.
2668 		 */
2669 		cursz = leaf[leafno] - 1;
2670 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2671 
2672 		/* split until we reach the specified size.
2673 		 */
2674 		while (cursz >= splitsz) {
2675 			/* update the buddy's leaf with its new value.
2676 			 */
2677 			dbAdjTree(tp, leafno ^ budsz, cursz);
2678 
2679 			/* on to the next size and buddy.
2680 			 */
2681 			cursz -= 1;
2682 			budsz >>= 1;
2683 		}
2684 	}
2685 
2686 	/* adjust the dmap tree to reflect the specified leaf's new
2687 	 * value.
2688 	 */
2689 	dbAdjTree(tp, leafno, newval);
2690 }
2691 
2692 
2693 /*
2694  * NAME:	dbBackSplit()
2695  *
2696  * FUNCTION:	back split the binary buddy system of dmtree leaves
2697  *		that hold a specified leaf until the specified leaf
2698  *		starts its own binary buddy system.
2699  *
2700  *		the allocators typically perform allocations at the start
2701  *		of binary buddy systems and dbSplit() is used to accomplish
2702  *		any required splits.  in some cases, however, allocation
2703  *		may occur in the middle of a binary system and requires a
2704  *		back split, with the split proceeding out from the middle of
2705  *		the system (less efficient) rather than the start of the
2706  *		system (more efficient).  the cases in which a back split
2707  *		is required are rare and are limited to the first allocation
2708  *		within an allocation group which is a part (not first part)
2709  *		of a larger binary buddy system and a few exception cases
2710  *		in which a previous join operation must be backed out.
2711  *
2712  * PARAMETERS:
2713  *	tp	- pointer to the tree containing the leaf.
2714  *	leafno	- the number of the leaf to be updated.
2715  *
2716  * RETURN VALUES: none
2717  *
2718  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2719  */
dbBackSplit(dmtree_t * tp,int leafno)2720 static int dbBackSplit(dmtree_t * tp, int leafno)
2721 {
2722 	int budsz, bud, w, bsz, size;
2723 	int cursz;
2724 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2725 
2726 	/* leaf should be part (not first part) of a binary
2727 	 * buddy system.
2728 	 */
2729 	assert(leaf[leafno] == NOFREE);
2730 
2731 	/* the back split is accomplished by iteratively finding the leaf
2732 	 * that starts the buddy system that contains the specified leaf and
2733 	 * splitting that system in two.  this iteration continues until
2734 	 * the specified leaf becomes the start of a buddy system.
2735 	 *
2736 	 * determine maximum possible l2 size for the specified leaf.
2737 	 */
2738 	size =
2739 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2740 		      tp->dmt_budmin);
2741 
2742 	/* determine the number of leaves covered by this size.  this
2743 	 * is the buddy size that we will start with as we search for
2744 	 * the buddy system that contains the specified leaf.
2745 	 */
2746 	budsz = BUDSIZE(size, tp->dmt_budmin);
2747 
2748 	/* back split.
2749 	 */
2750 	while (leaf[leafno] == NOFREE) {
2751 		/* find the leftmost buddy leaf.
2752 		 */
2753 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2754 		     w = (w < bud) ? w : bud) {
2755 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2756 				jfs_err("JFS: block map error in dbBackSplit");
2757 				return -EIO;
2758 			}
2759 
2760 			/* determine the buddy.
2761 			 */
2762 			bud = w ^ bsz;
2763 
2764 			/* check if this buddy is the start of the system.
2765 			 */
2766 			if (leaf[bud] != NOFREE) {
2767 				/* split the leaf at the start of the
2768 				 * system in two.
2769 				 */
2770 				cursz = leaf[bud] - 1;
2771 				dbSplit(tp, bud, cursz, cursz);
2772 				break;
2773 			}
2774 		}
2775 	}
2776 
2777 	if (leaf[leafno] != size) {
2778 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2779 		return -EIO;
2780 	}
2781 	return 0;
2782 }
2783 
2784 
2785 /*
2786  * NAME:	dbJoin()
2787  *
2788  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2789  *		the leaf with other leaves of the dmtree into a multi-leaf
2790  *		binary buddy system, as required.
2791  *
2792  * PARAMETERS:
2793  *	tp	- pointer to the tree containing the leaf.
2794  *	leafno	- the number of the leaf to be updated.
2795  *	newval	- the new value for the leaf.
2796  *
2797  * RETURN VALUES: none
2798  */
dbJoin(dmtree_t * tp,int leafno,int newval)2799 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2800 {
2801 	int budsz, buddy;
2802 	s8 *leaf;
2803 
2804 	/* can the new leaf value require a join with other leaves ?
2805 	 */
2806 	if (newval >= tp->dmt_budmin) {
2807 		/* pickup a pointer to the leaves of the tree.
2808 		 */
2809 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2810 
2811 		/* try to join the specified leaf into a large binary
2812 		 * buddy system.  the join proceeds by attempting to join
2813 		 * the specified leafno with its buddy (leaf) at new value.
2814 		 * if the join occurs, we attempt to join the left leaf
2815 		 * of the joined buddies with its buddy at new value + 1.
2816 		 * we continue to join until we find a buddy that cannot be
2817 		 * joined (does not have a value equal to the size of the
2818 		 * last join) or until all leaves have been joined into a
2819 		 * single system.
2820 		 *
2821 		 * get the buddy size (number of words covered) of
2822 		 * the new value.
2823 		 */
2824 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2825 
2826 		/* try to join.
2827 		 */
2828 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2829 			/* get the buddy leaf.
2830 			 */
2831 			buddy = leafno ^ budsz;
2832 
2833 			/* if the leaf's new value is greater than its
2834 			 * buddy's value, we join no more.
2835 			 */
2836 			if (newval > leaf[buddy])
2837 				break;
2838 
2839 			/* It shouldn't be less */
2840 			if (newval < leaf[buddy])
2841 				return -EIO;
2842 
2843 			/* check which (leafno or buddy) is the left buddy.
2844 			 * the left buddy gets to claim the blocks resulting
2845 			 * from the join while the right gets to claim none.
2846 			 * the left buddy is also eligible to participate in
2847 			 * a join at the next higher level while the right
2848 			 * is not.
2849 			 *
2850 			 */
2851 			if (leafno < buddy) {
2852 				/* leafno is the left buddy.
2853 				 */
2854 				dbAdjTree(tp, buddy, NOFREE);
2855 			} else {
2856 				/* buddy is the left buddy and becomes
2857 				 * leafno.
2858 				 */
2859 				dbAdjTree(tp, leafno, NOFREE);
2860 				leafno = buddy;
2861 			}
2862 
2863 			/* on to try the next join.
2864 			 */
2865 			newval += 1;
2866 			budsz <<= 1;
2867 		}
2868 	}
2869 
2870 	/* update the leaf value.
2871 	 */
2872 	dbAdjTree(tp, leafno, newval);
2873 
2874 	return 0;
2875 }
2876 
2877 
2878 /*
2879  * NAME:	dbAdjTree()
2880  *
2881  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2882  *		the dmtree, as required, to reflect the new leaf value.
2883  *		the combination of any buddies must already be done before
2884  *		this is called.
2885  *
2886  * PARAMETERS:
2887  *	tp	- pointer to the tree to be adjusted.
2888  *	leafno	- the number of the leaf to be updated.
2889  *	newval	- the new value for the leaf.
2890  *
2891  * RETURN VALUES: none
2892  */
dbAdjTree(dmtree_t * tp,int leafno,int newval)2893 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2894 {
2895 	int lp, pp, k;
2896 	int max;
2897 
2898 	/* pick up the index of the leaf for this leafno.
2899 	 */
2900 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2901 
2902 	/* is the current value the same as the old value ?  if so,
2903 	 * there is nothing to do.
2904 	 */
2905 	if (tp->dmt_stree[lp] == newval)
2906 		return;
2907 
2908 	/* set the new value.
2909 	 */
2910 	tp->dmt_stree[lp] = newval;
2911 
2912 	/* bubble the new value up the tree as required.
2913 	 */
2914 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2915 		/* get the index of the first leaf of the 4 leaf
2916 		 * group containing the specified leaf (leafno).
2917 		 */
2918 		lp = ((lp - 1) & ~0x03) + 1;
2919 
2920 		/* get the index of the parent of this 4 leaf group.
2921 		 */
2922 		pp = (lp - 1) >> 2;
2923 
2924 		/* determine the maximum of the 4 leaves.
2925 		 */
2926 		max = TREEMAX(&tp->dmt_stree[lp]);
2927 
2928 		/* if the maximum of the 4 is the same as the
2929 		 * parent's value, we're done.
2930 		 */
2931 		if (tp->dmt_stree[pp] == max)
2932 			break;
2933 
2934 		/* parent gets new value.
2935 		 */
2936 		tp->dmt_stree[pp] = max;
2937 
2938 		/* parent becomes leaf for next go-round.
2939 		 */
2940 		lp = pp;
2941 	}
2942 }
2943 
2944 
2945 /*
2946  * NAME:	dbFindLeaf()
2947  *
2948  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2949  *		the index of a leaf describing the free blocks if
2950  *		sufficient free blocks are found.
2951  *
2952  *		the search starts at the top of the dmtree_t tree and
2953  *		proceeds down the tree to the leftmost leaf with sufficient
2954  *		free space.
2955  *
2956  * PARAMETERS:
2957  *	tp	- pointer to the tree to be searched.
2958  *	l2nb	- log2 number of free blocks to search for.
2959  *	leafidx	- return pointer to be set to the index of the leaf
2960  *		  describing at least l2nb free blocks if sufficient
2961  *		  free blocks are found.
2962  *
2963  * RETURN VALUES:
2964  *	0	- success
2965  *	-ENOSPC	- insufficient free blocks.
2966  */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx)2967 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2968 {
2969 	int ti, n = 0, k, x = 0;
2970 
2971 	/* first check the root of the tree to see if there is
2972 	 * sufficient free space.
2973 	 */
2974 	if (l2nb > tp->dmt_stree[ROOT])
2975 		return -ENOSPC;
2976 
2977 	/* sufficient free space available. now search down the tree
2978 	 * starting at the next level for the leftmost leaf that
2979 	 * describes sufficient free space.
2980 	 */
2981 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2982 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2983 		/* search the four nodes at this level, starting from
2984 		 * the left.
2985 		 */
2986 		for (x = ti, n = 0; n < 4; n++) {
2987 			/* sufficient free space found.  move to the next
2988 			 * level (or quit if this is the last level).
2989 			 */
2990 			if (l2nb <= tp->dmt_stree[x + n])
2991 				break;
2992 		}
2993 
2994 		/* better have found something since the higher
2995 		 * levels of the tree said it was here.
2996 		 */
2997 		assert(n < 4);
2998 	}
2999 
3000 	/* set the return to the leftmost leaf describing sufficient
3001 	 * free space.
3002 	 */
3003 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3004 
3005 	return (0);
3006 }
3007 
3008 
3009 /*
3010  * NAME:	dbFindBits()
3011  *
3012  * FUNCTION:	find a specified number of binary buddy free bits within a
3013  *		dmap bitmap word value.
3014  *
3015  *		this routine searches the bitmap value for (1 << l2nb) free
3016  *		bits at (1 << l2nb) alignments within the value.
3017  *
3018  * PARAMETERS:
3019  *	word	-  dmap bitmap word value.
3020  *	l2nb	-  number of free bits specified as a log2 number.
3021  *
3022  * RETURN VALUES:
3023  *	starting bit number of free bits.
3024  */
dbFindBits(u32 word,int l2nb)3025 static int dbFindBits(u32 word, int l2nb)
3026 {
3027 	int bitno, nb;
3028 	u32 mask;
3029 
3030 	/* get the number of bits.
3031 	 */
3032 	nb = 1 << l2nb;
3033 	assert(nb <= DBWORD);
3034 
3035 	/* complement the word so we can use a mask (i.e. 0s represent
3036 	 * free bits) and compute the mask.
3037 	 */
3038 	word = ~word;
3039 	mask = ONES << (DBWORD - nb);
3040 
3041 	/* scan the word for nb free bits at nb alignments.
3042 	 */
3043 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3044 		if ((mask & word) == mask)
3045 			break;
3046 	}
3047 
3048 	ASSERT(bitno < 32);
3049 
3050 	/* return the bit number.
3051 	 */
3052 	return (bitno);
3053 }
3054 
3055 
3056 /*
3057  * NAME:	dbMaxBud(u8 *cp)
3058  *
3059  * FUNCTION:	determine the largest binary buddy string of free
3060  *		bits within 32-bits of the map.
3061  *
3062  * PARAMETERS:
3063  *	cp	-  pointer to the 32-bit value.
3064  *
3065  * RETURN VALUES:
3066  *	largest binary buddy of free bits within a dmap word.
3067  */
dbMaxBud(u8 * cp)3068 static int dbMaxBud(u8 * cp)
3069 {
3070 	signed char tmp1, tmp2;
3071 
3072 	/* check if the wmap word is all free. if so, the
3073 	 * free buddy size is BUDMIN.
3074 	 */
3075 	if (*((uint *) cp) == 0)
3076 		return (BUDMIN);
3077 
3078 	/* check if the wmap word is half free. if so, the
3079 	 * free buddy size is BUDMIN-1.
3080 	 */
3081 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3082 		return (BUDMIN - 1);
3083 
3084 	/* not all free or half free. determine the free buddy
3085 	 * size thru table lookup using quarters of the wmap word.
3086 	 */
3087 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3088 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3089 	return (max(tmp1, tmp2));
3090 }
3091 
3092 
3093 /*
3094  * NAME:	cnttz(uint word)
3095  *
3096  * FUNCTION:	determine the number of trailing zeros within a 32-bit
3097  *		value.
3098  *
3099  * PARAMETERS:
3100  *	value	-  32-bit value to be examined.
3101  *
3102  * RETURN VALUES:
3103  *	count of trailing zeros
3104  */
cnttz(u32 word)3105 static int cnttz(u32 word)
3106 {
3107 	int n;
3108 
3109 	for (n = 0; n < 32; n++, word >>= 1) {
3110 		if (word & 0x01)
3111 			break;
3112 	}
3113 
3114 	return (n);
3115 }
3116 
3117 
3118 /*
3119  * NAME:	cntlz(u32 value)
3120  *
3121  * FUNCTION:	determine the number of leading zeros within a 32-bit
3122  *		value.
3123  *
3124  * PARAMETERS:
3125  *	value	-  32-bit value to be examined.
3126  *
3127  * RETURN VALUES:
3128  *	count of leading zeros
3129  */
cntlz(u32 value)3130 static int cntlz(u32 value)
3131 {
3132 	int n;
3133 
3134 	for (n = 0; n < 32; n++, value <<= 1) {
3135 		if (value & HIGHORDER)
3136 			break;
3137 	}
3138 	return (n);
3139 }
3140 
3141 
3142 /*
3143  * NAME:	blkstol2(s64 nb)
3144  *
3145  * FUNCTION:	convert a block count to its log2 value. if the block
3146  *		count is not a l2 multiple, it is rounded up to the next
3147  *		larger l2 multiple.
3148  *
3149  * PARAMETERS:
3150  *	nb	-  number of blocks
3151  *
3152  * RETURN VALUES:
3153  *	log2 number of blocks
3154  */
blkstol2(s64 nb)3155 static int blkstol2(s64 nb)
3156 {
3157 	int l2nb;
3158 	s64 mask;		/* meant to be signed */
3159 
3160 	mask = (s64) 1 << (64 - 1);
3161 
3162 	/* count the leading bits.
3163 	 */
3164 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3165 		/* leading bit found.
3166 		 */
3167 		if (nb & mask) {
3168 			/* determine the l2 value.
3169 			 */
3170 			l2nb = (64 - 1) - l2nb;
3171 
3172 			/* check if we need to round up.
3173 			 */
3174 			if (~mask & nb)
3175 				l2nb++;
3176 
3177 			return (l2nb);
3178 		}
3179 	}
3180 	assert(0);
3181 	return 0;		/* fix compiler warning */
3182 }
3183 
3184 
3185 /*
3186  * NAME:	dbAllocBottomUp()
3187  *
3188  * FUNCTION:	alloc the specified block range from the working block
3189  *		allocation map.
3190  *
3191  *		the blocks will be alloc from the working map one dmap
3192  *		at a time.
3193  *
3194  * PARAMETERS:
3195  *	ip	-  pointer to in-core inode;
3196  *	blkno	-  starting block number to be freed.
3197  *	nblocks	-  number of blocks to be freed.
3198  *
3199  * RETURN VALUES:
3200  *	0	- success
3201  *	-EIO	- i/o error
3202  */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3203 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3204 {
3205 	struct metapage *mp;
3206 	struct dmap *dp;
3207 	int nb, rc;
3208 	s64 lblkno, rem;
3209 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3210 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3211 
3212 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3213 
3214 	/* block to be allocated better be within the mapsize. */
3215 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3216 
3217 	/*
3218 	 * allocate the blocks a dmap at a time.
3219 	 */
3220 	mp = NULL;
3221 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3222 		/* release previous dmap if any */
3223 		if (mp) {
3224 			write_metapage(mp);
3225 		}
3226 
3227 		/* get the buffer for the current dmap. */
3228 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3229 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3230 		if (mp == NULL) {
3231 			IREAD_UNLOCK(ipbmap);
3232 			return -EIO;
3233 		}
3234 		dp = (struct dmap *) mp->data;
3235 
3236 		/* determine the number of blocks to be allocated from
3237 		 * this dmap.
3238 		 */
3239 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3240 
3241 		/* allocate the blocks. */
3242 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3243 			release_metapage(mp);
3244 			IREAD_UNLOCK(ipbmap);
3245 			return (rc);
3246 		}
3247 	}
3248 
3249 	/* write the last buffer. */
3250 	write_metapage(mp);
3251 
3252 	IREAD_UNLOCK(ipbmap);
3253 
3254 	return (0);
3255 }
3256 
3257 
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3258 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3259 			 int nblocks)
3260 {
3261 	int rc;
3262 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3263 	s8 oldroot;
3264 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3265 
3266 	/* save the current value of the root (i.e. maximum free string)
3267 	 * of the dmap tree.
3268 	 */
3269 	oldroot = tp->stree[ROOT];
3270 
3271 	/* determine the bit number and word within the dmap of the
3272 	 * starting block.
3273 	 */
3274 	dbitno = blkno & (BPERDMAP - 1);
3275 	word = dbitno >> L2DBWORD;
3276 
3277 	/* block range better be within the dmap */
3278 	assert(dbitno + nblocks <= BPERDMAP);
3279 
3280 	/* allocate the bits of the dmap's words corresponding to the block
3281 	 * range. not all bits of the first and last words may be contained
3282 	 * within the block range.  if this is the case, we'll work against
3283 	 * those words (i.e. partial first and/or last) on an individual basis
3284 	 * (a single pass), allocating the bits of interest by hand and
3285 	 * updating the leaf corresponding to the dmap word. a single pass
3286 	 * will be used for all dmap words fully contained within the
3287 	 * specified range.  within this pass, the bits of all fully contained
3288 	 * dmap words will be marked as free in a single shot and the leaves
3289 	 * will be updated. a single leaf may describe the free space of
3290 	 * multiple dmap words, so we may update only a subset of the actual
3291 	 * leaves corresponding to the dmap words of the block range.
3292 	 */
3293 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3294 		/* determine the bit number within the word and
3295 		 * the number of bits within the word.
3296 		 */
3297 		wbitno = dbitno & (DBWORD - 1);
3298 		nb = min(rembits, DBWORD - wbitno);
3299 
3300 		/* check if only part of a word is to be allocated.
3301 		 */
3302 		if (nb < DBWORD) {
3303 			/* allocate (set to 1) the appropriate bits within
3304 			 * this dmap word.
3305 			 */
3306 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3307 						      >> wbitno);
3308 
3309 			word++;
3310 		} else {
3311 			/* one or more dmap words are fully contained
3312 			 * within the block range.  determine how many
3313 			 * words and allocate (set to 1) the bits of these
3314 			 * words.
3315 			 */
3316 			nwords = rembits >> L2DBWORD;
3317 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3318 
3319 			/* determine how many bits */
3320 			nb = nwords << L2DBWORD;
3321 			word += nwords;
3322 		}
3323 	}
3324 
3325 	/* update the free count for this dmap */
3326 	le32_add_cpu(&dp->nfree, -nblocks);
3327 
3328 	/* reconstruct summary tree */
3329 	dbInitDmapTree(dp);
3330 
3331 	BMAP_LOCK(bmp);
3332 
3333 	/* if this allocation group is completely free,
3334 	 * update the highest active allocation group number
3335 	 * if this allocation group is the new max.
3336 	 */
3337 	agno = blkno >> bmp->db_agl2size;
3338 	if (agno > bmp->db_maxag)
3339 		bmp->db_maxag = agno;
3340 
3341 	/* update the free count for the allocation group and map */
3342 	bmp->db_agfree[agno] -= nblocks;
3343 	bmp->db_nfree -= nblocks;
3344 
3345 	BMAP_UNLOCK(bmp);
3346 
3347 	/* if the root has not changed, done. */
3348 	if (tp->stree[ROOT] == oldroot)
3349 		return (0);
3350 
3351 	/* root changed. bubble the change up to the dmap control pages.
3352 	 * if the adjustment of the upper level control pages fails,
3353 	 * backout the bit allocation (thus making everything consistent).
3354 	 */
3355 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3356 		dbFreeBits(bmp, dp, blkno, nblocks);
3357 
3358 	return (rc);
3359 }
3360 
3361 
3362 /*
3363  * NAME:	dbExtendFS()
3364  *
3365  * FUNCTION:	extend bmap from blkno for nblocks;
3366  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3367  *
3368  * L2
3369  *  |
3370  *   L1---------------------------------L1
3371  *    |					 |
3372  *     L0---------L0---------L0		  L0---------L0---------L0
3373  *      |	   |	      |		   |	      |		 |
3374  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3375  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3376  *
3377  * <---old---><----------------------------extend----------------------->
3378  */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3379 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3380 {
3381 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3382 	int nbperpage = sbi->nbperpage;
3383 	int i, i0 = true, j, j0 = true, k, n;
3384 	s64 newsize;
3385 	s64 p;
3386 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3387 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3388 	struct dmap *dp;
3389 	s8 *l0leaf, *l1leaf, *l2leaf;
3390 	struct bmap *bmp = sbi->bmap;
3391 	int agno, l2agsize, oldl2agsize;
3392 	s64 ag_rem;
3393 
3394 	newsize = blkno + nblocks;
3395 
3396 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3397 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3398 
3399 	/*
3400 	 *	initialize bmap control page.
3401 	 *
3402 	 * all the data in bmap control page should exclude
3403 	 * the mkfs hidden dmap page.
3404 	 */
3405 
3406 	/* update mapsize */
3407 	bmp->db_mapsize = newsize;
3408 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3409 
3410 	/* compute new AG size */
3411 	l2agsize = dbGetL2AGSize(newsize);
3412 	oldl2agsize = bmp->db_agl2size;
3413 
3414 	bmp->db_agl2size = l2agsize;
3415 	bmp->db_agsize = 1 << l2agsize;
3416 
3417 	/* compute new number of AG */
3418 	agno = bmp->db_numag;
3419 	bmp->db_numag = newsize >> l2agsize;
3420 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3421 
3422 	/*
3423 	 *	reconfigure db_agfree[]
3424 	 * from old AG configuration to new AG configuration;
3425 	 *
3426 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3427 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3428 	 * note: new AG size = old AG size * (2**x).
3429 	 */
3430 	if (l2agsize == oldl2agsize)
3431 		goto extend;
3432 	k = 1 << (l2agsize - oldl2agsize);
3433 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3434 	for (i = 0, n = 0; i < agno; n++) {
3435 		bmp->db_agfree[n] = 0;	/* init collection point */
3436 
3437 		/* coalesce contiguous k AGs; */
3438 		for (j = 0; j < k && i < agno; j++, i++) {
3439 			/* merge AGi to AGn */
3440 			bmp->db_agfree[n] += bmp->db_agfree[i];
3441 		}
3442 	}
3443 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3444 
3445 	for (; n < MAXAG; n++)
3446 		bmp->db_agfree[n] = 0;
3447 
3448 	/*
3449 	 * update highest active ag number
3450 	 */
3451 
3452 	bmp->db_maxag = bmp->db_maxag / k;
3453 
3454 	/*
3455 	 *	extend bmap
3456 	 *
3457 	 * update bit maps and corresponding level control pages;
3458 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3459 	 */
3460       extend:
3461 	/* get L2 page */
3462 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3463 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3464 	if (!l2mp) {
3465 		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3466 		return -EIO;
3467 	}
3468 	l2dcp = (struct dmapctl *) l2mp->data;
3469 
3470 	/* compute start L1 */
3471 	k = blkno >> L2MAXL1SIZE;
3472 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3473 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3474 
3475 	/*
3476 	 * extend each L1 in L2
3477 	 */
3478 	for (; k < LPERCTL; k++, p += nbperpage) {
3479 		/* get L1 page */
3480 		if (j0) {
3481 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3482 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3483 			if (l1mp == NULL)
3484 				goto errout;
3485 			l1dcp = (struct dmapctl *) l1mp->data;
3486 
3487 			/* compute start L0 */
3488 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3489 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3490 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3491 			j0 = false;
3492 		} else {
3493 			/* assign/init L1 page */
3494 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3495 			if (l1mp == NULL)
3496 				goto errout;
3497 
3498 			l1dcp = (struct dmapctl *) l1mp->data;
3499 
3500 			/* compute start L0 */
3501 			j = 0;
3502 			l1leaf = l1dcp->stree + CTLLEAFIND;
3503 			p += nbperpage;	/* 1st L0 of L1.k */
3504 		}
3505 
3506 		/*
3507 		 * extend each L0 in L1
3508 		 */
3509 		for (; j < LPERCTL; j++) {
3510 			/* get L0 page */
3511 			if (i0) {
3512 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3513 
3514 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3515 				if (l0mp == NULL)
3516 					goto errout;
3517 				l0dcp = (struct dmapctl *) l0mp->data;
3518 
3519 				/* compute start dmap */
3520 				i = (blkno & (MAXL0SIZE - 1)) >>
3521 				    L2BPERDMAP;
3522 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3523 				p = BLKTODMAP(blkno,
3524 					      sbi->l2nbperpage);
3525 				i0 = false;
3526 			} else {
3527 				/* assign/init L0 page */
3528 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3529 				if (l0mp == NULL)
3530 					goto errout;
3531 
3532 				l0dcp = (struct dmapctl *) l0mp->data;
3533 
3534 				/* compute start dmap */
3535 				i = 0;
3536 				l0leaf = l0dcp->stree + CTLLEAFIND;
3537 				p += nbperpage;	/* 1st dmap of L0.j */
3538 			}
3539 
3540 			/*
3541 			 * extend each dmap in L0
3542 			 */
3543 			for (; i < LPERCTL; i++) {
3544 				/*
3545 				 * reconstruct the dmap page, and
3546 				 * initialize corresponding parent L0 leaf
3547 				 */
3548 				if ((n = blkno & (BPERDMAP - 1))) {
3549 					/* read in dmap page: */
3550 					mp = read_metapage(ipbmap, p,
3551 							   PSIZE, 0);
3552 					if (mp == NULL)
3553 						goto errout;
3554 					n = min(nblocks, (s64)BPERDMAP - n);
3555 				} else {
3556 					/* assign/init dmap page */
3557 					mp = read_metapage(ipbmap, p,
3558 							   PSIZE, 0);
3559 					if (mp == NULL)
3560 						goto errout;
3561 
3562 					n = min_t(s64, nblocks, BPERDMAP);
3563 				}
3564 
3565 				dp = (struct dmap *) mp->data;
3566 				*l0leaf = dbInitDmap(dp, blkno, n);
3567 
3568 				bmp->db_nfree += n;
3569 				agno = le64_to_cpu(dp->start) >> l2agsize;
3570 				bmp->db_agfree[agno] += n;
3571 
3572 				write_metapage(mp);
3573 
3574 				l0leaf++;
3575 				p += nbperpage;
3576 
3577 				blkno += n;
3578 				nblocks -= n;
3579 				if (nblocks == 0)
3580 					break;
3581 			}	/* for each dmap in a L0 */
3582 
3583 			/*
3584 			 * build current L0 page from its leaves, and
3585 			 * initialize corresponding parent L1 leaf
3586 			 */
3587 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3588 			write_metapage(l0mp);
3589 			l0mp = NULL;
3590 
3591 			if (nblocks)
3592 				l1leaf++;	/* continue for next L0 */
3593 			else {
3594 				/* more than 1 L0 ? */
3595 				if (j > 0)
3596 					break;	/* build L1 page */
3597 				else {
3598 					/* summarize in global bmap page */
3599 					bmp->db_maxfreebud = *l1leaf;
3600 					release_metapage(l1mp);
3601 					release_metapage(l2mp);
3602 					goto finalize;
3603 				}
3604 			}
3605 		}		/* for each L0 in a L1 */
3606 
3607 		/*
3608 		 * build current L1 page from its leaves, and
3609 		 * initialize corresponding parent L2 leaf
3610 		 */
3611 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3612 		write_metapage(l1mp);
3613 		l1mp = NULL;
3614 
3615 		if (nblocks)
3616 			l2leaf++;	/* continue for next L1 */
3617 		else {
3618 			/* more than 1 L1 ? */
3619 			if (k > 0)
3620 				break;	/* build L2 page */
3621 			else {
3622 				/* summarize in global bmap page */
3623 				bmp->db_maxfreebud = *l2leaf;
3624 				release_metapage(l2mp);
3625 				goto finalize;
3626 			}
3627 		}
3628 	}			/* for each L1 in a L2 */
3629 
3630 	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3631 errout:
3632 	if (l0mp)
3633 		release_metapage(l0mp);
3634 	if (l1mp)
3635 		release_metapage(l1mp);
3636 	release_metapage(l2mp);
3637 	return -EIO;
3638 
3639 	/*
3640 	 *	finalize bmap control page
3641 	 */
3642 finalize:
3643 
3644 	return 0;
3645 }
3646 
3647 
3648 /*
3649  *	dbFinalizeBmap()
3650  */
dbFinalizeBmap(struct inode * ipbmap)3651 void dbFinalizeBmap(struct inode *ipbmap)
3652 {
3653 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3654 	int actags, inactags, l2nl;
3655 	s64 ag_rem, actfree, inactfree, avgfree;
3656 	int i, n;
3657 
3658 	/*
3659 	 *	finalize bmap control page
3660 	 */
3661 //finalize:
3662 	/*
3663 	 * compute db_agpref: preferred ag to allocate from
3664 	 * (the leftmost ag with average free space in it);
3665 	 */
3666 //agpref:
3667 	/* get the number of active ags and inacitve ags */
3668 	actags = bmp->db_maxag + 1;
3669 	inactags = bmp->db_numag - actags;
3670 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3671 
3672 	/* determine how many blocks are in the inactive allocation
3673 	 * groups. in doing this, we must account for the fact that
3674 	 * the rightmost group might be a partial group (i.e. file
3675 	 * system size is not a multiple of the group size).
3676 	 */
3677 	inactfree = (inactags && ag_rem) ?
3678 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3679 	    : inactags << bmp->db_agl2size;
3680 
3681 	/* determine how many free blocks are in the active
3682 	 * allocation groups plus the average number of free blocks
3683 	 * within the active ags.
3684 	 */
3685 	actfree = bmp->db_nfree - inactfree;
3686 	avgfree = (u32) actfree / (u32) actags;
3687 
3688 	/* if the preferred allocation group has not average free space.
3689 	 * re-establish the preferred group as the leftmost
3690 	 * group with average free space.
3691 	 */
3692 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3693 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3694 		     bmp->db_agpref++) {
3695 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3696 				break;
3697 		}
3698 		if (bmp->db_agpref >= bmp->db_numag) {
3699 			jfs_error(ipbmap->i_sb,
3700 				  "cannot find ag with average freespace\n");
3701 		}
3702 	}
3703 
3704 	/*
3705 	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3706 	 * an ag is covered in aglevel dmapctl summary tree,
3707 	 * at agheight level height (from leaf) with agwidth number of nodes
3708 	 * each, which starts at agstart index node of the smmary tree node
3709 	 * array;
3710 	 */
3711 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3712 	l2nl =
3713 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3714 	bmp->db_agheight = l2nl >> 1;
3715 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3716 	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3717 	     i--) {
3718 		bmp->db_agstart += n;
3719 		n <<= 2;
3720 	}
3721 
3722 }
3723 
3724 
3725 /*
3726  * NAME:	dbInitDmap()/ujfs_idmap_page()
3727  *
3728  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3729  *		for the specified number of blocks:
3730  *
3731  *		at entry, the bitmaps had been initialized as free (ZEROS);
3732  *		The number of blocks will only account for the actually
3733  *		existing blocks. Blocks which don't actually exist in
3734  *		the aggregate will be marked as allocated (ONES);
3735  *
3736  * PARAMETERS:
3737  *	dp	- pointer to page of map
3738  *	nblocks	- number of blocks this page
3739  *
3740  * RETURNS: NONE
3741  */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3742 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3743 {
3744 	int blkno, w, b, r, nw, nb, i;
3745 
3746 	/* starting block number within the dmap */
3747 	blkno = Blkno & (BPERDMAP - 1);
3748 
3749 	if (blkno == 0) {
3750 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3751 		dp->start = cpu_to_le64(Blkno);
3752 
3753 		if (nblocks == BPERDMAP) {
3754 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3755 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3756 			goto initTree;
3757 		}
3758 	} else {
3759 		le32_add_cpu(&dp->nblocks, nblocks);
3760 		le32_add_cpu(&dp->nfree, nblocks);
3761 	}
3762 
3763 	/* word number containing start block number */
3764 	w = blkno >> L2DBWORD;
3765 
3766 	/*
3767 	 * free the bits corresponding to the block range (ZEROS):
3768 	 * note: not all bits of the first and last words may be contained
3769 	 * within the block range.
3770 	 */
3771 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3772 		/* number of bits preceding range to be freed in the word */
3773 		b = blkno & (DBWORD - 1);
3774 		/* number of bits to free in the word */
3775 		nb = min(r, DBWORD - b);
3776 
3777 		/* is partial word to be freed ? */
3778 		if (nb < DBWORD) {
3779 			/* free (set to 0) from the bitmap word */
3780 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3781 						     >> b));
3782 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3783 						     >> b));
3784 
3785 			/* skip the word freed */
3786 			w++;
3787 		} else {
3788 			/* free (set to 0) contiguous bitmap words */
3789 			nw = r >> L2DBWORD;
3790 			memset(&dp->wmap[w], 0, nw * 4);
3791 			memset(&dp->pmap[w], 0, nw * 4);
3792 
3793 			/* skip the words freed */
3794 			nb = nw << L2DBWORD;
3795 			w += nw;
3796 		}
3797 	}
3798 
3799 	/*
3800 	 * mark bits following the range to be freed (non-existing
3801 	 * blocks) as allocated (ONES)
3802 	 */
3803 
3804 	if (blkno == BPERDMAP)
3805 		goto initTree;
3806 
3807 	/* the first word beyond the end of existing blocks */
3808 	w = blkno >> L2DBWORD;
3809 
3810 	/* does nblocks fall on a 32-bit boundary ? */
3811 	b = blkno & (DBWORD - 1);
3812 	if (b) {
3813 		/* mark a partial word allocated */
3814 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3815 		w++;
3816 	}
3817 
3818 	/* set the rest of the words in the page to allocated (ONES) */
3819 	for (i = w; i < LPERDMAP; i++)
3820 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3821 
3822 	/*
3823 	 * init tree
3824 	 */
3825       initTree:
3826 	return (dbInitDmapTree(dp));
3827 }
3828 
3829 
3830 /*
3831  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3832  *
3833  * FUNCTION:	initialize summary tree of the specified dmap:
3834  *
3835  *		at entry, bitmap of the dmap has been initialized;
3836  *
3837  * PARAMETERS:
3838  *	dp	- dmap to complete
3839  *	blkno	- starting block number for this dmap
3840  *	treemax	- will be filled in with max free for this dmap
3841  *
3842  * RETURNS:	max free string at the root of the tree
3843  */
dbInitDmapTree(struct dmap * dp)3844 static int dbInitDmapTree(struct dmap * dp)
3845 {
3846 	struct dmaptree *tp;
3847 	s8 *cp;
3848 	int i;
3849 
3850 	/* init fixed info of tree */
3851 	tp = &dp->tree;
3852 	tp->nleafs = cpu_to_le32(LPERDMAP);
3853 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3854 	tp->leafidx = cpu_to_le32(LEAFIND);
3855 	tp->height = cpu_to_le32(4);
3856 	tp->budmin = BUDMIN;
3857 
3858 	/* init each leaf from corresponding wmap word:
3859 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3860 	 * bitmap word are allocated.
3861 	 */
3862 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3863 	for (i = 0; i < LPERDMAP; i++)
3864 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3865 
3866 	/* build the dmap's binary buddy summary tree */
3867 	return (dbInitTree(tp));
3868 }
3869 
3870 
3871 /*
3872  * NAME:	dbInitTree()/ujfs_adjtree()
3873  *
3874  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3875  *
3876  *		at entry, the leaves of the tree has been initialized
3877  *		from corresponding bitmap word or root of summary tree
3878  *		of the child control page;
3879  *		configure binary buddy system at the leaf level, then
3880  *		bubble up the values of the leaf nodes up the tree.
3881  *
3882  * PARAMETERS:
3883  *	cp	- Pointer to the root of the tree
3884  *	l2leaves- Number of leaf nodes as a power of 2
3885  *	l2min	- Number of blocks that can be covered by a leaf
3886  *		  as a power of 2
3887  *
3888  * RETURNS: max free string at the root of the tree
3889  */
dbInitTree(struct dmaptree * dtp)3890 static int dbInitTree(struct dmaptree * dtp)
3891 {
3892 	int l2max, l2free, bsize, nextb, i;
3893 	int child, parent, nparent;
3894 	s8 *tp, *cp, *cp1;
3895 
3896 	tp = dtp->stree;
3897 
3898 	/* Determine the maximum free string possible for the leaves */
3899 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3900 
3901 	/*
3902 	 * configure the leaf levevl into binary buddy system
3903 	 *
3904 	 * Try to combine buddies starting with a buddy size of 1
3905 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3906 	 * can be combined if both buddies have a maximum free of l2min;
3907 	 * the combination will result in the left-most buddy leaf having
3908 	 * a maximum free of l2min+1.
3909 	 * After processing all buddies for a given size, process buddies
3910 	 * at the next higher buddy size (i.e. current size * 2) and
3911 	 * the next maximum free (current free + 1).
3912 	 * This continues until the maximum possible buddy combination
3913 	 * yields maximum free.
3914 	 */
3915 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3916 	     l2free++, bsize = nextb) {
3917 		/* get next buddy size == current buddy pair size */
3918 		nextb = bsize << 1;
3919 
3920 		/* scan each adjacent buddy pair at current buddy size */
3921 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3922 		     i < le32_to_cpu(dtp->nleafs);
3923 		     i += nextb, cp += nextb) {
3924 			/* coalesce if both adjacent buddies are max free */
3925 			if (*cp == l2free && *(cp + bsize) == l2free) {
3926 				*cp = l2free + 1;	/* left take right */
3927 				*(cp + bsize) = -1;	/* right give left */
3928 			}
3929 		}
3930 	}
3931 
3932 	/*
3933 	 * bubble summary information of leaves up the tree.
3934 	 *
3935 	 * Starting at the leaf node level, the four nodes described by
3936 	 * the higher level parent node are compared for a maximum free and
3937 	 * this maximum becomes the value of the parent node.
3938 	 * when all lower level nodes are processed in this fashion then
3939 	 * move up to the next level (parent becomes a lower level node) and
3940 	 * continue the process for that level.
3941 	 */
3942 	for (child = le32_to_cpu(dtp->leafidx),
3943 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3944 	     nparent > 0; nparent >>= 2, child = parent) {
3945 		/* get index of 1st node of parent level */
3946 		parent = (child - 1) >> 2;
3947 
3948 		/* set the value of the parent node as the maximum
3949 		 * of the four nodes of the current level.
3950 		 */
3951 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3952 		     i < nparent; i++, cp += 4, cp1++)
3953 			*cp1 = TREEMAX(cp);
3954 	}
3955 
3956 	return (*tp);
3957 }
3958 
3959 
3960 /*
3961  *	dbInitDmapCtl()
3962  *
3963  * function: initialize dmapctl page
3964  */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3965 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3966 {				/* start leaf index not covered by range */
3967 	s8 *cp;
3968 
3969 	dcp->nleafs = cpu_to_le32(LPERCTL);
3970 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3971 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3972 	dcp->height = cpu_to_le32(5);
3973 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3974 
3975 	/*
3976 	 * initialize the leaves of current level that were not covered
3977 	 * by the specified input block range (i.e. the leaves have no
3978 	 * low level dmapctl or dmap).
3979 	 */
3980 	cp = &dcp->stree[CTLLEAFIND + i];
3981 	for (; i < LPERCTL; i++)
3982 		*cp++ = NOFREE;
3983 
3984 	/* build the dmap's binary buddy summary tree */
3985 	return (dbInitTree((struct dmaptree *) dcp));
3986 }
3987 
3988 
3989 /*
3990  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3991  *
3992  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3993  *
3994  * PARAMETERS:
3995  *	nblocks	- Number of blocks in aggregate
3996  *
3997  * RETURNS: log2(allocation group size) in aggregate blocks
3998  */
dbGetL2AGSize(s64 nblocks)3999 static int dbGetL2AGSize(s64 nblocks)
4000 {
4001 	s64 sz;
4002 	s64 m;
4003 	int l2sz;
4004 
4005 	if (nblocks < BPERDMAP * MAXAG)
4006 		return (L2BPERDMAP);
4007 
4008 	/* round up aggregate size to power of 2 */
4009 	m = ((u64) 1 << (64 - 1));
4010 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4011 		if (m & nblocks)
4012 			break;
4013 	}
4014 
4015 	sz = (s64) 1 << l2sz;
4016 	if (sz < nblocks)
4017 		l2sz += 1;
4018 
4019 	/* agsize = roundupSize/max_number_of_ag */
4020 	return (l2sz - L2MAXAG);
4021 }
4022 
4023 
4024 /*
4025  * NAME:	dbMapFileSizeToMapSize()
4026  *
4027  * FUNCTION:	compute number of blocks the block allocation map file
4028  *		can cover from the map file size;
4029  *
4030  * RETURNS:	Number of blocks which can be covered by this block map file;
4031  */
4032 
4033 /*
4034  * maximum number of map pages at each level including control pages
4035  */
4036 #define MAXL0PAGES	(1 + LPERCTL)
4037 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4038 
4039 /*
4040  * convert number of map pages to the zero origin top dmapctl level
4041  */
4042 #define BMAPPGTOLEV(npages)	\
4043 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4044 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4045 
dbMapFileSizeToMapSize(struct inode * ipbmap)4046 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4047 {
4048 	struct super_block *sb = ipbmap->i_sb;
4049 	s64 nblocks;
4050 	s64 npages, ndmaps;
4051 	int level, i;
4052 	int complete, factor;
4053 
4054 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4055 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4056 	level = BMAPPGTOLEV(npages);
4057 
4058 	/* At each level, accumulate the number of dmap pages covered by
4059 	 * the number of full child levels below it;
4060 	 * repeat for the last incomplete child level.
4061 	 */
4062 	ndmaps = 0;
4063 	npages--;		/* skip the first global control page */
4064 	/* skip higher level control pages above top level covered by map */
4065 	npages -= (2 - level);
4066 	npages--;		/* skip top level's control page */
4067 	for (i = level; i >= 0; i--) {
4068 		factor =
4069 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4070 		complete = (u32) npages / factor;
4071 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4072 				      ((i == 1) ? LPERCTL : 1));
4073 
4074 		/* pages in last/incomplete child */
4075 		npages = (u32) npages % factor;
4076 		/* skip incomplete child's level control page */
4077 		npages--;
4078 	}
4079 
4080 	/* convert the number of dmaps into the number of blocks
4081 	 * which can be covered by the dmaps;
4082 	 */
4083 	nblocks = ndmaps << L2BPERDMAP;
4084 
4085 	return (nblocks);
4086 }
4087