1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Tino Reichardt, 2012
5 */
6
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17
18 /*
19 * SERIALIZATION of the Block Allocation Map.
20 *
21 * the working state of the block allocation map is accessed in
22 * two directions:
23 *
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
27 *
28 * 2) allocation requests that start at dmap control page
29 * level and work down towards the dmaps.
30 *
31 * the serialization scheme used here is as follows.
32 *
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
44 *
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
52 *
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55 */
56
57 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
60
61 /*
62 * forward references
63 */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 int nblocks);
66 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
67 static int dbBackSplit(dmtree_t * tp, int leafno);
68 static int dbJoin(dmtree_t * tp, int leafno, int newval);
69 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 int nblocks,
77 int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 int l2nb,
82 s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108
109 /*
110 * buddy table
111 *
112 * table used for determining buddy sizes within characters of
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
116 */
117 static const s8 budtab[256] = {
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135
136 /*
137 * NAME: dbMount()
138 *
139 * FUNCTION: initializate the block allocation map.
140 *
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
143 *
144 * PARAMETERS:
145 * ipbmap - pointer to in-core inode for the block map.
146 *
147 * RETURN VALUES:
148 * 0 - success
149 * -ENOMEM - insufficient memory
150 * -EIO - i/o error
151 * -EINVAL - wrong bmap data
152 */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 struct bmap *bmp;
156 struct dbmap_disk *dbmp_le;
157 struct metapage *mp;
158 int i;
159
160 /*
161 * allocate/initialize the in-memory bmap descriptor
162 */
163 /* allocate memory for the in-memory bmap descriptor */
164 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 if (bmp == NULL)
166 return -ENOMEM;
167
168 /* read the on-disk bmap descriptor. */
169 mp = read_metapage(ipbmap,
170 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 PSIZE, 0);
172 if (mp == NULL) {
173 kfree(bmp);
174 return -EIO;
175 }
176
177 /* copy the on-disk bmap descriptor to its in-memory version. */
178 dbmp_le = (struct dbmap_disk *) mp->data;
179 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183 if (!bmp->db_numag) {
184 release_metapage(mp);
185 kfree(bmp);
186 return -EINVAL;
187 }
188
189 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
190 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
191 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
192 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
193 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
194 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
195 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
196 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
197 for (i = 0; i < MAXAG; i++)
198 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
199 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
200 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
201
202 /* release the buffer. */
203 release_metapage(mp);
204
205 /* bind the bmap inode and the bmap descriptor to each other. */
206 bmp->db_ipbmap = ipbmap;
207 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
208
209 memset(bmp->db_active, 0, sizeof(bmp->db_active));
210
211 /*
212 * allocate/initialize the bmap lock
213 */
214 BMAP_LOCK_INIT(bmp);
215
216 return (0);
217 }
218
219
220 /*
221 * NAME: dbUnmount()
222 *
223 * FUNCTION: terminate the block allocation map in preparation for
224 * file system unmount.
225 *
226 * the in-core bmap descriptor is written to disk and
227 * the memory for this descriptor is freed.
228 *
229 * PARAMETERS:
230 * ipbmap - pointer to in-core inode for the block map.
231 *
232 * RETURN VALUES:
233 * 0 - success
234 * -EIO - i/o error
235 */
dbUnmount(struct inode * ipbmap,int mounterror)236 int dbUnmount(struct inode *ipbmap, int mounterror)
237 {
238 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
239
240 if (!(mounterror || isReadOnly(ipbmap)))
241 dbSync(ipbmap);
242
243 /*
244 * Invalidate the page cache buffers
245 */
246 truncate_inode_pages(ipbmap->i_mapping, 0);
247
248 /* free the memory for the in-memory bmap. */
249 kfree(bmp);
250
251 return (0);
252 }
253
254 /*
255 * dbSync()
256 */
dbSync(struct inode * ipbmap)257 int dbSync(struct inode *ipbmap)
258 {
259 struct dbmap_disk *dbmp_le;
260 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
261 struct metapage *mp;
262 int i;
263
264 /*
265 * write bmap global control page
266 */
267 /* get the buffer for the on-disk bmap descriptor. */
268 mp = read_metapage(ipbmap,
269 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
270 PSIZE, 0);
271 if (mp == NULL) {
272 jfs_err("dbSync: read_metapage failed!");
273 return -EIO;
274 }
275 /* copy the in-memory version of the bmap to the on-disk version */
276 dbmp_le = (struct dbmap_disk *) mp->data;
277 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
278 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
279 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
280 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
281 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
282 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
283 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
284 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
285 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
286 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
287 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
288 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
289 for (i = 0; i < MAXAG; i++)
290 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
291 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
292 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
293
294 /* write the buffer */
295 write_metapage(mp);
296
297 /*
298 * write out dirty pages of bmap
299 */
300 filemap_write_and_wait(ipbmap->i_mapping);
301
302 diWriteSpecial(ipbmap, 0);
303
304 return (0);
305 }
306
307 /*
308 * NAME: dbFree()
309 *
310 * FUNCTION: free the specified block range from the working block
311 * allocation map.
312 *
313 * the blocks will be free from the working map one dmap
314 * at a time.
315 *
316 * PARAMETERS:
317 * ip - pointer to in-core inode;
318 * blkno - starting block number to be freed.
319 * nblocks - number of blocks to be freed.
320 *
321 * RETURN VALUES:
322 * 0 - success
323 * -EIO - i/o error
324 */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)325 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
326 {
327 struct metapage *mp;
328 struct dmap *dp;
329 int nb, rc;
330 s64 lblkno, rem;
331 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
332 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
333 struct super_block *sb = ipbmap->i_sb;
334
335 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
336
337 /* block to be freed better be within the mapsize. */
338 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
339 IREAD_UNLOCK(ipbmap);
340 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
341 (unsigned long long) blkno,
342 (unsigned long long) nblocks);
343 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
344 return -EIO;
345 }
346
347 /**
348 * TRIM the blocks, when mounted with discard option
349 */
350 if (JFS_SBI(sb)->flag & JFS_DISCARD)
351 if (JFS_SBI(sb)->minblks_trim <= nblocks)
352 jfs_issue_discard(ipbmap, blkno, nblocks);
353
354 /*
355 * free the blocks a dmap at a time.
356 */
357 mp = NULL;
358 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
359 /* release previous dmap if any */
360 if (mp) {
361 write_metapage(mp);
362 }
363
364 /* get the buffer for the current dmap. */
365 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
366 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
367 if (mp == NULL) {
368 IREAD_UNLOCK(ipbmap);
369 return -EIO;
370 }
371 dp = (struct dmap *) mp->data;
372
373 /* determine the number of blocks to be freed from
374 * this dmap.
375 */
376 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
377
378 /* free the blocks. */
379 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
380 jfs_error(ip->i_sb, "error in block map\n");
381 release_metapage(mp);
382 IREAD_UNLOCK(ipbmap);
383 return (rc);
384 }
385 }
386
387 /* write the last buffer. */
388 if (mp)
389 write_metapage(mp);
390
391 IREAD_UNLOCK(ipbmap);
392
393 return (0);
394 }
395
396
397 /*
398 * NAME: dbUpdatePMap()
399 *
400 * FUNCTION: update the allocation state (free or allocate) of the
401 * specified block range in the persistent block allocation map.
402 *
403 * the blocks will be updated in the persistent map one
404 * dmap at a time.
405 *
406 * PARAMETERS:
407 * ipbmap - pointer to in-core inode for the block map.
408 * free - 'true' if block range is to be freed from the persistent
409 * map; 'false' if it is to be allocated.
410 * blkno - starting block number of the range.
411 * nblocks - number of contiguous blocks in the range.
412 * tblk - transaction block;
413 *
414 * RETURN VALUES:
415 * 0 - success
416 * -EIO - i/o error
417 */
418 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)419 dbUpdatePMap(struct inode *ipbmap,
420 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
421 {
422 int nblks, dbitno, wbitno, rbits;
423 int word, nbits, nwords;
424 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
425 s64 lblkno, rem, lastlblkno;
426 u32 mask;
427 struct dmap *dp;
428 struct metapage *mp;
429 struct jfs_log *log;
430 int lsn, difft, diffp;
431 unsigned long flags;
432
433 /* the blocks better be within the mapsize. */
434 if (blkno + nblocks > bmp->db_mapsize) {
435 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
436 (unsigned long long) blkno,
437 (unsigned long long) nblocks);
438 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
439 return -EIO;
440 }
441
442 /* compute delta of transaction lsn from log syncpt */
443 lsn = tblk->lsn;
444 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
445 logdiff(difft, lsn, log);
446
447 /*
448 * update the block state a dmap at a time.
449 */
450 mp = NULL;
451 lastlblkno = 0;
452 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
453 /* get the buffer for the current dmap. */
454 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
455 if (lblkno != lastlblkno) {
456 if (mp) {
457 write_metapage(mp);
458 }
459
460 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
461 0);
462 if (mp == NULL)
463 return -EIO;
464 metapage_wait_for_io(mp);
465 }
466 dp = (struct dmap *) mp->data;
467
468 /* determine the bit number and word within the dmap of
469 * the starting block. also determine how many blocks
470 * are to be updated within this dmap.
471 */
472 dbitno = blkno & (BPERDMAP - 1);
473 word = dbitno >> L2DBWORD;
474 nblks = min(rem, (s64)BPERDMAP - dbitno);
475
476 /* update the bits of the dmap words. the first and last
477 * words may only have a subset of their bits updated. if
478 * this is the case, we'll work against that word (i.e.
479 * partial first and/or last) only in a single pass. a
480 * single pass will also be used to update all words that
481 * are to have all their bits updated.
482 */
483 for (rbits = nblks; rbits > 0;
484 rbits -= nbits, dbitno += nbits) {
485 /* determine the bit number within the word and
486 * the number of bits within the word.
487 */
488 wbitno = dbitno & (DBWORD - 1);
489 nbits = min(rbits, DBWORD - wbitno);
490
491 /* check if only part of the word is to be updated. */
492 if (nbits < DBWORD) {
493 /* update (free or allocate) the bits
494 * in this word.
495 */
496 mask =
497 (ONES << (DBWORD - nbits) >> wbitno);
498 if (free)
499 dp->pmap[word] &=
500 cpu_to_le32(~mask);
501 else
502 dp->pmap[word] |=
503 cpu_to_le32(mask);
504
505 word += 1;
506 } else {
507 /* one or more words are to have all
508 * their bits updated. determine how
509 * many words and how many bits.
510 */
511 nwords = rbits >> L2DBWORD;
512 nbits = nwords << L2DBWORD;
513
514 /* update (free or allocate) the bits
515 * in these words.
516 */
517 if (free)
518 memset(&dp->pmap[word], 0,
519 nwords * 4);
520 else
521 memset(&dp->pmap[word], (int) ONES,
522 nwords * 4);
523
524 word += nwords;
525 }
526 }
527
528 /*
529 * update dmap lsn
530 */
531 if (lblkno == lastlblkno)
532 continue;
533
534 lastlblkno = lblkno;
535
536 LOGSYNC_LOCK(log, flags);
537 if (mp->lsn != 0) {
538 /* inherit older/smaller lsn */
539 logdiff(diffp, mp->lsn, log);
540 if (difft < diffp) {
541 mp->lsn = lsn;
542
543 /* move bp after tblock in logsync list */
544 list_move(&mp->synclist, &tblk->synclist);
545 }
546
547 /* inherit younger/larger clsn */
548 logdiff(difft, tblk->clsn, log);
549 logdiff(diffp, mp->clsn, log);
550 if (difft > diffp)
551 mp->clsn = tblk->clsn;
552 } else {
553 mp->log = log;
554 mp->lsn = lsn;
555
556 /* insert bp after tblock in logsync list */
557 log->count++;
558 list_add(&mp->synclist, &tblk->synclist);
559
560 mp->clsn = tblk->clsn;
561 }
562 LOGSYNC_UNLOCK(log, flags);
563 }
564
565 /* write the last buffer. */
566 if (mp) {
567 write_metapage(mp);
568 }
569
570 return (0);
571 }
572
573
574 /*
575 * NAME: dbNextAG()
576 *
577 * FUNCTION: find the preferred allocation group for new allocations.
578 *
579 * Within the allocation groups, we maintain a preferred
580 * allocation group which consists of a group with at least
581 * average free space. It is the preferred group that we target
582 * new inode allocation towards. The tie-in between inode
583 * allocation and block allocation occurs as we allocate the
584 * first (data) block of an inode and specify the inode (block)
585 * as the allocation hint for this block.
586 *
587 * We try to avoid having more than one open file growing in
588 * an allocation group, as this will lead to fragmentation.
589 * This differs from the old OS/2 method of trying to keep
590 * empty ags around for large allocations.
591 *
592 * PARAMETERS:
593 * ipbmap - pointer to in-core inode for the block map.
594 *
595 * RETURN VALUES:
596 * the preferred allocation group number.
597 */
dbNextAG(struct inode * ipbmap)598 int dbNextAG(struct inode *ipbmap)
599 {
600 s64 avgfree;
601 int agpref;
602 s64 hwm = 0;
603 int i;
604 int next_best = -1;
605 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
606
607 BMAP_LOCK(bmp);
608
609 /* determine the average number of free blocks within the ags. */
610 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
611
612 /*
613 * if the current preferred ag does not have an active allocator
614 * and has at least average freespace, return it
615 */
616 agpref = bmp->db_agpref;
617 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
618 (bmp->db_agfree[agpref] >= avgfree))
619 goto unlock;
620
621 /* From the last preferred ag, find the next one with at least
622 * average free space.
623 */
624 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
625 if (agpref == bmp->db_numag)
626 agpref = 0;
627
628 if (atomic_read(&bmp->db_active[agpref]))
629 /* open file is currently growing in this ag */
630 continue;
631 if (bmp->db_agfree[agpref] >= avgfree) {
632 /* Return this one */
633 bmp->db_agpref = agpref;
634 goto unlock;
635 } else if (bmp->db_agfree[agpref] > hwm) {
636 /* Less than avg. freespace, but best so far */
637 hwm = bmp->db_agfree[agpref];
638 next_best = agpref;
639 }
640 }
641
642 /*
643 * If no inactive ag was found with average freespace, use the
644 * next best
645 */
646 if (next_best != -1)
647 bmp->db_agpref = next_best;
648 /* else leave db_agpref unchanged */
649 unlock:
650 BMAP_UNLOCK(bmp);
651
652 /* return the preferred group.
653 */
654 return (bmp->db_agpref);
655 }
656
657 /*
658 * NAME: dbAlloc()
659 *
660 * FUNCTION: attempt to allocate a specified number of contiguous free
661 * blocks from the working allocation block map.
662 *
663 * the block allocation policy uses hints and a multi-step
664 * approach.
665 *
666 * for allocation requests smaller than the number of blocks
667 * per dmap, we first try to allocate the new blocks
668 * immediately following the hint. if these blocks are not
669 * available, we try to allocate blocks near the hint. if
670 * no blocks near the hint are available, we next try to
671 * allocate within the same dmap as contains the hint.
672 *
673 * if no blocks are available in the dmap or the allocation
674 * request is larger than the dmap size, we try to allocate
675 * within the same allocation group as contains the hint. if
676 * this does not succeed, we finally try to allocate anywhere
677 * within the aggregate.
678 *
679 * we also try to allocate anywhere within the aggregate for
680 * for allocation requests larger than the allocation group
681 * size or requests that specify no hint value.
682 *
683 * PARAMETERS:
684 * ip - pointer to in-core inode;
685 * hint - allocation hint.
686 * nblocks - number of contiguous blocks in the range.
687 * results - on successful return, set to the starting block number
688 * of the newly allocated contiguous range.
689 *
690 * RETURN VALUES:
691 * 0 - success
692 * -ENOSPC - insufficient disk resources
693 * -EIO - i/o error
694 */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)695 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
696 {
697 int rc, agno;
698 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
699 struct bmap *bmp;
700 struct metapage *mp;
701 s64 lblkno, blkno;
702 struct dmap *dp;
703 int l2nb;
704 s64 mapSize;
705 int writers;
706
707 /* assert that nblocks is valid */
708 assert(nblocks > 0);
709
710 /* get the log2 number of blocks to be allocated.
711 * if the number of blocks is not a log2 multiple,
712 * it will be rounded up to the next log2 multiple.
713 */
714 l2nb = BLKSTOL2(nblocks);
715
716 bmp = JFS_SBI(ip->i_sb)->bmap;
717
718 mapSize = bmp->db_mapsize;
719
720 /* the hint should be within the map */
721 if (hint >= mapSize) {
722 jfs_error(ip->i_sb, "the hint is outside the map\n");
723 return -EIO;
724 }
725
726 /* if the number of blocks to be allocated is greater than the
727 * allocation group size, try to allocate anywhere.
728 */
729 if (l2nb > bmp->db_agl2size) {
730 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
731
732 rc = dbAllocAny(bmp, nblocks, l2nb, results);
733
734 goto write_unlock;
735 }
736
737 /*
738 * If no hint, let dbNextAG recommend an allocation group
739 */
740 if (hint == 0)
741 goto pref_ag;
742
743 /* we would like to allocate close to the hint. adjust the
744 * hint to the block following the hint since the allocators
745 * will start looking for free space starting at this point.
746 */
747 blkno = hint + 1;
748
749 if (blkno >= bmp->db_mapsize)
750 goto pref_ag;
751
752 agno = blkno >> bmp->db_agl2size;
753
754 /* check if blkno crosses over into a new allocation group.
755 * if so, check if we should allow allocations within this
756 * allocation group.
757 */
758 if ((blkno & (bmp->db_agsize - 1)) == 0)
759 /* check if the AG is currently being written to.
760 * if so, call dbNextAG() to find a non-busy
761 * AG with sufficient free space.
762 */
763 if (atomic_read(&bmp->db_active[agno]))
764 goto pref_ag;
765
766 /* check if the allocation request size can be satisfied from a
767 * single dmap. if so, try to allocate from the dmap containing
768 * the hint using a tiered strategy.
769 */
770 if (nblocks <= BPERDMAP) {
771 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
772
773 /* get the buffer for the dmap containing the hint.
774 */
775 rc = -EIO;
776 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
777 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
778 if (mp == NULL)
779 goto read_unlock;
780
781 dp = (struct dmap *) mp->data;
782
783 /* first, try to satisfy the allocation request with the
784 * blocks beginning at the hint.
785 */
786 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
787 != -ENOSPC) {
788 if (rc == 0) {
789 *results = blkno;
790 mark_metapage_dirty(mp);
791 }
792
793 release_metapage(mp);
794 goto read_unlock;
795 }
796
797 writers = atomic_read(&bmp->db_active[agno]);
798 if ((writers > 1) ||
799 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
800 /*
801 * Someone else is writing in this allocation
802 * group. To avoid fragmenting, try another ag
803 */
804 release_metapage(mp);
805 IREAD_UNLOCK(ipbmap);
806 goto pref_ag;
807 }
808
809 /* next, try to satisfy the allocation request with blocks
810 * near the hint.
811 */
812 if ((rc =
813 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
814 != -ENOSPC) {
815 if (rc == 0)
816 mark_metapage_dirty(mp);
817
818 release_metapage(mp);
819 goto read_unlock;
820 }
821
822 /* try to satisfy the allocation request with blocks within
823 * the same dmap as the hint.
824 */
825 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
826 != -ENOSPC) {
827 if (rc == 0)
828 mark_metapage_dirty(mp);
829
830 release_metapage(mp);
831 goto read_unlock;
832 }
833
834 release_metapage(mp);
835 IREAD_UNLOCK(ipbmap);
836 }
837
838 /* try to satisfy the allocation request with blocks within
839 * the same allocation group as the hint.
840 */
841 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
842 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
843 goto write_unlock;
844
845 IWRITE_UNLOCK(ipbmap);
846
847
848 pref_ag:
849 /*
850 * Let dbNextAG recommend a preferred allocation group
851 */
852 agno = dbNextAG(ipbmap);
853 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
854
855 /* Try to allocate within this allocation group. if that fails, try to
856 * allocate anywhere in the map.
857 */
858 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
859 rc = dbAllocAny(bmp, nblocks, l2nb, results);
860
861 write_unlock:
862 IWRITE_UNLOCK(ipbmap);
863
864 return (rc);
865
866 read_unlock:
867 IREAD_UNLOCK(ipbmap);
868
869 return (rc);
870 }
871
872 #ifdef _NOTYET
873 /*
874 * NAME: dbAllocExact()
875 *
876 * FUNCTION: try to allocate the requested extent;
877 *
878 * PARAMETERS:
879 * ip - pointer to in-core inode;
880 * blkno - extent address;
881 * nblocks - extent length;
882 *
883 * RETURN VALUES:
884 * 0 - success
885 * -ENOSPC - insufficient disk resources
886 * -EIO - i/o error
887 */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)888 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
889 {
890 int rc;
891 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
892 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
893 struct dmap *dp;
894 s64 lblkno;
895 struct metapage *mp;
896
897 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
898
899 /*
900 * validate extent request:
901 *
902 * note: defragfs policy:
903 * max 64 blocks will be moved.
904 * allocation request size must be satisfied from a single dmap.
905 */
906 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
907 IREAD_UNLOCK(ipbmap);
908 return -EINVAL;
909 }
910
911 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
912 /* the free space is no longer available */
913 IREAD_UNLOCK(ipbmap);
914 return -ENOSPC;
915 }
916
917 /* read in the dmap covering the extent */
918 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
919 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
920 if (mp == NULL) {
921 IREAD_UNLOCK(ipbmap);
922 return -EIO;
923 }
924 dp = (struct dmap *) mp->data;
925
926 /* try to allocate the requested extent */
927 rc = dbAllocNext(bmp, dp, blkno, nblocks);
928
929 IREAD_UNLOCK(ipbmap);
930
931 if (rc == 0)
932 mark_metapage_dirty(mp);
933
934 release_metapage(mp);
935
936 return (rc);
937 }
938 #endif /* _NOTYET */
939
940 /*
941 * NAME: dbReAlloc()
942 *
943 * FUNCTION: attempt to extend a current allocation by a specified
944 * number of blocks.
945 *
946 * this routine attempts to satisfy the allocation request
947 * by first trying to extend the existing allocation in
948 * place by allocating the additional blocks as the blocks
949 * immediately following the current allocation. if these
950 * blocks are not available, this routine will attempt to
951 * allocate a new set of contiguous blocks large enough
952 * to cover the existing allocation plus the additional
953 * number of blocks required.
954 *
955 * PARAMETERS:
956 * ip - pointer to in-core inode requiring allocation.
957 * blkno - starting block of the current allocation.
958 * nblocks - number of contiguous blocks within the current
959 * allocation.
960 * addnblocks - number of blocks to add to the allocation.
961 * results - on successful return, set to the starting block number
962 * of the existing allocation if the existing allocation
963 * was extended in place or to a newly allocated contiguous
964 * range if the existing allocation could not be extended
965 * in place.
966 *
967 * RETURN VALUES:
968 * 0 - success
969 * -ENOSPC - insufficient disk resources
970 * -EIO - i/o error
971 */
972 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)973 dbReAlloc(struct inode *ip,
974 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
975 {
976 int rc;
977
978 /* try to extend the allocation in place.
979 */
980 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
981 *results = blkno;
982 return (0);
983 } else {
984 if (rc != -ENOSPC)
985 return (rc);
986 }
987
988 /* could not extend the allocation in place, so allocate a
989 * new set of blocks for the entire request (i.e. try to get
990 * a range of contiguous blocks large enough to cover the
991 * existing allocation plus the additional blocks.)
992 */
993 return (dbAlloc
994 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
995 }
996
997
998 /*
999 * NAME: dbExtend()
1000 *
1001 * FUNCTION: attempt to extend a current allocation by a specified
1002 * number of blocks.
1003 *
1004 * this routine attempts to satisfy the allocation request
1005 * by first trying to extend the existing allocation in
1006 * place by allocating the additional blocks as the blocks
1007 * immediately following the current allocation.
1008 *
1009 * PARAMETERS:
1010 * ip - pointer to in-core inode requiring allocation.
1011 * blkno - starting block of the current allocation.
1012 * nblocks - number of contiguous blocks within the current
1013 * allocation.
1014 * addnblocks - number of blocks to add to the allocation.
1015 *
1016 * RETURN VALUES:
1017 * 0 - success
1018 * -ENOSPC - insufficient disk resources
1019 * -EIO - i/o error
1020 */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1021 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1022 {
1023 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1024 s64 lblkno, lastblkno, extblkno;
1025 uint rel_block;
1026 struct metapage *mp;
1027 struct dmap *dp;
1028 int rc;
1029 struct inode *ipbmap = sbi->ipbmap;
1030 struct bmap *bmp;
1031
1032 /*
1033 * We don't want a non-aligned extent to cross a page boundary
1034 */
1035 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1036 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1037 return -ENOSPC;
1038
1039 /* get the last block of the current allocation */
1040 lastblkno = blkno + nblocks - 1;
1041
1042 /* determine the block number of the block following
1043 * the existing allocation.
1044 */
1045 extblkno = lastblkno + 1;
1046
1047 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1048
1049 /* better be within the file system */
1050 bmp = sbi->bmap;
1051 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1052 IREAD_UNLOCK(ipbmap);
1053 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1054 return -EIO;
1055 }
1056
1057 /* we'll attempt to extend the current allocation in place by
1058 * allocating the additional blocks as the blocks immediately
1059 * following the current allocation. we only try to extend the
1060 * current allocation in place if the number of additional blocks
1061 * can fit into a dmap, the last block of the current allocation
1062 * is not the last block of the file system, and the start of the
1063 * inplace extension is not on an allocation group boundary.
1064 */
1065 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1066 (extblkno & (bmp->db_agsize - 1)) == 0) {
1067 IREAD_UNLOCK(ipbmap);
1068 return -ENOSPC;
1069 }
1070
1071 /* get the buffer for the dmap containing the first block
1072 * of the extension.
1073 */
1074 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1075 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1076 if (mp == NULL) {
1077 IREAD_UNLOCK(ipbmap);
1078 return -EIO;
1079 }
1080
1081 dp = (struct dmap *) mp->data;
1082
1083 /* try to allocate the blocks immediately following the
1084 * current allocation.
1085 */
1086 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1087
1088 IREAD_UNLOCK(ipbmap);
1089
1090 /* were we successful ? */
1091 if (rc == 0)
1092 write_metapage(mp);
1093 else
1094 /* we were not successful */
1095 release_metapage(mp);
1096
1097 return (rc);
1098 }
1099
1100
1101 /*
1102 * NAME: dbAllocNext()
1103 *
1104 * FUNCTION: attempt to allocate the blocks of the specified block
1105 * range within a dmap.
1106 *
1107 * PARAMETERS:
1108 * bmp - pointer to bmap descriptor
1109 * dp - pointer to dmap.
1110 * blkno - starting block number of the range.
1111 * nblocks - number of contiguous free blocks of the range.
1112 *
1113 * RETURN VALUES:
1114 * 0 - success
1115 * -ENOSPC - insufficient disk resources
1116 * -EIO - i/o error
1117 *
1118 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1119 */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1120 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1121 int nblocks)
1122 {
1123 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1124 int l2size;
1125 s8 *leaf;
1126 u32 mask;
1127
1128 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1129 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1130 return -EIO;
1131 }
1132
1133 /* pick up a pointer to the leaves of the dmap tree.
1134 */
1135 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1136
1137 /* determine the bit number and word within the dmap of the
1138 * starting block.
1139 */
1140 dbitno = blkno & (BPERDMAP - 1);
1141 word = dbitno >> L2DBWORD;
1142
1143 /* check if the specified block range is contained within
1144 * this dmap.
1145 */
1146 if (dbitno + nblocks > BPERDMAP)
1147 return -ENOSPC;
1148
1149 /* check if the starting leaf indicates that anything
1150 * is free.
1151 */
1152 if (leaf[word] == NOFREE)
1153 return -ENOSPC;
1154
1155 /* check the dmaps words corresponding to block range to see
1156 * if the block range is free. not all bits of the first and
1157 * last words may be contained within the block range. if this
1158 * is the case, we'll work against those words (i.e. partial first
1159 * and/or last) on an individual basis (a single pass) and examine
1160 * the actual bits to determine if they are free. a single pass
1161 * will be used for all dmap words fully contained within the
1162 * specified range. within this pass, the leaves of the dmap
1163 * tree will be examined to determine if the blocks are free. a
1164 * single leaf may describe the free space of multiple dmap
1165 * words, so we may visit only a subset of the actual leaves
1166 * corresponding to the dmap words of the block range.
1167 */
1168 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1169 /* determine the bit number within the word and
1170 * the number of bits within the word.
1171 */
1172 wbitno = dbitno & (DBWORD - 1);
1173 nb = min(rembits, DBWORD - wbitno);
1174
1175 /* check if only part of the word is to be examined.
1176 */
1177 if (nb < DBWORD) {
1178 /* check if the bits are free.
1179 */
1180 mask = (ONES << (DBWORD - nb) >> wbitno);
1181 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1182 return -ENOSPC;
1183
1184 word += 1;
1185 } else {
1186 /* one or more dmap words are fully contained
1187 * within the block range. determine how many
1188 * words and how many bits.
1189 */
1190 nwords = rembits >> L2DBWORD;
1191 nb = nwords << L2DBWORD;
1192
1193 /* now examine the appropriate leaves to determine
1194 * if the blocks are free.
1195 */
1196 while (nwords > 0) {
1197 /* does the leaf describe any free space ?
1198 */
1199 if (leaf[word] < BUDMIN)
1200 return -ENOSPC;
1201
1202 /* determine the l2 number of bits provided
1203 * by this leaf.
1204 */
1205 l2size =
1206 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1207
1208 /* determine how many words were handled.
1209 */
1210 nw = BUDSIZE(l2size, BUDMIN);
1211
1212 nwords -= nw;
1213 word += nw;
1214 }
1215 }
1216 }
1217
1218 /* allocate the blocks.
1219 */
1220 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1221 }
1222
1223
1224 /*
1225 * NAME: dbAllocNear()
1226 *
1227 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1228 * a specified block (hint) within a dmap.
1229 *
1230 * starting with the dmap leaf that covers the hint, we'll
1231 * check the next four contiguous leaves for sufficient free
1232 * space. if sufficient free space is found, we'll allocate
1233 * the desired free space.
1234 *
1235 * PARAMETERS:
1236 * bmp - pointer to bmap descriptor
1237 * dp - pointer to dmap.
1238 * blkno - block number to allocate near.
1239 * nblocks - actual number of contiguous free blocks desired.
1240 * l2nb - log2 number of contiguous free blocks desired.
1241 * results - on successful return, set to the starting block number
1242 * of the newly allocated range.
1243 *
1244 * RETURN VALUES:
1245 * 0 - success
1246 * -ENOSPC - insufficient disk resources
1247 * -EIO - i/o error
1248 *
1249 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1250 */
1251 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1252 dbAllocNear(struct bmap * bmp,
1253 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1254 {
1255 int word, lword, rc;
1256 s8 *leaf;
1257
1258 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1259 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1260 return -EIO;
1261 }
1262
1263 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1264
1265 /* determine the word within the dmap that holds the hint
1266 * (i.e. blkno). also, determine the last word in the dmap
1267 * that we'll include in our examination.
1268 */
1269 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1270 lword = min(word + 4, LPERDMAP);
1271
1272 /* examine the leaves for sufficient free space.
1273 */
1274 for (; word < lword; word++) {
1275 /* does the leaf describe sufficient free space ?
1276 */
1277 if (leaf[word] < l2nb)
1278 continue;
1279
1280 /* determine the block number within the file system
1281 * of the first block described by this dmap word.
1282 */
1283 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1284
1285 /* if not all bits of the dmap word are free, get the
1286 * starting bit number within the dmap word of the required
1287 * string of free bits and adjust the block number with the
1288 * value.
1289 */
1290 if (leaf[word] < BUDMIN)
1291 blkno +=
1292 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1293
1294 /* allocate the blocks.
1295 */
1296 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1297 *results = blkno;
1298
1299 return (rc);
1300 }
1301
1302 return -ENOSPC;
1303 }
1304
1305
1306 /*
1307 * NAME: dbAllocAG()
1308 *
1309 * FUNCTION: attempt to allocate the specified number of contiguous
1310 * free blocks within the specified allocation group.
1311 *
1312 * unless the allocation group size is equal to the number
1313 * of blocks per dmap, the dmap control pages will be used to
1314 * find the required free space, if available. we start the
1315 * search at the highest dmap control page level which
1316 * distinctly describes the allocation group's free space
1317 * (i.e. the highest level at which the allocation group's
1318 * free space is not mixed in with that of any other group).
1319 * in addition, we start the search within this level at a
1320 * height of the dmapctl dmtree at which the nodes distinctly
1321 * describe the allocation group's free space. at this height,
1322 * the allocation group's free space may be represented by 1
1323 * or two sub-trees, depending on the allocation group size.
1324 * we search the top nodes of these subtrees left to right for
1325 * sufficient free space. if sufficient free space is found,
1326 * the subtree is searched to find the leftmost leaf that
1327 * has free space. once we have made it to the leaf, we
1328 * move the search to the next lower level dmap control page
1329 * corresponding to this leaf. we continue down the dmap control
1330 * pages until we find the dmap that contains or starts the
1331 * sufficient free space and we allocate at this dmap.
1332 *
1333 * if the allocation group size is equal to the dmap size,
1334 * we'll start at the dmap corresponding to the allocation
1335 * group and attempt the allocation at this level.
1336 *
1337 * the dmap control page search is also not performed if the
1338 * allocation group is completely free and we go to the first
1339 * dmap of the allocation group to do the allocation. this is
1340 * done because the allocation group may be part (not the first
1341 * part) of a larger binary buddy system, causing the dmap
1342 * control pages to indicate no free space (NOFREE) within
1343 * the allocation group.
1344 *
1345 * PARAMETERS:
1346 * bmp - pointer to bmap descriptor
1347 * agno - allocation group number.
1348 * nblocks - actual number of contiguous free blocks desired.
1349 * l2nb - log2 number of contiguous free blocks desired.
1350 * results - on successful return, set to the starting block number
1351 * of the newly allocated range.
1352 *
1353 * RETURN VALUES:
1354 * 0 - success
1355 * -ENOSPC - insufficient disk resources
1356 * -EIO - i/o error
1357 *
1358 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1359 */
1360 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1361 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1362 {
1363 struct metapage *mp;
1364 struct dmapctl *dcp;
1365 int rc, ti, i, k, m, n, agperlev;
1366 s64 blkno, lblkno;
1367 int budmin;
1368
1369 /* allocation request should not be for more than the
1370 * allocation group size.
1371 */
1372 if (l2nb > bmp->db_agl2size) {
1373 jfs_error(bmp->db_ipbmap->i_sb,
1374 "allocation request is larger than the allocation group size\n");
1375 return -EIO;
1376 }
1377
1378 /* determine the starting block number of the allocation
1379 * group.
1380 */
1381 blkno = (s64) agno << bmp->db_agl2size;
1382
1383 /* check if the allocation group size is the minimum allocation
1384 * group size or if the allocation group is completely free. if
1385 * the allocation group size is the minimum size of BPERDMAP (i.e.
1386 * 1 dmap), there is no need to search the dmap control page (below)
1387 * that fully describes the allocation group since the allocation
1388 * group is already fully described by a dmap. in this case, we
1389 * just call dbAllocCtl() to search the dmap tree and allocate the
1390 * required space if available.
1391 *
1392 * if the allocation group is completely free, dbAllocCtl() is
1393 * also called to allocate the required space. this is done for
1394 * two reasons. first, it makes no sense searching the dmap control
1395 * pages for free space when we know that free space exists. second,
1396 * the dmap control pages may indicate that the allocation group
1397 * has no free space if the allocation group is part (not the first
1398 * part) of a larger binary buddy system.
1399 */
1400 if (bmp->db_agsize == BPERDMAP
1401 || bmp->db_agfree[agno] == bmp->db_agsize) {
1402 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1403 if ((rc == -ENOSPC) &&
1404 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1405 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1406 (unsigned long long) blkno,
1407 (unsigned long long) nblocks);
1408 jfs_error(bmp->db_ipbmap->i_sb,
1409 "dbAllocCtl failed in free AG\n");
1410 }
1411 return (rc);
1412 }
1413
1414 /* the buffer for the dmap control page that fully describes the
1415 * allocation group.
1416 */
1417 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1418 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1419 if (mp == NULL)
1420 return -EIO;
1421 dcp = (struct dmapctl *) mp->data;
1422 budmin = dcp->budmin;
1423
1424 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1425 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1426 release_metapage(mp);
1427 return -EIO;
1428 }
1429
1430 /* search the subtree(s) of the dmap control page that describes
1431 * the allocation group, looking for sufficient free space. to begin,
1432 * determine how many allocation groups are represented in a dmap
1433 * control page at the control page level (i.e. L0, L1, L2) that
1434 * fully describes an allocation group. next, determine the starting
1435 * tree index of this allocation group within the control page.
1436 */
1437 agperlev =
1438 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1439 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1440
1441 /* dmap control page trees fan-out by 4 and a single allocation
1442 * group may be described by 1 or 2 subtrees within the ag level
1443 * dmap control page, depending upon the ag size. examine the ag's
1444 * subtrees for sufficient free space, starting with the leftmost
1445 * subtree.
1446 */
1447 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1448 /* is there sufficient free space ?
1449 */
1450 if (l2nb > dcp->stree[ti])
1451 continue;
1452
1453 /* sufficient free space found in a subtree. now search down
1454 * the subtree to find the leftmost leaf that describes this
1455 * free space.
1456 */
1457 for (k = bmp->db_agheight; k > 0; k--) {
1458 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1459 if (l2nb <= dcp->stree[m + n]) {
1460 ti = m + n;
1461 break;
1462 }
1463 }
1464 if (n == 4) {
1465 jfs_error(bmp->db_ipbmap->i_sb,
1466 "failed descending stree\n");
1467 release_metapage(mp);
1468 return -EIO;
1469 }
1470 }
1471
1472 /* determine the block number within the file system
1473 * that corresponds to this leaf.
1474 */
1475 if (bmp->db_aglevel == 2)
1476 blkno = 0;
1477 else if (bmp->db_aglevel == 1)
1478 blkno &= ~(MAXL1SIZE - 1);
1479 else /* bmp->db_aglevel == 0 */
1480 blkno &= ~(MAXL0SIZE - 1);
1481
1482 blkno +=
1483 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1484
1485 /* release the buffer in preparation for going down
1486 * the next level of dmap control pages.
1487 */
1488 release_metapage(mp);
1489
1490 /* check if we need to continue to search down the lower
1491 * level dmap control pages. we need to if the number of
1492 * blocks required is less than maximum number of blocks
1493 * described at the next lower level.
1494 */
1495 if (l2nb < budmin) {
1496
1497 /* search the lower level dmap control pages to get
1498 * the starting block number of the dmap that
1499 * contains or starts off the free space.
1500 */
1501 if ((rc =
1502 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1503 &blkno))) {
1504 if (rc == -ENOSPC) {
1505 jfs_error(bmp->db_ipbmap->i_sb,
1506 "control page inconsistent\n");
1507 return -EIO;
1508 }
1509 return (rc);
1510 }
1511 }
1512
1513 /* allocate the blocks.
1514 */
1515 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1516 if (rc == -ENOSPC) {
1517 jfs_error(bmp->db_ipbmap->i_sb,
1518 "unable to allocate blocks\n");
1519 rc = -EIO;
1520 }
1521 return (rc);
1522 }
1523
1524 /* no space in the allocation group. release the buffer and
1525 * return -ENOSPC.
1526 */
1527 release_metapage(mp);
1528
1529 return -ENOSPC;
1530 }
1531
1532
1533 /*
1534 * NAME: dbAllocAny()
1535 *
1536 * FUNCTION: attempt to allocate the specified number of contiguous
1537 * free blocks anywhere in the file system.
1538 *
1539 * dbAllocAny() attempts to find the sufficient free space by
1540 * searching down the dmap control pages, starting with the
1541 * highest level (i.e. L0, L1, L2) control page. if free space
1542 * large enough to satisfy the desired free space is found, the
1543 * desired free space is allocated.
1544 *
1545 * PARAMETERS:
1546 * bmp - pointer to bmap descriptor
1547 * nblocks - actual number of contiguous free blocks desired.
1548 * l2nb - log2 number of contiguous free blocks desired.
1549 * results - on successful return, set to the starting block number
1550 * of the newly allocated range.
1551 *
1552 * RETURN VALUES:
1553 * 0 - success
1554 * -ENOSPC - insufficient disk resources
1555 * -EIO - i/o error
1556 *
1557 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1558 */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1559 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1560 {
1561 int rc;
1562 s64 blkno = 0;
1563
1564 /* starting with the top level dmap control page, search
1565 * down the dmap control levels for sufficient free space.
1566 * if free space is found, dbFindCtl() returns the starting
1567 * block number of the dmap that contains or starts off the
1568 * range of free space.
1569 */
1570 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1571 return (rc);
1572
1573 /* allocate the blocks.
1574 */
1575 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1576 if (rc == -ENOSPC) {
1577 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1578 return -EIO;
1579 }
1580 return (rc);
1581 }
1582
1583
1584 /*
1585 * NAME: dbDiscardAG()
1586 *
1587 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1588 *
1589 * algorithm:
1590 * 1) allocate blocks, as large as possible and save them
1591 * while holding IWRITE_LOCK on ipbmap
1592 * 2) trim all these saved block/length values
1593 * 3) mark the blocks free again
1594 *
1595 * benefit:
1596 * - we work only on one ag at some time, minimizing how long we
1597 * need to lock ipbmap
1598 * - reading / writing the fs is possible most time, even on
1599 * trimming
1600 *
1601 * downside:
1602 * - we write two times to the dmapctl and dmap pages
1603 * - but for me, this seems the best way, better ideas?
1604 * /TR 2012
1605 *
1606 * PARAMETERS:
1607 * ip - pointer to in-core inode
1608 * agno - ag to trim
1609 * minlen - minimum value of contiguous blocks
1610 *
1611 * RETURN VALUES:
1612 * s64 - actual number of blocks trimmed
1613 */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1614 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1615 {
1616 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1617 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1618 s64 nblocks, blkno;
1619 u64 trimmed = 0;
1620 int rc, l2nb;
1621 struct super_block *sb = ipbmap->i_sb;
1622
1623 struct range2trim {
1624 u64 blkno;
1625 u64 nblocks;
1626 } *totrim, *tt;
1627
1628 /* max blkno / nblocks pairs to trim */
1629 int count = 0, range_cnt;
1630 u64 max_ranges;
1631
1632 /* prevent others from writing new stuff here, while trimming */
1633 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1634
1635 nblocks = bmp->db_agfree[agno];
1636 max_ranges = nblocks;
1637 do_div(max_ranges, minlen);
1638 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1639 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1640 if (totrim == NULL) {
1641 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1642 IWRITE_UNLOCK(ipbmap);
1643 return 0;
1644 }
1645
1646 tt = totrim;
1647 while (nblocks >= minlen) {
1648 l2nb = BLKSTOL2(nblocks);
1649
1650 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1651 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1652 if (rc == 0) {
1653 tt->blkno = blkno;
1654 tt->nblocks = nblocks;
1655 tt++; count++;
1656
1657 /* the whole ag is free, trim now */
1658 if (bmp->db_agfree[agno] == 0)
1659 break;
1660
1661 /* give a hint for the next while */
1662 nblocks = bmp->db_agfree[agno];
1663 continue;
1664 } else if (rc == -ENOSPC) {
1665 /* search for next smaller log2 block */
1666 l2nb = BLKSTOL2(nblocks) - 1;
1667 nblocks = 1LL << l2nb;
1668 } else {
1669 /* Trim any already allocated blocks */
1670 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1671 break;
1672 }
1673
1674 /* check, if our trim array is full */
1675 if (unlikely(count >= range_cnt - 1))
1676 break;
1677 }
1678 IWRITE_UNLOCK(ipbmap);
1679
1680 tt->nblocks = 0; /* mark the current end */
1681 for (tt = totrim; tt->nblocks != 0; tt++) {
1682 /* when mounted with online discard, dbFree() will
1683 * call jfs_issue_discard() itself */
1684 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1685 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1686 dbFree(ip, tt->blkno, tt->nblocks);
1687 trimmed += tt->nblocks;
1688 }
1689 kfree(totrim);
1690
1691 return trimmed;
1692 }
1693
1694 /*
1695 * NAME: dbFindCtl()
1696 *
1697 * FUNCTION: starting at a specified dmap control page level and block
1698 * number, search down the dmap control levels for a range of
1699 * contiguous free blocks large enough to satisfy an allocation
1700 * request for the specified number of free blocks.
1701 *
1702 * if sufficient contiguous free blocks are found, this routine
1703 * returns the starting block number within a dmap page that
1704 * contains or starts a range of contiqious free blocks that
1705 * is sufficient in size.
1706 *
1707 * PARAMETERS:
1708 * bmp - pointer to bmap descriptor
1709 * level - starting dmap control page level.
1710 * l2nb - log2 number of contiguous free blocks desired.
1711 * *blkno - on entry, starting block number for conducting the search.
1712 * on successful return, the first block within a dmap page
1713 * that contains or starts a range of contiguous free blocks.
1714 *
1715 * RETURN VALUES:
1716 * 0 - success
1717 * -ENOSPC - insufficient disk resources
1718 * -EIO - i/o error
1719 *
1720 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1721 */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1722 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1723 {
1724 int rc, leafidx, lev;
1725 s64 b, lblkno;
1726 struct dmapctl *dcp;
1727 int budmin;
1728 struct metapage *mp;
1729
1730 /* starting at the specified dmap control page level and block
1731 * number, search down the dmap control levels for the starting
1732 * block number of a dmap page that contains or starts off
1733 * sufficient free blocks.
1734 */
1735 for (lev = level, b = *blkno; lev >= 0; lev--) {
1736 /* get the buffer of the dmap control page for the block
1737 * number and level (i.e. L0, L1, L2).
1738 */
1739 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1740 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1741 if (mp == NULL)
1742 return -EIO;
1743 dcp = (struct dmapctl *) mp->data;
1744 budmin = dcp->budmin;
1745
1746 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1747 jfs_error(bmp->db_ipbmap->i_sb,
1748 "Corrupt dmapctl page\n");
1749 release_metapage(mp);
1750 return -EIO;
1751 }
1752
1753 /* search the tree within the dmap control page for
1754 * sufficient free space. if sufficient free space is found,
1755 * dbFindLeaf() returns the index of the leaf at which
1756 * free space was found.
1757 */
1758 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1759
1760 /* release the buffer.
1761 */
1762 release_metapage(mp);
1763
1764 /* space found ?
1765 */
1766 if (rc) {
1767 if (lev != level) {
1768 jfs_error(bmp->db_ipbmap->i_sb,
1769 "dmap inconsistent\n");
1770 return -EIO;
1771 }
1772 return -ENOSPC;
1773 }
1774
1775 /* adjust the block number to reflect the location within
1776 * the dmap control page (i.e. the leaf) at which free
1777 * space was found.
1778 */
1779 b += (((s64) leafidx) << budmin);
1780
1781 /* we stop the search at this dmap control page level if
1782 * the number of blocks required is greater than or equal
1783 * to the maximum number of blocks described at the next
1784 * (lower) level.
1785 */
1786 if (l2nb >= budmin)
1787 break;
1788 }
1789
1790 *blkno = b;
1791 return (0);
1792 }
1793
1794
1795 /*
1796 * NAME: dbAllocCtl()
1797 *
1798 * FUNCTION: attempt to allocate a specified number of contiguous
1799 * blocks starting within a specific dmap.
1800 *
1801 * this routine is called by higher level routines that search
1802 * the dmap control pages above the actual dmaps for contiguous
1803 * free space. the result of successful searches by these
1804 * routines are the starting block numbers within dmaps, with
1805 * the dmaps themselves containing the desired contiguous free
1806 * space or starting a contiguous free space of desired size
1807 * that is made up of the blocks of one or more dmaps. these
1808 * calls should not fail due to insufficent resources.
1809 *
1810 * this routine is called in some cases where it is not known
1811 * whether it will fail due to insufficient resources. more
1812 * specifically, this occurs when allocating from an allocation
1813 * group whose size is equal to the number of blocks per dmap.
1814 * in this case, the dmap control pages are not examined prior
1815 * to calling this routine (to save pathlength) and the call
1816 * might fail.
1817 *
1818 * for a request size that fits within a dmap, this routine relies
1819 * upon the dmap's dmtree to find the requested contiguous free
1820 * space. for request sizes that are larger than a dmap, the
1821 * requested free space will start at the first block of the
1822 * first dmap (i.e. blkno).
1823 *
1824 * PARAMETERS:
1825 * bmp - pointer to bmap descriptor
1826 * nblocks - actual number of contiguous free blocks to allocate.
1827 * l2nb - log2 number of contiguous free blocks to allocate.
1828 * blkno - starting block number of the dmap to start the allocation
1829 * from.
1830 * results - on successful return, set to the starting block number
1831 * of the newly allocated range.
1832 *
1833 * RETURN VALUES:
1834 * 0 - success
1835 * -ENOSPC - insufficient disk resources
1836 * -EIO - i/o error
1837 *
1838 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1839 */
1840 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1841 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1842 {
1843 int rc, nb;
1844 s64 b, lblkno, n;
1845 struct metapage *mp;
1846 struct dmap *dp;
1847
1848 /* check if the allocation request is confined to a single dmap.
1849 */
1850 if (l2nb <= L2BPERDMAP) {
1851 /* get the buffer for the dmap.
1852 */
1853 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1854 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1855 if (mp == NULL)
1856 return -EIO;
1857 dp = (struct dmap *) mp->data;
1858
1859 /* try to allocate the blocks.
1860 */
1861 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1862 if (rc == 0)
1863 mark_metapage_dirty(mp);
1864
1865 release_metapage(mp);
1866
1867 return (rc);
1868 }
1869
1870 /* allocation request involving multiple dmaps. it must start on
1871 * a dmap boundary.
1872 */
1873 assert((blkno & (BPERDMAP - 1)) == 0);
1874
1875 /* allocate the blocks dmap by dmap.
1876 */
1877 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1878 /* get the buffer for the dmap.
1879 */
1880 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1881 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1882 if (mp == NULL) {
1883 rc = -EIO;
1884 goto backout;
1885 }
1886 dp = (struct dmap *) mp->data;
1887
1888 /* the dmap better be all free.
1889 */
1890 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1891 release_metapage(mp);
1892 jfs_error(bmp->db_ipbmap->i_sb,
1893 "the dmap is not all free\n");
1894 rc = -EIO;
1895 goto backout;
1896 }
1897
1898 /* determine how many blocks to allocate from this dmap.
1899 */
1900 nb = min_t(s64, n, BPERDMAP);
1901
1902 /* allocate the blocks from the dmap.
1903 */
1904 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1905 release_metapage(mp);
1906 goto backout;
1907 }
1908
1909 /* write the buffer.
1910 */
1911 write_metapage(mp);
1912 }
1913
1914 /* set the results (starting block number) and return.
1915 */
1916 *results = blkno;
1917 return (0);
1918
1919 /* something failed in handling an allocation request involving
1920 * multiple dmaps. we'll try to clean up by backing out any
1921 * allocation that has already happened for this request. if
1922 * we fail in backing out the allocation, we'll mark the file
1923 * system to indicate that blocks have been leaked.
1924 */
1925 backout:
1926
1927 /* try to backout the allocations dmap by dmap.
1928 */
1929 for (n = nblocks - n, b = blkno; n > 0;
1930 n -= BPERDMAP, b += BPERDMAP) {
1931 /* get the buffer for this dmap.
1932 */
1933 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1934 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1935 if (mp == NULL) {
1936 /* could not back out. mark the file system
1937 * to indicate that we have leaked blocks.
1938 */
1939 jfs_error(bmp->db_ipbmap->i_sb,
1940 "I/O Error: Block Leakage\n");
1941 continue;
1942 }
1943 dp = (struct dmap *) mp->data;
1944
1945 /* free the blocks is this dmap.
1946 */
1947 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1948 /* could not back out. mark the file system
1949 * to indicate that we have leaked blocks.
1950 */
1951 release_metapage(mp);
1952 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1953 continue;
1954 }
1955
1956 /* write the buffer.
1957 */
1958 write_metapage(mp);
1959 }
1960
1961 return (rc);
1962 }
1963
1964
1965 /*
1966 * NAME: dbAllocDmapLev()
1967 *
1968 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1969 * from a specified dmap.
1970 *
1971 * this routine checks if the contiguous blocks are available.
1972 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1973 * returned.
1974 *
1975 * PARAMETERS:
1976 * mp - pointer to bmap descriptor
1977 * dp - pointer to dmap to attempt to allocate blocks from.
1978 * l2nb - log2 number of contiguous block desired.
1979 * nblocks - actual number of contiguous block desired.
1980 * results - on successful return, set to the starting block number
1981 * of the newly allocated range.
1982 *
1983 * RETURN VALUES:
1984 * 0 - success
1985 * -ENOSPC - insufficient disk resources
1986 * -EIO - i/o error
1987 *
1988 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1989 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1990 */
1991 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)1992 dbAllocDmapLev(struct bmap * bmp,
1993 struct dmap * dp, int nblocks, int l2nb, s64 * results)
1994 {
1995 s64 blkno;
1996 int leafidx, rc;
1997
1998 /* can't be more than a dmaps worth of blocks */
1999 assert(l2nb <= L2BPERDMAP);
2000
2001 /* search the tree within the dmap page for sufficient
2002 * free space. if sufficient free space is found, dbFindLeaf()
2003 * returns the index of the leaf at which free space was found.
2004 */
2005 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2006 return -ENOSPC;
2007
2008 /* determine the block number within the file system corresponding
2009 * to the leaf at which free space was found.
2010 */
2011 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2012
2013 /* if not all bits of the dmap word are free, get the starting
2014 * bit number within the dmap word of the required string of free
2015 * bits and adjust the block number with this value.
2016 */
2017 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2018 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2019
2020 /* allocate the blocks */
2021 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2022 *results = blkno;
2023
2024 return (rc);
2025 }
2026
2027
2028 /*
2029 * NAME: dbAllocDmap()
2030 *
2031 * FUNCTION: adjust the disk allocation map to reflect the allocation
2032 * of a specified block range within a dmap.
2033 *
2034 * this routine allocates the specified blocks from the dmap
2035 * through a call to dbAllocBits(). if the allocation of the
2036 * block range causes the maximum string of free blocks within
2037 * the dmap to change (i.e. the value of the root of the dmap's
2038 * dmtree), this routine will cause this change to be reflected
2039 * up through the appropriate levels of the dmap control pages
2040 * by a call to dbAdjCtl() for the L0 dmap control page that
2041 * covers this dmap.
2042 *
2043 * PARAMETERS:
2044 * bmp - pointer to bmap descriptor
2045 * dp - pointer to dmap to allocate the block range from.
2046 * blkno - starting block number of the block to be allocated.
2047 * nblocks - number of blocks to be allocated.
2048 *
2049 * RETURN VALUES:
2050 * 0 - success
2051 * -EIO - i/o error
2052 *
2053 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2054 */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2055 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2056 int nblocks)
2057 {
2058 s8 oldroot;
2059 int rc;
2060
2061 /* save the current value of the root (i.e. maximum free string)
2062 * of the dmap tree.
2063 */
2064 oldroot = dp->tree.stree[ROOT];
2065
2066 /* allocate the specified (blocks) bits */
2067 dbAllocBits(bmp, dp, blkno, nblocks);
2068
2069 /* if the root has not changed, done. */
2070 if (dp->tree.stree[ROOT] == oldroot)
2071 return (0);
2072
2073 /* root changed. bubble the change up to the dmap control pages.
2074 * if the adjustment of the upper level control pages fails,
2075 * backout the bit allocation (thus making everything consistent).
2076 */
2077 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2078 dbFreeBits(bmp, dp, blkno, nblocks);
2079
2080 return (rc);
2081 }
2082
2083
2084 /*
2085 * NAME: dbFreeDmap()
2086 *
2087 * FUNCTION: adjust the disk allocation map to reflect the allocation
2088 * of a specified block range within a dmap.
2089 *
2090 * this routine frees the specified blocks from the dmap through
2091 * a call to dbFreeBits(). if the deallocation of the block range
2092 * causes the maximum string of free blocks within the dmap to
2093 * change (i.e. the value of the root of the dmap's dmtree), this
2094 * routine will cause this change to be reflected up through the
2095 * appropriate levels of the dmap control pages by a call to
2096 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2097 *
2098 * PARAMETERS:
2099 * bmp - pointer to bmap descriptor
2100 * dp - pointer to dmap to free the block range from.
2101 * blkno - starting block number of the block to be freed.
2102 * nblocks - number of blocks to be freed.
2103 *
2104 * RETURN VALUES:
2105 * 0 - success
2106 * -EIO - i/o error
2107 *
2108 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2109 */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2110 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2111 int nblocks)
2112 {
2113 s8 oldroot;
2114 int rc = 0, word;
2115
2116 /* save the current value of the root (i.e. maximum free string)
2117 * of the dmap tree.
2118 */
2119 oldroot = dp->tree.stree[ROOT];
2120
2121 /* free the specified (blocks) bits */
2122 rc = dbFreeBits(bmp, dp, blkno, nblocks);
2123
2124 /* if error or the root has not changed, done. */
2125 if (rc || (dp->tree.stree[ROOT] == oldroot))
2126 return (rc);
2127
2128 /* root changed. bubble the change up to the dmap control pages.
2129 * if the adjustment of the upper level control pages fails,
2130 * backout the deallocation.
2131 */
2132 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2133 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2134
2135 /* as part of backing out the deallocation, we will have
2136 * to back split the dmap tree if the deallocation caused
2137 * the freed blocks to become part of a larger binary buddy
2138 * system.
2139 */
2140 if (dp->tree.stree[word] == NOFREE)
2141 dbBackSplit((dmtree_t *) & dp->tree, word);
2142
2143 dbAllocBits(bmp, dp, blkno, nblocks);
2144 }
2145
2146 return (rc);
2147 }
2148
2149
2150 /*
2151 * NAME: dbAllocBits()
2152 *
2153 * FUNCTION: allocate a specified block range from a dmap.
2154 *
2155 * this routine updates the dmap to reflect the working
2156 * state allocation of the specified block range. it directly
2157 * updates the bits of the working map and causes the adjustment
2158 * of the binary buddy system described by the dmap's dmtree
2159 * leaves to reflect the bits allocated. it also causes the
2160 * dmap's dmtree, as a whole, to reflect the allocated range.
2161 *
2162 * PARAMETERS:
2163 * bmp - pointer to bmap descriptor
2164 * dp - pointer to dmap to allocate bits from.
2165 * blkno - starting block number of the bits to be allocated.
2166 * nblocks - number of bits to be allocated.
2167 *
2168 * RETURN VALUES: none
2169 *
2170 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2171 */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2172 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2173 int nblocks)
2174 {
2175 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2176 dmtree_t *tp = (dmtree_t *) & dp->tree;
2177 int size;
2178 s8 *leaf;
2179
2180 /* pick up a pointer to the leaves of the dmap tree */
2181 leaf = dp->tree.stree + LEAFIND;
2182
2183 /* determine the bit number and word within the dmap of the
2184 * starting block.
2185 */
2186 dbitno = blkno & (BPERDMAP - 1);
2187 word = dbitno >> L2DBWORD;
2188
2189 /* block range better be within the dmap */
2190 assert(dbitno + nblocks <= BPERDMAP);
2191
2192 /* allocate the bits of the dmap's words corresponding to the block
2193 * range. not all bits of the first and last words may be contained
2194 * within the block range. if this is the case, we'll work against
2195 * those words (i.e. partial first and/or last) on an individual basis
2196 * (a single pass), allocating the bits of interest by hand and
2197 * updating the leaf corresponding to the dmap word. a single pass
2198 * will be used for all dmap words fully contained within the
2199 * specified range. within this pass, the bits of all fully contained
2200 * dmap words will be marked as free in a single shot and the leaves
2201 * will be updated. a single leaf may describe the free space of
2202 * multiple dmap words, so we may update only a subset of the actual
2203 * leaves corresponding to the dmap words of the block range.
2204 */
2205 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2206 /* determine the bit number within the word and
2207 * the number of bits within the word.
2208 */
2209 wbitno = dbitno & (DBWORD - 1);
2210 nb = min(rembits, DBWORD - wbitno);
2211
2212 /* check if only part of a word is to be allocated.
2213 */
2214 if (nb < DBWORD) {
2215 /* allocate (set to 1) the appropriate bits within
2216 * this dmap word.
2217 */
2218 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2219 >> wbitno);
2220
2221 /* update the leaf for this dmap word. in addition
2222 * to setting the leaf value to the binary buddy max
2223 * of the updated dmap word, dbSplit() will split
2224 * the binary system of the leaves if need be.
2225 */
2226 dbSplit(tp, word, BUDMIN,
2227 dbMaxBud((u8 *) & dp->wmap[word]));
2228
2229 word += 1;
2230 } else {
2231 /* one or more dmap words are fully contained
2232 * within the block range. determine how many
2233 * words and allocate (set to 1) the bits of these
2234 * words.
2235 */
2236 nwords = rembits >> L2DBWORD;
2237 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2238
2239 /* determine how many bits.
2240 */
2241 nb = nwords << L2DBWORD;
2242
2243 /* now update the appropriate leaves to reflect
2244 * the allocated words.
2245 */
2246 for (; nwords > 0; nwords -= nw) {
2247 if (leaf[word] < BUDMIN) {
2248 jfs_error(bmp->db_ipbmap->i_sb,
2249 "leaf page corrupt\n");
2250 break;
2251 }
2252
2253 /* determine what the leaf value should be
2254 * updated to as the minimum of the l2 number
2255 * of bits being allocated and the l2 number
2256 * of bits currently described by this leaf.
2257 */
2258 size = min_t(int, leaf[word],
2259 NLSTOL2BSZ(nwords));
2260
2261 /* update the leaf to reflect the allocation.
2262 * in addition to setting the leaf value to
2263 * NOFREE, dbSplit() will split the binary
2264 * system of the leaves to reflect the current
2265 * allocation (size).
2266 */
2267 dbSplit(tp, word, size, NOFREE);
2268
2269 /* get the number of dmap words handled */
2270 nw = BUDSIZE(size, BUDMIN);
2271 word += nw;
2272 }
2273 }
2274 }
2275
2276 /* update the free count for this dmap */
2277 le32_add_cpu(&dp->nfree, -nblocks);
2278
2279 BMAP_LOCK(bmp);
2280
2281 /* if this allocation group is completely free,
2282 * update the maximum allocation group number if this allocation
2283 * group is the new max.
2284 */
2285 agno = blkno >> bmp->db_agl2size;
2286 if (agno > bmp->db_maxag)
2287 bmp->db_maxag = agno;
2288
2289 /* update the free count for the allocation group and map */
2290 bmp->db_agfree[agno] -= nblocks;
2291 bmp->db_nfree -= nblocks;
2292
2293 BMAP_UNLOCK(bmp);
2294 }
2295
2296
2297 /*
2298 * NAME: dbFreeBits()
2299 *
2300 * FUNCTION: free a specified block range from a dmap.
2301 *
2302 * this routine updates the dmap to reflect the working
2303 * state allocation of the specified block range. it directly
2304 * updates the bits of the working map and causes the adjustment
2305 * of the binary buddy system described by the dmap's dmtree
2306 * leaves to reflect the bits freed. it also causes the dmap's
2307 * dmtree, as a whole, to reflect the deallocated range.
2308 *
2309 * PARAMETERS:
2310 * bmp - pointer to bmap descriptor
2311 * dp - pointer to dmap to free bits from.
2312 * blkno - starting block number of the bits to be freed.
2313 * nblocks - number of bits to be freed.
2314 *
2315 * RETURN VALUES: 0 for success
2316 *
2317 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2318 */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2319 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2320 int nblocks)
2321 {
2322 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2323 dmtree_t *tp = (dmtree_t *) & dp->tree;
2324 int rc = 0;
2325 int size;
2326
2327 /* determine the bit number and word within the dmap of the
2328 * starting block.
2329 */
2330 dbitno = blkno & (BPERDMAP - 1);
2331 word = dbitno >> L2DBWORD;
2332
2333 /* block range better be within the dmap.
2334 */
2335 assert(dbitno + nblocks <= BPERDMAP);
2336
2337 /* free the bits of the dmaps words corresponding to the block range.
2338 * not all bits of the first and last words may be contained within
2339 * the block range. if this is the case, we'll work against those
2340 * words (i.e. partial first and/or last) on an individual basis
2341 * (a single pass), freeing the bits of interest by hand and updating
2342 * the leaf corresponding to the dmap word. a single pass will be used
2343 * for all dmap words fully contained within the specified range.
2344 * within this pass, the bits of all fully contained dmap words will
2345 * be marked as free in a single shot and the leaves will be updated. a
2346 * single leaf may describe the free space of multiple dmap words,
2347 * so we may update only a subset of the actual leaves corresponding
2348 * to the dmap words of the block range.
2349 *
2350 * dbJoin() is used to update leaf values and will join the binary
2351 * buddy system of the leaves if the new leaf values indicate this
2352 * should be done.
2353 */
2354 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2355 /* determine the bit number within the word and
2356 * the number of bits within the word.
2357 */
2358 wbitno = dbitno & (DBWORD - 1);
2359 nb = min(rembits, DBWORD - wbitno);
2360
2361 /* check if only part of a word is to be freed.
2362 */
2363 if (nb < DBWORD) {
2364 /* free (zero) the appropriate bits within this
2365 * dmap word.
2366 */
2367 dp->wmap[word] &=
2368 cpu_to_le32(~(ONES << (DBWORD - nb)
2369 >> wbitno));
2370
2371 /* update the leaf for this dmap word.
2372 */
2373 rc = dbJoin(tp, word,
2374 dbMaxBud((u8 *) & dp->wmap[word]));
2375 if (rc)
2376 return rc;
2377
2378 word += 1;
2379 } else {
2380 /* one or more dmap words are fully contained
2381 * within the block range. determine how many
2382 * words and free (zero) the bits of these words.
2383 */
2384 nwords = rembits >> L2DBWORD;
2385 memset(&dp->wmap[word], 0, nwords * 4);
2386
2387 /* determine how many bits.
2388 */
2389 nb = nwords << L2DBWORD;
2390
2391 /* now update the appropriate leaves to reflect
2392 * the freed words.
2393 */
2394 for (; nwords > 0; nwords -= nw) {
2395 /* determine what the leaf value should be
2396 * updated to as the minimum of the l2 number
2397 * of bits being freed and the l2 (max) number
2398 * of bits that can be described by this leaf.
2399 */
2400 size =
2401 min(LITOL2BSZ
2402 (word, L2LPERDMAP, BUDMIN),
2403 NLSTOL2BSZ(nwords));
2404
2405 /* update the leaf.
2406 */
2407 rc = dbJoin(tp, word, size);
2408 if (rc)
2409 return rc;
2410
2411 /* get the number of dmap words handled.
2412 */
2413 nw = BUDSIZE(size, BUDMIN);
2414 word += nw;
2415 }
2416 }
2417 }
2418
2419 /* update the free count for this dmap.
2420 */
2421 le32_add_cpu(&dp->nfree, nblocks);
2422
2423 BMAP_LOCK(bmp);
2424
2425 /* update the free count for the allocation group and
2426 * map.
2427 */
2428 agno = blkno >> bmp->db_agl2size;
2429 bmp->db_nfree += nblocks;
2430 bmp->db_agfree[agno] += nblocks;
2431
2432 /* check if this allocation group is not completely free and
2433 * if it is currently the maximum (rightmost) allocation group.
2434 * if so, establish the new maximum allocation group number by
2435 * searching left for the first allocation group with allocation.
2436 */
2437 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2438 (agno == bmp->db_numag - 1 &&
2439 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2440 while (bmp->db_maxag > 0) {
2441 bmp->db_maxag -= 1;
2442 if (bmp->db_agfree[bmp->db_maxag] !=
2443 bmp->db_agsize)
2444 break;
2445 }
2446
2447 /* re-establish the allocation group preference if the
2448 * current preference is right of the maximum allocation
2449 * group.
2450 */
2451 if (bmp->db_agpref > bmp->db_maxag)
2452 bmp->db_agpref = bmp->db_maxag;
2453 }
2454
2455 BMAP_UNLOCK(bmp);
2456
2457 return 0;
2458 }
2459
2460
2461 /*
2462 * NAME: dbAdjCtl()
2463 *
2464 * FUNCTION: adjust a dmap control page at a specified level to reflect
2465 * the change in a lower level dmap or dmap control page's
2466 * maximum string of free blocks (i.e. a change in the root
2467 * of the lower level object's dmtree) due to the allocation
2468 * or deallocation of a range of blocks with a single dmap.
2469 *
2470 * on entry, this routine is provided with the new value of
2471 * the lower level dmap or dmap control page root and the
2472 * starting block number of the block range whose allocation
2473 * or deallocation resulted in the root change. this range
2474 * is respresented by a single leaf of the current dmapctl
2475 * and the leaf will be updated with this value, possibly
2476 * causing a binary buddy system within the leaves to be
2477 * split or joined. the update may also cause the dmapctl's
2478 * dmtree to be updated.
2479 *
2480 * if the adjustment of the dmap control page, itself, causes its
2481 * root to change, this change will be bubbled up to the next dmap
2482 * control level by a recursive call to this routine, specifying
2483 * the new root value and the next dmap control page level to
2484 * be adjusted.
2485 * PARAMETERS:
2486 * bmp - pointer to bmap descriptor
2487 * blkno - the first block of a block range within a dmap. it is
2488 * the allocation or deallocation of this block range that
2489 * requires the dmap control page to be adjusted.
2490 * newval - the new value of the lower level dmap or dmap control
2491 * page root.
2492 * alloc - 'true' if adjustment is due to an allocation.
2493 * level - current level of dmap control page (i.e. L0, L1, L2) to
2494 * be adjusted.
2495 *
2496 * RETURN VALUES:
2497 * 0 - success
2498 * -EIO - i/o error
2499 *
2500 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2501 */
2502 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2503 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2504 {
2505 struct metapage *mp;
2506 s8 oldroot;
2507 int oldval;
2508 s64 lblkno;
2509 struct dmapctl *dcp;
2510 int rc, leafno, ti;
2511
2512 /* get the buffer for the dmap control page for the specified
2513 * block number and control page level.
2514 */
2515 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2516 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2517 if (mp == NULL)
2518 return -EIO;
2519 dcp = (struct dmapctl *) mp->data;
2520
2521 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2522 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2523 release_metapage(mp);
2524 return -EIO;
2525 }
2526
2527 /* determine the leaf number corresponding to the block and
2528 * the index within the dmap control tree.
2529 */
2530 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2531 ti = leafno + le32_to_cpu(dcp->leafidx);
2532
2533 /* save the current leaf value and the current root level (i.e.
2534 * maximum l2 free string described by this dmapctl).
2535 */
2536 oldval = dcp->stree[ti];
2537 oldroot = dcp->stree[ROOT];
2538
2539 /* check if this is a control page update for an allocation.
2540 * if so, update the leaf to reflect the new leaf value using
2541 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2542 * the leaf with the new value. in addition to updating the
2543 * leaf, dbSplit() will also split the binary buddy system of
2544 * the leaves, if required, and bubble new values within the
2545 * dmapctl tree, if required. similarly, dbJoin() will join
2546 * the binary buddy system of leaves and bubble new values up
2547 * the dmapctl tree as required by the new leaf value.
2548 */
2549 if (alloc) {
2550 /* check if we are in the middle of a binary buddy
2551 * system. this happens when we are performing the
2552 * first allocation out of an allocation group that
2553 * is part (not the first part) of a larger binary
2554 * buddy system. if we are in the middle, back split
2555 * the system prior to calling dbSplit() which assumes
2556 * that it is at the front of a binary buddy system.
2557 */
2558 if (oldval == NOFREE) {
2559 rc = dbBackSplit((dmtree_t *) dcp, leafno);
2560 if (rc)
2561 return rc;
2562 oldval = dcp->stree[ti];
2563 }
2564 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2565 } else {
2566 rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2567 if (rc)
2568 return rc;
2569 }
2570
2571 /* check if the root of the current dmap control page changed due
2572 * to the update and if the current dmap control page is not at
2573 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2574 * root changed and this is not the top level), call this routine
2575 * again (recursion) for the next higher level of the mapping to
2576 * reflect the change in root for the current dmap control page.
2577 */
2578 if (dcp->stree[ROOT] != oldroot) {
2579 /* are we below the top level of the map. if so,
2580 * bubble the root up to the next higher level.
2581 */
2582 if (level < bmp->db_maxlevel) {
2583 /* bubble up the new root of this dmap control page to
2584 * the next level.
2585 */
2586 if ((rc =
2587 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2588 level + 1))) {
2589 /* something went wrong in bubbling up the new
2590 * root value, so backout the changes to the
2591 * current dmap control page.
2592 */
2593 if (alloc) {
2594 dbJoin((dmtree_t *) dcp, leafno,
2595 oldval);
2596 } else {
2597 /* the dbJoin() above might have
2598 * caused a larger binary buddy system
2599 * to form and we may now be in the
2600 * middle of it. if this is the case,
2601 * back split the buddies.
2602 */
2603 if (dcp->stree[ti] == NOFREE)
2604 dbBackSplit((dmtree_t *)
2605 dcp, leafno);
2606 dbSplit((dmtree_t *) dcp, leafno,
2607 dcp->budmin, oldval);
2608 }
2609
2610 /* release the buffer and return the error.
2611 */
2612 release_metapage(mp);
2613 return (rc);
2614 }
2615 } else {
2616 /* we're at the top level of the map. update
2617 * the bmap control page to reflect the size
2618 * of the maximum free buddy system.
2619 */
2620 assert(level == bmp->db_maxlevel);
2621 if (bmp->db_maxfreebud != oldroot) {
2622 jfs_error(bmp->db_ipbmap->i_sb,
2623 "the maximum free buddy is not the old root\n");
2624 }
2625 bmp->db_maxfreebud = dcp->stree[ROOT];
2626 }
2627 }
2628
2629 /* write the buffer.
2630 */
2631 write_metapage(mp);
2632
2633 return (0);
2634 }
2635
2636
2637 /*
2638 * NAME: dbSplit()
2639 *
2640 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2641 * the leaf from the binary buddy system of the dmtree's
2642 * leaves, as required.
2643 *
2644 * PARAMETERS:
2645 * tp - pointer to the tree containing the leaf.
2646 * leafno - the number of the leaf to be updated.
2647 * splitsz - the size the binary buddy system starting at the leaf
2648 * must be split to, specified as the log2 number of blocks.
2649 * newval - the new value for the leaf.
2650 *
2651 * RETURN VALUES: none
2652 *
2653 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2654 */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval)2655 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2656 {
2657 int budsz;
2658 int cursz;
2659 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2660
2661 /* check if the leaf needs to be split.
2662 */
2663 if (leaf[leafno] > tp->dmt_budmin) {
2664 /* the split occurs by cutting the buddy system in half
2665 * at the specified leaf until we reach the specified
2666 * size. pick up the starting split size (current size
2667 * - 1 in l2) and the corresponding buddy size.
2668 */
2669 cursz = leaf[leafno] - 1;
2670 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2671
2672 /* split until we reach the specified size.
2673 */
2674 while (cursz >= splitsz) {
2675 /* update the buddy's leaf with its new value.
2676 */
2677 dbAdjTree(tp, leafno ^ budsz, cursz);
2678
2679 /* on to the next size and buddy.
2680 */
2681 cursz -= 1;
2682 budsz >>= 1;
2683 }
2684 }
2685
2686 /* adjust the dmap tree to reflect the specified leaf's new
2687 * value.
2688 */
2689 dbAdjTree(tp, leafno, newval);
2690 }
2691
2692
2693 /*
2694 * NAME: dbBackSplit()
2695 *
2696 * FUNCTION: back split the binary buddy system of dmtree leaves
2697 * that hold a specified leaf until the specified leaf
2698 * starts its own binary buddy system.
2699 *
2700 * the allocators typically perform allocations at the start
2701 * of binary buddy systems and dbSplit() is used to accomplish
2702 * any required splits. in some cases, however, allocation
2703 * may occur in the middle of a binary system and requires a
2704 * back split, with the split proceeding out from the middle of
2705 * the system (less efficient) rather than the start of the
2706 * system (more efficient). the cases in which a back split
2707 * is required are rare and are limited to the first allocation
2708 * within an allocation group which is a part (not first part)
2709 * of a larger binary buddy system and a few exception cases
2710 * in which a previous join operation must be backed out.
2711 *
2712 * PARAMETERS:
2713 * tp - pointer to the tree containing the leaf.
2714 * leafno - the number of the leaf to be updated.
2715 *
2716 * RETURN VALUES: none
2717 *
2718 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2719 */
dbBackSplit(dmtree_t * tp,int leafno)2720 static int dbBackSplit(dmtree_t * tp, int leafno)
2721 {
2722 int budsz, bud, w, bsz, size;
2723 int cursz;
2724 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2725
2726 /* leaf should be part (not first part) of a binary
2727 * buddy system.
2728 */
2729 assert(leaf[leafno] == NOFREE);
2730
2731 /* the back split is accomplished by iteratively finding the leaf
2732 * that starts the buddy system that contains the specified leaf and
2733 * splitting that system in two. this iteration continues until
2734 * the specified leaf becomes the start of a buddy system.
2735 *
2736 * determine maximum possible l2 size for the specified leaf.
2737 */
2738 size =
2739 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2740 tp->dmt_budmin);
2741
2742 /* determine the number of leaves covered by this size. this
2743 * is the buddy size that we will start with as we search for
2744 * the buddy system that contains the specified leaf.
2745 */
2746 budsz = BUDSIZE(size, tp->dmt_budmin);
2747
2748 /* back split.
2749 */
2750 while (leaf[leafno] == NOFREE) {
2751 /* find the leftmost buddy leaf.
2752 */
2753 for (w = leafno, bsz = budsz;; bsz <<= 1,
2754 w = (w < bud) ? w : bud) {
2755 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2756 jfs_err("JFS: block map error in dbBackSplit");
2757 return -EIO;
2758 }
2759
2760 /* determine the buddy.
2761 */
2762 bud = w ^ bsz;
2763
2764 /* check if this buddy is the start of the system.
2765 */
2766 if (leaf[bud] != NOFREE) {
2767 /* split the leaf at the start of the
2768 * system in two.
2769 */
2770 cursz = leaf[bud] - 1;
2771 dbSplit(tp, bud, cursz, cursz);
2772 break;
2773 }
2774 }
2775 }
2776
2777 if (leaf[leafno] != size) {
2778 jfs_err("JFS: wrong leaf value in dbBackSplit");
2779 return -EIO;
2780 }
2781 return 0;
2782 }
2783
2784
2785 /*
2786 * NAME: dbJoin()
2787 *
2788 * FUNCTION: update the leaf of a dmtree with a new value, joining
2789 * the leaf with other leaves of the dmtree into a multi-leaf
2790 * binary buddy system, as required.
2791 *
2792 * PARAMETERS:
2793 * tp - pointer to the tree containing the leaf.
2794 * leafno - the number of the leaf to be updated.
2795 * newval - the new value for the leaf.
2796 *
2797 * RETURN VALUES: none
2798 */
dbJoin(dmtree_t * tp,int leafno,int newval)2799 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2800 {
2801 int budsz, buddy;
2802 s8 *leaf;
2803
2804 /* can the new leaf value require a join with other leaves ?
2805 */
2806 if (newval >= tp->dmt_budmin) {
2807 /* pickup a pointer to the leaves of the tree.
2808 */
2809 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2810
2811 /* try to join the specified leaf into a large binary
2812 * buddy system. the join proceeds by attempting to join
2813 * the specified leafno with its buddy (leaf) at new value.
2814 * if the join occurs, we attempt to join the left leaf
2815 * of the joined buddies with its buddy at new value + 1.
2816 * we continue to join until we find a buddy that cannot be
2817 * joined (does not have a value equal to the size of the
2818 * last join) or until all leaves have been joined into a
2819 * single system.
2820 *
2821 * get the buddy size (number of words covered) of
2822 * the new value.
2823 */
2824 budsz = BUDSIZE(newval, tp->dmt_budmin);
2825
2826 /* try to join.
2827 */
2828 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2829 /* get the buddy leaf.
2830 */
2831 buddy = leafno ^ budsz;
2832
2833 /* if the leaf's new value is greater than its
2834 * buddy's value, we join no more.
2835 */
2836 if (newval > leaf[buddy])
2837 break;
2838
2839 /* It shouldn't be less */
2840 if (newval < leaf[buddy])
2841 return -EIO;
2842
2843 /* check which (leafno or buddy) is the left buddy.
2844 * the left buddy gets to claim the blocks resulting
2845 * from the join while the right gets to claim none.
2846 * the left buddy is also eligible to participate in
2847 * a join at the next higher level while the right
2848 * is not.
2849 *
2850 */
2851 if (leafno < buddy) {
2852 /* leafno is the left buddy.
2853 */
2854 dbAdjTree(tp, buddy, NOFREE);
2855 } else {
2856 /* buddy is the left buddy and becomes
2857 * leafno.
2858 */
2859 dbAdjTree(tp, leafno, NOFREE);
2860 leafno = buddy;
2861 }
2862
2863 /* on to try the next join.
2864 */
2865 newval += 1;
2866 budsz <<= 1;
2867 }
2868 }
2869
2870 /* update the leaf value.
2871 */
2872 dbAdjTree(tp, leafno, newval);
2873
2874 return 0;
2875 }
2876
2877
2878 /*
2879 * NAME: dbAdjTree()
2880 *
2881 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2882 * the dmtree, as required, to reflect the new leaf value.
2883 * the combination of any buddies must already be done before
2884 * this is called.
2885 *
2886 * PARAMETERS:
2887 * tp - pointer to the tree to be adjusted.
2888 * leafno - the number of the leaf to be updated.
2889 * newval - the new value for the leaf.
2890 *
2891 * RETURN VALUES: none
2892 */
dbAdjTree(dmtree_t * tp,int leafno,int newval)2893 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2894 {
2895 int lp, pp, k;
2896 int max;
2897
2898 /* pick up the index of the leaf for this leafno.
2899 */
2900 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2901
2902 /* is the current value the same as the old value ? if so,
2903 * there is nothing to do.
2904 */
2905 if (tp->dmt_stree[lp] == newval)
2906 return;
2907
2908 /* set the new value.
2909 */
2910 tp->dmt_stree[lp] = newval;
2911
2912 /* bubble the new value up the tree as required.
2913 */
2914 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2915 /* get the index of the first leaf of the 4 leaf
2916 * group containing the specified leaf (leafno).
2917 */
2918 lp = ((lp - 1) & ~0x03) + 1;
2919
2920 /* get the index of the parent of this 4 leaf group.
2921 */
2922 pp = (lp - 1) >> 2;
2923
2924 /* determine the maximum of the 4 leaves.
2925 */
2926 max = TREEMAX(&tp->dmt_stree[lp]);
2927
2928 /* if the maximum of the 4 is the same as the
2929 * parent's value, we're done.
2930 */
2931 if (tp->dmt_stree[pp] == max)
2932 break;
2933
2934 /* parent gets new value.
2935 */
2936 tp->dmt_stree[pp] = max;
2937
2938 /* parent becomes leaf for next go-round.
2939 */
2940 lp = pp;
2941 }
2942 }
2943
2944
2945 /*
2946 * NAME: dbFindLeaf()
2947 *
2948 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2949 * the index of a leaf describing the free blocks if
2950 * sufficient free blocks are found.
2951 *
2952 * the search starts at the top of the dmtree_t tree and
2953 * proceeds down the tree to the leftmost leaf with sufficient
2954 * free space.
2955 *
2956 * PARAMETERS:
2957 * tp - pointer to the tree to be searched.
2958 * l2nb - log2 number of free blocks to search for.
2959 * leafidx - return pointer to be set to the index of the leaf
2960 * describing at least l2nb free blocks if sufficient
2961 * free blocks are found.
2962 *
2963 * RETURN VALUES:
2964 * 0 - success
2965 * -ENOSPC - insufficient free blocks.
2966 */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx)2967 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2968 {
2969 int ti, n = 0, k, x = 0;
2970
2971 /* first check the root of the tree to see if there is
2972 * sufficient free space.
2973 */
2974 if (l2nb > tp->dmt_stree[ROOT])
2975 return -ENOSPC;
2976
2977 /* sufficient free space available. now search down the tree
2978 * starting at the next level for the leftmost leaf that
2979 * describes sufficient free space.
2980 */
2981 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2982 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2983 /* search the four nodes at this level, starting from
2984 * the left.
2985 */
2986 for (x = ti, n = 0; n < 4; n++) {
2987 /* sufficient free space found. move to the next
2988 * level (or quit if this is the last level).
2989 */
2990 if (l2nb <= tp->dmt_stree[x + n])
2991 break;
2992 }
2993
2994 /* better have found something since the higher
2995 * levels of the tree said it was here.
2996 */
2997 assert(n < 4);
2998 }
2999
3000 /* set the return to the leftmost leaf describing sufficient
3001 * free space.
3002 */
3003 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3004
3005 return (0);
3006 }
3007
3008
3009 /*
3010 * NAME: dbFindBits()
3011 *
3012 * FUNCTION: find a specified number of binary buddy free bits within a
3013 * dmap bitmap word value.
3014 *
3015 * this routine searches the bitmap value for (1 << l2nb) free
3016 * bits at (1 << l2nb) alignments within the value.
3017 *
3018 * PARAMETERS:
3019 * word - dmap bitmap word value.
3020 * l2nb - number of free bits specified as a log2 number.
3021 *
3022 * RETURN VALUES:
3023 * starting bit number of free bits.
3024 */
dbFindBits(u32 word,int l2nb)3025 static int dbFindBits(u32 word, int l2nb)
3026 {
3027 int bitno, nb;
3028 u32 mask;
3029
3030 /* get the number of bits.
3031 */
3032 nb = 1 << l2nb;
3033 assert(nb <= DBWORD);
3034
3035 /* complement the word so we can use a mask (i.e. 0s represent
3036 * free bits) and compute the mask.
3037 */
3038 word = ~word;
3039 mask = ONES << (DBWORD - nb);
3040
3041 /* scan the word for nb free bits at nb alignments.
3042 */
3043 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3044 if ((mask & word) == mask)
3045 break;
3046 }
3047
3048 ASSERT(bitno < 32);
3049
3050 /* return the bit number.
3051 */
3052 return (bitno);
3053 }
3054
3055
3056 /*
3057 * NAME: dbMaxBud(u8 *cp)
3058 *
3059 * FUNCTION: determine the largest binary buddy string of free
3060 * bits within 32-bits of the map.
3061 *
3062 * PARAMETERS:
3063 * cp - pointer to the 32-bit value.
3064 *
3065 * RETURN VALUES:
3066 * largest binary buddy of free bits within a dmap word.
3067 */
dbMaxBud(u8 * cp)3068 static int dbMaxBud(u8 * cp)
3069 {
3070 signed char tmp1, tmp2;
3071
3072 /* check if the wmap word is all free. if so, the
3073 * free buddy size is BUDMIN.
3074 */
3075 if (*((uint *) cp) == 0)
3076 return (BUDMIN);
3077
3078 /* check if the wmap word is half free. if so, the
3079 * free buddy size is BUDMIN-1.
3080 */
3081 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3082 return (BUDMIN - 1);
3083
3084 /* not all free or half free. determine the free buddy
3085 * size thru table lookup using quarters of the wmap word.
3086 */
3087 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3088 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3089 return (max(tmp1, tmp2));
3090 }
3091
3092
3093 /*
3094 * NAME: cnttz(uint word)
3095 *
3096 * FUNCTION: determine the number of trailing zeros within a 32-bit
3097 * value.
3098 *
3099 * PARAMETERS:
3100 * value - 32-bit value to be examined.
3101 *
3102 * RETURN VALUES:
3103 * count of trailing zeros
3104 */
cnttz(u32 word)3105 static int cnttz(u32 word)
3106 {
3107 int n;
3108
3109 for (n = 0; n < 32; n++, word >>= 1) {
3110 if (word & 0x01)
3111 break;
3112 }
3113
3114 return (n);
3115 }
3116
3117
3118 /*
3119 * NAME: cntlz(u32 value)
3120 *
3121 * FUNCTION: determine the number of leading zeros within a 32-bit
3122 * value.
3123 *
3124 * PARAMETERS:
3125 * value - 32-bit value to be examined.
3126 *
3127 * RETURN VALUES:
3128 * count of leading zeros
3129 */
cntlz(u32 value)3130 static int cntlz(u32 value)
3131 {
3132 int n;
3133
3134 for (n = 0; n < 32; n++, value <<= 1) {
3135 if (value & HIGHORDER)
3136 break;
3137 }
3138 return (n);
3139 }
3140
3141
3142 /*
3143 * NAME: blkstol2(s64 nb)
3144 *
3145 * FUNCTION: convert a block count to its log2 value. if the block
3146 * count is not a l2 multiple, it is rounded up to the next
3147 * larger l2 multiple.
3148 *
3149 * PARAMETERS:
3150 * nb - number of blocks
3151 *
3152 * RETURN VALUES:
3153 * log2 number of blocks
3154 */
blkstol2(s64 nb)3155 static int blkstol2(s64 nb)
3156 {
3157 int l2nb;
3158 s64 mask; /* meant to be signed */
3159
3160 mask = (s64) 1 << (64 - 1);
3161
3162 /* count the leading bits.
3163 */
3164 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3165 /* leading bit found.
3166 */
3167 if (nb & mask) {
3168 /* determine the l2 value.
3169 */
3170 l2nb = (64 - 1) - l2nb;
3171
3172 /* check if we need to round up.
3173 */
3174 if (~mask & nb)
3175 l2nb++;
3176
3177 return (l2nb);
3178 }
3179 }
3180 assert(0);
3181 return 0; /* fix compiler warning */
3182 }
3183
3184
3185 /*
3186 * NAME: dbAllocBottomUp()
3187 *
3188 * FUNCTION: alloc the specified block range from the working block
3189 * allocation map.
3190 *
3191 * the blocks will be alloc from the working map one dmap
3192 * at a time.
3193 *
3194 * PARAMETERS:
3195 * ip - pointer to in-core inode;
3196 * blkno - starting block number to be freed.
3197 * nblocks - number of blocks to be freed.
3198 *
3199 * RETURN VALUES:
3200 * 0 - success
3201 * -EIO - i/o error
3202 */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3203 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3204 {
3205 struct metapage *mp;
3206 struct dmap *dp;
3207 int nb, rc;
3208 s64 lblkno, rem;
3209 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3210 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3211
3212 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3213
3214 /* block to be allocated better be within the mapsize. */
3215 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3216
3217 /*
3218 * allocate the blocks a dmap at a time.
3219 */
3220 mp = NULL;
3221 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3222 /* release previous dmap if any */
3223 if (mp) {
3224 write_metapage(mp);
3225 }
3226
3227 /* get the buffer for the current dmap. */
3228 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3229 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3230 if (mp == NULL) {
3231 IREAD_UNLOCK(ipbmap);
3232 return -EIO;
3233 }
3234 dp = (struct dmap *) mp->data;
3235
3236 /* determine the number of blocks to be allocated from
3237 * this dmap.
3238 */
3239 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3240
3241 /* allocate the blocks. */
3242 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3243 release_metapage(mp);
3244 IREAD_UNLOCK(ipbmap);
3245 return (rc);
3246 }
3247 }
3248
3249 /* write the last buffer. */
3250 write_metapage(mp);
3251
3252 IREAD_UNLOCK(ipbmap);
3253
3254 return (0);
3255 }
3256
3257
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3258 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3259 int nblocks)
3260 {
3261 int rc;
3262 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3263 s8 oldroot;
3264 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3265
3266 /* save the current value of the root (i.e. maximum free string)
3267 * of the dmap tree.
3268 */
3269 oldroot = tp->stree[ROOT];
3270
3271 /* determine the bit number and word within the dmap of the
3272 * starting block.
3273 */
3274 dbitno = blkno & (BPERDMAP - 1);
3275 word = dbitno >> L2DBWORD;
3276
3277 /* block range better be within the dmap */
3278 assert(dbitno + nblocks <= BPERDMAP);
3279
3280 /* allocate the bits of the dmap's words corresponding to the block
3281 * range. not all bits of the first and last words may be contained
3282 * within the block range. if this is the case, we'll work against
3283 * those words (i.e. partial first and/or last) on an individual basis
3284 * (a single pass), allocating the bits of interest by hand and
3285 * updating the leaf corresponding to the dmap word. a single pass
3286 * will be used for all dmap words fully contained within the
3287 * specified range. within this pass, the bits of all fully contained
3288 * dmap words will be marked as free in a single shot and the leaves
3289 * will be updated. a single leaf may describe the free space of
3290 * multiple dmap words, so we may update only a subset of the actual
3291 * leaves corresponding to the dmap words of the block range.
3292 */
3293 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3294 /* determine the bit number within the word and
3295 * the number of bits within the word.
3296 */
3297 wbitno = dbitno & (DBWORD - 1);
3298 nb = min(rembits, DBWORD - wbitno);
3299
3300 /* check if only part of a word is to be allocated.
3301 */
3302 if (nb < DBWORD) {
3303 /* allocate (set to 1) the appropriate bits within
3304 * this dmap word.
3305 */
3306 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3307 >> wbitno);
3308
3309 word++;
3310 } else {
3311 /* one or more dmap words are fully contained
3312 * within the block range. determine how many
3313 * words and allocate (set to 1) the bits of these
3314 * words.
3315 */
3316 nwords = rembits >> L2DBWORD;
3317 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3318
3319 /* determine how many bits */
3320 nb = nwords << L2DBWORD;
3321 word += nwords;
3322 }
3323 }
3324
3325 /* update the free count for this dmap */
3326 le32_add_cpu(&dp->nfree, -nblocks);
3327
3328 /* reconstruct summary tree */
3329 dbInitDmapTree(dp);
3330
3331 BMAP_LOCK(bmp);
3332
3333 /* if this allocation group is completely free,
3334 * update the highest active allocation group number
3335 * if this allocation group is the new max.
3336 */
3337 agno = blkno >> bmp->db_agl2size;
3338 if (agno > bmp->db_maxag)
3339 bmp->db_maxag = agno;
3340
3341 /* update the free count for the allocation group and map */
3342 bmp->db_agfree[agno] -= nblocks;
3343 bmp->db_nfree -= nblocks;
3344
3345 BMAP_UNLOCK(bmp);
3346
3347 /* if the root has not changed, done. */
3348 if (tp->stree[ROOT] == oldroot)
3349 return (0);
3350
3351 /* root changed. bubble the change up to the dmap control pages.
3352 * if the adjustment of the upper level control pages fails,
3353 * backout the bit allocation (thus making everything consistent).
3354 */
3355 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3356 dbFreeBits(bmp, dp, blkno, nblocks);
3357
3358 return (rc);
3359 }
3360
3361
3362 /*
3363 * NAME: dbExtendFS()
3364 *
3365 * FUNCTION: extend bmap from blkno for nblocks;
3366 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3367 *
3368 * L2
3369 * |
3370 * L1---------------------------------L1
3371 * | |
3372 * L0---------L0---------L0 L0---------L0---------L0
3373 * | | | | | |
3374 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3375 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3376 *
3377 * <---old---><----------------------------extend----------------------->
3378 */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3379 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3380 {
3381 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3382 int nbperpage = sbi->nbperpage;
3383 int i, i0 = true, j, j0 = true, k, n;
3384 s64 newsize;
3385 s64 p;
3386 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3387 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3388 struct dmap *dp;
3389 s8 *l0leaf, *l1leaf, *l2leaf;
3390 struct bmap *bmp = sbi->bmap;
3391 int agno, l2agsize, oldl2agsize;
3392 s64 ag_rem;
3393
3394 newsize = blkno + nblocks;
3395
3396 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3397 (long long) blkno, (long long) nblocks, (long long) newsize);
3398
3399 /*
3400 * initialize bmap control page.
3401 *
3402 * all the data in bmap control page should exclude
3403 * the mkfs hidden dmap page.
3404 */
3405
3406 /* update mapsize */
3407 bmp->db_mapsize = newsize;
3408 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3409
3410 /* compute new AG size */
3411 l2agsize = dbGetL2AGSize(newsize);
3412 oldl2agsize = bmp->db_agl2size;
3413
3414 bmp->db_agl2size = l2agsize;
3415 bmp->db_agsize = 1 << l2agsize;
3416
3417 /* compute new number of AG */
3418 agno = bmp->db_numag;
3419 bmp->db_numag = newsize >> l2agsize;
3420 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3421
3422 /*
3423 * reconfigure db_agfree[]
3424 * from old AG configuration to new AG configuration;
3425 *
3426 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3427 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3428 * note: new AG size = old AG size * (2**x).
3429 */
3430 if (l2agsize == oldl2agsize)
3431 goto extend;
3432 k = 1 << (l2agsize - oldl2agsize);
3433 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3434 for (i = 0, n = 0; i < agno; n++) {
3435 bmp->db_agfree[n] = 0; /* init collection point */
3436
3437 /* coalesce contiguous k AGs; */
3438 for (j = 0; j < k && i < agno; j++, i++) {
3439 /* merge AGi to AGn */
3440 bmp->db_agfree[n] += bmp->db_agfree[i];
3441 }
3442 }
3443 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3444
3445 for (; n < MAXAG; n++)
3446 bmp->db_agfree[n] = 0;
3447
3448 /*
3449 * update highest active ag number
3450 */
3451
3452 bmp->db_maxag = bmp->db_maxag / k;
3453
3454 /*
3455 * extend bmap
3456 *
3457 * update bit maps and corresponding level control pages;
3458 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3459 */
3460 extend:
3461 /* get L2 page */
3462 p = BMAPBLKNO + nbperpage; /* L2 page */
3463 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3464 if (!l2mp) {
3465 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3466 return -EIO;
3467 }
3468 l2dcp = (struct dmapctl *) l2mp->data;
3469
3470 /* compute start L1 */
3471 k = blkno >> L2MAXL1SIZE;
3472 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3473 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3474
3475 /*
3476 * extend each L1 in L2
3477 */
3478 for (; k < LPERCTL; k++, p += nbperpage) {
3479 /* get L1 page */
3480 if (j0) {
3481 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3482 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3483 if (l1mp == NULL)
3484 goto errout;
3485 l1dcp = (struct dmapctl *) l1mp->data;
3486
3487 /* compute start L0 */
3488 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3489 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3490 p = BLKTOL0(blkno, sbi->l2nbperpage);
3491 j0 = false;
3492 } else {
3493 /* assign/init L1 page */
3494 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3495 if (l1mp == NULL)
3496 goto errout;
3497
3498 l1dcp = (struct dmapctl *) l1mp->data;
3499
3500 /* compute start L0 */
3501 j = 0;
3502 l1leaf = l1dcp->stree + CTLLEAFIND;
3503 p += nbperpage; /* 1st L0 of L1.k */
3504 }
3505
3506 /*
3507 * extend each L0 in L1
3508 */
3509 for (; j < LPERCTL; j++) {
3510 /* get L0 page */
3511 if (i0) {
3512 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3513
3514 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3515 if (l0mp == NULL)
3516 goto errout;
3517 l0dcp = (struct dmapctl *) l0mp->data;
3518
3519 /* compute start dmap */
3520 i = (blkno & (MAXL0SIZE - 1)) >>
3521 L2BPERDMAP;
3522 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3523 p = BLKTODMAP(blkno,
3524 sbi->l2nbperpage);
3525 i0 = false;
3526 } else {
3527 /* assign/init L0 page */
3528 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3529 if (l0mp == NULL)
3530 goto errout;
3531
3532 l0dcp = (struct dmapctl *) l0mp->data;
3533
3534 /* compute start dmap */
3535 i = 0;
3536 l0leaf = l0dcp->stree + CTLLEAFIND;
3537 p += nbperpage; /* 1st dmap of L0.j */
3538 }
3539
3540 /*
3541 * extend each dmap in L0
3542 */
3543 for (; i < LPERCTL; i++) {
3544 /*
3545 * reconstruct the dmap page, and
3546 * initialize corresponding parent L0 leaf
3547 */
3548 if ((n = blkno & (BPERDMAP - 1))) {
3549 /* read in dmap page: */
3550 mp = read_metapage(ipbmap, p,
3551 PSIZE, 0);
3552 if (mp == NULL)
3553 goto errout;
3554 n = min(nblocks, (s64)BPERDMAP - n);
3555 } else {
3556 /* assign/init dmap page */
3557 mp = read_metapage(ipbmap, p,
3558 PSIZE, 0);
3559 if (mp == NULL)
3560 goto errout;
3561
3562 n = min_t(s64, nblocks, BPERDMAP);
3563 }
3564
3565 dp = (struct dmap *) mp->data;
3566 *l0leaf = dbInitDmap(dp, blkno, n);
3567
3568 bmp->db_nfree += n;
3569 agno = le64_to_cpu(dp->start) >> l2agsize;
3570 bmp->db_agfree[agno] += n;
3571
3572 write_metapage(mp);
3573
3574 l0leaf++;
3575 p += nbperpage;
3576
3577 blkno += n;
3578 nblocks -= n;
3579 if (nblocks == 0)
3580 break;
3581 } /* for each dmap in a L0 */
3582
3583 /*
3584 * build current L0 page from its leaves, and
3585 * initialize corresponding parent L1 leaf
3586 */
3587 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3588 write_metapage(l0mp);
3589 l0mp = NULL;
3590
3591 if (nblocks)
3592 l1leaf++; /* continue for next L0 */
3593 else {
3594 /* more than 1 L0 ? */
3595 if (j > 0)
3596 break; /* build L1 page */
3597 else {
3598 /* summarize in global bmap page */
3599 bmp->db_maxfreebud = *l1leaf;
3600 release_metapage(l1mp);
3601 release_metapage(l2mp);
3602 goto finalize;
3603 }
3604 }
3605 } /* for each L0 in a L1 */
3606
3607 /*
3608 * build current L1 page from its leaves, and
3609 * initialize corresponding parent L2 leaf
3610 */
3611 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3612 write_metapage(l1mp);
3613 l1mp = NULL;
3614
3615 if (nblocks)
3616 l2leaf++; /* continue for next L1 */
3617 else {
3618 /* more than 1 L1 ? */
3619 if (k > 0)
3620 break; /* build L2 page */
3621 else {
3622 /* summarize in global bmap page */
3623 bmp->db_maxfreebud = *l2leaf;
3624 release_metapage(l2mp);
3625 goto finalize;
3626 }
3627 }
3628 } /* for each L1 in a L2 */
3629
3630 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3631 errout:
3632 if (l0mp)
3633 release_metapage(l0mp);
3634 if (l1mp)
3635 release_metapage(l1mp);
3636 release_metapage(l2mp);
3637 return -EIO;
3638
3639 /*
3640 * finalize bmap control page
3641 */
3642 finalize:
3643
3644 return 0;
3645 }
3646
3647
3648 /*
3649 * dbFinalizeBmap()
3650 */
dbFinalizeBmap(struct inode * ipbmap)3651 void dbFinalizeBmap(struct inode *ipbmap)
3652 {
3653 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3654 int actags, inactags, l2nl;
3655 s64 ag_rem, actfree, inactfree, avgfree;
3656 int i, n;
3657
3658 /*
3659 * finalize bmap control page
3660 */
3661 //finalize:
3662 /*
3663 * compute db_agpref: preferred ag to allocate from
3664 * (the leftmost ag with average free space in it);
3665 */
3666 //agpref:
3667 /* get the number of active ags and inacitve ags */
3668 actags = bmp->db_maxag + 1;
3669 inactags = bmp->db_numag - actags;
3670 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3671
3672 /* determine how many blocks are in the inactive allocation
3673 * groups. in doing this, we must account for the fact that
3674 * the rightmost group might be a partial group (i.e. file
3675 * system size is not a multiple of the group size).
3676 */
3677 inactfree = (inactags && ag_rem) ?
3678 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3679 : inactags << bmp->db_agl2size;
3680
3681 /* determine how many free blocks are in the active
3682 * allocation groups plus the average number of free blocks
3683 * within the active ags.
3684 */
3685 actfree = bmp->db_nfree - inactfree;
3686 avgfree = (u32) actfree / (u32) actags;
3687
3688 /* if the preferred allocation group has not average free space.
3689 * re-establish the preferred group as the leftmost
3690 * group with average free space.
3691 */
3692 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3693 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3694 bmp->db_agpref++) {
3695 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3696 break;
3697 }
3698 if (bmp->db_agpref >= bmp->db_numag) {
3699 jfs_error(ipbmap->i_sb,
3700 "cannot find ag with average freespace\n");
3701 }
3702 }
3703
3704 /*
3705 * compute db_aglevel, db_agheight, db_width, db_agstart:
3706 * an ag is covered in aglevel dmapctl summary tree,
3707 * at agheight level height (from leaf) with agwidth number of nodes
3708 * each, which starts at agstart index node of the smmary tree node
3709 * array;
3710 */
3711 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3712 l2nl =
3713 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3714 bmp->db_agheight = l2nl >> 1;
3715 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3716 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3717 i--) {
3718 bmp->db_agstart += n;
3719 n <<= 2;
3720 }
3721
3722 }
3723
3724
3725 /*
3726 * NAME: dbInitDmap()/ujfs_idmap_page()
3727 *
3728 * FUNCTION: initialize working/persistent bitmap of the dmap page
3729 * for the specified number of blocks:
3730 *
3731 * at entry, the bitmaps had been initialized as free (ZEROS);
3732 * The number of blocks will only account for the actually
3733 * existing blocks. Blocks which don't actually exist in
3734 * the aggregate will be marked as allocated (ONES);
3735 *
3736 * PARAMETERS:
3737 * dp - pointer to page of map
3738 * nblocks - number of blocks this page
3739 *
3740 * RETURNS: NONE
3741 */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3742 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3743 {
3744 int blkno, w, b, r, nw, nb, i;
3745
3746 /* starting block number within the dmap */
3747 blkno = Blkno & (BPERDMAP - 1);
3748
3749 if (blkno == 0) {
3750 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3751 dp->start = cpu_to_le64(Blkno);
3752
3753 if (nblocks == BPERDMAP) {
3754 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3755 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3756 goto initTree;
3757 }
3758 } else {
3759 le32_add_cpu(&dp->nblocks, nblocks);
3760 le32_add_cpu(&dp->nfree, nblocks);
3761 }
3762
3763 /* word number containing start block number */
3764 w = blkno >> L2DBWORD;
3765
3766 /*
3767 * free the bits corresponding to the block range (ZEROS):
3768 * note: not all bits of the first and last words may be contained
3769 * within the block range.
3770 */
3771 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3772 /* number of bits preceding range to be freed in the word */
3773 b = blkno & (DBWORD - 1);
3774 /* number of bits to free in the word */
3775 nb = min(r, DBWORD - b);
3776
3777 /* is partial word to be freed ? */
3778 if (nb < DBWORD) {
3779 /* free (set to 0) from the bitmap word */
3780 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3781 >> b));
3782 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3783 >> b));
3784
3785 /* skip the word freed */
3786 w++;
3787 } else {
3788 /* free (set to 0) contiguous bitmap words */
3789 nw = r >> L2DBWORD;
3790 memset(&dp->wmap[w], 0, nw * 4);
3791 memset(&dp->pmap[w], 0, nw * 4);
3792
3793 /* skip the words freed */
3794 nb = nw << L2DBWORD;
3795 w += nw;
3796 }
3797 }
3798
3799 /*
3800 * mark bits following the range to be freed (non-existing
3801 * blocks) as allocated (ONES)
3802 */
3803
3804 if (blkno == BPERDMAP)
3805 goto initTree;
3806
3807 /* the first word beyond the end of existing blocks */
3808 w = blkno >> L2DBWORD;
3809
3810 /* does nblocks fall on a 32-bit boundary ? */
3811 b = blkno & (DBWORD - 1);
3812 if (b) {
3813 /* mark a partial word allocated */
3814 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3815 w++;
3816 }
3817
3818 /* set the rest of the words in the page to allocated (ONES) */
3819 for (i = w; i < LPERDMAP; i++)
3820 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3821
3822 /*
3823 * init tree
3824 */
3825 initTree:
3826 return (dbInitDmapTree(dp));
3827 }
3828
3829
3830 /*
3831 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3832 *
3833 * FUNCTION: initialize summary tree of the specified dmap:
3834 *
3835 * at entry, bitmap of the dmap has been initialized;
3836 *
3837 * PARAMETERS:
3838 * dp - dmap to complete
3839 * blkno - starting block number for this dmap
3840 * treemax - will be filled in with max free for this dmap
3841 *
3842 * RETURNS: max free string at the root of the tree
3843 */
dbInitDmapTree(struct dmap * dp)3844 static int dbInitDmapTree(struct dmap * dp)
3845 {
3846 struct dmaptree *tp;
3847 s8 *cp;
3848 int i;
3849
3850 /* init fixed info of tree */
3851 tp = &dp->tree;
3852 tp->nleafs = cpu_to_le32(LPERDMAP);
3853 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3854 tp->leafidx = cpu_to_le32(LEAFIND);
3855 tp->height = cpu_to_le32(4);
3856 tp->budmin = BUDMIN;
3857
3858 /* init each leaf from corresponding wmap word:
3859 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3860 * bitmap word are allocated.
3861 */
3862 cp = tp->stree + le32_to_cpu(tp->leafidx);
3863 for (i = 0; i < LPERDMAP; i++)
3864 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3865
3866 /* build the dmap's binary buddy summary tree */
3867 return (dbInitTree(tp));
3868 }
3869
3870
3871 /*
3872 * NAME: dbInitTree()/ujfs_adjtree()
3873 *
3874 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3875 *
3876 * at entry, the leaves of the tree has been initialized
3877 * from corresponding bitmap word or root of summary tree
3878 * of the child control page;
3879 * configure binary buddy system at the leaf level, then
3880 * bubble up the values of the leaf nodes up the tree.
3881 *
3882 * PARAMETERS:
3883 * cp - Pointer to the root of the tree
3884 * l2leaves- Number of leaf nodes as a power of 2
3885 * l2min - Number of blocks that can be covered by a leaf
3886 * as a power of 2
3887 *
3888 * RETURNS: max free string at the root of the tree
3889 */
dbInitTree(struct dmaptree * dtp)3890 static int dbInitTree(struct dmaptree * dtp)
3891 {
3892 int l2max, l2free, bsize, nextb, i;
3893 int child, parent, nparent;
3894 s8 *tp, *cp, *cp1;
3895
3896 tp = dtp->stree;
3897
3898 /* Determine the maximum free string possible for the leaves */
3899 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3900
3901 /*
3902 * configure the leaf levevl into binary buddy system
3903 *
3904 * Try to combine buddies starting with a buddy size of 1
3905 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3906 * can be combined if both buddies have a maximum free of l2min;
3907 * the combination will result in the left-most buddy leaf having
3908 * a maximum free of l2min+1.
3909 * After processing all buddies for a given size, process buddies
3910 * at the next higher buddy size (i.e. current size * 2) and
3911 * the next maximum free (current free + 1).
3912 * This continues until the maximum possible buddy combination
3913 * yields maximum free.
3914 */
3915 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3916 l2free++, bsize = nextb) {
3917 /* get next buddy size == current buddy pair size */
3918 nextb = bsize << 1;
3919
3920 /* scan each adjacent buddy pair at current buddy size */
3921 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3922 i < le32_to_cpu(dtp->nleafs);
3923 i += nextb, cp += nextb) {
3924 /* coalesce if both adjacent buddies are max free */
3925 if (*cp == l2free && *(cp + bsize) == l2free) {
3926 *cp = l2free + 1; /* left take right */
3927 *(cp + bsize) = -1; /* right give left */
3928 }
3929 }
3930 }
3931
3932 /*
3933 * bubble summary information of leaves up the tree.
3934 *
3935 * Starting at the leaf node level, the four nodes described by
3936 * the higher level parent node are compared for a maximum free and
3937 * this maximum becomes the value of the parent node.
3938 * when all lower level nodes are processed in this fashion then
3939 * move up to the next level (parent becomes a lower level node) and
3940 * continue the process for that level.
3941 */
3942 for (child = le32_to_cpu(dtp->leafidx),
3943 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3944 nparent > 0; nparent >>= 2, child = parent) {
3945 /* get index of 1st node of parent level */
3946 parent = (child - 1) >> 2;
3947
3948 /* set the value of the parent node as the maximum
3949 * of the four nodes of the current level.
3950 */
3951 for (i = 0, cp = tp + child, cp1 = tp + parent;
3952 i < nparent; i++, cp += 4, cp1++)
3953 *cp1 = TREEMAX(cp);
3954 }
3955
3956 return (*tp);
3957 }
3958
3959
3960 /*
3961 * dbInitDmapCtl()
3962 *
3963 * function: initialize dmapctl page
3964 */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3965 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3966 { /* start leaf index not covered by range */
3967 s8 *cp;
3968
3969 dcp->nleafs = cpu_to_le32(LPERCTL);
3970 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3971 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3972 dcp->height = cpu_to_le32(5);
3973 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3974
3975 /*
3976 * initialize the leaves of current level that were not covered
3977 * by the specified input block range (i.e. the leaves have no
3978 * low level dmapctl or dmap).
3979 */
3980 cp = &dcp->stree[CTLLEAFIND + i];
3981 for (; i < LPERCTL; i++)
3982 *cp++ = NOFREE;
3983
3984 /* build the dmap's binary buddy summary tree */
3985 return (dbInitTree((struct dmaptree *) dcp));
3986 }
3987
3988
3989 /*
3990 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
3991 *
3992 * FUNCTION: Determine log2(allocation group size) from aggregate size
3993 *
3994 * PARAMETERS:
3995 * nblocks - Number of blocks in aggregate
3996 *
3997 * RETURNS: log2(allocation group size) in aggregate blocks
3998 */
dbGetL2AGSize(s64 nblocks)3999 static int dbGetL2AGSize(s64 nblocks)
4000 {
4001 s64 sz;
4002 s64 m;
4003 int l2sz;
4004
4005 if (nblocks < BPERDMAP * MAXAG)
4006 return (L2BPERDMAP);
4007
4008 /* round up aggregate size to power of 2 */
4009 m = ((u64) 1 << (64 - 1));
4010 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4011 if (m & nblocks)
4012 break;
4013 }
4014
4015 sz = (s64) 1 << l2sz;
4016 if (sz < nblocks)
4017 l2sz += 1;
4018
4019 /* agsize = roundupSize/max_number_of_ag */
4020 return (l2sz - L2MAXAG);
4021 }
4022
4023
4024 /*
4025 * NAME: dbMapFileSizeToMapSize()
4026 *
4027 * FUNCTION: compute number of blocks the block allocation map file
4028 * can cover from the map file size;
4029 *
4030 * RETURNS: Number of blocks which can be covered by this block map file;
4031 */
4032
4033 /*
4034 * maximum number of map pages at each level including control pages
4035 */
4036 #define MAXL0PAGES (1 + LPERCTL)
4037 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4038
4039 /*
4040 * convert number of map pages to the zero origin top dmapctl level
4041 */
4042 #define BMAPPGTOLEV(npages) \
4043 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4044 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4045
dbMapFileSizeToMapSize(struct inode * ipbmap)4046 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4047 {
4048 struct super_block *sb = ipbmap->i_sb;
4049 s64 nblocks;
4050 s64 npages, ndmaps;
4051 int level, i;
4052 int complete, factor;
4053
4054 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4055 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4056 level = BMAPPGTOLEV(npages);
4057
4058 /* At each level, accumulate the number of dmap pages covered by
4059 * the number of full child levels below it;
4060 * repeat for the last incomplete child level.
4061 */
4062 ndmaps = 0;
4063 npages--; /* skip the first global control page */
4064 /* skip higher level control pages above top level covered by map */
4065 npages -= (2 - level);
4066 npages--; /* skip top level's control page */
4067 for (i = level; i >= 0; i--) {
4068 factor =
4069 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4070 complete = (u32) npages / factor;
4071 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4072 ((i == 1) ? LPERCTL : 1));
4073
4074 /* pages in last/incomplete child */
4075 npages = (u32) npages % factor;
4076 /* skip incomplete child's level control page */
4077 npages--;
4078 }
4079
4080 /* convert the number of dmaps into the number of blocks
4081 * which can be covered by the dmaps;
4082 */
4083 nblocks = ndmaps << L2BPERDMAP;
4084
4085 return (nblocks);
4086 }
4087