1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dax.c - Direct Access filesystem code
4 * Copyright (c) 2013-2014 Intel Corporation
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
pe_order(enum page_entry_size pe_size)33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 if (pe_size == PE_SIZE_PTE)
36 return PAGE_SHIFT - PAGE_SHIFT;
37 if (pe_size == PE_SIZE_PMD)
38 return PMD_SHIFT - PAGE_SHIFT;
39 if (pe_size == PE_SIZE_PUD)
40 return PUD_SHIFT - PAGE_SHIFT;
41 return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset. */
49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
init_dax_wait_table(void)57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68 * DAX pagecache entries use XArray value entries so they can't be mistaken
69 * for pages. We use one bit for locking, one bit for the entry size (PMD)
70 * and two more to tell us if the entry is a zero page or an empty entry that
71 * is just used for locking. In total four special bits.
72 *
73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75 * block allocation.
76 */
77 #define DAX_SHIFT (4)
78 #define DAX_LOCKED (1UL << 0)
79 #define DAX_PMD (1UL << 1)
80 #define DAX_ZERO_PAGE (1UL << 2)
81 #define DAX_EMPTY (1UL << 3)
82
dax_to_pfn(void * entry)83 static unsigned long dax_to_pfn(void *entry)
84 {
85 return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
dax_make_entry(pfn_t pfn,unsigned long flags)88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
dax_is_locked(void * entry)93 static bool dax_is_locked(void *entry)
94 {
95 return xa_to_value(entry) & DAX_LOCKED;
96 }
97
dax_entry_order(void * entry)98 static unsigned int dax_entry_order(void *entry)
99 {
100 if (xa_to_value(entry) & DAX_PMD)
101 return PMD_ORDER;
102 return 0;
103 }
104
dax_is_pmd_entry(void * entry)105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 return xa_to_value(entry) & DAX_PMD;
108 }
109
dax_is_pte_entry(void * entry)110 static bool dax_is_pte_entry(void *entry)
111 {
112 return !(xa_to_value(entry) & DAX_PMD);
113 }
114
dax_is_zero_entry(void * entry)115 static int dax_is_zero_entry(void *entry)
116 {
117 return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
dax_is_empty_entry(void * entry)120 static int dax_is_empty_entry(void *entry)
121 {
122 return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126 * true if the entry that was found is of a smaller order than the entry
127 * we were looking for
128 */
dax_is_conflict(void * entry)129 static bool dax_is_conflict(void *entry)
130 {
131 return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135 * DAX page cache entry locking
136 */
137 struct exceptional_entry_key {
138 struct xarray *xa;
139 pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143 wait_queue_entry_t wait;
144 struct exceptional_entry_key key;
145 };
146
147 /**
148 * enum dax_wake_mode: waitqueue wakeup behaviour
149 * @WAKE_ALL: wake all waiters in the waitqueue
150 * @WAKE_NEXT: wake only the first waiter in the waitqueue
151 */
152 enum dax_wake_mode {
153 WAKE_ALL,
154 WAKE_NEXT,
155 };
156
dax_entry_waitqueue(struct xa_state * xas,void * entry,struct exceptional_entry_key * key)157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158 void *entry, struct exceptional_entry_key *key)
159 {
160 unsigned long hash;
161 unsigned long index = xas->xa_index;
162
163 /*
164 * If 'entry' is a PMD, align the 'index' that we use for the wait
165 * queue to the start of that PMD. This ensures that all offsets in
166 * the range covered by the PMD map to the same bit lock.
167 */
168 if (dax_is_pmd_entry(entry))
169 index &= ~PG_PMD_COLOUR;
170 key->xa = xas->xa;
171 key->entry_start = index;
172
173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174 return wait_table + hash;
175 }
176
wake_exceptional_entry_func(wait_queue_entry_t * wait,unsigned int mode,int sync,void * keyp)177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178 unsigned int mode, int sync, void *keyp)
179 {
180 struct exceptional_entry_key *key = keyp;
181 struct wait_exceptional_entry_queue *ewait =
182 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184 if (key->xa != ewait->key.xa ||
185 key->entry_start != ewait->key.entry_start)
186 return 0;
187 return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191 * @entry may no longer be the entry at the index in the mapping.
192 * The important information it's conveying is whether the entry at
193 * this index used to be a PMD entry.
194 */
dax_wake_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196 enum dax_wake_mode mode)
197 {
198 struct exceptional_entry_key key;
199 wait_queue_head_t *wq;
200
201 wq = dax_entry_waitqueue(xas, entry, &key);
202
203 /*
204 * Checking for locked entry and prepare_to_wait_exclusive() happens
205 * under the i_pages lock, ditto for entry handling in our callers.
206 * So at this point all tasks that could have seen our entry locked
207 * must be in the waitqueue and the following check will see them.
208 */
209 if (waitqueue_active(wq))
210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214 * Look up entry in page cache, wait for it to become unlocked if it
215 * is a DAX entry and return it. The caller must subsequently call
216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217 * if it did. The entry returned may have a larger order than @order.
218 * If @order is larger than the order of the entry found in i_pages, this
219 * function returns a dax_is_conflict entry.
220 *
221 * Must be called with the i_pages lock held.
222 */
get_unlocked_entry(struct xa_state * xas,unsigned int order)223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225 void *entry;
226 struct wait_exceptional_entry_queue ewait;
227 wait_queue_head_t *wq;
228
229 init_wait(&ewait.wait);
230 ewait.wait.func = wake_exceptional_entry_func;
231
232 for (;;) {
233 entry = xas_find_conflict(xas);
234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235 return entry;
236 if (dax_entry_order(entry) < order)
237 return XA_RETRY_ENTRY;
238 if (!dax_is_locked(entry))
239 return entry;
240
241 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242 prepare_to_wait_exclusive(wq, &ewait.wait,
243 TASK_UNINTERRUPTIBLE);
244 xas_unlock_irq(xas);
245 xas_reset(xas);
246 schedule();
247 finish_wait(wq, &ewait.wait);
248 xas_lock_irq(xas);
249 }
250 }
251
252 /*
253 * The only thing keeping the address space around is the i_pages lock
254 * (it's cycled in clear_inode() after removing the entries from i_pages)
255 * After we call xas_unlock_irq(), we cannot touch xas->xa.
256 */
wait_entry_unlocked(struct xa_state * xas,void * entry)257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259 struct wait_exceptional_entry_queue ewait;
260 wait_queue_head_t *wq;
261
262 init_wait(&ewait.wait);
263 ewait.wait.func = wake_exceptional_entry_func;
264
265 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266 /*
267 * Unlike get_unlocked_entry() there is no guarantee that this
268 * path ever successfully retrieves an unlocked entry before an
269 * inode dies. Perform a non-exclusive wait in case this path
270 * never successfully performs its own wake up.
271 */
272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273 xas_unlock_irq(xas);
274 schedule();
275 finish_wait(wq, &ewait.wait);
276 }
277
put_unlocked_entry(struct xa_state * xas,void * entry,enum dax_wake_mode mode)278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279 enum dax_wake_mode mode)
280 {
281 if (entry && !dax_is_conflict(entry))
282 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286 * We used the xa_state to get the entry, but then we locked the entry and
287 * dropped the xa_lock, so we know the xa_state is stale and must be reset
288 * before use.
289 */
dax_unlock_entry(struct xa_state * xas,void * entry)290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292 void *old;
293
294 BUG_ON(dax_is_locked(entry));
295 xas_reset(xas);
296 xas_lock_irq(xas);
297 old = xas_store(xas, entry);
298 xas_unlock_irq(xas);
299 BUG_ON(!dax_is_locked(old));
300 dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304 * Return: The entry stored at this location before it was locked.
305 */
dax_lock_entry(struct xa_state * xas,void * entry)306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308 unsigned long v = xa_to_value(entry);
309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
dax_entry_size(void * entry)312 static unsigned long dax_entry_size(void *entry)
313 {
314 if (dax_is_zero_entry(entry))
315 return 0;
316 else if (dax_is_empty_entry(entry))
317 return 0;
318 else if (dax_is_pmd_entry(entry))
319 return PMD_SIZE;
320 else
321 return PAGE_SIZE;
322 }
323
dax_end_pfn(void * entry)324 static unsigned long dax_end_pfn(void *entry)
325 {
326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330 * Iterate through all mapped pfns represented by an entry, i.e. skip
331 * 'empty' and 'zero' entries.
332 */
333 #define for_each_mapped_pfn(entry, pfn) \
334 for (pfn = dax_to_pfn(entry); \
335 pfn < dax_end_pfn(entry); pfn++)
336
337 /*
338 * TODO: for reflink+dax we need a way to associate a single page with
339 * multiple address_space instances at different linear_page_index()
340 * offsets.
341 */
dax_associate_entry(void * entry,struct address_space * mapping,struct vm_area_struct * vma,unsigned long address)342 static void dax_associate_entry(void *entry, struct address_space *mapping,
343 struct vm_area_struct *vma, unsigned long address)
344 {
345 unsigned long size = dax_entry_size(entry), pfn, index;
346 int i = 0;
347
348 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
349 return;
350
351 index = linear_page_index(vma, address & ~(size - 1));
352 for_each_mapped_pfn(entry, pfn) {
353 struct page *page = pfn_to_page(pfn);
354
355 WARN_ON_ONCE(page->mapping);
356 page->mapping = mapping;
357 page->index = index + i++;
358 }
359 }
360
dax_disassociate_entry(void * entry,struct address_space * mapping,bool trunc)361 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
362 bool trunc)
363 {
364 unsigned long pfn;
365
366 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
367 return;
368
369 for_each_mapped_pfn(entry, pfn) {
370 struct page *page = pfn_to_page(pfn);
371
372 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
373 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
374 page->mapping = NULL;
375 page->index = 0;
376 }
377 }
378
dax_busy_page(void * entry)379 static struct page *dax_busy_page(void *entry)
380 {
381 unsigned long pfn;
382
383 for_each_mapped_pfn(entry, pfn) {
384 struct page *page = pfn_to_page(pfn);
385
386 if (page_ref_count(page) > 1)
387 return page;
388 }
389 return NULL;
390 }
391
392 /*
393 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
394 * @page: The page whose entry we want to lock
395 *
396 * Context: Process context.
397 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
398 * not be locked.
399 */
dax_lock_page(struct page * page)400 dax_entry_t dax_lock_page(struct page *page)
401 {
402 XA_STATE(xas, NULL, 0);
403 void *entry;
404
405 /* Ensure page->mapping isn't freed while we look at it */
406 rcu_read_lock();
407 for (;;) {
408 struct address_space *mapping = READ_ONCE(page->mapping);
409
410 entry = NULL;
411 if (!mapping || !dax_mapping(mapping))
412 break;
413
414 /*
415 * In the device-dax case there's no need to lock, a
416 * struct dev_pagemap pin is sufficient to keep the
417 * inode alive, and we assume we have dev_pagemap pin
418 * otherwise we would not have a valid pfn_to_page()
419 * translation.
420 */
421 entry = (void *)~0UL;
422 if (S_ISCHR(mapping->host->i_mode))
423 break;
424
425 xas.xa = &mapping->i_pages;
426 xas_lock_irq(&xas);
427 if (mapping != page->mapping) {
428 xas_unlock_irq(&xas);
429 continue;
430 }
431 xas_set(&xas, page->index);
432 entry = xas_load(&xas);
433 if (dax_is_locked(entry)) {
434 rcu_read_unlock();
435 wait_entry_unlocked(&xas, entry);
436 rcu_read_lock();
437 continue;
438 }
439 dax_lock_entry(&xas, entry);
440 xas_unlock_irq(&xas);
441 break;
442 }
443 rcu_read_unlock();
444 return (dax_entry_t)entry;
445 }
446
dax_unlock_page(struct page * page,dax_entry_t cookie)447 void dax_unlock_page(struct page *page, dax_entry_t cookie)
448 {
449 struct address_space *mapping = page->mapping;
450 XA_STATE(xas, &mapping->i_pages, page->index);
451
452 if (S_ISCHR(mapping->host->i_mode))
453 return;
454
455 dax_unlock_entry(&xas, (void *)cookie);
456 }
457
458 /*
459 * Find page cache entry at given index. If it is a DAX entry, return it
460 * with the entry locked. If the page cache doesn't contain an entry at
461 * that index, add a locked empty entry.
462 *
463 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
464 * either return that locked entry or will return VM_FAULT_FALLBACK.
465 * This will happen if there are any PTE entries within the PMD range
466 * that we are requesting.
467 *
468 * We always favor PTE entries over PMD entries. There isn't a flow where we
469 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD
470 * insertion will fail if it finds any PTE entries already in the tree, and a
471 * PTE insertion will cause an existing PMD entry to be unmapped and
472 * downgraded to PTE entries. This happens for both PMD zero pages as
473 * well as PMD empty entries.
474 *
475 * The exception to this downgrade path is for PMD entries that have
476 * real storage backing them. We will leave these real PMD entries in
477 * the tree, and PTE writes will simply dirty the entire PMD entry.
478 *
479 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
480 * persistent memory the benefit is doubtful. We can add that later if we can
481 * show it helps.
482 *
483 * On error, this function does not return an ERR_PTR. Instead it returns
484 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values
485 * overlap with xarray value entries.
486 */
grab_mapping_entry(struct xa_state * xas,struct address_space * mapping,unsigned int order)487 static void *grab_mapping_entry(struct xa_state *xas,
488 struct address_space *mapping, unsigned int order)
489 {
490 unsigned long index = xas->xa_index;
491 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */
492 void *entry;
493
494 retry:
495 pmd_downgrade = false;
496 xas_lock_irq(xas);
497 entry = get_unlocked_entry(xas, order);
498
499 if (entry) {
500 if (dax_is_conflict(entry))
501 goto fallback;
502 if (!xa_is_value(entry)) {
503 xas_set_err(xas, -EIO);
504 goto out_unlock;
505 }
506
507 if (order == 0) {
508 if (dax_is_pmd_entry(entry) &&
509 (dax_is_zero_entry(entry) ||
510 dax_is_empty_entry(entry))) {
511 pmd_downgrade = true;
512 }
513 }
514 }
515
516 if (pmd_downgrade) {
517 /*
518 * Make sure 'entry' remains valid while we drop
519 * the i_pages lock.
520 */
521 dax_lock_entry(xas, entry);
522
523 /*
524 * Besides huge zero pages the only other thing that gets
525 * downgraded are empty entries which don't need to be
526 * unmapped.
527 */
528 if (dax_is_zero_entry(entry)) {
529 xas_unlock_irq(xas);
530 unmap_mapping_pages(mapping,
531 xas->xa_index & ~PG_PMD_COLOUR,
532 PG_PMD_NR, false);
533 xas_reset(xas);
534 xas_lock_irq(xas);
535 }
536
537 dax_disassociate_entry(entry, mapping, false);
538 xas_store(xas, NULL); /* undo the PMD join */
539 dax_wake_entry(xas, entry, WAKE_ALL);
540 mapping->nrexceptional--;
541 entry = NULL;
542 xas_set(xas, index);
543 }
544
545 if (entry) {
546 dax_lock_entry(xas, entry);
547 } else {
548 unsigned long flags = DAX_EMPTY;
549
550 if (order > 0)
551 flags |= DAX_PMD;
552 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
553 dax_lock_entry(xas, entry);
554 if (xas_error(xas))
555 goto out_unlock;
556 mapping->nrexceptional++;
557 }
558
559 out_unlock:
560 xas_unlock_irq(xas);
561 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
562 goto retry;
563 if (xas->xa_node == XA_ERROR(-ENOMEM))
564 return xa_mk_internal(VM_FAULT_OOM);
565 if (xas_error(xas))
566 return xa_mk_internal(VM_FAULT_SIGBUS);
567 return entry;
568 fallback:
569 xas_unlock_irq(xas);
570 return xa_mk_internal(VM_FAULT_FALLBACK);
571 }
572
573 /**
574 * dax_layout_busy_page_range - find first pinned page in @mapping
575 * @mapping: address space to scan for a page with ref count > 1
576 * @start: Starting offset. Page containing 'start' is included.
577 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
578 * pages from 'start' till the end of file are included.
579 *
580 * DAX requires ZONE_DEVICE mapped pages. These pages are never
581 * 'onlined' to the page allocator so they are considered idle when
582 * page->count == 1. A filesystem uses this interface to determine if
583 * any page in the mapping is busy, i.e. for DMA, or other
584 * get_user_pages() usages.
585 *
586 * It is expected that the filesystem is holding locks to block the
587 * establishment of new mappings in this address_space. I.e. it expects
588 * to be able to run unmap_mapping_range() and subsequently not race
589 * mapping_mapped() becoming true.
590 */
dax_layout_busy_page_range(struct address_space * mapping,loff_t start,loff_t end)591 struct page *dax_layout_busy_page_range(struct address_space *mapping,
592 loff_t start, loff_t end)
593 {
594 void *entry;
595 unsigned int scanned = 0;
596 struct page *page = NULL;
597 pgoff_t start_idx = start >> PAGE_SHIFT;
598 pgoff_t end_idx;
599 XA_STATE(xas, &mapping->i_pages, start_idx);
600
601 /*
602 * In the 'limited' case get_user_pages() for dax is disabled.
603 */
604 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
605 return NULL;
606
607 if (!dax_mapping(mapping) || !mapping_mapped(mapping))
608 return NULL;
609
610 /* If end == LLONG_MAX, all pages from start to till end of file */
611 if (end == LLONG_MAX)
612 end_idx = ULONG_MAX;
613 else
614 end_idx = end >> PAGE_SHIFT;
615 /*
616 * If we race get_user_pages_fast() here either we'll see the
617 * elevated page count in the iteration and wait, or
618 * get_user_pages_fast() will see that the page it took a reference
619 * against is no longer mapped in the page tables and bail to the
620 * get_user_pages() slow path. The slow path is protected by
621 * pte_lock() and pmd_lock(). New references are not taken without
622 * holding those locks, and unmap_mapping_pages() will not zero the
623 * pte or pmd without holding the respective lock, so we are
624 * guaranteed to either see new references or prevent new
625 * references from being established.
626 */
627 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
628
629 xas_lock_irq(&xas);
630 xas_for_each(&xas, entry, end_idx) {
631 if (WARN_ON_ONCE(!xa_is_value(entry)))
632 continue;
633 if (unlikely(dax_is_locked(entry)))
634 entry = get_unlocked_entry(&xas, 0);
635 if (entry)
636 page = dax_busy_page(entry);
637 put_unlocked_entry(&xas, entry, WAKE_NEXT);
638 if (page)
639 break;
640 if (++scanned % XA_CHECK_SCHED)
641 continue;
642
643 xas_pause(&xas);
644 xas_unlock_irq(&xas);
645 cond_resched();
646 xas_lock_irq(&xas);
647 }
648 xas_unlock_irq(&xas);
649 return page;
650 }
651 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
652
dax_layout_busy_page(struct address_space * mapping)653 struct page *dax_layout_busy_page(struct address_space *mapping)
654 {
655 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
656 }
657 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
658
__dax_invalidate_entry(struct address_space * mapping,pgoff_t index,bool trunc)659 static int __dax_invalidate_entry(struct address_space *mapping,
660 pgoff_t index, bool trunc)
661 {
662 XA_STATE(xas, &mapping->i_pages, index);
663 int ret = 0;
664 void *entry;
665
666 xas_lock_irq(&xas);
667 entry = get_unlocked_entry(&xas, 0);
668 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
669 goto out;
670 if (!trunc &&
671 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
672 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
673 goto out;
674 dax_disassociate_entry(entry, mapping, trunc);
675 xas_store(&xas, NULL);
676 mapping->nrexceptional--;
677 ret = 1;
678 out:
679 put_unlocked_entry(&xas, entry, WAKE_ALL);
680 xas_unlock_irq(&xas);
681 return ret;
682 }
683
684 /*
685 * Delete DAX entry at @index from @mapping. Wait for it
686 * to be unlocked before deleting it.
687 */
dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)688 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
689 {
690 int ret = __dax_invalidate_entry(mapping, index, true);
691
692 /*
693 * This gets called from truncate / punch_hole path. As such, the caller
694 * must hold locks protecting against concurrent modifications of the
695 * page cache (usually fs-private i_mmap_sem for writing). Since the
696 * caller has seen a DAX entry for this index, we better find it
697 * at that index as well...
698 */
699 WARN_ON_ONCE(!ret);
700 return ret;
701 }
702
703 /*
704 * Invalidate DAX entry if it is clean.
705 */
dax_invalidate_mapping_entry_sync(struct address_space * mapping,pgoff_t index)706 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
707 pgoff_t index)
708 {
709 return __dax_invalidate_entry(mapping, index, false);
710 }
711
copy_cow_page_dax(struct block_device * bdev,struct dax_device * dax_dev,sector_t sector,struct page * to,unsigned long vaddr)712 static int copy_cow_page_dax(struct block_device *bdev, struct dax_device *dax_dev,
713 sector_t sector, struct page *to, unsigned long vaddr)
714 {
715 void *vto, *kaddr;
716 pgoff_t pgoff;
717 long rc;
718 int id;
719
720 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
721 if (rc)
722 return rc;
723
724 id = dax_read_lock();
725 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(PAGE_SIZE), &kaddr, NULL);
726 if (rc < 0) {
727 dax_read_unlock(id);
728 return rc;
729 }
730 vto = kmap_atomic(to);
731 #ifdef CONFIG_ARM
732 #ifndef copy_user_page
733 #define copy_user_page(to, from, vaddr, pg) copy_page(to, from)
734 #endif
735 #endif
736 copy_user_page(vto, (void __force *)kaddr, vaddr, to);
737 kunmap_atomic(vto);
738 dax_read_unlock(id);
739 return 0;
740 }
741
742 /*
743 * By this point grab_mapping_entry() has ensured that we have a locked entry
744 * of the appropriate size so we don't have to worry about downgrading PMDs to
745 * PTEs. If we happen to be trying to insert a PTE and there is a PMD
746 * already in the tree, we will skip the insertion and just dirty the PMD as
747 * appropriate.
748 */
dax_insert_entry(struct xa_state * xas,struct address_space * mapping,struct vm_fault * vmf,void * entry,pfn_t pfn,unsigned long flags,bool dirty)749 static void *dax_insert_entry(struct xa_state *xas,
750 struct address_space *mapping, struct vm_fault *vmf,
751 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
752 {
753 void *new_entry = dax_make_entry(pfn, flags);
754
755 if (dirty)
756 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
757
758 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
759 unsigned long index = xas->xa_index;
760 /* we are replacing a zero page with block mapping */
761 if (dax_is_pmd_entry(entry))
762 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
763 PG_PMD_NR, false);
764 else /* pte entry */
765 unmap_mapping_pages(mapping, index, 1, false);
766 }
767
768 xas_reset(xas);
769 xas_lock_irq(xas);
770 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
771 void *old;
772
773 dax_disassociate_entry(entry, mapping, false);
774 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
775 /*
776 * Only swap our new entry into the page cache if the current
777 * entry is a zero page or an empty entry. If a normal PTE or
778 * PMD entry is already in the cache, we leave it alone. This
779 * means that if we are trying to insert a PTE and the
780 * existing entry is a PMD, we will just leave the PMD in the
781 * tree and dirty it if necessary.
782 */
783 old = dax_lock_entry(xas, new_entry);
784 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
785 DAX_LOCKED));
786 entry = new_entry;
787 } else {
788 xas_load(xas); /* Walk the xa_state */
789 }
790
791 if (dirty)
792 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
793
794 xas_unlock_irq(xas);
795 return entry;
796 }
797
798 static inline
pgoff_address(pgoff_t pgoff,struct vm_area_struct * vma)799 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
800 {
801 unsigned long address;
802
803 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
804 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
805 return address;
806 }
807
808 /* Walk all mappings of a given index of a file and writeprotect them */
dax_entry_mkclean(struct address_space * mapping,pgoff_t index,unsigned long pfn)809 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
810 unsigned long pfn)
811 {
812 struct vm_area_struct *vma;
813 pte_t pte, *ptep = NULL;
814 pmd_t *pmdp = NULL;
815 spinlock_t *ptl;
816
817 i_mmap_lock_read(mapping);
818 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
819 struct mmu_notifier_range range;
820 unsigned long address;
821
822 cond_resched();
823
824 if (!(vma->vm_flags & VM_SHARED))
825 continue;
826
827 address = pgoff_address(index, vma);
828
829 /*
830 * follow_invalidate_pte() will use the range to call
831 * mmu_notifier_invalidate_range_start() on our behalf before
832 * taking any lock.
833 */
834 if (follow_invalidate_pte(vma->vm_mm, address, &range, &ptep,
835 &pmdp, &ptl))
836 continue;
837
838 /*
839 * No need to call mmu_notifier_invalidate_range() as we are
840 * downgrading page table protection not changing it to point
841 * to a new page.
842 *
843 * See Documentation/vm/mmu_notifier.rst
844 */
845 if (pmdp) {
846 #ifdef CONFIG_FS_DAX_PMD
847 pmd_t pmd;
848
849 if (pfn != pmd_pfn(*pmdp))
850 goto unlock_pmd;
851 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
852 goto unlock_pmd;
853
854 flush_cache_range(vma, address,
855 address + HPAGE_PMD_SIZE);
856 pmd = pmdp_invalidate(vma, address, pmdp);
857 pmd = pmd_wrprotect(pmd);
858 pmd = pmd_mkclean(pmd);
859 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
860 unlock_pmd:
861 #endif
862 spin_unlock(ptl);
863 } else {
864 if (pfn != pte_pfn(*ptep))
865 goto unlock_pte;
866 if (!pte_dirty(*ptep) && !pte_write(*ptep))
867 goto unlock_pte;
868
869 flush_cache_page(vma, address, pfn);
870 pte = ptep_clear_flush(vma, address, ptep);
871 pte = pte_wrprotect(pte);
872 pte = pte_mkclean(pte);
873 set_pte_at(vma->vm_mm, address, ptep, pte);
874 unlock_pte:
875 pte_unmap_unlock(ptep, ptl);
876 }
877
878 mmu_notifier_invalidate_range_end(&range);
879 }
880 i_mmap_unlock_read(mapping);
881 }
882
dax_writeback_one(struct xa_state * xas,struct dax_device * dax_dev,struct address_space * mapping,void * entry)883 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
884 struct address_space *mapping, void *entry)
885 {
886 unsigned long pfn, index, count;
887 long ret = 0;
888
889 /*
890 * A page got tagged dirty in DAX mapping? Something is seriously
891 * wrong.
892 */
893 if (WARN_ON(!xa_is_value(entry)))
894 return -EIO;
895
896 if (unlikely(dax_is_locked(entry))) {
897 void *old_entry = entry;
898
899 entry = get_unlocked_entry(xas, 0);
900
901 /* Entry got punched out / reallocated? */
902 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
903 goto put_unlocked;
904 /*
905 * Entry got reallocated elsewhere? No need to writeback.
906 * We have to compare pfns as we must not bail out due to
907 * difference in lockbit or entry type.
908 */
909 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
910 goto put_unlocked;
911 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
912 dax_is_zero_entry(entry))) {
913 ret = -EIO;
914 goto put_unlocked;
915 }
916
917 /* Another fsync thread may have already done this entry */
918 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
919 goto put_unlocked;
920 }
921
922 /* Lock the entry to serialize with page faults */
923 dax_lock_entry(xas, entry);
924
925 /*
926 * We can clear the tag now but we have to be careful so that concurrent
927 * dax_writeback_one() calls for the same index cannot finish before we
928 * actually flush the caches. This is achieved as the calls will look
929 * at the entry only under the i_pages lock and once they do that
930 * they will see the entry locked and wait for it to unlock.
931 */
932 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
933 xas_unlock_irq(xas);
934
935 /*
936 * If dax_writeback_mapping_range() was given a wbc->range_start
937 * in the middle of a PMD, the 'index' we use needs to be
938 * aligned to the start of the PMD.
939 * This allows us to flush for PMD_SIZE and not have to worry about
940 * partial PMD writebacks.
941 */
942 pfn = dax_to_pfn(entry);
943 count = 1UL << dax_entry_order(entry);
944 index = xas->xa_index & ~(count - 1);
945
946 dax_entry_mkclean(mapping, index, pfn);
947 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
948 /*
949 * After we have flushed the cache, we can clear the dirty tag. There
950 * cannot be new dirty data in the pfn after the flush has completed as
951 * the pfn mappings are writeprotected and fault waits for mapping
952 * entry lock.
953 */
954 xas_reset(xas);
955 xas_lock_irq(xas);
956 xas_store(xas, entry);
957 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
958 dax_wake_entry(xas, entry, WAKE_NEXT);
959
960 trace_dax_writeback_one(mapping->host, index, count);
961 return ret;
962
963 put_unlocked:
964 put_unlocked_entry(xas, entry, WAKE_NEXT);
965 return ret;
966 }
967
968 /*
969 * Flush the mapping to the persistent domain within the byte range of [start,
970 * end]. This is required by data integrity operations to ensure file data is
971 * on persistent storage prior to completion of the operation.
972 */
dax_writeback_mapping_range(struct address_space * mapping,struct dax_device * dax_dev,struct writeback_control * wbc)973 int dax_writeback_mapping_range(struct address_space *mapping,
974 struct dax_device *dax_dev, struct writeback_control *wbc)
975 {
976 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
977 struct inode *inode = mapping->host;
978 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
979 void *entry;
980 int ret = 0;
981 unsigned int scanned = 0;
982
983 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
984 return -EIO;
985
986 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
987 return 0;
988
989 trace_dax_writeback_range(inode, xas.xa_index, end_index);
990
991 tag_pages_for_writeback(mapping, xas.xa_index, end_index);
992
993 xas_lock_irq(&xas);
994 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
995 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
996 if (ret < 0) {
997 mapping_set_error(mapping, ret);
998 break;
999 }
1000 if (++scanned % XA_CHECK_SCHED)
1001 continue;
1002
1003 xas_pause(&xas);
1004 xas_unlock_irq(&xas);
1005 cond_resched();
1006 xas_lock_irq(&xas);
1007 }
1008 xas_unlock_irq(&xas);
1009 trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1010 return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1013
dax_iomap_sector(struct iomap * iomap,loff_t pos)1014 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1015 {
1016 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1017 }
1018
dax_iomap_pfn(struct iomap * iomap,loff_t pos,size_t size,pfn_t * pfnp)1019 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1020 pfn_t *pfnp)
1021 {
1022 const sector_t sector = dax_iomap_sector(iomap, pos);
1023 pgoff_t pgoff;
1024 int id, rc;
1025 long length;
1026
1027 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1028 if (rc)
1029 return rc;
1030 id = dax_read_lock();
1031 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1032 NULL, pfnp);
1033 if (length < 0) {
1034 rc = length;
1035 goto out;
1036 }
1037 rc = -EINVAL;
1038 if (PFN_PHYS(length) < size)
1039 goto out;
1040 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1041 goto out;
1042 /* For larger pages we need devmap */
1043 if (length > 1 && !pfn_t_devmap(*pfnp))
1044 goto out;
1045 rc = 0;
1046 out:
1047 dax_read_unlock(id);
1048 return rc;
1049 }
1050
1051 /*
1052 * The user has performed a load from a hole in the file. Allocating a new
1053 * page in the file would cause excessive storage usage for workloads with
1054 * sparse files. Instead we insert a read-only mapping of the 4k zero page.
1055 * If this page is ever written to we will re-fault and change the mapping to
1056 * point to real DAX storage instead.
1057 */
dax_load_hole(struct xa_state * xas,struct address_space * mapping,void ** entry,struct vm_fault * vmf)1058 static vm_fault_t dax_load_hole(struct xa_state *xas,
1059 struct address_space *mapping, void **entry,
1060 struct vm_fault *vmf)
1061 {
1062 struct inode *inode = mapping->host;
1063 unsigned long vaddr = vmf->address;
1064 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1065 vm_fault_t ret;
1066
1067 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1068 DAX_ZERO_PAGE, false);
1069
1070 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1071 trace_dax_load_hole(inode, vmf, ret);
1072 return ret;
1073 }
1074
dax_iomap_zero(loff_t pos,u64 length,struct iomap * iomap)1075 s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
1076 {
1077 sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
1078 pgoff_t pgoff;
1079 long rc, id;
1080 void *kaddr;
1081 bool page_aligned = false;
1082 unsigned offset = offset_in_page(pos);
1083 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1084
1085 if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
1086 (size == PAGE_SIZE))
1087 page_aligned = true;
1088
1089 rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
1090 if (rc)
1091 return rc;
1092
1093 id = dax_read_lock();
1094
1095 if (page_aligned)
1096 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1097 else
1098 rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
1099 if (rc < 0) {
1100 dax_read_unlock(id);
1101 return rc;
1102 }
1103
1104 if (!page_aligned) {
1105 memset(kaddr + offset, 0, size);
1106 dax_flush(iomap->dax_dev, kaddr + offset, size);
1107 }
1108 dax_read_unlock(id);
1109 return size;
1110 }
1111
1112 static loff_t
dax_iomap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap,struct iomap * srcmap)1113 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1114 struct iomap *iomap, struct iomap *srcmap)
1115 {
1116 struct block_device *bdev = iomap->bdev;
1117 struct dax_device *dax_dev = iomap->dax_dev;
1118 struct iov_iter *iter = data;
1119 loff_t end = pos + length, done = 0;
1120 ssize_t ret = 0;
1121 size_t xfer;
1122 int id;
1123
1124 if (iov_iter_rw(iter) == READ) {
1125 end = min(end, i_size_read(inode));
1126 if (pos >= end)
1127 return 0;
1128
1129 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1130 return iov_iter_zero(min(length, end - pos), iter);
1131 }
1132
1133 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1134 return -EIO;
1135
1136 /*
1137 * Write can allocate block for an area which has a hole page mapped
1138 * into page tables. We have to tear down these mappings so that data
1139 * written by write(2) is visible in mmap.
1140 */
1141 if (iomap->flags & IOMAP_F_NEW) {
1142 invalidate_inode_pages2_range(inode->i_mapping,
1143 pos >> PAGE_SHIFT,
1144 (end - 1) >> PAGE_SHIFT);
1145 }
1146
1147 id = dax_read_lock();
1148 while (pos < end) {
1149 unsigned offset = pos & (PAGE_SIZE - 1);
1150 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1151 const sector_t sector = dax_iomap_sector(iomap, pos);
1152 ssize_t map_len;
1153 pgoff_t pgoff;
1154 void *kaddr;
1155
1156 if (fatal_signal_pending(current)) {
1157 ret = -EINTR;
1158 break;
1159 }
1160
1161 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1162 if (ret)
1163 break;
1164
1165 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1166 &kaddr, NULL);
1167 if (map_len < 0) {
1168 ret = map_len;
1169 break;
1170 }
1171
1172 map_len = PFN_PHYS(map_len);
1173 kaddr += offset;
1174 map_len -= offset;
1175 if (map_len > end - pos)
1176 map_len = end - pos;
1177
1178 /*
1179 * The userspace address for the memory copy has already been
1180 * validated via access_ok() in either vfs_read() or
1181 * vfs_write(), depending on which operation we are doing.
1182 */
1183 if (iov_iter_rw(iter) == WRITE)
1184 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1185 map_len, iter);
1186 else
1187 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1188 map_len, iter);
1189
1190 pos += xfer;
1191 length -= xfer;
1192 done += xfer;
1193
1194 if (xfer == 0)
1195 ret = -EFAULT;
1196 if (xfer < map_len)
1197 break;
1198 }
1199 dax_read_unlock(id);
1200
1201 return done ? done : ret;
1202 }
1203
1204 /**
1205 * dax_iomap_rw - Perform I/O to a DAX file
1206 * @iocb: The control block for this I/O
1207 * @iter: The addresses to do I/O from or to
1208 * @ops: iomap ops passed from the file system
1209 *
1210 * This function performs read and write operations to directly mapped
1211 * persistent memory. The callers needs to take care of read/write exclusion
1212 * and evicting any page cache pages in the region under I/O.
1213 */
1214 ssize_t
dax_iomap_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)1215 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1216 const struct iomap_ops *ops)
1217 {
1218 struct address_space *mapping = iocb->ki_filp->f_mapping;
1219 struct inode *inode = mapping->host;
1220 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1221 unsigned flags = 0;
1222
1223 if (iov_iter_rw(iter) == WRITE) {
1224 lockdep_assert_held_write(&inode->i_rwsem);
1225 flags |= IOMAP_WRITE;
1226 } else {
1227 lockdep_assert_held(&inode->i_rwsem);
1228 }
1229
1230 if (iocb->ki_flags & IOCB_NOWAIT)
1231 flags |= IOMAP_NOWAIT;
1232
1233 while (iov_iter_count(iter)) {
1234 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1235 iter, dax_iomap_actor);
1236 if (ret <= 0)
1237 break;
1238 pos += ret;
1239 done += ret;
1240 }
1241
1242 iocb->ki_pos += done;
1243 return done ? done : ret;
1244 }
1245 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1246
dax_fault_return(int error)1247 static vm_fault_t dax_fault_return(int error)
1248 {
1249 if (error == 0)
1250 return VM_FAULT_NOPAGE;
1251 return vmf_error(error);
1252 }
1253
1254 /*
1255 * MAP_SYNC on a dax mapping guarantees dirty metadata is
1256 * flushed on write-faults (non-cow), but not read-faults.
1257 */
dax_fault_is_synchronous(unsigned long flags,struct vm_area_struct * vma,struct iomap * iomap)1258 static bool dax_fault_is_synchronous(unsigned long flags,
1259 struct vm_area_struct *vma, struct iomap *iomap)
1260 {
1261 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1262 && (iomap->flags & IOMAP_F_DIRTY);
1263 }
1264
dax_iomap_pte_fault(struct vm_fault * vmf,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1265 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1266 int *iomap_errp, const struct iomap_ops *ops)
1267 {
1268 struct vm_area_struct *vma = vmf->vma;
1269 struct address_space *mapping = vma->vm_file->f_mapping;
1270 XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1271 struct inode *inode = mapping->host;
1272 unsigned long vaddr = vmf->address;
1273 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1274 struct iomap iomap = { .type = IOMAP_HOLE };
1275 struct iomap srcmap = { .type = IOMAP_HOLE };
1276 unsigned flags = IOMAP_FAULT;
1277 int error, major = 0;
1278 bool write = vmf->flags & FAULT_FLAG_WRITE;
1279 bool sync;
1280 vm_fault_t ret = 0;
1281 void *entry;
1282 pfn_t pfn;
1283
1284 trace_dax_pte_fault(inode, vmf, ret);
1285 /*
1286 * Check whether offset isn't beyond end of file now. Caller is supposed
1287 * to hold locks serializing us with truncate / punch hole so this is
1288 * a reliable test.
1289 */
1290 if (pos >= i_size_read(inode)) {
1291 ret = VM_FAULT_SIGBUS;
1292 goto out;
1293 }
1294
1295 if (write && !vmf->cow_page)
1296 flags |= IOMAP_WRITE;
1297
1298 entry = grab_mapping_entry(&xas, mapping, 0);
1299 if (xa_is_internal(entry)) {
1300 ret = xa_to_internal(entry);
1301 goto out;
1302 }
1303
1304 /*
1305 * It is possible, particularly with mixed reads & writes to private
1306 * mappings, that we have raced with a PMD fault that overlaps with
1307 * the PTE we need to set up. If so just return and the fault will be
1308 * retried.
1309 */
1310 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1311 ret = VM_FAULT_NOPAGE;
1312 goto unlock_entry;
1313 }
1314
1315 /*
1316 * Note that we don't bother to use iomap_apply here: DAX required
1317 * the file system block size to be equal the page size, which means
1318 * that we never have to deal with more than a single extent here.
1319 */
1320 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1321 if (iomap_errp)
1322 *iomap_errp = error;
1323 if (error) {
1324 ret = dax_fault_return(error);
1325 goto unlock_entry;
1326 }
1327 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1328 error = -EIO; /* fs corruption? */
1329 goto error_finish_iomap;
1330 }
1331
1332 if (vmf->cow_page) {
1333 sector_t sector = dax_iomap_sector(&iomap, pos);
1334
1335 switch (iomap.type) {
1336 case IOMAP_HOLE:
1337 case IOMAP_UNWRITTEN:
1338 clear_user_highpage(vmf->cow_page, vaddr);
1339 break;
1340 case IOMAP_MAPPED:
1341 error = copy_cow_page_dax(iomap.bdev, iomap.dax_dev,
1342 sector, vmf->cow_page, vaddr);
1343 break;
1344 default:
1345 WARN_ON_ONCE(1);
1346 error = -EIO;
1347 break;
1348 }
1349
1350 if (error)
1351 goto error_finish_iomap;
1352
1353 __SetPageUptodate(vmf->cow_page);
1354 ret = finish_fault(vmf);
1355 if (!ret)
1356 ret = VM_FAULT_DONE_COW;
1357 goto finish_iomap;
1358 }
1359
1360 sync = dax_fault_is_synchronous(flags, vma, &iomap);
1361
1362 switch (iomap.type) {
1363 case IOMAP_MAPPED:
1364 if (iomap.flags & IOMAP_F_NEW) {
1365 count_vm_event(PGMAJFAULT);
1366 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1367 major = VM_FAULT_MAJOR;
1368 }
1369 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1370 if (error < 0)
1371 goto error_finish_iomap;
1372
1373 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1374 0, write && !sync);
1375
1376 /*
1377 * If we are doing synchronous page fault and inode needs fsync,
1378 * we can insert PTE into page tables only after that happens.
1379 * Skip insertion for now and return the pfn so that caller can
1380 * insert it after fsync is done.
1381 */
1382 if (sync) {
1383 if (WARN_ON_ONCE(!pfnp)) {
1384 error = -EIO;
1385 goto error_finish_iomap;
1386 }
1387 *pfnp = pfn;
1388 ret = VM_FAULT_NEEDDSYNC | major;
1389 goto finish_iomap;
1390 }
1391 trace_dax_insert_mapping(inode, vmf, entry);
1392 if (write)
1393 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1394 else
1395 ret = vmf_insert_mixed(vma, vaddr, pfn);
1396
1397 goto finish_iomap;
1398 case IOMAP_UNWRITTEN:
1399 case IOMAP_HOLE:
1400 if (!write) {
1401 ret = dax_load_hole(&xas, mapping, &entry, vmf);
1402 goto finish_iomap;
1403 }
1404 fallthrough;
1405 default:
1406 WARN_ON_ONCE(1);
1407 error = -EIO;
1408 break;
1409 }
1410
1411 error_finish_iomap:
1412 ret = dax_fault_return(error);
1413 finish_iomap:
1414 if (ops->iomap_end) {
1415 int copied = PAGE_SIZE;
1416
1417 if (ret & VM_FAULT_ERROR)
1418 copied = 0;
1419 /*
1420 * The fault is done by now and there's no way back (other
1421 * thread may be already happily using PTE we have installed).
1422 * Just ignore error from ->iomap_end since we cannot do much
1423 * with it.
1424 */
1425 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1426 }
1427 unlock_entry:
1428 dax_unlock_entry(&xas, entry);
1429 out:
1430 trace_dax_pte_fault_done(inode, vmf, ret);
1431 return ret | major;
1432 }
1433
1434 #ifdef CONFIG_FS_DAX_PMD
dax_pmd_load_hole(struct xa_state * xas,struct vm_fault * vmf,struct iomap * iomap,void ** entry)1435 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1436 struct iomap *iomap, void **entry)
1437 {
1438 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1439 unsigned long pmd_addr = vmf->address & PMD_MASK;
1440 struct vm_area_struct *vma = vmf->vma;
1441 struct inode *inode = mapping->host;
1442 pgtable_t pgtable = NULL;
1443 struct page *zero_page;
1444 spinlock_t *ptl;
1445 pmd_t pmd_entry;
1446 pfn_t pfn;
1447
1448 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1449
1450 if (unlikely(!zero_page))
1451 goto fallback;
1452
1453 pfn = page_to_pfn_t(zero_page);
1454 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1455 DAX_PMD | DAX_ZERO_PAGE, false);
1456
1457 if (arch_needs_pgtable_deposit()) {
1458 pgtable = pte_alloc_one(vma->vm_mm);
1459 if (!pgtable)
1460 return VM_FAULT_OOM;
1461 }
1462
1463 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1464 if (!pmd_none(*(vmf->pmd))) {
1465 spin_unlock(ptl);
1466 goto fallback;
1467 }
1468
1469 if (pgtable) {
1470 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1471 mm_inc_nr_ptes(vma->vm_mm);
1472 }
1473 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1474 pmd_entry = pmd_mkhuge(pmd_entry);
1475 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1476 spin_unlock(ptl);
1477 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1478 return VM_FAULT_NOPAGE;
1479
1480 fallback:
1481 if (pgtable)
1482 pte_free(vma->vm_mm, pgtable);
1483 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1484 return VM_FAULT_FALLBACK;
1485 }
1486
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1487 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1488 const struct iomap_ops *ops)
1489 {
1490 struct vm_area_struct *vma = vmf->vma;
1491 struct address_space *mapping = vma->vm_file->f_mapping;
1492 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1493 unsigned long pmd_addr = vmf->address & PMD_MASK;
1494 bool write = vmf->flags & FAULT_FLAG_WRITE;
1495 bool sync;
1496 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1497 struct inode *inode = mapping->host;
1498 vm_fault_t result = VM_FAULT_FALLBACK;
1499 struct iomap iomap = { .type = IOMAP_HOLE };
1500 struct iomap srcmap = { .type = IOMAP_HOLE };
1501 pgoff_t max_pgoff;
1502 void *entry;
1503 loff_t pos;
1504 int error;
1505 pfn_t pfn;
1506
1507 /*
1508 * Check whether offset isn't beyond end of file now. Caller is
1509 * supposed to hold locks serializing us with truncate / punch hole so
1510 * this is a reliable test.
1511 */
1512 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1513
1514 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1515
1516 /*
1517 * Make sure that the faulting address's PMD offset (color) matches
1518 * the PMD offset from the start of the file. This is necessary so
1519 * that a PMD range in the page table overlaps exactly with a PMD
1520 * range in the page cache.
1521 */
1522 if ((vmf->pgoff & PG_PMD_COLOUR) !=
1523 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1524 goto fallback;
1525
1526 /* Fall back to PTEs if we're going to COW */
1527 if (write && !(vma->vm_flags & VM_SHARED))
1528 goto fallback;
1529
1530 /* If the PMD would extend outside the VMA */
1531 if (pmd_addr < vma->vm_start)
1532 goto fallback;
1533 if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1534 goto fallback;
1535
1536 if (xas.xa_index >= max_pgoff) {
1537 result = VM_FAULT_SIGBUS;
1538 goto out;
1539 }
1540
1541 /* If the PMD would extend beyond the file size */
1542 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1543 goto fallback;
1544
1545 /*
1546 * grab_mapping_entry() will make sure we get an empty PMD entry,
1547 * a zero PMD entry or a DAX PMD. If it can't (because a PTE
1548 * entry is already in the array, for instance), it will return
1549 * VM_FAULT_FALLBACK.
1550 */
1551 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1552 if (xa_is_internal(entry)) {
1553 result = xa_to_internal(entry);
1554 goto fallback;
1555 }
1556
1557 /*
1558 * It is possible, particularly with mixed reads & writes to private
1559 * mappings, that we have raced with a PTE fault that overlaps with
1560 * the PMD we need to set up. If so just return and the fault will be
1561 * retried.
1562 */
1563 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1564 !pmd_devmap(*vmf->pmd)) {
1565 result = 0;
1566 goto unlock_entry;
1567 }
1568
1569 /*
1570 * Note that we don't use iomap_apply here. We aren't doing I/O, only
1571 * setting up a mapping, so really we're using iomap_begin() as a way
1572 * to look up our filesystem block.
1573 */
1574 pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1575 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1576 &srcmap);
1577 if (error)
1578 goto unlock_entry;
1579
1580 if (iomap.offset + iomap.length < pos + PMD_SIZE)
1581 goto finish_iomap;
1582
1583 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1584
1585 switch (iomap.type) {
1586 case IOMAP_MAPPED:
1587 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1588 if (error < 0)
1589 goto finish_iomap;
1590
1591 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1592 DAX_PMD, write && !sync);
1593
1594 /*
1595 * If we are doing synchronous page fault and inode needs fsync,
1596 * we can insert PMD into page tables only after that happens.
1597 * Skip insertion for now and return the pfn so that caller can
1598 * insert it after fsync is done.
1599 */
1600 if (sync) {
1601 if (WARN_ON_ONCE(!pfnp))
1602 goto finish_iomap;
1603 *pfnp = pfn;
1604 result = VM_FAULT_NEEDDSYNC;
1605 goto finish_iomap;
1606 }
1607
1608 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1609 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1610 break;
1611 case IOMAP_UNWRITTEN:
1612 case IOMAP_HOLE:
1613 if (WARN_ON_ONCE(write))
1614 break;
1615 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1616 break;
1617 default:
1618 WARN_ON_ONCE(1);
1619 break;
1620 }
1621
1622 finish_iomap:
1623 if (ops->iomap_end) {
1624 int copied = PMD_SIZE;
1625
1626 if (result == VM_FAULT_FALLBACK)
1627 copied = 0;
1628 /*
1629 * The fault is done by now and there's no way back (other
1630 * thread may be already happily using PMD we have installed).
1631 * Just ignore error from ->iomap_end since we cannot do much
1632 * with it.
1633 */
1634 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1635 &iomap);
1636 }
1637 unlock_entry:
1638 dax_unlock_entry(&xas, entry);
1639 fallback:
1640 if (result == VM_FAULT_FALLBACK) {
1641 split_huge_pmd(vma, vmf->pmd, vmf->address);
1642 count_vm_event(THP_FAULT_FALLBACK);
1643 }
1644 out:
1645 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1646 return result;
1647 }
1648 #else
dax_iomap_pmd_fault(struct vm_fault * vmf,pfn_t * pfnp,const struct iomap_ops * ops)1649 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1650 const struct iomap_ops *ops)
1651 {
1652 return VM_FAULT_FALLBACK;
1653 }
1654 #endif /* CONFIG_FS_DAX_PMD */
1655
1656 /**
1657 * dax_iomap_fault - handle a page fault on a DAX file
1658 * @vmf: The description of the fault
1659 * @pe_size: Size of the page to fault in
1660 * @pfnp: PFN to insert for synchronous faults if fsync is required
1661 * @iomap_errp: Storage for detailed error code in case of error
1662 * @ops: Iomap ops passed from the file system
1663 *
1664 * When a page fault occurs, filesystems may call this helper in
1665 * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1666 * has done all the necessary locking for page fault to proceed
1667 * successfully.
1668 */
dax_iomap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t * pfnp,int * iomap_errp,const struct iomap_ops * ops)1669 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1670 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1671 {
1672 switch (pe_size) {
1673 case PE_SIZE_PTE:
1674 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1675 case PE_SIZE_PMD:
1676 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1677 default:
1678 return VM_FAULT_FALLBACK;
1679 }
1680 }
1681 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1682
1683 /*
1684 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1685 * @vmf: The description of the fault
1686 * @pfn: PFN to insert
1687 * @order: Order of entry to insert.
1688 *
1689 * This function inserts a writeable PTE or PMD entry into the page tables
1690 * for an mmaped DAX file. It also marks the page cache entry as dirty.
1691 */
1692 static vm_fault_t
dax_insert_pfn_mkwrite(struct vm_fault * vmf,pfn_t pfn,unsigned int order)1693 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1694 {
1695 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1696 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1697 void *entry;
1698 vm_fault_t ret;
1699
1700 xas_lock_irq(&xas);
1701 entry = get_unlocked_entry(&xas, order);
1702 /* Did we race with someone splitting entry or so? */
1703 if (!entry || dax_is_conflict(entry) ||
1704 (order == 0 && !dax_is_pte_entry(entry))) {
1705 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1706 xas_unlock_irq(&xas);
1707 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1708 VM_FAULT_NOPAGE);
1709 return VM_FAULT_NOPAGE;
1710 }
1711 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1712 dax_lock_entry(&xas, entry);
1713 xas_unlock_irq(&xas);
1714 if (order == 0)
1715 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1716 #ifdef CONFIG_FS_DAX_PMD
1717 else if (order == PMD_ORDER)
1718 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1719 #endif
1720 else
1721 ret = VM_FAULT_FALLBACK;
1722 dax_unlock_entry(&xas, entry);
1723 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1724 return ret;
1725 }
1726
1727 /**
1728 * dax_finish_sync_fault - finish synchronous page fault
1729 * @vmf: The description of the fault
1730 * @pe_size: Size of entry to be inserted
1731 * @pfn: PFN to insert
1732 *
1733 * This function ensures that the file range touched by the page fault is
1734 * stored persistently on the media and handles inserting of appropriate page
1735 * table entry.
1736 */
dax_finish_sync_fault(struct vm_fault * vmf,enum page_entry_size pe_size,pfn_t pfn)1737 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1738 enum page_entry_size pe_size, pfn_t pfn)
1739 {
1740 int err;
1741 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1742 unsigned int order = pe_order(pe_size);
1743 size_t len = PAGE_SIZE << order;
1744
1745 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1746 if (err)
1747 return VM_FAULT_SIGBUS;
1748 return dax_insert_pfn_mkwrite(vmf, pfn, order);
1749 }
1750 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1751