1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64 #undef CREATE_TRACE_POINTS
65
66 #include <trace/hooks/cgroup.h>
67
68 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70 /* let's not notify more than 100 times per second */
71 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
72
73 /*
74 * cgroup_mutex is the master lock. Any modification to cgroup or its
75 * hierarchy must be performed while holding it.
76 *
77 * css_set_lock protects task->cgroups pointer, the list of css_set
78 * objects, and the chain of tasks off each css_set.
79 *
80 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
81 * cgroup.h can use them for lockdep annotations.
82 */
83 DEFINE_MUTEX(cgroup_mutex);
84 DEFINE_SPINLOCK(css_set_lock);
85
86 #ifdef CONFIG_PROVE_RCU
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #endif
90
91 DEFINE_SPINLOCK(trace_cgroup_path_lock);
92 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
93 bool cgroup_debug __read_mostly;
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
107 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /* generate an array of cgroup subsystem pointers */
123 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
124 struct cgroup_subsys *cgroup_subsys[] = {
125 #include <linux/cgroup_subsys.h>
126 };
127 #undef SUBSYS
128
129 /* array of cgroup subsystem names */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
131 static const char *cgroup_subsys_name[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135
136 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
137 #define SUBSYS(_x) \
138 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
139 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
140 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
141 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
142 #include <linux/cgroup_subsys.h>
143 #undef SUBSYS
144
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
146 static struct static_key_true *cgroup_subsys_enabled_key[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
152 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
158
159 /* the default hierarchy */
160 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
161 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
162
163 /*
164 * The default hierarchy always exists but is hidden until mounted for the
165 * first time. This is for backward compatibility.
166 */
167 static bool cgrp_dfl_visible;
168
169 /* some controllers are not supported in the default hierarchy */
170 static u16 cgrp_dfl_inhibit_ss_mask;
171
172 /* some controllers are implicitly enabled on the default hierarchy */
173 static u16 cgrp_dfl_implicit_ss_mask;
174
175 /* some controllers can be threaded on the default hierarchy */
176 static u16 cgrp_dfl_threaded_ss_mask;
177
178 /* The list of hierarchy roots */
179 LIST_HEAD(cgroup_roots);
180 static int cgroup_root_count;
181
182 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
183 static DEFINE_IDR(cgroup_hierarchy_idr);
184
185 /*
186 * Assign a monotonically increasing serial number to csses. It guarantees
187 * cgroups with bigger numbers are newer than those with smaller numbers.
188 * Also, as csses are always appended to the parent's ->children list, it
189 * guarantees that sibling csses are always sorted in the ascending serial
190 * number order on the list. Protected by cgroup_mutex.
191 */
192 static u64 css_serial_nr_next = 1;
193
194 /*
195 * These bitmasks identify subsystems with specific features to avoid
196 * having to do iterative checks repeatedly.
197 */
198 static u16 have_fork_callback __read_mostly;
199 static u16 have_exit_callback __read_mostly;
200 static u16 have_release_callback __read_mostly;
201 static u16 have_canfork_callback __read_mostly;
202
203 /* cgroup namespace for init task */
204 struct cgroup_namespace init_cgroup_ns = {
205 .count = REFCOUNT_INIT(2),
206 .user_ns = &init_user_ns,
207 .ns.ops = &cgroupns_operations,
208 .ns.inum = PROC_CGROUP_INIT_INO,
209 .root_cset = &init_css_set,
210 };
211
212 static struct file_system_type cgroup2_fs_type;
213 static struct cftype cgroup_base_files[];
214
215 /* cgroup optional features */
216 enum cgroup_opt_features {
217 #ifdef CONFIG_PSI
218 OPT_FEATURE_PRESSURE,
219 #endif
220 OPT_FEATURE_COUNT
221 };
222
223 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
224 #ifdef CONFIG_PSI
225 "pressure",
226 #endif
227 };
228
229 static u16 cgroup_feature_disable_mask __read_mostly;
230
231 static int cgroup_apply_control(struct cgroup *cgrp);
232 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
233 static void css_task_iter_skip(struct css_task_iter *it,
234 struct task_struct *task);
235 static int cgroup_destroy_locked(struct cgroup *cgrp);
236 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
237 struct cgroup_subsys *ss);
238 static void css_release(struct percpu_ref *ref);
239 static void kill_css(struct cgroup_subsys_state *css);
240 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
241 struct cgroup *cgrp, struct cftype cfts[],
242 bool is_add);
243
244 /**
245 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
246 * @ssid: subsys ID of interest
247 *
248 * cgroup_subsys_enabled() can only be used with literal subsys names which
249 * is fine for individual subsystems but unsuitable for cgroup core. This
250 * is slower static_key_enabled() based test indexed by @ssid.
251 */
cgroup_ssid_enabled(int ssid)252 bool cgroup_ssid_enabled(int ssid)
253 {
254 if (CGROUP_SUBSYS_COUNT == 0)
255 return false;
256
257 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
258 }
259
260 /**
261 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
262 * @cgrp: the cgroup of interest
263 *
264 * The default hierarchy is the v2 interface of cgroup and this function
265 * can be used to test whether a cgroup is on the default hierarchy for
266 * cases where a subsystem should behave differnetly depending on the
267 * interface version.
268 *
269 * List of changed behaviors:
270 *
271 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
272 * and "name" are disallowed.
273 *
274 * - When mounting an existing superblock, mount options should match.
275 *
276 * - Remount is disallowed.
277 *
278 * - rename(2) is disallowed.
279 *
280 * - "tasks" is removed. Everything should be at process granularity. Use
281 * "cgroup.procs" instead.
282 *
283 * - "cgroup.procs" is not sorted. pids will be unique unless they got
284 * recycled inbetween reads.
285 *
286 * - "release_agent" and "notify_on_release" are removed. Replacement
287 * notification mechanism will be implemented.
288 *
289 * - "cgroup.clone_children" is removed.
290 *
291 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
292 * and its descendants contain no task; otherwise, 1. The file also
293 * generates kernfs notification which can be monitored through poll and
294 * [di]notify when the value of the file changes.
295 *
296 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
297 * take masks of ancestors with non-empty cpus/mems, instead of being
298 * moved to an ancestor.
299 *
300 * - cpuset: a task can be moved into an empty cpuset, and again it takes
301 * masks of ancestors.
302 *
303 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
304 * is not created.
305 *
306 * - blkcg: blk-throttle becomes properly hierarchical.
307 *
308 * - debug: disallowed on the default hierarchy.
309 */
cgroup_on_dfl(const struct cgroup * cgrp)310 bool cgroup_on_dfl(const struct cgroup *cgrp)
311 {
312 return cgrp->root == &cgrp_dfl_root;
313 }
314
315 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)316 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
317 gfp_t gfp_mask)
318 {
319 int ret;
320
321 idr_preload(gfp_mask);
322 spin_lock_bh(&cgroup_idr_lock);
323 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
324 spin_unlock_bh(&cgroup_idr_lock);
325 idr_preload_end();
326 return ret;
327 }
328
cgroup_idr_replace(struct idr * idr,void * ptr,int id)329 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
330 {
331 void *ret;
332
333 spin_lock_bh(&cgroup_idr_lock);
334 ret = idr_replace(idr, ptr, id);
335 spin_unlock_bh(&cgroup_idr_lock);
336 return ret;
337 }
338
cgroup_idr_remove(struct idr * idr,int id)339 static void cgroup_idr_remove(struct idr *idr, int id)
340 {
341 spin_lock_bh(&cgroup_idr_lock);
342 idr_remove(idr, id);
343 spin_unlock_bh(&cgroup_idr_lock);
344 }
345
cgroup_has_tasks(struct cgroup * cgrp)346 static bool cgroup_has_tasks(struct cgroup *cgrp)
347 {
348 return cgrp->nr_populated_csets;
349 }
350
cgroup_is_threaded(struct cgroup * cgrp)351 bool cgroup_is_threaded(struct cgroup *cgrp)
352 {
353 return cgrp->dom_cgrp != cgrp;
354 }
355
356 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)357 static bool cgroup_is_mixable(struct cgroup *cgrp)
358 {
359 /*
360 * Root isn't under domain level resource control exempting it from
361 * the no-internal-process constraint, so it can serve as a thread
362 * root and a parent of resource domains at the same time.
363 */
364 return !cgroup_parent(cgrp);
365 }
366
367 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)368 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
369 {
370 /* mixables don't care */
371 if (cgroup_is_mixable(cgrp))
372 return true;
373
374 /* domain roots can't be nested under threaded */
375 if (cgroup_is_threaded(cgrp))
376 return false;
377
378 /* can only have either domain or threaded children */
379 if (cgrp->nr_populated_domain_children)
380 return false;
381
382 /* and no domain controllers can be enabled */
383 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
384 return false;
385
386 return true;
387 }
388
389 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)390 bool cgroup_is_thread_root(struct cgroup *cgrp)
391 {
392 /* thread root should be a domain */
393 if (cgroup_is_threaded(cgrp))
394 return false;
395
396 /* a domain w/ threaded children is a thread root */
397 if (cgrp->nr_threaded_children)
398 return true;
399
400 /*
401 * A domain which has tasks and explicit threaded controllers
402 * enabled is a thread root.
403 */
404 if (cgroup_has_tasks(cgrp) &&
405 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
406 return true;
407
408 return false;
409 }
410
411 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)412 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
413 {
414 /* the cgroup itself can be a thread root */
415 if (cgroup_is_threaded(cgrp))
416 return false;
417
418 /* but the ancestors can't be unless mixable */
419 while ((cgrp = cgroup_parent(cgrp))) {
420 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
421 return false;
422 if (cgroup_is_threaded(cgrp))
423 return false;
424 }
425
426 return true;
427 }
428
429 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)430 static u16 cgroup_control(struct cgroup *cgrp)
431 {
432 struct cgroup *parent = cgroup_parent(cgrp);
433 u16 root_ss_mask = cgrp->root->subsys_mask;
434
435 if (parent) {
436 u16 ss_mask = parent->subtree_control;
437
438 /* threaded cgroups can only have threaded controllers */
439 if (cgroup_is_threaded(cgrp))
440 ss_mask &= cgrp_dfl_threaded_ss_mask;
441 return ss_mask;
442 }
443
444 if (cgroup_on_dfl(cgrp))
445 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
446 cgrp_dfl_implicit_ss_mask);
447 return root_ss_mask;
448 }
449
450 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)451 static u16 cgroup_ss_mask(struct cgroup *cgrp)
452 {
453 struct cgroup *parent = cgroup_parent(cgrp);
454
455 if (parent) {
456 u16 ss_mask = parent->subtree_ss_mask;
457
458 /* threaded cgroups can only have threaded controllers */
459 if (cgroup_is_threaded(cgrp))
460 ss_mask &= cgrp_dfl_threaded_ss_mask;
461 return ss_mask;
462 }
463
464 return cgrp->root->subsys_mask;
465 }
466
467 /**
468 * cgroup_css - obtain a cgroup's css for the specified subsystem
469 * @cgrp: the cgroup of interest
470 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
471 *
472 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
473 * function must be called either under cgroup_mutex or rcu_read_lock() and
474 * the caller is responsible for pinning the returned css if it wants to
475 * keep accessing it outside the said locks. This function may return
476 * %NULL if @cgrp doesn't have @subsys_id enabled.
477 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)478 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
479 struct cgroup_subsys *ss)
480 {
481 if (ss)
482 return rcu_dereference_check(cgrp->subsys[ss->id],
483 lockdep_is_held(&cgroup_mutex));
484 else
485 return &cgrp->self;
486 }
487
488 /**
489 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
490 * @cgrp: the cgroup of interest
491 * @ss: the subsystem of interest
492 *
493 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
494 * or is offline, %NULL is returned.
495 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)496 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
497 struct cgroup_subsys *ss)
498 {
499 struct cgroup_subsys_state *css;
500
501 rcu_read_lock();
502 css = cgroup_css(cgrp, ss);
503 if (css && !css_tryget_online(css))
504 css = NULL;
505 rcu_read_unlock();
506
507 return css;
508 }
509
510 /**
511 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
512 * @cgrp: the cgroup of interest
513 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
514 *
515 * Similar to cgroup_css() but returns the effective css, which is defined
516 * as the matching css of the nearest ancestor including self which has @ss
517 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
518 * function is guaranteed to return non-NULL css.
519 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)520 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
521 struct cgroup_subsys *ss)
522 {
523 lockdep_assert_held(&cgroup_mutex);
524
525 if (!ss)
526 return &cgrp->self;
527
528 /*
529 * This function is used while updating css associations and thus
530 * can't test the csses directly. Test ss_mask.
531 */
532 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
533 cgrp = cgroup_parent(cgrp);
534 if (!cgrp)
535 return NULL;
536 }
537
538 return cgroup_css(cgrp, ss);
539 }
540
541 /**
542 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
543 * @cgrp: the cgroup of interest
544 * @ss: the subsystem of interest
545 *
546 * Find and get the effective css of @cgrp for @ss. The effective css is
547 * defined as the matching css of the nearest ancestor including self which
548 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
549 * the root css is returned, so this function always returns a valid css.
550 *
551 * The returned css is not guaranteed to be online, and therefore it is the
552 * callers responsiblity to tryget a reference for it.
553 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)554 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
555 struct cgroup_subsys *ss)
556 {
557 struct cgroup_subsys_state *css;
558
559 do {
560 css = cgroup_css(cgrp, ss);
561
562 if (css)
563 return css;
564 cgrp = cgroup_parent(cgrp);
565 } while (cgrp);
566
567 return init_css_set.subsys[ss->id];
568 }
569
570 /**
571 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
572 * @cgrp: the cgroup of interest
573 * @ss: the subsystem of interest
574 *
575 * Find and get the effective css of @cgrp for @ss. The effective css is
576 * defined as the matching css of the nearest ancestor including self which
577 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
578 * the root css is returned, so this function always returns a valid css.
579 * The returned css must be put using css_put().
580 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)581 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
582 struct cgroup_subsys *ss)
583 {
584 struct cgroup_subsys_state *css;
585
586 rcu_read_lock();
587
588 do {
589 css = cgroup_css(cgrp, ss);
590
591 if (css && css_tryget_online(css))
592 goto out_unlock;
593 cgrp = cgroup_parent(cgrp);
594 } while (cgrp);
595
596 css = init_css_set.subsys[ss->id];
597 css_get(css);
598 out_unlock:
599 rcu_read_unlock();
600 return css;
601 }
602
cgroup_get_live(struct cgroup * cgrp)603 static void cgroup_get_live(struct cgroup *cgrp)
604 {
605 WARN_ON_ONCE(cgroup_is_dead(cgrp));
606 css_get(&cgrp->self);
607 }
608
609 /**
610 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
611 * is responsible for taking the css_set_lock.
612 * @cgrp: the cgroup in question
613 */
__cgroup_task_count(const struct cgroup * cgrp)614 int __cgroup_task_count(const struct cgroup *cgrp)
615 {
616 int count = 0;
617 struct cgrp_cset_link *link;
618
619 lockdep_assert_held(&css_set_lock);
620
621 list_for_each_entry(link, &cgrp->cset_links, cset_link)
622 count += link->cset->nr_tasks;
623
624 return count;
625 }
626
627 /**
628 * cgroup_task_count - count the number of tasks in a cgroup.
629 * @cgrp: the cgroup in question
630 */
cgroup_task_count(const struct cgroup * cgrp)631 int cgroup_task_count(const struct cgroup *cgrp)
632 {
633 int count;
634
635 spin_lock_irq(&css_set_lock);
636 count = __cgroup_task_count(cgrp);
637 spin_unlock_irq(&css_set_lock);
638
639 return count;
640 }
641
of_css(struct kernfs_open_file * of)642 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
643 {
644 struct cgroup *cgrp = of->kn->parent->priv;
645 struct cftype *cft = of_cft(of);
646
647 /*
648 * This is open and unprotected implementation of cgroup_css().
649 * seq_css() is only called from a kernfs file operation which has
650 * an active reference on the file. Because all the subsystem
651 * files are drained before a css is disassociated with a cgroup,
652 * the matching css from the cgroup's subsys table is guaranteed to
653 * be and stay valid until the enclosing operation is complete.
654 */
655 if (cft->ss)
656 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
657 else
658 return &cgrp->self;
659 }
660 EXPORT_SYMBOL_GPL(of_css);
661
662 /**
663 * for_each_css - iterate all css's of a cgroup
664 * @css: the iteration cursor
665 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
666 * @cgrp: the target cgroup to iterate css's of
667 *
668 * Should be called under cgroup_[tree_]mutex.
669 */
670 #define for_each_css(css, ssid, cgrp) \
671 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
672 if (!((css) = rcu_dereference_check( \
673 (cgrp)->subsys[(ssid)], \
674 lockdep_is_held(&cgroup_mutex)))) { } \
675 else
676
677 /**
678 * for_each_e_css - iterate all effective css's of a cgroup
679 * @css: the iteration cursor
680 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
681 * @cgrp: the target cgroup to iterate css's of
682 *
683 * Should be called under cgroup_[tree_]mutex.
684 */
685 #define for_each_e_css(css, ssid, cgrp) \
686 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
687 if (!((css) = cgroup_e_css_by_mask(cgrp, \
688 cgroup_subsys[(ssid)]))) \
689 ; \
690 else
691
692 /**
693 * do_each_subsys_mask - filter for_each_subsys with a bitmask
694 * @ss: the iteration cursor
695 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
696 * @ss_mask: the bitmask
697 *
698 * The block will only run for cases where the ssid-th bit (1 << ssid) of
699 * @ss_mask is set.
700 */
701 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
702 unsigned long __ss_mask = (ss_mask); \
703 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
704 (ssid) = 0; \
705 break; \
706 } \
707 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
708 (ss) = cgroup_subsys[ssid]; \
709 {
710
711 #define while_each_subsys_mask() \
712 } \
713 } \
714 } while (false)
715
716 /* iterate over child cgrps, lock should be held throughout iteration */
717 #define cgroup_for_each_live_child(child, cgrp) \
718 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
719 if (({ lockdep_assert_held(&cgroup_mutex); \
720 cgroup_is_dead(child); })) \
721 ; \
722 else
723
724 /* walk live descendants in preorder */
725 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
726 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
727 if (({ lockdep_assert_held(&cgroup_mutex); \
728 (dsct) = (d_css)->cgroup; \
729 cgroup_is_dead(dsct); })) \
730 ; \
731 else
732
733 /* walk live descendants in postorder */
734 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
735 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
736 if (({ lockdep_assert_held(&cgroup_mutex); \
737 (dsct) = (d_css)->cgroup; \
738 cgroup_is_dead(dsct); })) \
739 ; \
740 else
741
742 /*
743 * The default css_set - used by init and its children prior to any
744 * hierarchies being mounted. It contains a pointer to the root state
745 * for each subsystem. Also used to anchor the list of css_sets. Not
746 * reference-counted, to improve performance when child cgroups
747 * haven't been created.
748 */
749 struct ext_css_set init_ext_css_set = {
750 .cset = {
751 .refcount = REFCOUNT_INIT(1),
752 .dom_cset = &init_css_set,
753 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
754 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
755 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
756 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
757 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
758 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
759 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
760 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
761 /*
762 * The following field is re-initialized when this cset gets linked
763 * in cgroup_init(). However, let's initialize the field
764 * statically too so that the default cgroup can be accessed safely
765 * early during boot.
766 */
767 .dfl_cgrp = &cgrp_dfl_root.cgrp,
768 },
769 .mg_src_preload_node = LIST_HEAD_INIT(init_ext_css_set.mg_src_preload_node),
770 .mg_dst_preload_node = LIST_HEAD_INIT(init_ext_css_set.mg_dst_preload_node),
771 };
772
773 static int css_set_count = 1; /* 1 for init_css_set */
774
css_set_threaded(struct css_set * cset)775 static bool css_set_threaded(struct css_set *cset)
776 {
777 return cset->dom_cset != cset;
778 }
779
780 /**
781 * css_set_populated - does a css_set contain any tasks?
782 * @cset: target css_set
783 *
784 * css_set_populated() should be the same as !!cset->nr_tasks at steady
785 * state. However, css_set_populated() can be called while a task is being
786 * added to or removed from the linked list before the nr_tasks is
787 * properly updated. Hence, we can't just look at ->nr_tasks here.
788 */
css_set_populated(struct css_set * cset)789 static bool css_set_populated(struct css_set *cset)
790 {
791 lockdep_assert_held(&css_set_lock);
792
793 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
794 }
795
796 /**
797 * cgroup_update_populated - update the populated count of a cgroup
798 * @cgrp: the target cgroup
799 * @populated: inc or dec populated count
800 *
801 * One of the css_sets associated with @cgrp is either getting its first
802 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
803 * count is propagated towards root so that a given cgroup's
804 * nr_populated_children is zero iff none of its descendants contain any
805 * tasks.
806 *
807 * @cgrp's interface file "cgroup.populated" is zero if both
808 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
809 * 1 otherwise. When the sum changes from or to zero, userland is notified
810 * that the content of the interface file has changed. This can be used to
811 * detect when @cgrp and its descendants become populated or empty.
812 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)813 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
814 {
815 struct cgroup *child = NULL;
816 int adj = populated ? 1 : -1;
817
818 lockdep_assert_held(&css_set_lock);
819
820 do {
821 bool was_populated = cgroup_is_populated(cgrp);
822
823 if (!child) {
824 cgrp->nr_populated_csets += adj;
825 } else {
826 if (cgroup_is_threaded(child))
827 cgrp->nr_populated_threaded_children += adj;
828 else
829 cgrp->nr_populated_domain_children += adj;
830 }
831
832 if (was_populated == cgroup_is_populated(cgrp))
833 break;
834
835 cgroup1_check_for_release(cgrp);
836 TRACE_CGROUP_PATH(notify_populated, cgrp,
837 cgroup_is_populated(cgrp));
838 cgroup_file_notify(&cgrp->events_file);
839
840 child = cgrp;
841 cgrp = cgroup_parent(cgrp);
842 } while (cgrp);
843 }
844
845 /**
846 * css_set_update_populated - update populated state of a css_set
847 * @cset: target css_set
848 * @populated: whether @cset is populated or depopulated
849 *
850 * @cset is either getting the first task or losing the last. Update the
851 * populated counters of all associated cgroups accordingly.
852 */
css_set_update_populated(struct css_set * cset,bool populated)853 static void css_set_update_populated(struct css_set *cset, bool populated)
854 {
855 struct cgrp_cset_link *link;
856
857 lockdep_assert_held(&css_set_lock);
858
859 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
860 cgroup_update_populated(link->cgrp, populated);
861 }
862
863 /*
864 * @task is leaving, advance task iterators which are pointing to it so
865 * that they can resume at the next position. Advancing an iterator might
866 * remove it from the list, use safe walk. See css_task_iter_skip() for
867 * details.
868 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)869 static void css_set_skip_task_iters(struct css_set *cset,
870 struct task_struct *task)
871 {
872 struct css_task_iter *it, *pos;
873
874 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
875 css_task_iter_skip(it, task);
876 }
877
878 /**
879 * css_set_move_task - move a task from one css_set to another
880 * @task: task being moved
881 * @from_cset: css_set @task currently belongs to (may be NULL)
882 * @to_cset: new css_set @task is being moved to (may be NULL)
883 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
884 *
885 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
886 * css_set, @from_cset can be NULL. If @task is being disassociated
887 * instead of moved, @to_cset can be NULL.
888 *
889 * This function automatically handles populated counter updates and
890 * css_task_iter adjustments but the caller is responsible for managing
891 * @from_cset and @to_cset's reference counts.
892 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)893 static void css_set_move_task(struct task_struct *task,
894 struct css_set *from_cset, struct css_set *to_cset,
895 bool use_mg_tasks)
896 {
897 lockdep_assert_held(&css_set_lock);
898
899 if (to_cset && !css_set_populated(to_cset))
900 css_set_update_populated(to_cset, true);
901
902 if (from_cset) {
903 WARN_ON_ONCE(list_empty(&task->cg_list));
904
905 css_set_skip_task_iters(from_cset, task);
906 list_del_init(&task->cg_list);
907 if (!css_set_populated(from_cset))
908 css_set_update_populated(from_cset, false);
909 } else {
910 WARN_ON_ONCE(!list_empty(&task->cg_list));
911 }
912
913 if (to_cset) {
914 /*
915 * We are synchronized through cgroup_threadgroup_rwsem
916 * against PF_EXITING setting such that we can't race
917 * against cgroup_exit()/cgroup_free() dropping the css_set.
918 */
919 WARN_ON_ONCE(task->flags & PF_EXITING);
920
921 cgroup_move_task(task, to_cset);
922 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
923 &to_cset->tasks);
924 }
925 }
926
927 /*
928 * hash table for cgroup groups. This improves the performance to find
929 * an existing css_set. This hash doesn't (currently) take into
930 * account cgroups in empty hierarchies.
931 */
932 #define CSS_SET_HASH_BITS 7
933 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
934
css_set_hash(struct cgroup_subsys_state * css[])935 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
936 {
937 unsigned long key = 0UL;
938 struct cgroup_subsys *ss;
939 int i;
940
941 for_each_subsys(ss, i)
942 key += (unsigned long)css[i];
943 key = (key >> 16) ^ key;
944
945 return key;
946 }
947
put_css_set_locked(struct css_set * cset)948 void put_css_set_locked(struct css_set *cset)
949 {
950 struct cgrp_cset_link *link, *tmp_link;
951 struct cgroup_subsys *ss;
952 int ssid;
953
954 lockdep_assert_held(&css_set_lock);
955
956 if (!refcount_dec_and_test(&cset->refcount))
957 return;
958
959 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
960
961 /* This css_set is dead. unlink it and release cgroup and css refs */
962 for_each_subsys(ss, ssid) {
963 list_del(&cset->e_cset_node[ssid]);
964 css_put(cset->subsys[ssid]);
965 }
966 hash_del(&cset->hlist);
967 css_set_count--;
968
969 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
970 list_del(&link->cset_link);
971 list_del(&link->cgrp_link);
972 if (cgroup_parent(link->cgrp))
973 cgroup_put(link->cgrp);
974 kfree(link);
975 }
976
977 if (css_set_threaded(cset)) {
978 list_del(&cset->threaded_csets_node);
979 put_css_set_locked(cset->dom_cset);
980 }
981
982 kfree_rcu(cset, rcu_head);
983 }
984
985 /**
986 * compare_css_sets - helper function for find_existing_css_set().
987 * @cset: candidate css_set being tested
988 * @old_cset: existing css_set for a task
989 * @new_cgrp: cgroup that's being entered by the task
990 * @template: desired set of css pointers in css_set (pre-calculated)
991 *
992 * Returns true if "cset" matches "old_cset" except for the hierarchy
993 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
994 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])995 static bool compare_css_sets(struct css_set *cset,
996 struct css_set *old_cset,
997 struct cgroup *new_cgrp,
998 struct cgroup_subsys_state *template[])
999 {
1000 struct cgroup *new_dfl_cgrp;
1001 struct list_head *l1, *l2;
1002
1003 /*
1004 * On the default hierarchy, there can be csets which are
1005 * associated with the same set of cgroups but different csses.
1006 * Let's first ensure that csses match.
1007 */
1008 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1009 return false;
1010
1011
1012 /* @cset's domain should match the default cgroup's */
1013 if (cgroup_on_dfl(new_cgrp))
1014 new_dfl_cgrp = new_cgrp;
1015 else
1016 new_dfl_cgrp = old_cset->dfl_cgrp;
1017
1018 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1019 return false;
1020
1021 /*
1022 * Compare cgroup pointers in order to distinguish between
1023 * different cgroups in hierarchies. As different cgroups may
1024 * share the same effective css, this comparison is always
1025 * necessary.
1026 */
1027 l1 = &cset->cgrp_links;
1028 l2 = &old_cset->cgrp_links;
1029 while (1) {
1030 struct cgrp_cset_link *link1, *link2;
1031 struct cgroup *cgrp1, *cgrp2;
1032
1033 l1 = l1->next;
1034 l2 = l2->next;
1035 /* See if we reached the end - both lists are equal length. */
1036 if (l1 == &cset->cgrp_links) {
1037 BUG_ON(l2 != &old_cset->cgrp_links);
1038 break;
1039 } else {
1040 BUG_ON(l2 == &old_cset->cgrp_links);
1041 }
1042 /* Locate the cgroups associated with these links. */
1043 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1044 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1045 cgrp1 = link1->cgrp;
1046 cgrp2 = link2->cgrp;
1047 /* Hierarchies should be linked in the same order. */
1048 BUG_ON(cgrp1->root != cgrp2->root);
1049
1050 /*
1051 * If this hierarchy is the hierarchy of the cgroup
1052 * that's changing, then we need to check that this
1053 * css_set points to the new cgroup; if it's any other
1054 * hierarchy, then this css_set should point to the
1055 * same cgroup as the old css_set.
1056 */
1057 if (cgrp1->root == new_cgrp->root) {
1058 if (cgrp1 != new_cgrp)
1059 return false;
1060 } else {
1061 if (cgrp1 != cgrp2)
1062 return false;
1063 }
1064 }
1065 return true;
1066 }
1067
1068 /**
1069 * find_existing_css_set - init css array and find the matching css_set
1070 * @old_cset: the css_set that we're using before the cgroup transition
1071 * @cgrp: the cgroup that we're moving into
1072 * @template: out param for the new set of csses, should be clear on entry
1073 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1074 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1075 struct cgroup *cgrp,
1076 struct cgroup_subsys_state *template[])
1077 {
1078 struct cgroup_root *root = cgrp->root;
1079 struct cgroup_subsys *ss;
1080 struct css_set *cset;
1081 unsigned long key;
1082 int i;
1083
1084 /*
1085 * Build the set of subsystem state objects that we want to see in the
1086 * new css_set. while subsystems can change globally, the entries here
1087 * won't change, so no need for locking.
1088 */
1089 for_each_subsys(ss, i) {
1090 if (root->subsys_mask & (1UL << i)) {
1091 /*
1092 * @ss is in this hierarchy, so we want the
1093 * effective css from @cgrp.
1094 */
1095 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1096 } else {
1097 /*
1098 * @ss is not in this hierarchy, so we don't want
1099 * to change the css.
1100 */
1101 template[i] = old_cset->subsys[i];
1102 }
1103 }
1104
1105 key = css_set_hash(template);
1106 hash_for_each_possible(css_set_table, cset, hlist, key) {
1107 if (!compare_css_sets(cset, old_cset, cgrp, template))
1108 continue;
1109
1110 /* This css_set matches what we need */
1111 return cset;
1112 }
1113
1114 /* No existing cgroup group matched */
1115 return NULL;
1116 }
1117
free_cgrp_cset_links(struct list_head * links_to_free)1118 static void free_cgrp_cset_links(struct list_head *links_to_free)
1119 {
1120 struct cgrp_cset_link *link, *tmp_link;
1121
1122 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1123 list_del(&link->cset_link);
1124 kfree(link);
1125 }
1126 }
1127
1128 /**
1129 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1130 * @count: the number of links to allocate
1131 * @tmp_links: list_head the allocated links are put on
1132 *
1133 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1134 * through ->cset_link. Returns 0 on success or -errno.
1135 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1136 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1137 {
1138 struct cgrp_cset_link *link;
1139 int i;
1140
1141 INIT_LIST_HEAD(tmp_links);
1142
1143 for (i = 0; i < count; i++) {
1144 link = kzalloc(sizeof(*link), GFP_KERNEL);
1145 if (!link) {
1146 free_cgrp_cset_links(tmp_links);
1147 return -ENOMEM;
1148 }
1149 list_add(&link->cset_link, tmp_links);
1150 }
1151 return 0;
1152 }
1153
1154 /**
1155 * link_css_set - a helper function to link a css_set to a cgroup
1156 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1157 * @cset: the css_set to be linked
1158 * @cgrp: the destination cgroup
1159 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1160 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1161 struct cgroup *cgrp)
1162 {
1163 struct cgrp_cset_link *link;
1164
1165 BUG_ON(list_empty(tmp_links));
1166
1167 if (cgroup_on_dfl(cgrp))
1168 cset->dfl_cgrp = cgrp;
1169
1170 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1171 link->cset = cset;
1172 link->cgrp = cgrp;
1173
1174 /*
1175 * Always add links to the tail of the lists so that the lists are
1176 * in choronological order.
1177 */
1178 list_move_tail(&link->cset_link, &cgrp->cset_links);
1179 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1180
1181 if (cgroup_parent(cgrp))
1182 cgroup_get_live(cgrp);
1183 }
1184
1185 /**
1186 * find_css_set - return a new css_set with one cgroup updated
1187 * @old_cset: the baseline css_set
1188 * @cgrp: the cgroup to be updated
1189 *
1190 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1191 * substituted into the appropriate hierarchy.
1192 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1193 static struct css_set *find_css_set(struct css_set *old_cset,
1194 struct cgroup *cgrp)
1195 {
1196 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1197 struct ext_css_set *ext_cset;
1198 struct css_set *cset;
1199 struct list_head tmp_links;
1200 struct cgrp_cset_link *link;
1201 struct cgroup_subsys *ss;
1202 unsigned long key;
1203 int ssid;
1204
1205 lockdep_assert_held(&cgroup_mutex);
1206
1207 /* First see if we already have a cgroup group that matches
1208 * the desired set */
1209 spin_lock_irq(&css_set_lock);
1210 cset = find_existing_css_set(old_cset, cgrp, template);
1211 if (cset)
1212 get_css_set(cset);
1213 spin_unlock_irq(&css_set_lock);
1214
1215 if (cset)
1216 return cset;
1217
1218 ext_cset = kzalloc(sizeof(*ext_cset), GFP_KERNEL);
1219 if (!ext_cset)
1220 return NULL;
1221 cset = &ext_cset->cset;
1222
1223 /* Allocate all the cgrp_cset_link objects that we'll need */
1224 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1225 kfree(cset);
1226 return NULL;
1227 }
1228
1229 refcount_set(&cset->refcount, 1);
1230 cset->dom_cset = cset;
1231 INIT_LIST_HEAD(&cset->tasks);
1232 INIT_LIST_HEAD(&cset->mg_tasks);
1233 INIT_LIST_HEAD(&cset->dying_tasks);
1234 INIT_LIST_HEAD(&cset->task_iters);
1235 INIT_LIST_HEAD(&cset->threaded_csets);
1236 INIT_HLIST_NODE(&cset->hlist);
1237 INIT_LIST_HEAD(&cset->cgrp_links);
1238 INIT_LIST_HEAD(&cset->mg_preload_node);
1239 INIT_LIST_HEAD(&ext_cset->mg_src_preload_node);
1240 INIT_LIST_HEAD(&ext_cset->mg_dst_preload_node);
1241 INIT_LIST_HEAD(&cset->mg_node);
1242
1243 /* Copy the set of subsystem state objects generated in
1244 * find_existing_css_set() */
1245 memcpy(cset->subsys, template, sizeof(cset->subsys));
1246
1247 spin_lock_irq(&css_set_lock);
1248 /* Add reference counts and links from the new css_set. */
1249 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1250 struct cgroup *c = link->cgrp;
1251
1252 if (c->root == cgrp->root)
1253 c = cgrp;
1254 link_css_set(&tmp_links, cset, c);
1255 }
1256
1257 BUG_ON(!list_empty(&tmp_links));
1258
1259 css_set_count++;
1260
1261 /* Add @cset to the hash table */
1262 key = css_set_hash(cset->subsys);
1263 hash_add(css_set_table, &cset->hlist, key);
1264
1265 for_each_subsys(ss, ssid) {
1266 struct cgroup_subsys_state *css = cset->subsys[ssid];
1267
1268 list_add_tail(&cset->e_cset_node[ssid],
1269 &css->cgroup->e_csets[ssid]);
1270 css_get(css);
1271 }
1272
1273 spin_unlock_irq(&css_set_lock);
1274
1275 /*
1276 * If @cset should be threaded, look up the matching dom_cset and
1277 * link them up. We first fully initialize @cset then look for the
1278 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1279 * to stay empty until we return.
1280 */
1281 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1282 struct css_set *dcset;
1283
1284 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1285 if (!dcset) {
1286 put_css_set(cset);
1287 return NULL;
1288 }
1289
1290 spin_lock_irq(&css_set_lock);
1291 cset->dom_cset = dcset;
1292 list_add_tail(&cset->threaded_csets_node,
1293 &dcset->threaded_csets);
1294 spin_unlock_irq(&css_set_lock);
1295 }
1296
1297 return cset;
1298 }
1299
cgroup_root_from_kf(struct kernfs_root * kf_root)1300 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1301 {
1302 struct cgroup *root_cgrp = kf_root->kn->priv;
1303
1304 return root_cgrp->root;
1305 }
1306
cgroup_init_root_id(struct cgroup_root * root)1307 static int cgroup_init_root_id(struct cgroup_root *root)
1308 {
1309 int id;
1310
1311 lockdep_assert_held(&cgroup_mutex);
1312
1313 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1314 if (id < 0)
1315 return id;
1316
1317 root->hierarchy_id = id;
1318 return 0;
1319 }
1320
cgroup_exit_root_id(struct cgroup_root * root)1321 static void cgroup_exit_root_id(struct cgroup_root *root)
1322 {
1323 lockdep_assert_held(&cgroup_mutex);
1324
1325 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1326 }
1327
cgroup_free_root(struct cgroup_root * root)1328 void cgroup_free_root(struct cgroup_root *root)
1329 {
1330 kfree(root);
1331 }
1332
cgroup_destroy_root(struct cgroup_root * root)1333 static void cgroup_destroy_root(struct cgroup_root *root)
1334 {
1335 struct cgroup *cgrp = &root->cgrp;
1336 struct cgrp_cset_link *link, *tmp_link;
1337
1338 trace_cgroup_destroy_root(root);
1339
1340 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1341
1342 BUG_ON(atomic_read(&root->nr_cgrps));
1343 BUG_ON(!list_empty(&cgrp->self.children));
1344
1345 /* Rebind all subsystems back to the default hierarchy */
1346 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1347
1348 /*
1349 * Release all the links from cset_links to this hierarchy's
1350 * root cgroup
1351 */
1352 spin_lock_irq(&css_set_lock);
1353
1354 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1355 list_del(&link->cset_link);
1356 list_del(&link->cgrp_link);
1357 kfree(link);
1358 }
1359
1360 spin_unlock_irq(&css_set_lock);
1361
1362 if (!list_empty(&root->root_list)) {
1363 list_del(&root->root_list);
1364 cgroup_root_count--;
1365 }
1366
1367 cgroup_exit_root_id(root);
1368
1369 mutex_unlock(&cgroup_mutex);
1370
1371 kernfs_destroy_root(root->kf_root);
1372 cgroup_free_root(root);
1373 }
1374
1375 /*
1376 * look up cgroup associated with current task's cgroup namespace on the
1377 * specified hierarchy
1378 */
1379 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1380 current_cgns_cgroup_from_root(struct cgroup_root *root)
1381 {
1382 struct cgroup *res = NULL;
1383 struct css_set *cset;
1384
1385 lockdep_assert_held(&css_set_lock);
1386
1387 rcu_read_lock();
1388
1389 cset = current->nsproxy->cgroup_ns->root_cset;
1390 if (cset == &init_css_set) {
1391 res = &root->cgrp;
1392 } else if (root == &cgrp_dfl_root) {
1393 res = cset->dfl_cgrp;
1394 } else {
1395 struct cgrp_cset_link *link;
1396
1397 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1398 struct cgroup *c = link->cgrp;
1399
1400 if (c->root == root) {
1401 res = c;
1402 break;
1403 }
1404 }
1405 }
1406 rcu_read_unlock();
1407
1408 BUG_ON(!res);
1409 return res;
1410 }
1411
1412 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1413 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1414 struct cgroup_root *root)
1415 {
1416 struct cgroup *res = NULL;
1417
1418 lockdep_assert_held(&cgroup_mutex);
1419 lockdep_assert_held(&css_set_lock);
1420
1421 if (cset == &init_css_set) {
1422 res = &root->cgrp;
1423 } else if (root == &cgrp_dfl_root) {
1424 res = cset->dfl_cgrp;
1425 } else {
1426 struct cgrp_cset_link *link;
1427
1428 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1429 struct cgroup *c = link->cgrp;
1430
1431 if (c->root == root) {
1432 res = c;
1433 break;
1434 }
1435 }
1436 }
1437
1438 BUG_ON(!res);
1439 return res;
1440 }
1441
1442 /*
1443 * Return the cgroup for "task" from the given hierarchy. Must be
1444 * called with cgroup_mutex and css_set_lock held.
1445 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1446 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1447 struct cgroup_root *root)
1448 {
1449 /*
1450 * No need to lock the task - since we hold css_set_lock the
1451 * task can't change groups.
1452 */
1453 return cset_cgroup_from_root(task_css_set(task), root);
1454 }
1455
1456 /*
1457 * A task must hold cgroup_mutex to modify cgroups.
1458 *
1459 * Any task can increment and decrement the count field without lock.
1460 * So in general, code holding cgroup_mutex can't rely on the count
1461 * field not changing. However, if the count goes to zero, then only
1462 * cgroup_attach_task() can increment it again. Because a count of zero
1463 * means that no tasks are currently attached, therefore there is no
1464 * way a task attached to that cgroup can fork (the other way to
1465 * increment the count). So code holding cgroup_mutex can safely
1466 * assume that if the count is zero, it will stay zero. Similarly, if
1467 * a task holds cgroup_mutex on a cgroup with zero count, it
1468 * knows that the cgroup won't be removed, as cgroup_rmdir()
1469 * needs that mutex.
1470 *
1471 * A cgroup can only be deleted if both its 'count' of using tasks
1472 * is zero, and its list of 'children' cgroups is empty. Since all
1473 * tasks in the system use _some_ cgroup, and since there is always at
1474 * least one task in the system (init, pid == 1), therefore, root cgroup
1475 * always has either children cgroups and/or using tasks. So we don't
1476 * need a special hack to ensure that root cgroup cannot be deleted.
1477 *
1478 * P.S. One more locking exception. RCU is used to guard the
1479 * update of a tasks cgroup pointer by cgroup_attach_task()
1480 */
1481
1482 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1483
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1484 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1485 char *buf)
1486 {
1487 struct cgroup_subsys *ss = cft->ss;
1488
1489 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1490 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1491 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1492
1493 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1494 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1495 cft->name);
1496 } else {
1497 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1498 }
1499 return buf;
1500 }
1501
1502 /**
1503 * cgroup_file_mode - deduce file mode of a control file
1504 * @cft: the control file in question
1505 *
1506 * S_IRUGO for read, S_IWUSR for write.
1507 */
cgroup_file_mode(const struct cftype * cft)1508 static umode_t cgroup_file_mode(const struct cftype *cft)
1509 {
1510 umode_t mode = 0;
1511
1512 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1513 mode |= S_IRUGO;
1514
1515 if (cft->write_u64 || cft->write_s64 || cft->write) {
1516 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1517 mode |= S_IWUGO;
1518 else
1519 mode |= S_IWUSR;
1520 }
1521
1522 return mode;
1523 }
1524
1525 /**
1526 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1527 * @subtree_control: the new subtree_control mask to consider
1528 * @this_ss_mask: available subsystems
1529 *
1530 * On the default hierarchy, a subsystem may request other subsystems to be
1531 * enabled together through its ->depends_on mask. In such cases, more
1532 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1533 *
1534 * This function calculates which subsystems need to be enabled if
1535 * @subtree_control is to be applied while restricted to @this_ss_mask.
1536 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1537 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1538 {
1539 u16 cur_ss_mask = subtree_control;
1540 struct cgroup_subsys *ss;
1541 int ssid;
1542
1543 lockdep_assert_held(&cgroup_mutex);
1544
1545 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1546
1547 while (true) {
1548 u16 new_ss_mask = cur_ss_mask;
1549
1550 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1551 new_ss_mask |= ss->depends_on;
1552 } while_each_subsys_mask();
1553
1554 /*
1555 * Mask out subsystems which aren't available. This can
1556 * happen only if some depended-upon subsystems were bound
1557 * to non-default hierarchies.
1558 */
1559 new_ss_mask &= this_ss_mask;
1560
1561 if (new_ss_mask == cur_ss_mask)
1562 break;
1563 cur_ss_mask = new_ss_mask;
1564 }
1565
1566 return cur_ss_mask;
1567 }
1568
1569 /**
1570 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1571 * @kn: the kernfs_node being serviced
1572 *
1573 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1574 * the method finishes if locking succeeded. Note that once this function
1575 * returns the cgroup returned by cgroup_kn_lock_live() may become
1576 * inaccessible any time. If the caller intends to continue to access the
1577 * cgroup, it should pin it before invoking this function.
1578 */
cgroup_kn_unlock(struct kernfs_node * kn)1579 void cgroup_kn_unlock(struct kernfs_node *kn)
1580 {
1581 struct cgroup *cgrp;
1582
1583 if (kernfs_type(kn) == KERNFS_DIR)
1584 cgrp = kn->priv;
1585 else
1586 cgrp = kn->parent->priv;
1587
1588 mutex_unlock(&cgroup_mutex);
1589
1590 kernfs_unbreak_active_protection(kn);
1591 cgroup_put(cgrp);
1592 }
1593
1594 /**
1595 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1596 * @kn: the kernfs_node being serviced
1597 * @drain_offline: perform offline draining on the cgroup
1598 *
1599 * This helper is to be used by a cgroup kernfs method currently servicing
1600 * @kn. It breaks the active protection, performs cgroup locking and
1601 * verifies that the associated cgroup is alive. Returns the cgroup if
1602 * alive; otherwise, %NULL. A successful return should be undone by a
1603 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1604 * cgroup is drained of offlining csses before return.
1605 *
1606 * Any cgroup kernfs method implementation which requires locking the
1607 * associated cgroup should use this helper. It avoids nesting cgroup
1608 * locking under kernfs active protection and allows all kernfs operations
1609 * including self-removal.
1610 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1611 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1612 {
1613 struct cgroup *cgrp;
1614
1615 if (kernfs_type(kn) == KERNFS_DIR)
1616 cgrp = kn->priv;
1617 else
1618 cgrp = kn->parent->priv;
1619
1620 /*
1621 * We're gonna grab cgroup_mutex which nests outside kernfs
1622 * active_ref. cgroup liveliness check alone provides enough
1623 * protection against removal. Ensure @cgrp stays accessible and
1624 * break the active_ref protection.
1625 */
1626 if (!cgroup_tryget(cgrp))
1627 return NULL;
1628 kernfs_break_active_protection(kn);
1629
1630 if (drain_offline)
1631 cgroup_lock_and_drain_offline(cgrp);
1632 else
1633 mutex_lock(&cgroup_mutex);
1634
1635 if (!cgroup_is_dead(cgrp))
1636 return cgrp;
1637
1638 cgroup_kn_unlock(kn);
1639 return NULL;
1640 }
1641
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1642 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1643 {
1644 char name[CGROUP_FILE_NAME_MAX];
1645
1646 lockdep_assert_held(&cgroup_mutex);
1647
1648 if (cft->file_offset) {
1649 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1650 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1651
1652 spin_lock_irq(&cgroup_file_kn_lock);
1653 cfile->kn = NULL;
1654 spin_unlock_irq(&cgroup_file_kn_lock);
1655
1656 del_timer_sync(&cfile->notify_timer);
1657 }
1658
1659 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1660 }
1661
1662 /**
1663 * css_clear_dir - remove subsys files in a cgroup directory
1664 * @css: taget css
1665 */
css_clear_dir(struct cgroup_subsys_state * css)1666 static void css_clear_dir(struct cgroup_subsys_state *css)
1667 {
1668 struct cgroup *cgrp = css->cgroup;
1669 struct cftype *cfts;
1670
1671 if (!(css->flags & CSS_VISIBLE))
1672 return;
1673
1674 css->flags &= ~CSS_VISIBLE;
1675
1676 if (!css->ss) {
1677 if (cgroup_on_dfl(cgrp))
1678 cfts = cgroup_base_files;
1679 else
1680 cfts = cgroup1_base_files;
1681
1682 cgroup_addrm_files(css, cgrp, cfts, false);
1683 } else {
1684 list_for_each_entry(cfts, &css->ss->cfts, node)
1685 cgroup_addrm_files(css, cgrp, cfts, false);
1686 }
1687 }
1688
1689 /**
1690 * css_populate_dir - create subsys files in a cgroup directory
1691 * @css: target css
1692 *
1693 * On failure, no file is added.
1694 */
css_populate_dir(struct cgroup_subsys_state * css)1695 static int css_populate_dir(struct cgroup_subsys_state *css)
1696 {
1697 struct cgroup *cgrp = css->cgroup;
1698 struct cftype *cfts, *failed_cfts;
1699 int ret;
1700
1701 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1702 return 0;
1703
1704 if (!css->ss) {
1705 if (cgroup_on_dfl(cgrp))
1706 cfts = cgroup_base_files;
1707 else
1708 cfts = cgroup1_base_files;
1709
1710 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1711 if (ret < 0)
1712 return ret;
1713 } else {
1714 list_for_each_entry(cfts, &css->ss->cfts, node) {
1715 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1716 if (ret < 0) {
1717 failed_cfts = cfts;
1718 goto err;
1719 }
1720 }
1721 }
1722
1723 css->flags |= CSS_VISIBLE;
1724
1725 return 0;
1726 err:
1727 list_for_each_entry(cfts, &css->ss->cfts, node) {
1728 if (cfts == failed_cfts)
1729 break;
1730 cgroup_addrm_files(css, cgrp, cfts, false);
1731 }
1732 return ret;
1733 }
1734
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1735 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1736 {
1737 struct cgroup *dcgrp = &dst_root->cgrp;
1738 struct cgroup_subsys *ss;
1739 int ssid, i, ret;
1740 u16 dfl_disable_ss_mask = 0;
1741
1742 lockdep_assert_held(&cgroup_mutex);
1743
1744 do_each_subsys_mask(ss, ssid, ss_mask) {
1745 /*
1746 * If @ss has non-root csses attached to it, can't move.
1747 * If @ss is an implicit controller, it is exempt from this
1748 * rule and can be stolen.
1749 */
1750 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1751 !ss->implicit_on_dfl)
1752 return -EBUSY;
1753
1754 /* can't move between two non-dummy roots either */
1755 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1756 return -EBUSY;
1757
1758 /*
1759 * Collect ssid's that need to be disabled from default
1760 * hierarchy.
1761 */
1762 if (ss->root == &cgrp_dfl_root)
1763 dfl_disable_ss_mask |= 1 << ssid;
1764
1765 } while_each_subsys_mask();
1766
1767 if (dfl_disable_ss_mask) {
1768 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1769
1770 /*
1771 * Controllers from default hierarchy that need to be rebound
1772 * are all disabled together in one go.
1773 */
1774 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1775 WARN_ON(cgroup_apply_control(scgrp));
1776 cgroup_finalize_control(scgrp, 0);
1777 }
1778
1779 do_each_subsys_mask(ss, ssid, ss_mask) {
1780 struct cgroup_root *src_root = ss->root;
1781 struct cgroup *scgrp = &src_root->cgrp;
1782 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1783 struct css_set *cset;
1784
1785 WARN_ON(!css || cgroup_css(dcgrp, ss));
1786
1787 if (src_root != &cgrp_dfl_root) {
1788 /* disable from the source */
1789 src_root->subsys_mask &= ~(1 << ssid);
1790 WARN_ON(cgroup_apply_control(scgrp));
1791 cgroup_finalize_control(scgrp, 0);
1792 }
1793
1794 /* rebind */
1795 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1796 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1797 ss->root = dst_root;
1798 css->cgroup = dcgrp;
1799
1800 spin_lock_irq(&css_set_lock);
1801 hash_for_each(css_set_table, i, cset, hlist)
1802 list_move_tail(&cset->e_cset_node[ss->id],
1803 &dcgrp->e_csets[ss->id]);
1804 spin_unlock_irq(&css_set_lock);
1805
1806 /* default hierarchy doesn't enable controllers by default */
1807 dst_root->subsys_mask |= 1 << ssid;
1808 if (dst_root == &cgrp_dfl_root) {
1809 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1810 } else {
1811 dcgrp->subtree_control |= 1 << ssid;
1812 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1813 }
1814
1815 ret = cgroup_apply_control(dcgrp);
1816 if (ret)
1817 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1818 ss->name, ret);
1819
1820 if (ss->bind)
1821 ss->bind(css);
1822 } while_each_subsys_mask();
1823
1824 kernfs_activate(dcgrp->kn);
1825 return 0;
1826 }
1827
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1828 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1829 struct kernfs_root *kf_root)
1830 {
1831 int len = 0;
1832 char *buf = NULL;
1833 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1834 struct cgroup *ns_cgroup;
1835
1836 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1837 if (!buf)
1838 return -ENOMEM;
1839
1840 spin_lock_irq(&css_set_lock);
1841 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1842 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1843 spin_unlock_irq(&css_set_lock);
1844
1845 if (len >= PATH_MAX)
1846 len = -ERANGE;
1847 else if (len > 0) {
1848 seq_escape(sf, buf, " \t\n\\");
1849 len = 0;
1850 }
1851 kfree(buf);
1852 return len;
1853 }
1854
1855 enum cgroup2_param {
1856 Opt_nsdelegate,
1857 Opt_memory_localevents,
1858 Opt_memory_recursiveprot,
1859 nr__cgroup2_params
1860 };
1861
1862 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1863 fsparam_flag("nsdelegate", Opt_nsdelegate),
1864 fsparam_flag("memory_localevents", Opt_memory_localevents),
1865 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1866 {}
1867 };
1868
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1869 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1870 {
1871 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1872 struct fs_parse_result result;
1873 int opt;
1874
1875 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1876 if (opt < 0)
1877 return opt;
1878
1879 switch (opt) {
1880 case Opt_nsdelegate:
1881 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1882 return 0;
1883 case Opt_memory_localevents:
1884 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1885 return 0;
1886 case Opt_memory_recursiveprot:
1887 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1888 return 0;
1889 }
1890 return -EINVAL;
1891 }
1892
apply_cgroup_root_flags(unsigned int root_flags)1893 static void apply_cgroup_root_flags(unsigned int root_flags)
1894 {
1895 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1896 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1897 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1898 else
1899 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1900
1901 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1902 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1903 else
1904 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1905
1906 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1907 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1908 else
1909 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1910 }
1911 }
1912
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1913 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1914 {
1915 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1916 seq_puts(seq, ",nsdelegate");
1917 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1918 seq_puts(seq, ",memory_localevents");
1919 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1920 seq_puts(seq, ",memory_recursiveprot");
1921 return 0;
1922 }
1923
cgroup_reconfigure(struct fs_context * fc)1924 static int cgroup_reconfigure(struct fs_context *fc)
1925 {
1926 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1927
1928 apply_cgroup_root_flags(ctx->flags);
1929 return 0;
1930 }
1931
init_cgroup_housekeeping(struct cgroup * cgrp)1932 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1933 {
1934 struct cgroup_subsys *ss;
1935 int ssid;
1936
1937 INIT_LIST_HEAD(&cgrp->self.sibling);
1938 INIT_LIST_HEAD(&cgrp->self.children);
1939 INIT_LIST_HEAD(&cgrp->cset_links);
1940 INIT_LIST_HEAD(&cgrp->pidlists);
1941 mutex_init(&cgrp->pidlist_mutex);
1942 cgrp->self.cgroup = cgrp;
1943 cgrp->self.flags |= CSS_ONLINE;
1944 cgrp->dom_cgrp = cgrp;
1945 cgrp->max_descendants = INT_MAX;
1946 cgrp->max_depth = INT_MAX;
1947 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1948 prev_cputime_init(&cgrp->prev_cputime);
1949
1950 for_each_subsys(ss, ssid)
1951 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1952
1953 init_waitqueue_head(&cgrp->offline_waitq);
1954 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1955 }
1956
init_cgroup_root(struct cgroup_fs_context * ctx)1957 void init_cgroup_root(struct cgroup_fs_context *ctx)
1958 {
1959 struct cgroup_root *root = ctx->root;
1960 struct cgroup *cgrp = &root->cgrp;
1961
1962 INIT_LIST_HEAD(&root->root_list);
1963 atomic_set(&root->nr_cgrps, 1);
1964 cgrp->root = root;
1965 init_cgroup_housekeeping(cgrp);
1966
1967 root->flags = ctx->flags;
1968 if (ctx->release_agent)
1969 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1970 if (ctx->name)
1971 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1972 if (ctx->cpuset_clone_children)
1973 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1974 }
1975
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1976 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1977 {
1978 LIST_HEAD(tmp_links);
1979 struct cgroup *root_cgrp = &root->cgrp;
1980 struct kernfs_syscall_ops *kf_sops;
1981 struct css_set *cset;
1982 int i, ret;
1983
1984 lockdep_assert_held(&cgroup_mutex);
1985
1986 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1987 0, GFP_KERNEL);
1988 if (ret)
1989 goto out;
1990
1991 /*
1992 * We're accessing css_set_count without locking css_set_lock here,
1993 * but that's OK - it can only be increased by someone holding
1994 * cgroup_lock, and that's us. Later rebinding may disable
1995 * controllers on the default hierarchy and thus create new csets,
1996 * which can't be more than the existing ones. Allocate 2x.
1997 */
1998 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1999 if (ret)
2000 goto cancel_ref;
2001
2002 ret = cgroup_init_root_id(root);
2003 if (ret)
2004 goto cancel_ref;
2005
2006 kf_sops = root == &cgrp_dfl_root ?
2007 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2008
2009 root->kf_root = kernfs_create_root(kf_sops,
2010 KERNFS_ROOT_CREATE_DEACTIVATED |
2011 KERNFS_ROOT_SUPPORT_EXPORTOP |
2012 KERNFS_ROOT_SUPPORT_USER_XATTR,
2013 root_cgrp);
2014 if (IS_ERR(root->kf_root)) {
2015 ret = PTR_ERR(root->kf_root);
2016 goto exit_root_id;
2017 }
2018 root_cgrp->kn = root->kf_root->kn;
2019 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2020 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2021
2022 ret = css_populate_dir(&root_cgrp->self);
2023 if (ret)
2024 goto destroy_root;
2025
2026 ret = rebind_subsystems(root, ss_mask);
2027 if (ret)
2028 goto destroy_root;
2029
2030 ret = cgroup_bpf_inherit(root_cgrp);
2031 WARN_ON_ONCE(ret);
2032
2033 trace_cgroup_setup_root(root);
2034
2035 /*
2036 * There must be no failure case after here, since rebinding takes
2037 * care of subsystems' refcounts, which are explicitly dropped in
2038 * the failure exit path.
2039 */
2040 list_add(&root->root_list, &cgroup_roots);
2041 cgroup_root_count++;
2042
2043 /*
2044 * Link the root cgroup in this hierarchy into all the css_set
2045 * objects.
2046 */
2047 spin_lock_irq(&css_set_lock);
2048 hash_for_each(css_set_table, i, cset, hlist) {
2049 link_css_set(&tmp_links, cset, root_cgrp);
2050 if (css_set_populated(cset))
2051 cgroup_update_populated(root_cgrp, true);
2052 }
2053 spin_unlock_irq(&css_set_lock);
2054
2055 BUG_ON(!list_empty(&root_cgrp->self.children));
2056 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2057
2058 ret = 0;
2059 goto out;
2060
2061 destroy_root:
2062 kernfs_destroy_root(root->kf_root);
2063 root->kf_root = NULL;
2064 exit_root_id:
2065 cgroup_exit_root_id(root);
2066 cancel_ref:
2067 percpu_ref_exit(&root_cgrp->self.refcnt);
2068 out:
2069 free_cgrp_cset_links(&tmp_links);
2070 return ret;
2071 }
2072
cgroup_do_get_tree(struct fs_context * fc)2073 int cgroup_do_get_tree(struct fs_context *fc)
2074 {
2075 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2076 int ret;
2077
2078 ctx->kfc.root = ctx->root->kf_root;
2079 if (fc->fs_type == &cgroup2_fs_type)
2080 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2081 else
2082 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2083 ret = kernfs_get_tree(fc);
2084
2085 /*
2086 * In non-init cgroup namespace, instead of root cgroup's dentry,
2087 * we return the dentry corresponding to the cgroupns->root_cgrp.
2088 */
2089 if (!ret && ctx->ns != &init_cgroup_ns) {
2090 struct dentry *nsdentry;
2091 struct super_block *sb = fc->root->d_sb;
2092 struct cgroup *cgrp;
2093
2094 mutex_lock(&cgroup_mutex);
2095 spin_lock_irq(&css_set_lock);
2096
2097 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2098
2099 spin_unlock_irq(&css_set_lock);
2100 mutex_unlock(&cgroup_mutex);
2101
2102 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2103 dput(fc->root);
2104 if (IS_ERR(nsdentry)) {
2105 deactivate_locked_super(sb);
2106 ret = PTR_ERR(nsdentry);
2107 nsdentry = NULL;
2108 }
2109 fc->root = nsdentry;
2110 }
2111
2112 if (!ctx->kfc.new_sb_created)
2113 cgroup_put(&ctx->root->cgrp);
2114
2115 return ret;
2116 }
2117
2118 /*
2119 * Destroy a cgroup filesystem context.
2120 */
cgroup_fs_context_free(struct fs_context * fc)2121 static void cgroup_fs_context_free(struct fs_context *fc)
2122 {
2123 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2124
2125 kfree(ctx->name);
2126 kfree(ctx->release_agent);
2127 put_cgroup_ns(ctx->ns);
2128 kernfs_free_fs_context(fc);
2129 kfree(ctx);
2130 }
2131
cgroup_get_tree(struct fs_context * fc)2132 static int cgroup_get_tree(struct fs_context *fc)
2133 {
2134 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2135 int ret;
2136
2137 cgrp_dfl_visible = true;
2138 cgroup_get_live(&cgrp_dfl_root.cgrp);
2139 ctx->root = &cgrp_dfl_root;
2140
2141 ret = cgroup_do_get_tree(fc);
2142 if (!ret)
2143 apply_cgroup_root_flags(ctx->flags);
2144 return ret;
2145 }
2146
2147 static const struct fs_context_operations cgroup_fs_context_ops = {
2148 .free = cgroup_fs_context_free,
2149 .parse_param = cgroup2_parse_param,
2150 .get_tree = cgroup_get_tree,
2151 .reconfigure = cgroup_reconfigure,
2152 };
2153
2154 static const struct fs_context_operations cgroup1_fs_context_ops = {
2155 .free = cgroup_fs_context_free,
2156 .parse_param = cgroup1_parse_param,
2157 .get_tree = cgroup1_get_tree,
2158 .reconfigure = cgroup1_reconfigure,
2159 };
2160
2161 /*
2162 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2163 * we select the namespace we're going to use.
2164 */
cgroup_init_fs_context(struct fs_context * fc)2165 static int cgroup_init_fs_context(struct fs_context *fc)
2166 {
2167 struct cgroup_fs_context *ctx;
2168
2169 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2170 if (!ctx)
2171 return -ENOMEM;
2172
2173 ctx->ns = current->nsproxy->cgroup_ns;
2174 get_cgroup_ns(ctx->ns);
2175 fc->fs_private = &ctx->kfc;
2176 if (fc->fs_type == &cgroup2_fs_type)
2177 fc->ops = &cgroup_fs_context_ops;
2178 else
2179 fc->ops = &cgroup1_fs_context_ops;
2180 put_user_ns(fc->user_ns);
2181 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2182 fc->global = true;
2183 return 0;
2184 }
2185
cgroup_kill_sb(struct super_block * sb)2186 static void cgroup_kill_sb(struct super_block *sb)
2187 {
2188 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2189 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2190
2191 /*
2192 * If @root doesn't have any children, start killing it.
2193 * This prevents new mounts by disabling percpu_ref_tryget_live().
2194 * cgroup_mount() may wait for @root's release.
2195 *
2196 * And don't kill the default root.
2197 */
2198 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2199 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2200 cgroup_bpf_offline(&root->cgrp);
2201 percpu_ref_kill(&root->cgrp.self.refcnt);
2202 }
2203 cgroup_put(&root->cgrp);
2204 kernfs_kill_sb(sb);
2205 }
2206
2207 struct file_system_type cgroup_fs_type = {
2208 .name = "cgroup",
2209 .init_fs_context = cgroup_init_fs_context,
2210 .parameters = cgroup1_fs_parameters,
2211 .kill_sb = cgroup_kill_sb,
2212 .fs_flags = FS_USERNS_MOUNT,
2213 };
2214
2215 static struct file_system_type cgroup2_fs_type = {
2216 .name = "cgroup2",
2217 .init_fs_context = cgroup_init_fs_context,
2218 .parameters = cgroup2_fs_parameters,
2219 .kill_sb = cgroup_kill_sb,
2220 .fs_flags = FS_USERNS_MOUNT,
2221 };
2222
2223 #ifdef CONFIG_CPUSETS
2224 static const struct fs_context_operations cpuset_fs_context_ops = {
2225 .get_tree = cgroup1_get_tree,
2226 .free = cgroup_fs_context_free,
2227 };
2228
2229 /*
2230 * This is ugly, but preserves the userspace API for existing cpuset
2231 * users. If someone tries to mount the "cpuset" filesystem, we
2232 * silently switch it to mount "cgroup" instead
2233 */
cpuset_init_fs_context(struct fs_context * fc)2234 static int cpuset_init_fs_context(struct fs_context *fc)
2235 {
2236 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2237 struct cgroup_fs_context *ctx;
2238 int err;
2239
2240 err = cgroup_init_fs_context(fc);
2241 if (err) {
2242 kfree(agent);
2243 return err;
2244 }
2245
2246 fc->ops = &cpuset_fs_context_ops;
2247
2248 ctx = cgroup_fc2context(fc);
2249 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2250 ctx->flags |= CGRP_ROOT_NOPREFIX;
2251 ctx->release_agent = agent;
2252
2253 get_filesystem(&cgroup_fs_type);
2254 put_filesystem(fc->fs_type);
2255 fc->fs_type = &cgroup_fs_type;
2256
2257 return 0;
2258 }
2259
2260 static struct file_system_type cpuset_fs_type = {
2261 .name = "cpuset",
2262 .init_fs_context = cpuset_init_fs_context,
2263 .fs_flags = FS_USERNS_MOUNT,
2264 };
2265 #endif
2266
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2267 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2268 struct cgroup_namespace *ns)
2269 {
2270 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2271
2272 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2273 }
2274
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2275 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2276 struct cgroup_namespace *ns)
2277 {
2278 int ret;
2279
2280 mutex_lock(&cgroup_mutex);
2281 spin_lock_irq(&css_set_lock);
2282
2283 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2284
2285 spin_unlock_irq(&css_set_lock);
2286 mutex_unlock(&cgroup_mutex);
2287
2288 return ret;
2289 }
2290 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2291
2292 /**
2293 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2294 * @task: target task
2295 * @buf: the buffer to write the path into
2296 * @buflen: the length of the buffer
2297 *
2298 * Determine @task's cgroup on the first (the one with the lowest non-zero
2299 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2300 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2301 * cgroup controller callbacks.
2302 *
2303 * Return value is the same as kernfs_path().
2304 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2305 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2306 {
2307 struct cgroup_root *root;
2308 struct cgroup *cgrp;
2309 int hierarchy_id = 1;
2310 int ret;
2311
2312 mutex_lock(&cgroup_mutex);
2313 spin_lock_irq(&css_set_lock);
2314
2315 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2316
2317 if (root) {
2318 cgrp = task_cgroup_from_root(task, root);
2319 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2320 } else {
2321 /* if no hierarchy exists, everyone is in "/" */
2322 ret = strlcpy(buf, "/", buflen);
2323 }
2324
2325 spin_unlock_irq(&css_set_lock);
2326 mutex_unlock(&cgroup_mutex);
2327 return ret;
2328 }
2329 EXPORT_SYMBOL_GPL(task_cgroup_path);
2330
2331 /**
2332 * cgroup_attach_lock - Lock for ->attach()
2333 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2334 *
2335 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2336 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2337 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2338 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2339 * lead to deadlocks.
2340 *
2341 * Bringing up a CPU may involve creating and destroying tasks which requires
2342 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2343 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2344 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2345 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2346 * the threadgroup_rwsem to be released to create new tasks. For more details:
2347 *
2348 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2349 *
2350 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2351 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2352 * CPU hotplug is disabled on entry.
2353 */
cgroup_attach_lock(bool lock_threadgroup)2354 static void cgroup_attach_lock(bool lock_threadgroup)
2355 {
2356 cpus_read_lock();
2357 if (lock_threadgroup)
2358 percpu_down_write(&cgroup_threadgroup_rwsem);
2359 }
2360
2361 /**
2362 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2363 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2364 */
cgroup_attach_unlock(bool lock_threadgroup)2365 static void cgroup_attach_unlock(bool lock_threadgroup)
2366 {
2367 if (lock_threadgroup)
2368 percpu_up_write(&cgroup_threadgroup_rwsem);
2369 cpus_read_unlock();
2370 }
2371
2372 /**
2373 * cgroup_migrate_add_task - add a migration target task to a migration context
2374 * @task: target task
2375 * @mgctx: target migration context
2376 *
2377 * Add @task, which is a migration target, to @mgctx->tset. This function
2378 * becomes noop if @task doesn't need to be migrated. @task's css_set
2379 * should have been added as a migration source and @task->cg_list will be
2380 * moved from the css_set's tasks list to mg_tasks one.
2381 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2382 static void cgroup_migrate_add_task(struct task_struct *task,
2383 struct cgroup_mgctx *mgctx)
2384 {
2385 struct css_set *cset;
2386
2387 lockdep_assert_held(&css_set_lock);
2388
2389 /* @task either already exited or can't exit until the end */
2390 if (task->flags & PF_EXITING)
2391 return;
2392
2393 /* cgroup_threadgroup_rwsem protects racing against forks */
2394 WARN_ON_ONCE(list_empty(&task->cg_list));
2395
2396 cset = task_css_set(task);
2397 if (!cset->mg_src_cgrp)
2398 return;
2399
2400 mgctx->tset.nr_tasks++;
2401
2402 list_move_tail(&task->cg_list, &cset->mg_tasks);
2403 if (list_empty(&cset->mg_node))
2404 list_add_tail(&cset->mg_node,
2405 &mgctx->tset.src_csets);
2406 if (list_empty(&cset->mg_dst_cset->mg_node))
2407 list_add_tail(&cset->mg_dst_cset->mg_node,
2408 &mgctx->tset.dst_csets);
2409 }
2410
2411 /**
2412 * cgroup_taskset_first - reset taskset and return the first task
2413 * @tset: taskset of interest
2414 * @dst_cssp: output variable for the destination css
2415 *
2416 * @tset iteration is initialized and the first task is returned.
2417 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2418 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2419 struct cgroup_subsys_state **dst_cssp)
2420 {
2421 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2422 tset->cur_task = NULL;
2423
2424 return cgroup_taskset_next(tset, dst_cssp);
2425 }
2426 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
2427
2428 /**
2429 * cgroup_taskset_next - iterate to the next task in taskset
2430 * @tset: taskset of interest
2431 * @dst_cssp: output variable for the destination css
2432 *
2433 * Return the next task in @tset. Iteration must have been initialized
2434 * with cgroup_taskset_first().
2435 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2436 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2437 struct cgroup_subsys_state **dst_cssp)
2438 {
2439 struct css_set *cset = tset->cur_cset;
2440 struct task_struct *task = tset->cur_task;
2441
2442 while (&cset->mg_node != tset->csets) {
2443 if (!task)
2444 task = list_first_entry(&cset->mg_tasks,
2445 struct task_struct, cg_list);
2446 else
2447 task = list_next_entry(task, cg_list);
2448
2449 if (&task->cg_list != &cset->mg_tasks) {
2450 tset->cur_cset = cset;
2451 tset->cur_task = task;
2452
2453 /*
2454 * This function may be called both before and
2455 * after cgroup_taskset_migrate(). The two cases
2456 * can be distinguished by looking at whether @cset
2457 * has its ->mg_dst_cset set.
2458 */
2459 if (cset->mg_dst_cset)
2460 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2461 else
2462 *dst_cssp = cset->subsys[tset->ssid];
2463
2464 return task;
2465 }
2466
2467 cset = list_next_entry(cset, mg_node);
2468 task = NULL;
2469 }
2470
2471 return NULL;
2472 }
2473 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
2474
2475 /**
2476 * cgroup_taskset_migrate - migrate a taskset
2477 * @mgctx: migration context
2478 *
2479 * Migrate tasks in @mgctx as setup by migration preparation functions.
2480 * This function fails iff one of the ->can_attach callbacks fails and
2481 * guarantees that either all or none of the tasks in @mgctx are migrated.
2482 * @mgctx is consumed regardless of success.
2483 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2484 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2485 {
2486 struct cgroup_taskset *tset = &mgctx->tset;
2487 struct cgroup_subsys *ss;
2488 struct task_struct *task, *tmp_task;
2489 struct css_set *cset, *tmp_cset;
2490 int ssid, failed_ssid, ret;
2491
2492 /* check that we can legitimately attach to the cgroup */
2493 if (tset->nr_tasks) {
2494 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2495 if (ss->can_attach) {
2496 tset->ssid = ssid;
2497 ret = ss->can_attach(tset);
2498 if (ret) {
2499 failed_ssid = ssid;
2500 goto out_cancel_attach;
2501 }
2502 }
2503 } while_each_subsys_mask();
2504 }
2505
2506 /*
2507 * Now that we're guaranteed success, proceed to move all tasks to
2508 * the new cgroup. There are no failure cases after here, so this
2509 * is the commit point.
2510 */
2511 spin_lock_irq(&css_set_lock);
2512 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2513 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2514 struct css_set *from_cset = task_css_set(task);
2515 struct css_set *to_cset = cset->mg_dst_cset;
2516
2517 get_css_set(to_cset);
2518 to_cset->nr_tasks++;
2519 css_set_move_task(task, from_cset, to_cset, true);
2520 from_cset->nr_tasks--;
2521 /*
2522 * If the source or destination cgroup is frozen,
2523 * the task might require to change its state.
2524 */
2525 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2526 to_cset->dfl_cgrp);
2527 put_css_set_locked(from_cset);
2528
2529 }
2530 }
2531 spin_unlock_irq(&css_set_lock);
2532
2533 /*
2534 * Migration is committed, all target tasks are now on dst_csets.
2535 * Nothing is sensitive to fork() after this point. Notify
2536 * controllers that migration is complete.
2537 */
2538 tset->csets = &tset->dst_csets;
2539
2540 if (tset->nr_tasks) {
2541 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2542 if (ss->attach) {
2543 tset->ssid = ssid;
2544 trace_android_vh_cgroup_attach(ss, tset);
2545 ss->attach(tset);
2546 }
2547 } while_each_subsys_mask();
2548 }
2549
2550 ret = 0;
2551 goto out_release_tset;
2552
2553 out_cancel_attach:
2554 if (tset->nr_tasks) {
2555 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2556 if (ssid == failed_ssid)
2557 break;
2558 if (ss->cancel_attach) {
2559 tset->ssid = ssid;
2560 ss->cancel_attach(tset);
2561 }
2562 } while_each_subsys_mask();
2563 }
2564 out_release_tset:
2565 spin_lock_irq(&css_set_lock);
2566 list_splice_init(&tset->dst_csets, &tset->src_csets);
2567 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2568 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2569 list_del_init(&cset->mg_node);
2570 }
2571 spin_unlock_irq(&css_set_lock);
2572
2573 /*
2574 * Re-initialize the cgroup_taskset structure in case it is reused
2575 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2576 * iteration.
2577 */
2578 tset->nr_tasks = 0;
2579 tset->csets = &tset->src_csets;
2580 return ret;
2581 }
2582
2583 /**
2584 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2585 * @dst_cgrp: destination cgroup to test
2586 *
2587 * On the default hierarchy, except for the mixable, (possible) thread root
2588 * and threaded cgroups, subtree_control must be zero for migration
2589 * destination cgroups with tasks so that child cgroups don't compete
2590 * against tasks.
2591 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2592 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2593 {
2594 /* v1 doesn't have any restriction */
2595 if (!cgroup_on_dfl(dst_cgrp))
2596 return 0;
2597
2598 /* verify @dst_cgrp can host resources */
2599 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2600 return -EOPNOTSUPP;
2601
2602 /* mixables don't care */
2603 if (cgroup_is_mixable(dst_cgrp))
2604 return 0;
2605
2606 /*
2607 * If @dst_cgrp is already or can become a thread root or is
2608 * threaded, it doesn't matter.
2609 */
2610 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2611 return 0;
2612
2613 /* apply no-internal-process constraint */
2614 if (dst_cgrp->subtree_control)
2615 return -EBUSY;
2616
2617 return 0;
2618 }
2619
2620 /**
2621 * cgroup_migrate_finish - cleanup after attach
2622 * @mgctx: migration context
2623 *
2624 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2625 * those functions for details.
2626 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2627 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2628 {
2629 struct ext_css_set *cset, *tmp_cset;
2630
2631 lockdep_assert_held(&cgroup_mutex);
2632
2633 spin_lock_irq(&css_set_lock);
2634
2635 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2636 mg_src_preload_node) {
2637 cset->cset.mg_src_cgrp = NULL;
2638 cset->cset.mg_dst_cgrp = NULL;
2639 cset->cset.mg_dst_cset = NULL;
2640 list_del_init(&cset->mg_src_preload_node);
2641 put_css_set_locked(&cset->cset);
2642 }
2643
2644 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2645 mg_dst_preload_node) {
2646 cset->cset.mg_src_cgrp = NULL;
2647 cset->cset.mg_dst_cgrp = NULL;
2648 cset->cset.mg_dst_cset = NULL;
2649 list_del_init(&cset->mg_dst_preload_node);
2650 put_css_set_locked(&cset->cset);
2651 }
2652
2653 spin_unlock_irq(&css_set_lock);
2654 }
2655
2656 /**
2657 * cgroup_migrate_add_src - add a migration source css_set
2658 * @src_cset: the source css_set to add
2659 * @dst_cgrp: the destination cgroup
2660 * @mgctx: migration context
2661 *
2662 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2663 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2664 * up by cgroup_migrate_finish().
2665 *
2666 * This function may be called without holding cgroup_threadgroup_rwsem
2667 * even if the target is a process. Threads may be created and destroyed
2668 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2669 * into play and the preloaded css_sets are guaranteed to cover all
2670 * migrations.
2671 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2672 void cgroup_migrate_add_src(struct css_set *src_cset,
2673 struct cgroup *dst_cgrp,
2674 struct cgroup_mgctx *mgctx)
2675 {
2676 struct cgroup *src_cgrp;
2677 struct ext_css_set *ext_src_cset;
2678
2679 lockdep_assert_held(&cgroup_mutex);
2680 lockdep_assert_held(&css_set_lock);
2681
2682 /*
2683 * If ->dead, @src_set is associated with one or more dead cgroups
2684 * and doesn't contain any migratable tasks. Ignore it early so
2685 * that the rest of migration path doesn't get confused by it.
2686 */
2687 if (src_cset->dead)
2688 return;
2689
2690 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2691 ext_src_cset = container_of(src_cset, struct ext_css_set, cset);
2692
2693 if (!list_empty(&ext_src_cset->mg_src_preload_node))
2694 return;
2695
2696 WARN_ON(src_cset->mg_src_cgrp);
2697 WARN_ON(src_cset->mg_dst_cgrp);
2698 WARN_ON(!list_empty(&src_cset->mg_tasks));
2699 WARN_ON(!list_empty(&src_cset->mg_node));
2700
2701 src_cset->mg_src_cgrp = src_cgrp;
2702 src_cset->mg_dst_cgrp = dst_cgrp;
2703 get_css_set(src_cset);
2704 list_add_tail(&ext_src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2705 }
2706
2707 /**
2708 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2709 * @mgctx: migration context
2710 *
2711 * Tasks are about to be moved and all the source css_sets have been
2712 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2713 * pins all destination css_sets, links each to its source, and append them
2714 * to @mgctx->preloaded_dst_csets.
2715 *
2716 * This function must be called after cgroup_migrate_add_src() has been
2717 * called on each migration source css_set. After migration is performed
2718 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2719 * @mgctx.
2720 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2721 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2722 {
2723 struct ext_css_set *ext_src_set, *tmp_cset;
2724
2725 lockdep_assert_held(&cgroup_mutex);
2726
2727 /* look up the dst cset for each src cset and link it to src */
2728 list_for_each_entry_safe(ext_src_set, tmp_cset, &mgctx->preloaded_src_csets,
2729 mg_src_preload_node) {
2730 struct css_set *src_cset = &ext_src_set->cset;
2731 struct css_set *dst_cset;
2732 struct ext_css_set *ext_dst_cset;
2733 struct cgroup_subsys *ss;
2734 int ssid;
2735
2736 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2737 if (!dst_cset)
2738 return -ENOMEM;
2739 ext_dst_cset = container_of(dst_cset, struct ext_css_set, cset);
2740
2741 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2742
2743 /*
2744 * If src cset equals dst, it's noop. Drop the src.
2745 * cgroup_migrate() will skip the cset too. Note that we
2746 * can't handle src == dst as some nodes are used by both.
2747 */
2748 if (src_cset == dst_cset) {
2749 src_cset->mg_src_cgrp = NULL;
2750 src_cset->mg_dst_cgrp = NULL;
2751 list_del_init(&ext_src_set->mg_src_preload_node);
2752 put_css_set(src_cset);
2753 put_css_set(dst_cset);
2754 continue;
2755 }
2756
2757 src_cset->mg_dst_cset = dst_cset;
2758
2759 if (list_empty(&ext_dst_cset->mg_dst_preload_node))
2760 list_add_tail(&ext_dst_cset->mg_dst_preload_node,
2761 &mgctx->preloaded_dst_csets);
2762 else
2763 put_css_set(dst_cset);
2764
2765 for_each_subsys(ss, ssid)
2766 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2767 mgctx->ss_mask |= 1 << ssid;
2768 }
2769
2770 return 0;
2771 }
2772
2773 /**
2774 * cgroup_migrate - migrate a process or task to a cgroup
2775 * @leader: the leader of the process or the task to migrate
2776 * @threadgroup: whether @leader points to the whole process or a single task
2777 * @mgctx: migration context
2778 *
2779 * Migrate a process or task denoted by @leader. If migrating a process,
2780 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2781 * responsible for invoking cgroup_migrate_add_src() and
2782 * cgroup_migrate_prepare_dst() on the targets before invoking this
2783 * function and following up with cgroup_migrate_finish().
2784 *
2785 * As long as a controller's ->can_attach() doesn't fail, this function is
2786 * guaranteed to succeed. This means that, excluding ->can_attach()
2787 * failure, when migrating multiple targets, the success or failure can be
2788 * decided for all targets by invoking group_migrate_prepare_dst() before
2789 * actually starting migrating.
2790 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2791 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2792 struct cgroup_mgctx *mgctx)
2793 {
2794 struct task_struct *task;
2795
2796 /*
2797 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2798 * already PF_EXITING could be freed from underneath us unless we
2799 * take an rcu_read_lock.
2800 */
2801 spin_lock_irq(&css_set_lock);
2802 rcu_read_lock();
2803 task = leader;
2804 do {
2805 cgroup_migrate_add_task(task, mgctx);
2806 if (!threadgroup)
2807 break;
2808 } while_each_thread(leader, task);
2809 rcu_read_unlock();
2810 spin_unlock_irq(&css_set_lock);
2811
2812 return cgroup_migrate_execute(mgctx);
2813 }
2814
2815 /**
2816 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2817 * @dst_cgrp: the cgroup to attach to
2818 * @leader: the task or the leader of the threadgroup to be attached
2819 * @threadgroup: attach the whole threadgroup?
2820 *
2821 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2822 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2823 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2824 bool threadgroup)
2825 {
2826 DEFINE_CGROUP_MGCTX(mgctx);
2827 struct task_struct *task;
2828 int ret = 0;
2829
2830 /* look up all src csets */
2831 spin_lock_irq(&css_set_lock);
2832 rcu_read_lock();
2833 task = leader;
2834 do {
2835 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2836 if (!threadgroup)
2837 break;
2838 } while_each_thread(leader, task);
2839 rcu_read_unlock();
2840 spin_unlock_irq(&css_set_lock);
2841
2842 /* prepare dst csets and commit */
2843 ret = cgroup_migrate_prepare_dst(&mgctx);
2844 if (!ret)
2845 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2846
2847 cgroup_migrate_finish(&mgctx);
2848
2849 if (!ret)
2850 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2851
2852 return ret;
2853 }
2854
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked,struct cgroup * dst_cgrp)2855 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2856 bool *threadgroup_locked,
2857 struct cgroup *dst_cgrp)
2858 {
2859 struct task_struct *tsk;
2860 pid_t pid;
2861 bool force_migration = false;
2862
2863 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2864 return ERR_PTR(-EINVAL);
2865
2866 /*
2867 * If we migrate a single thread, we don't care about threadgroup
2868 * stability. If the thread is `current`, it won't exit(2) under our
2869 * hands or change PID through exec(2). We exclude
2870 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2871 * callers by cgroup_mutex.
2872 * Therefore, we can skip the global lock.
2873 */
2874 lockdep_assert_held(&cgroup_mutex);
2875 *threadgroup_locked = pid || threadgroup;
2876 cgroup_attach_lock(*threadgroup_locked);
2877
2878 rcu_read_lock();
2879 if (pid) {
2880 tsk = find_task_by_vpid(pid);
2881 if (!tsk) {
2882 tsk = ERR_PTR(-ESRCH);
2883 goto out_unlock_threadgroup;
2884 }
2885 } else {
2886 tsk = current;
2887 }
2888
2889 if (threadgroup)
2890 tsk = tsk->group_leader;
2891
2892 if (tsk->flags & PF_KTHREAD)
2893 trace_android_rvh_cgroup_force_kthread_migration(tsk, dst_cgrp, &force_migration);
2894
2895 /*
2896 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2897 * If userland migrates such a kthread to a non-root cgroup, it can
2898 * become trapped in a cpuset, or RT kthread may be born in a
2899 * cgroup with no rt_runtime allocated. Just say no.
2900 */
2901 if (!force_migration && (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY))) {
2902 tsk = ERR_PTR(-EINVAL);
2903 goto out_unlock_threadgroup;
2904 }
2905
2906 get_task_struct(tsk);
2907 goto out_unlock_rcu;
2908
2909 out_unlock_threadgroup:
2910 cgroup_attach_unlock(*threadgroup_locked);
2911 *threadgroup_locked = false;
2912 out_unlock_rcu:
2913 rcu_read_unlock();
2914 return tsk;
2915 }
2916
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2917 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2918 {
2919 struct cgroup_subsys *ss;
2920 int ssid;
2921
2922 /* release reference from cgroup_procs_write_start() */
2923 put_task_struct(task);
2924
2925 cgroup_attach_unlock(threadgroup_locked);
2926
2927 for_each_subsys(ss, ssid)
2928 if (ss->post_attach)
2929 ss->post_attach();
2930 }
2931
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2932 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2933 {
2934 struct cgroup_subsys *ss;
2935 bool printed = false;
2936 int ssid;
2937
2938 do_each_subsys_mask(ss, ssid, ss_mask) {
2939 if (printed)
2940 seq_putc(seq, ' ');
2941 seq_puts(seq, ss->name);
2942 printed = true;
2943 } while_each_subsys_mask();
2944 if (printed)
2945 seq_putc(seq, '\n');
2946 }
2947
2948 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2949 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2950 {
2951 struct cgroup *cgrp = seq_css(seq)->cgroup;
2952
2953 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2954 return 0;
2955 }
2956
2957 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2958 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2959 {
2960 struct cgroup *cgrp = seq_css(seq)->cgroup;
2961
2962 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2963 return 0;
2964 }
2965
2966 /**
2967 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2968 * @cgrp: root of the subtree to update csses for
2969 *
2970 * @cgrp's control masks have changed and its subtree's css associations
2971 * need to be updated accordingly. This function looks up all css_sets
2972 * which are attached to the subtree, creates the matching updated css_sets
2973 * and migrates the tasks to the new ones.
2974 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2975 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2976 {
2977 DEFINE_CGROUP_MGCTX(mgctx);
2978 struct cgroup_subsys_state *d_css;
2979 struct cgroup *dsct;
2980 struct ext_css_set *ext_src_set;
2981 bool has_tasks;
2982 int ret;
2983
2984 lockdep_assert_held(&cgroup_mutex);
2985
2986 /* look up all csses currently attached to @cgrp's subtree */
2987 spin_lock_irq(&css_set_lock);
2988 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2989 struct cgrp_cset_link *link;
2990
2991 list_for_each_entry(link, &dsct->cset_links, cset_link)
2992 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2993 }
2994 spin_unlock_irq(&css_set_lock);
2995
2996 /*
2997 * We need to write-lock threadgroup_rwsem while migrating tasks.
2998 * However, if there are no source csets for @cgrp, changing its
2999 * controllers isn't gonna produce any task migrations and the
3000 * write-locking can be skipped safely.
3001 */
3002 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3003 cgroup_attach_lock(has_tasks);
3004
3005 /* NULL dst indicates self on default hierarchy */
3006 ret = cgroup_migrate_prepare_dst(&mgctx);
3007 if (ret)
3008 goto out_finish;
3009
3010 spin_lock_irq(&css_set_lock);
3011 list_for_each_entry(ext_src_set, &mgctx.preloaded_src_csets,
3012 mg_src_preload_node) {
3013 struct task_struct *task, *ntask;
3014
3015 /* all tasks in src_csets need to be migrated */
3016 list_for_each_entry_safe(task, ntask, &ext_src_set->cset.tasks, cg_list)
3017 cgroup_migrate_add_task(task, &mgctx);
3018 }
3019 spin_unlock_irq(&css_set_lock);
3020
3021 ret = cgroup_migrate_execute(&mgctx);
3022 out_finish:
3023 cgroup_migrate_finish(&mgctx);
3024 cgroup_attach_unlock(has_tasks);
3025 return ret;
3026 }
3027
3028 /**
3029 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3030 * @cgrp: root of the target subtree
3031 *
3032 * Because css offlining is asynchronous, userland may try to re-enable a
3033 * controller while the previous css is still around. This function grabs
3034 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3035 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3036 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3037 __acquires(&cgroup_mutex)
3038 {
3039 struct cgroup *dsct;
3040 struct cgroup_subsys_state *d_css;
3041 struct cgroup_subsys *ss;
3042 int ssid;
3043
3044 restart:
3045 mutex_lock(&cgroup_mutex);
3046
3047 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3048 for_each_subsys(ss, ssid) {
3049 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3050 DEFINE_WAIT(wait);
3051
3052 if (!css || !percpu_ref_is_dying(&css->refcnt))
3053 continue;
3054
3055 cgroup_get_live(dsct);
3056 prepare_to_wait(&dsct->offline_waitq, &wait,
3057 TASK_UNINTERRUPTIBLE);
3058
3059 mutex_unlock(&cgroup_mutex);
3060 schedule();
3061 finish_wait(&dsct->offline_waitq, &wait);
3062
3063 cgroup_put(dsct);
3064 goto restart;
3065 }
3066 }
3067 }
3068
3069 /**
3070 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3071 * @cgrp: root of the target subtree
3072 *
3073 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3074 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3075 * itself.
3076 */
cgroup_save_control(struct cgroup * cgrp)3077 static void cgroup_save_control(struct cgroup *cgrp)
3078 {
3079 struct cgroup *dsct;
3080 struct cgroup_subsys_state *d_css;
3081
3082 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3083 dsct->old_subtree_control = dsct->subtree_control;
3084 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3085 dsct->old_dom_cgrp = dsct->dom_cgrp;
3086 }
3087 }
3088
3089 /**
3090 * cgroup_propagate_control - refresh control masks of a subtree
3091 * @cgrp: root of the target subtree
3092 *
3093 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3094 * ->subtree_control and propagate controller availability through the
3095 * subtree so that descendants don't have unavailable controllers enabled.
3096 */
cgroup_propagate_control(struct cgroup * cgrp)3097 static void cgroup_propagate_control(struct cgroup *cgrp)
3098 {
3099 struct cgroup *dsct;
3100 struct cgroup_subsys_state *d_css;
3101
3102 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3103 dsct->subtree_control &= cgroup_control(dsct);
3104 dsct->subtree_ss_mask =
3105 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3106 cgroup_ss_mask(dsct));
3107 }
3108 }
3109
3110 /**
3111 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3112 * @cgrp: root of the target subtree
3113 *
3114 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3115 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3116 * itself.
3117 */
cgroup_restore_control(struct cgroup * cgrp)3118 static void cgroup_restore_control(struct cgroup *cgrp)
3119 {
3120 struct cgroup *dsct;
3121 struct cgroup_subsys_state *d_css;
3122
3123 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3124 dsct->subtree_control = dsct->old_subtree_control;
3125 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3126 dsct->dom_cgrp = dsct->old_dom_cgrp;
3127 }
3128 }
3129
css_visible(struct cgroup_subsys_state * css)3130 static bool css_visible(struct cgroup_subsys_state *css)
3131 {
3132 struct cgroup_subsys *ss = css->ss;
3133 struct cgroup *cgrp = css->cgroup;
3134
3135 if (cgroup_control(cgrp) & (1 << ss->id))
3136 return true;
3137 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3138 return false;
3139 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3140 }
3141
3142 /**
3143 * cgroup_apply_control_enable - enable or show csses according to control
3144 * @cgrp: root of the target subtree
3145 *
3146 * Walk @cgrp's subtree and create new csses or make the existing ones
3147 * visible. A css is created invisible if it's being implicitly enabled
3148 * through dependency. An invisible css is made visible when the userland
3149 * explicitly enables it.
3150 *
3151 * Returns 0 on success, -errno on failure. On failure, csses which have
3152 * been processed already aren't cleaned up. The caller is responsible for
3153 * cleaning up with cgroup_apply_control_disable().
3154 */
cgroup_apply_control_enable(struct cgroup * cgrp)3155 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3156 {
3157 struct cgroup *dsct;
3158 struct cgroup_subsys_state *d_css;
3159 struct cgroup_subsys *ss;
3160 int ssid, ret;
3161
3162 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3163 for_each_subsys(ss, ssid) {
3164 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3165
3166 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3167 continue;
3168
3169 if (!css) {
3170 css = css_create(dsct, ss);
3171 if (IS_ERR(css))
3172 return PTR_ERR(css);
3173 }
3174
3175 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3176
3177 if (css_visible(css)) {
3178 ret = css_populate_dir(css);
3179 if (ret)
3180 return ret;
3181 }
3182 }
3183 }
3184
3185 return 0;
3186 }
3187
3188 /**
3189 * cgroup_apply_control_disable - kill or hide csses according to control
3190 * @cgrp: root of the target subtree
3191 *
3192 * Walk @cgrp's subtree and kill and hide csses so that they match
3193 * cgroup_ss_mask() and cgroup_visible_mask().
3194 *
3195 * A css is hidden when the userland requests it to be disabled while other
3196 * subsystems are still depending on it. The css must not actively control
3197 * resources and be in the vanilla state if it's made visible again later.
3198 * Controllers which may be depended upon should provide ->css_reset() for
3199 * this purpose.
3200 */
cgroup_apply_control_disable(struct cgroup * cgrp)3201 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3202 {
3203 struct cgroup *dsct;
3204 struct cgroup_subsys_state *d_css;
3205 struct cgroup_subsys *ss;
3206 int ssid;
3207
3208 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3209 for_each_subsys(ss, ssid) {
3210 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3211
3212 if (!css)
3213 continue;
3214
3215 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3216
3217 if (css->parent &&
3218 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3219 kill_css(css);
3220 } else if (!css_visible(css)) {
3221 css_clear_dir(css);
3222 if (ss->css_reset)
3223 ss->css_reset(css);
3224 }
3225 }
3226 }
3227 }
3228
3229 /**
3230 * cgroup_apply_control - apply control mask updates to the subtree
3231 * @cgrp: root of the target subtree
3232 *
3233 * subsystems can be enabled and disabled in a subtree using the following
3234 * steps.
3235 *
3236 * 1. Call cgroup_save_control() to stash the current state.
3237 * 2. Update ->subtree_control masks in the subtree as desired.
3238 * 3. Call cgroup_apply_control() to apply the changes.
3239 * 4. Optionally perform other related operations.
3240 * 5. Call cgroup_finalize_control() to finish up.
3241 *
3242 * This function implements step 3 and propagates the mask changes
3243 * throughout @cgrp's subtree, updates csses accordingly and perform
3244 * process migrations.
3245 */
cgroup_apply_control(struct cgroup * cgrp)3246 static int cgroup_apply_control(struct cgroup *cgrp)
3247 {
3248 int ret;
3249
3250 cgroup_propagate_control(cgrp);
3251
3252 ret = cgroup_apply_control_enable(cgrp);
3253 if (ret)
3254 return ret;
3255
3256 /*
3257 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3258 * making the following cgroup_update_dfl_csses() properly update
3259 * css associations of all tasks in the subtree.
3260 */
3261 ret = cgroup_update_dfl_csses(cgrp);
3262 if (ret)
3263 return ret;
3264
3265 return 0;
3266 }
3267
3268 /**
3269 * cgroup_finalize_control - finalize control mask update
3270 * @cgrp: root of the target subtree
3271 * @ret: the result of the update
3272 *
3273 * Finalize control mask update. See cgroup_apply_control() for more info.
3274 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3275 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3276 {
3277 if (ret) {
3278 cgroup_restore_control(cgrp);
3279 cgroup_propagate_control(cgrp);
3280 }
3281
3282 cgroup_apply_control_disable(cgrp);
3283 }
3284
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3285 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3286 {
3287 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3288
3289 /* if nothing is getting enabled, nothing to worry about */
3290 if (!enable)
3291 return 0;
3292
3293 /* can @cgrp host any resources? */
3294 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3295 return -EOPNOTSUPP;
3296
3297 /* mixables don't care */
3298 if (cgroup_is_mixable(cgrp))
3299 return 0;
3300
3301 if (domain_enable) {
3302 /* can't enable domain controllers inside a thread subtree */
3303 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3304 return -EOPNOTSUPP;
3305 } else {
3306 /*
3307 * Threaded controllers can handle internal competitions
3308 * and are always allowed inside a (prospective) thread
3309 * subtree.
3310 */
3311 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3312 return 0;
3313 }
3314
3315 /*
3316 * Controllers can't be enabled for a cgroup with tasks to avoid
3317 * child cgroups competing against tasks.
3318 */
3319 if (cgroup_has_tasks(cgrp))
3320 return -EBUSY;
3321
3322 return 0;
3323 }
3324
3325 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3326 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3327 char *buf, size_t nbytes,
3328 loff_t off)
3329 {
3330 u16 enable = 0, disable = 0;
3331 struct cgroup *cgrp, *child;
3332 struct cgroup_subsys *ss;
3333 char *tok;
3334 int ssid, ret;
3335
3336 /*
3337 * Parse input - space separated list of subsystem names prefixed
3338 * with either + or -.
3339 */
3340 buf = strstrip(buf);
3341 while ((tok = strsep(&buf, " "))) {
3342 if (tok[0] == '\0')
3343 continue;
3344 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3345 if (!cgroup_ssid_enabled(ssid) ||
3346 strcmp(tok + 1, ss->name))
3347 continue;
3348
3349 if (*tok == '+') {
3350 enable |= 1 << ssid;
3351 disable &= ~(1 << ssid);
3352 } else if (*tok == '-') {
3353 disable |= 1 << ssid;
3354 enable &= ~(1 << ssid);
3355 } else {
3356 return -EINVAL;
3357 }
3358 break;
3359 } while_each_subsys_mask();
3360 if (ssid == CGROUP_SUBSYS_COUNT)
3361 return -EINVAL;
3362 }
3363
3364 cgrp = cgroup_kn_lock_live(of->kn, true);
3365 if (!cgrp)
3366 return -ENODEV;
3367
3368 for_each_subsys(ss, ssid) {
3369 if (enable & (1 << ssid)) {
3370 if (cgrp->subtree_control & (1 << ssid)) {
3371 enable &= ~(1 << ssid);
3372 continue;
3373 }
3374
3375 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3376 ret = -ENOENT;
3377 goto out_unlock;
3378 }
3379 } else if (disable & (1 << ssid)) {
3380 if (!(cgrp->subtree_control & (1 << ssid))) {
3381 disable &= ~(1 << ssid);
3382 continue;
3383 }
3384
3385 /* a child has it enabled? */
3386 cgroup_for_each_live_child(child, cgrp) {
3387 if (child->subtree_control & (1 << ssid)) {
3388 ret = -EBUSY;
3389 goto out_unlock;
3390 }
3391 }
3392 }
3393 }
3394
3395 if (!enable && !disable) {
3396 ret = 0;
3397 goto out_unlock;
3398 }
3399
3400 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3401 if (ret)
3402 goto out_unlock;
3403
3404 /* save and update control masks and prepare csses */
3405 cgroup_save_control(cgrp);
3406
3407 cgrp->subtree_control |= enable;
3408 cgrp->subtree_control &= ~disable;
3409
3410 ret = cgroup_apply_control(cgrp);
3411 cgroup_finalize_control(cgrp, ret);
3412 if (ret)
3413 goto out_unlock;
3414
3415 kernfs_activate(cgrp->kn);
3416 out_unlock:
3417 cgroup_kn_unlock(of->kn);
3418 return ret ?: nbytes;
3419 }
3420
3421 /**
3422 * cgroup_enable_threaded - make @cgrp threaded
3423 * @cgrp: the target cgroup
3424 *
3425 * Called when "threaded" is written to the cgroup.type interface file and
3426 * tries to make @cgrp threaded and join the parent's resource domain.
3427 * This function is never called on the root cgroup as cgroup.type doesn't
3428 * exist on it.
3429 */
cgroup_enable_threaded(struct cgroup * cgrp)3430 static int cgroup_enable_threaded(struct cgroup *cgrp)
3431 {
3432 struct cgroup *parent = cgroup_parent(cgrp);
3433 struct cgroup *dom_cgrp = parent->dom_cgrp;
3434 struct cgroup *dsct;
3435 struct cgroup_subsys_state *d_css;
3436 int ret;
3437
3438 lockdep_assert_held(&cgroup_mutex);
3439
3440 /* noop if already threaded */
3441 if (cgroup_is_threaded(cgrp))
3442 return 0;
3443
3444 /*
3445 * If @cgroup is populated or has domain controllers enabled, it
3446 * can't be switched. While the below cgroup_can_be_thread_root()
3447 * test can catch the same conditions, that's only when @parent is
3448 * not mixable, so let's check it explicitly.
3449 */
3450 if (cgroup_is_populated(cgrp) ||
3451 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3452 return -EOPNOTSUPP;
3453
3454 /* we're joining the parent's domain, ensure its validity */
3455 if (!cgroup_is_valid_domain(dom_cgrp) ||
3456 !cgroup_can_be_thread_root(dom_cgrp))
3457 return -EOPNOTSUPP;
3458
3459 /*
3460 * The following shouldn't cause actual migrations and should
3461 * always succeed.
3462 */
3463 cgroup_save_control(cgrp);
3464
3465 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3466 if (dsct == cgrp || cgroup_is_threaded(dsct))
3467 dsct->dom_cgrp = dom_cgrp;
3468
3469 ret = cgroup_apply_control(cgrp);
3470 if (!ret)
3471 parent->nr_threaded_children++;
3472
3473 cgroup_finalize_control(cgrp, ret);
3474 return ret;
3475 }
3476
cgroup_type_show(struct seq_file * seq,void * v)3477 static int cgroup_type_show(struct seq_file *seq, void *v)
3478 {
3479 struct cgroup *cgrp = seq_css(seq)->cgroup;
3480
3481 if (cgroup_is_threaded(cgrp))
3482 seq_puts(seq, "threaded\n");
3483 else if (!cgroup_is_valid_domain(cgrp))
3484 seq_puts(seq, "domain invalid\n");
3485 else if (cgroup_is_thread_root(cgrp))
3486 seq_puts(seq, "domain threaded\n");
3487 else
3488 seq_puts(seq, "domain\n");
3489
3490 return 0;
3491 }
3492
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3493 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3494 size_t nbytes, loff_t off)
3495 {
3496 struct cgroup *cgrp;
3497 int ret;
3498
3499 /* only switching to threaded mode is supported */
3500 if (strcmp(strstrip(buf), "threaded"))
3501 return -EINVAL;
3502
3503 /* drain dying csses before we re-apply (threaded) subtree control */
3504 cgrp = cgroup_kn_lock_live(of->kn, true);
3505 if (!cgrp)
3506 return -ENOENT;
3507
3508 /* threaded can only be enabled */
3509 ret = cgroup_enable_threaded(cgrp);
3510
3511 cgroup_kn_unlock(of->kn);
3512 return ret ?: nbytes;
3513 }
3514
cgroup_max_descendants_show(struct seq_file * seq,void * v)3515 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3516 {
3517 struct cgroup *cgrp = seq_css(seq)->cgroup;
3518 int descendants = READ_ONCE(cgrp->max_descendants);
3519
3520 if (descendants == INT_MAX)
3521 seq_puts(seq, "max\n");
3522 else
3523 seq_printf(seq, "%d\n", descendants);
3524
3525 return 0;
3526 }
3527
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3528 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3529 char *buf, size_t nbytes, loff_t off)
3530 {
3531 struct cgroup *cgrp;
3532 int descendants;
3533 ssize_t ret;
3534
3535 buf = strstrip(buf);
3536 if (!strcmp(buf, "max")) {
3537 descendants = INT_MAX;
3538 } else {
3539 ret = kstrtoint(buf, 0, &descendants);
3540 if (ret)
3541 return ret;
3542 }
3543
3544 if (descendants < 0)
3545 return -ERANGE;
3546
3547 cgrp = cgroup_kn_lock_live(of->kn, false);
3548 if (!cgrp)
3549 return -ENOENT;
3550
3551 cgrp->max_descendants = descendants;
3552
3553 cgroup_kn_unlock(of->kn);
3554
3555 return nbytes;
3556 }
3557
cgroup_max_depth_show(struct seq_file * seq,void * v)3558 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3559 {
3560 struct cgroup *cgrp = seq_css(seq)->cgroup;
3561 int depth = READ_ONCE(cgrp->max_depth);
3562
3563 if (depth == INT_MAX)
3564 seq_puts(seq, "max\n");
3565 else
3566 seq_printf(seq, "%d\n", depth);
3567
3568 return 0;
3569 }
3570
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3571 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3572 char *buf, size_t nbytes, loff_t off)
3573 {
3574 struct cgroup *cgrp;
3575 ssize_t ret;
3576 int depth;
3577
3578 buf = strstrip(buf);
3579 if (!strcmp(buf, "max")) {
3580 depth = INT_MAX;
3581 } else {
3582 ret = kstrtoint(buf, 0, &depth);
3583 if (ret)
3584 return ret;
3585 }
3586
3587 if (depth < 0)
3588 return -ERANGE;
3589
3590 cgrp = cgroup_kn_lock_live(of->kn, false);
3591 if (!cgrp)
3592 return -ENOENT;
3593
3594 cgrp->max_depth = depth;
3595
3596 cgroup_kn_unlock(of->kn);
3597
3598 return nbytes;
3599 }
3600
cgroup_events_show(struct seq_file * seq,void * v)3601 static int cgroup_events_show(struct seq_file *seq, void *v)
3602 {
3603 struct cgroup *cgrp = seq_css(seq)->cgroup;
3604
3605 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3606 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3607
3608 return 0;
3609 }
3610
cgroup_stat_show(struct seq_file * seq,void * v)3611 static int cgroup_stat_show(struct seq_file *seq, void *v)
3612 {
3613 struct cgroup *cgroup = seq_css(seq)->cgroup;
3614
3615 seq_printf(seq, "nr_descendants %d\n",
3616 cgroup->nr_descendants);
3617 seq_printf(seq, "nr_dying_descendants %d\n",
3618 cgroup->nr_dying_descendants);
3619
3620 return 0;
3621 }
3622
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3623 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3624 struct cgroup *cgrp, int ssid)
3625 {
3626 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3627 struct cgroup_subsys_state *css;
3628 int ret;
3629
3630 if (!ss->css_extra_stat_show)
3631 return 0;
3632
3633 css = cgroup_tryget_css(cgrp, ss);
3634 if (!css)
3635 return 0;
3636
3637 ret = ss->css_extra_stat_show(seq, css);
3638 css_put(css);
3639 return ret;
3640 }
3641
cpu_stat_show(struct seq_file * seq,void * v)3642 static int cpu_stat_show(struct seq_file *seq, void *v)
3643 {
3644 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3645 int ret = 0;
3646
3647 cgroup_base_stat_cputime_show(seq);
3648 #ifdef CONFIG_CGROUP_SCHED
3649 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3650 #endif
3651 return ret;
3652 }
3653
3654 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3655 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3656 {
3657 struct cgroup *cgrp = seq_css(seq)->cgroup;
3658 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3659
3660 return psi_show(seq, psi, PSI_IO);
3661 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3662 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3663 {
3664 struct cgroup *cgrp = seq_css(seq)->cgroup;
3665 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3666
3667 return psi_show(seq, psi, PSI_MEM);
3668 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3669 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3670 {
3671 struct cgroup *cgrp = seq_css(seq)->cgroup;
3672 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3673
3674 return psi_show(seq, psi, PSI_CPU);
3675 }
3676
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3677 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3678 size_t nbytes, enum psi_res res)
3679 {
3680 struct cgroup_file_ctx *ctx = of->priv;
3681 struct psi_trigger *new;
3682 struct cgroup *cgrp;
3683 struct psi_group *psi;
3684
3685 cgrp = cgroup_kn_lock_live(of->kn, false);
3686 if (!cgrp)
3687 return -ENODEV;
3688
3689 cgroup_get(cgrp);
3690 cgroup_kn_unlock(of->kn);
3691
3692 /* Allow only one trigger per file descriptor */
3693 if (ctx->psi.trigger) {
3694 cgroup_put(cgrp);
3695 return -EBUSY;
3696 }
3697
3698 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3699 new = psi_trigger_create(psi, buf, nbytes, res);
3700 if (IS_ERR(new)) {
3701 cgroup_put(cgrp);
3702 return PTR_ERR(new);
3703 }
3704
3705 smp_store_release(&ctx->psi.trigger, new);
3706 cgroup_put(cgrp);
3707
3708 return nbytes;
3709 }
3710
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3711 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3712 char *buf, size_t nbytes,
3713 loff_t off)
3714 {
3715 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3716 }
3717
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3718 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3719 char *buf, size_t nbytes,
3720 loff_t off)
3721 {
3722 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3723 }
3724
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3725 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3726 char *buf, size_t nbytes,
3727 loff_t off)
3728 {
3729 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3730 }
3731
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3732 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3733 poll_table *pt)
3734 {
3735 struct cgroup_file_ctx *ctx = of->priv;
3736 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3737 }
3738
cgroup_pressure_release(struct kernfs_open_file * of)3739 static void cgroup_pressure_release(struct kernfs_open_file *of)
3740 {
3741 struct cgroup_file_ctx *ctx = of->priv;
3742
3743 psi_trigger_destroy(ctx->psi.trigger);
3744 }
3745
cgroup_psi_enabled(void)3746 bool cgroup_psi_enabled(void)
3747 {
3748 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3749 }
3750
3751 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3752 bool cgroup_psi_enabled(void)
3753 {
3754 return false;
3755 }
3756
3757 #endif /* CONFIG_PSI */
3758
cgroup_freeze_show(struct seq_file * seq,void * v)3759 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3760 {
3761 struct cgroup *cgrp = seq_css(seq)->cgroup;
3762
3763 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3764
3765 return 0;
3766 }
3767
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3768 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3769 char *buf, size_t nbytes, loff_t off)
3770 {
3771 struct cgroup *cgrp;
3772 ssize_t ret;
3773 int freeze;
3774
3775 ret = kstrtoint(strstrip(buf), 0, &freeze);
3776 if (ret)
3777 return ret;
3778
3779 if (freeze < 0 || freeze > 1)
3780 return -ERANGE;
3781
3782 cgrp = cgroup_kn_lock_live(of->kn, false);
3783 if (!cgrp)
3784 return -ENOENT;
3785
3786 cgroup_freeze(cgrp, freeze);
3787
3788 cgroup_kn_unlock(of->kn);
3789
3790 return nbytes;
3791 }
3792
cgroup_file_open(struct kernfs_open_file * of)3793 static int cgroup_file_open(struct kernfs_open_file *of)
3794 {
3795 struct cftype *cft = of->kn->priv;
3796 struct cgroup_file_ctx *ctx;
3797 int ret;
3798
3799 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3800 if (!ctx)
3801 return -ENOMEM;
3802
3803 ctx->ns = current->nsproxy->cgroup_ns;
3804 get_cgroup_ns(ctx->ns);
3805 of->priv = ctx;
3806
3807 if (!cft->open)
3808 return 0;
3809
3810 ret = cft->open(of);
3811 if (ret) {
3812 put_cgroup_ns(ctx->ns);
3813 kfree(ctx);
3814 }
3815 return ret;
3816 }
3817
cgroup_file_release(struct kernfs_open_file * of)3818 static void cgroup_file_release(struct kernfs_open_file *of)
3819 {
3820 struct cftype *cft = of->kn->priv;
3821 struct cgroup_file_ctx *ctx = of->priv;
3822
3823 if (cft->release)
3824 cft->release(of);
3825 put_cgroup_ns(ctx->ns);
3826 kfree(ctx);
3827 }
3828
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3829 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3830 size_t nbytes, loff_t off)
3831 {
3832 struct cgroup_file_ctx *ctx = of->priv;
3833 struct cgroup *cgrp = of->kn->parent->priv;
3834 struct cftype *cft = of->kn->priv;
3835 struct cgroup_subsys_state *css;
3836 int ret;
3837
3838 if (!nbytes)
3839 return 0;
3840
3841 /*
3842 * If namespaces are delegation boundaries, disallow writes to
3843 * files in an non-init namespace root from inside the namespace
3844 * except for the files explicitly marked delegatable -
3845 * cgroup.procs and cgroup.subtree_control.
3846 */
3847 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3848 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3849 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3850 return -EPERM;
3851
3852 if (cft->write)
3853 return cft->write(of, buf, nbytes, off);
3854
3855 /*
3856 * kernfs guarantees that a file isn't deleted with operations in
3857 * flight, which means that the matching css is and stays alive and
3858 * doesn't need to be pinned. The RCU locking is not necessary
3859 * either. It's just for the convenience of using cgroup_css().
3860 */
3861 rcu_read_lock();
3862 css = cgroup_css(cgrp, cft->ss);
3863 rcu_read_unlock();
3864
3865 if (cft->write_u64) {
3866 unsigned long long v;
3867 ret = kstrtoull(buf, 0, &v);
3868 if (!ret)
3869 ret = cft->write_u64(css, cft, v);
3870 } else if (cft->write_s64) {
3871 long long v;
3872 ret = kstrtoll(buf, 0, &v);
3873 if (!ret)
3874 ret = cft->write_s64(css, cft, v);
3875 } else {
3876 ret = -EINVAL;
3877 }
3878
3879 return ret ?: nbytes;
3880 }
3881
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3882 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3883 {
3884 struct cftype *cft = of->kn->priv;
3885
3886 if (cft->poll)
3887 return cft->poll(of, pt);
3888
3889 return kernfs_generic_poll(of, pt);
3890 }
3891
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3892 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3893 {
3894 return seq_cft(seq)->seq_start(seq, ppos);
3895 }
3896
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3897 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3898 {
3899 return seq_cft(seq)->seq_next(seq, v, ppos);
3900 }
3901
cgroup_seqfile_stop(struct seq_file * seq,void * v)3902 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3903 {
3904 if (seq_cft(seq)->seq_stop)
3905 seq_cft(seq)->seq_stop(seq, v);
3906 }
3907
cgroup_seqfile_show(struct seq_file * m,void * arg)3908 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3909 {
3910 struct cftype *cft = seq_cft(m);
3911 struct cgroup_subsys_state *css = seq_css(m);
3912
3913 if (cft->seq_show)
3914 return cft->seq_show(m, arg);
3915
3916 if (cft->read_u64)
3917 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3918 else if (cft->read_s64)
3919 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3920 else
3921 return -EINVAL;
3922 return 0;
3923 }
3924
3925 static struct kernfs_ops cgroup_kf_single_ops = {
3926 .atomic_write_len = PAGE_SIZE,
3927 .open = cgroup_file_open,
3928 .release = cgroup_file_release,
3929 .write = cgroup_file_write,
3930 .poll = cgroup_file_poll,
3931 .seq_show = cgroup_seqfile_show,
3932 };
3933
3934 static struct kernfs_ops cgroup_kf_ops = {
3935 .atomic_write_len = PAGE_SIZE,
3936 .open = cgroup_file_open,
3937 .release = cgroup_file_release,
3938 .write = cgroup_file_write,
3939 .poll = cgroup_file_poll,
3940 .seq_start = cgroup_seqfile_start,
3941 .seq_next = cgroup_seqfile_next,
3942 .seq_stop = cgroup_seqfile_stop,
3943 .seq_show = cgroup_seqfile_show,
3944 };
3945
3946 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3947 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3948 {
3949 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3950 .ia_uid = current_fsuid(),
3951 .ia_gid = current_fsgid(), };
3952
3953 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3954 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3955 return 0;
3956
3957 return kernfs_setattr(kn, &iattr);
3958 }
3959
cgroup_file_notify_timer(struct timer_list * timer)3960 static void cgroup_file_notify_timer(struct timer_list *timer)
3961 {
3962 cgroup_file_notify(container_of(timer, struct cgroup_file,
3963 notify_timer));
3964 }
3965
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3966 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3967 struct cftype *cft)
3968 {
3969 char name[CGROUP_FILE_NAME_MAX];
3970 struct kernfs_node *kn;
3971 struct lock_class_key *key = NULL;
3972 int ret;
3973
3974 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3975 key = &cft->lockdep_key;
3976 #endif
3977 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3978 cgroup_file_mode(cft),
3979 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3980 0, cft->kf_ops, cft,
3981 NULL, key);
3982 if (IS_ERR(kn))
3983 return PTR_ERR(kn);
3984
3985 ret = cgroup_kn_set_ugid(kn);
3986 if (ret) {
3987 kernfs_remove(kn);
3988 return ret;
3989 }
3990
3991 if (cft->file_offset) {
3992 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3993
3994 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3995
3996 spin_lock_irq(&cgroup_file_kn_lock);
3997 cfile->kn = kn;
3998 spin_unlock_irq(&cgroup_file_kn_lock);
3999 }
4000
4001 return 0;
4002 }
4003
4004 /**
4005 * cgroup_addrm_files - add or remove files to a cgroup directory
4006 * @css: the target css
4007 * @cgrp: the target cgroup (usually css->cgroup)
4008 * @cfts: array of cftypes to be added
4009 * @is_add: whether to add or remove
4010 *
4011 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4012 * For removals, this function never fails.
4013 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4014 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4015 struct cgroup *cgrp, struct cftype cfts[],
4016 bool is_add)
4017 {
4018 struct cftype *cft, *cft_end = NULL;
4019 int ret = 0;
4020
4021 lockdep_assert_held(&cgroup_mutex);
4022
4023 restart:
4024 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4025 /* does cft->flags tell us to skip this file on @cgrp? */
4026 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4027 continue;
4028 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4029 continue;
4030 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4031 continue;
4032 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4033 continue;
4034 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4035 continue;
4036 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4037 continue;
4038 if (is_add) {
4039 ret = cgroup_add_file(css, cgrp, cft);
4040 if (ret) {
4041 pr_warn("%s: failed to add %s, err=%d\n",
4042 __func__, cft->name, ret);
4043 cft_end = cft;
4044 is_add = false;
4045 goto restart;
4046 }
4047 } else {
4048 cgroup_rm_file(cgrp, cft);
4049 }
4050 }
4051 return ret;
4052 }
4053
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4054 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4055 {
4056 struct cgroup_subsys *ss = cfts[0].ss;
4057 struct cgroup *root = &ss->root->cgrp;
4058 struct cgroup_subsys_state *css;
4059 int ret = 0;
4060
4061 lockdep_assert_held(&cgroup_mutex);
4062
4063 /* add/rm files for all cgroups created before */
4064 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4065 struct cgroup *cgrp = css->cgroup;
4066
4067 if (!(css->flags & CSS_VISIBLE))
4068 continue;
4069
4070 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4071 if (ret)
4072 break;
4073 }
4074
4075 if (is_add && !ret)
4076 kernfs_activate(root->kn);
4077 return ret;
4078 }
4079
cgroup_exit_cftypes(struct cftype * cfts)4080 static void cgroup_exit_cftypes(struct cftype *cfts)
4081 {
4082 struct cftype *cft;
4083
4084 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4085 /* free copy for custom atomic_write_len, see init_cftypes() */
4086 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4087 kfree(cft->kf_ops);
4088 cft->kf_ops = NULL;
4089 cft->ss = NULL;
4090
4091 /* revert flags set by cgroup core while adding @cfts */
4092 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4093 }
4094 }
4095
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4096 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4097 {
4098 struct cftype *cft;
4099
4100 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4101 struct kernfs_ops *kf_ops;
4102
4103 WARN_ON(cft->ss || cft->kf_ops);
4104
4105 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4106 continue;
4107
4108 if (cft->seq_start)
4109 kf_ops = &cgroup_kf_ops;
4110 else
4111 kf_ops = &cgroup_kf_single_ops;
4112
4113 /*
4114 * Ugh... if @cft wants a custom max_write_len, we need to
4115 * make a copy of kf_ops to set its atomic_write_len.
4116 */
4117 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4118 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4119 if (!kf_ops) {
4120 cgroup_exit_cftypes(cfts);
4121 return -ENOMEM;
4122 }
4123 kf_ops->atomic_write_len = cft->max_write_len;
4124 }
4125
4126 cft->kf_ops = kf_ops;
4127 cft->ss = ss;
4128 }
4129
4130 return 0;
4131 }
4132
cgroup_rm_cftypes_locked(struct cftype * cfts)4133 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4134 {
4135 lockdep_assert_held(&cgroup_mutex);
4136
4137 if (!cfts || !cfts[0].ss)
4138 return -ENOENT;
4139
4140 list_del(&cfts->node);
4141 cgroup_apply_cftypes(cfts, false);
4142 cgroup_exit_cftypes(cfts);
4143 return 0;
4144 }
4145
4146 /**
4147 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4148 * @cfts: zero-length name terminated array of cftypes
4149 *
4150 * Unregister @cfts. Files described by @cfts are removed from all
4151 * existing cgroups and all future cgroups won't have them either. This
4152 * function can be called anytime whether @cfts' subsys is attached or not.
4153 *
4154 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4155 * registered.
4156 */
cgroup_rm_cftypes(struct cftype * cfts)4157 int cgroup_rm_cftypes(struct cftype *cfts)
4158 {
4159 int ret;
4160
4161 mutex_lock(&cgroup_mutex);
4162 ret = cgroup_rm_cftypes_locked(cfts);
4163 mutex_unlock(&cgroup_mutex);
4164 return ret;
4165 }
4166
4167 /**
4168 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4169 * @ss: target cgroup subsystem
4170 * @cfts: zero-length name terminated array of cftypes
4171 *
4172 * Register @cfts to @ss. Files described by @cfts are created for all
4173 * existing cgroups to which @ss is attached and all future cgroups will
4174 * have them too. This function can be called anytime whether @ss is
4175 * attached or not.
4176 *
4177 * Returns 0 on successful registration, -errno on failure. Note that this
4178 * function currently returns 0 as long as @cfts registration is successful
4179 * even if some file creation attempts on existing cgroups fail.
4180 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4181 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4182 {
4183 int ret;
4184
4185 if (!cgroup_ssid_enabled(ss->id))
4186 return 0;
4187
4188 if (!cfts || cfts[0].name[0] == '\0')
4189 return 0;
4190
4191 ret = cgroup_init_cftypes(ss, cfts);
4192 if (ret)
4193 return ret;
4194
4195 mutex_lock(&cgroup_mutex);
4196
4197 list_add_tail(&cfts->node, &ss->cfts);
4198 ret = cgroup_apply_cftypes(cfts, true);
4199 if (ret)
4200 cgroup_rm_cftypes_locked(cfts);
4201
4202 mutex_unlock(&cgroup_mutex);
4203 return ret;
4204 }
4205
4206 /**
4207 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4208 * @ss: target cgroup subsystem
4209 * @cfts: zero-length name terminated array of cftypes
4210 *
4211 * Similar to cgroup_add_cftypes() but the added files are only used for
4212 * the default hierarchy.
4213 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4214 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4215 {
4216 struct cftype *cft;
4217
4218 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4219 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4220 return cgroup_add_cftypes(ss, cfts);
4221 }
4222
4223 /**
4224 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4225 * @ss: target cgroup subsystem
4226 * @cfts: zero-length name terminated array of cftypes
4227 *
4228 * Similar to cgroup_add_cftypes() but the added files are only used for
4229 * the legacy hierarchies.
4230 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4231 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4232 {
4233 struct cftype *cft;
4234
4235 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4236 cft->flags |= __CFTYPE_NOT_ON_DFL;
4237 return cgroup_add_cftypes(ss, cfts);
4238 }
4239 EXPORT_SYMBOL_GPL(cgroup_add_legacy_cftypes);
4240
4241 /**
4242 * cgroup_file_notify - generate a file modified event for a cgroup_file
4243 * @cfile: target cgroup_file
4244 *
4245 * @cfile must have been obtained by setting cftype->file_offset.
4246 */
cgroup_file_notify(struct cgroup_file * cfile)4247 void cgroup_file_notify(struct cgroup_file *cfile)
4248 {
4249 unsigned long flags;
4250
4251 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4252 if (cfile->kn) {
4253 unsigned long last = cfile->notified_at;
4254 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4255
4256 if (time_in_range(jiffies, last, next)) {
4257 timer_reduce(&cfile->notify_timer, next);
4258 } else {
4259 kernfs_notify(cfile->kn);
4260 cfile->notified_at = jiffies;
4261 }
4262 }
4263 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4264 }
4265
4266 /**
4267 * css_next_child - find the next child of a given css
4268 * @pos: the current position (%NULL to initiate traversal)
4269 * @parent: css whose children to walk
4270 *
4271 * This function returns the next child of @parent and should be called
4272 * under either cgroup_mutex or RCU read lock. The only requirement is
4273 * that @parent and @pos are accessible. The next sibling is guaranteed to
4274 * be returned regardless of their states.
4275 *
4276 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4277 * css which finished ->css_online() is guaranteed to be visible in the
4278 * future iterations and will stay visible until the last reference is put.
4279 * A css which hasn't finished ->css_online() or already finished
4280 * ->css_offline() may show up during traversal. It's each subsystem's
4281 * responsibility to synchronize against on/offlining.
4282 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4283 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4284 struct cgroup_subsys_state *parent)
4285 {
4286 struct cgroup_subsys_state *next;
4287
4288 cgroup_assert_mutex_or_rcu_locked();
4289
4290 /*
4291 * @pos could already have been unlinked from the sibling list.
4292 * Once a cgroup is removed, its ->sibling.next is no longer
4293 * updated when its next sibling changes. CSS_RELEASED is set when
4294 * @pos is taken off list, at which time its next pointer is valid,
4295 * and, as releases are serialized, the one pointed to by the next
4296 * pointer is guaranteed to not have started release yet. This
4297 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4298 * critical section, the one pointed to by its next pointer is
4299 * guaranteed to not have finished its RCU grace period even if we
4300 * have dropped rcu_read_lock() inbetween iterations.
4301 *
4302 * If @pos has CSS_RELEASED set, its next pointer can't be
4303 * dereferenced; however, as each css is given a monotonically
4304 * increasing unique serial number and always appended to the
4305 * sibling list, the next one can be found by walking the parent's
4306 * children until the first css with higher serial number than
4307 * @pos's. While this path can be slower, it happens iff iteration
4308 * races against release and the race window is very small.
4309 */
4310 if (!pos) {
4311 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4312 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4313 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4314 } else {
4315 list_for_each_entry_rcu(next, &parent->children, sibling,
4316 lockdep_is_held(&cgroup_mutex))
4317 if (next->serial_nr > pos->serial_nr)
4318 break;
4319 }
4320
4321 /*
4322 * @next, if not pointing to the head, can be dereferenced and is
4323 * the next sibling.
4324 */
4325 if (&next->sibling != &parent->children)
4326 return next;
4327 return NULL;
4328 }
4329 EXPORT_SYMBOL_GPL(css_next_child);
4330
4331 /**
4332 * css_next_descendant_pre - find the next descendant for pre-order walk
4333 * @pos: the current position (%NULL to initiate traversal)
4334 * @root: css whose descendants to walk
4335 *
4336 * To be used by css_for_each_descendant_pre(). Find the next descendant
4337 * to visit for pre-order traversal of @root's descendants. @root is
4338 * included in the iteration and the first node to be visited.
4339 *
4340 * While this function requires cgroup_mutex or RCU read locking, it
4341 * doesn't require the whole traversal to be contained in a single critical
4342 * section. This function will return the correct next descendant as long
4343 * as both @pos and @root are accessible and @pos is a descendant of @root.
4344 *
4345 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4346 * css which finished ->css_online() is guaranteed to be visible in the
4347 * future iterations and will stay visible until the last reference is put.
4348 * A css which hasn't finished ->css_online() or already finished
4349 * ->css_offline() may show up during traversal. It's each subsystem's
4350 * responsibility to synchronize against on/offlining.
4351 */
4352 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4353 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4354 struct cgroup_subsys_state *root)
4355 {
4356 struct cgroup_subsys_state *next;
4357
4358 cgroup_assert_mutex_or_rcu_locked();
4359
4360 /* if first iteration, visit @root */
4361 if (!pos)
4362 return root;
4363
4364 /* visit the first child if exists */
4365 next = css_next_child(NULL, pos);
4366 if (next)
4367 return next;
4368
4369 /* no child, visit my or the closest ancestor's next sibling */
4370 while (pos != root) {
4371 next = css_next_child(pos, pos->parent);
4372 if (next)
4373 return next;
4374 pos = pos->parent;
4375 }
4376
4377 return NULL;
4378 }
4379 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4380
4381 /**
4382 * css_rightmost_descendant - return the rightmost descendant of a css
4383 * @pos: css of interest
4384 *
4385 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4386 * is returned. This can be used during pre-order traversal to skip
4387 * subtree of @pos.
4388 *
4389 * While this function requires cgroup_mutex or RCU read locking, it
4390 * doesn't require the whole traversal to be contained in a single critical
4391 * section. This function will return the correct rightmost descendant as
4392 * long as @pos is accessible.
4393 */
4394 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4395 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4396 {
4397 struct cgroup_subsys_state *last, *tmp;
4398
4399 cgroup_assert_mutex_or_rcu_locked();
4400
4401 do {
4402 last = pos;
4403 /* ->prev isn't RCU safe, walk ->next till the end */
4404 pos = NULL;
4405 css_for_each_child(tmp, last)
4406 pos = tmp;
4407 } while (pos);
4408
4409 return last;
4410 }
4411
4412 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4413 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4414 {
4415 struct cgroup_subsys_state *last;
4416
4417 do {
4418 last = pos;
4419 pos = css_next_child(NULL, pos);
4420 } while (pos);
4421
4422 return last;
4423 }
4424
4425 /**
4426 * css_next_descendant_post - find the next descendant for post-order walk
4427 * @pos: the current position (%NULL to initiate traversal)
4428 * @root: css whose descendants to walk
4429 *
4430 * To be used by css_for_each_descendant_post(). Find the next descendant
4431 * to visit for post-order traversal of @root's descendants. @root is
4432 * included in the iteration and the last node to be visited.
4433 *
4434 * While this function requires cgroup_mutex or RCU read locking, it
4435 * doesn't require the whole traversal to be contained in a single critical
4436 * section. This function will return the correct next descendant as long
4437 * as both @pos and @cgroup are accessible and @pos is a descendant of
4438 * @cgroup.
4439 *
4440 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4441 * css which finished ->css_online() is guaranteed to be visible in the
4442 * future iterations and will stay visible until the last reference is put.
4443 * A css which hasn't finished ->css_online() or already finished
4444 * ->css_offline() may show up during traversal. It's each subsystem's
4445 * responsibility to synchronize against on/offlining.
4446 */
4447 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4448 css_next_descendant_post(struct cgroup_subsys_state *pos,
4449 struct cgroup_subsys_state *root)
4450 {
4451 struct cgroup_subsys_state *next;
4452
4453 cgroup_assert_mutex_or_rcu_locked();
4454
4455 /* if first iteration, visit leftmost descendant which may be @root */
4456 if (!pos)
4457 return css_leftmost_descendant(root);
4458
4459 /* if we visited @root, we're done */
4460 if (pos == root)
4461 return NULL;
4462
4463 /* if there's an unvisited sibling, visit its leftmost descendant */
4464 next = css_next_child(pos, pos->parent);
4465 if (next)
4466 return css_leftmost_descendant(next);
4467
4468 /* no sibling left, visit parent */
4469 return pos->parent;
4470 }
4471
4472 /**
4473 * css_has_online_children - does a css have online children
4474 * @css: the target css
4475 *
4476 * Returns %true if @css has any online children; otherwise, %false. This
4477 * function can be called from any context but the caller is responsible
4478 * for synchronizing against on/offlining as necessary.
4479 */
css_has_online_children(struct cgroup_subsys_state * css)4480 bool css_has_online_children(struct cgroup_subsys_state *css)
4481 {
4482 struct cgroup_subsys_state *child;
4483 bool ret = false;
4484
4485 rcu_read_lock();
4486 css_for_each_child(child, css) {
4487 if (child->flags & CSS_ONLINE) {
4488 ret = true;
4489 break;
4490 }
4491 }
4492 rcu_read_unlock();
4493 return ret;
4494 }
4495
css_task_iter_next_css_set(struct css_task_iter * it)4496 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4497 {
4498 struct list_head *l;
4499 struct cgrp_cset_link *link;
4500 struct css_set *cset;
4501
4502 lockdep_assert_held(&css_set_lock);
4503
4504 /* find the next threaded cset */
4505 if (it->tcset_pos) {
4506 l = it->tcset_pos->next;
4507
4508 if (l != it->tcset_head) {
4509 it->tcset_pos = l;
4510 return container_of(l, struct css_set,
4511 threaded_csets_node);
4512 }
4513
4514 it->tcset_pos = NULL;
4515 }
4516
4517 /* find the next cset */
4518 l = it->cset_pos;
4519 l = l->next;
4520 if (l == it->cset_head) {
4521 it->cset_pos = NULL;
4522 return NULL;
4523 }
4524
4525 if (it->ss) {
4526 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4527 } else {
4528 link = list_entry(l, struct cgrp_cset_link, cset_link);
4529 cset = link->cset;
4530 }
4531
4532 it->cset_pos = l;
4533
4534 /* initialize threaded css_set walking */
4535 if (it->flags & CSS_TASK_ITER_THREADED) {
4536 if (it->cur_dcset)
4537 put_css_set_locked(it->cur_dcset);
4538 it->cur_dcset = cset;
4539 get_css_set(cset);
4540
4541 it->tcset_head = &cset->threaded_csets;
4542 it->tcset_pos = &cset->threaded_csets;
4543 }
4544
4545 return cset;
4546 }
4547
4548 /**
4549 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4550 * @it: the iterator to advance
4551 *
4552 * Advance @it to the next css_set to walk.
4553 */
css_task_iter_advance_css_set(struct css_task_iter * it)4554 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4555 {
4556 struct css_set *cset;
4557
4558 lockdep_assert_held(&css_set_lock);
4559
4560 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4561 while ((cset = css_task_iter_next_css_set(it))) {
4562 if (!list_empty(&cset->tasks)) {
4563 it->cur_tasks_head = &cset->tasks;
4564 break;
4565 } else if (!list_empty(&cset->mg_tasks)) {
4566 it->cur_tasks_head = &cset->mg_tasks;
4567 break;
4568 } else if (!list_empty(&cset->dying_tasks)) {
4569 it->cur_tasks_head = &cset->dying_tasks;
4570 break;
4571 }
4572 }
4573 if (!cset) {
4574 it->task_pos = NULL;
4575 return;
4576 }
4577 it->task_pos = it->cur_tasks_head->next;
4578
4579 /*
4580 * We don't keep css_sets locked across iteration steps and thus
4581 * need to take steps to ensure that iteration can be resumed after
4582 * the lock is re-acquired. Iteration is performed at two levels -
4583 * css_sets and tasks in them.
4584 *
4585 * Once created, a css_set never leaves its cgroup lists, so a
4586 * pinned css_set is guaranteed to stay put and we can resume
4587 * iteration afterwards.
4588 *
4589 * Tasks may leave @cset across iteration steps. This is resolved
4590 * by registering each iterator with the css_set currently being
4591 * walked and making css_set_move_task() advance iterators whose
4592 * next task is leaving.
4593 */
4594 if (it->cur_cset) {
4595 list_del(&it->iters_node);
4596 put_css_set_locked(it->cur_cset);
4597 }
4598 get_css_set(cset);
4599 it->cur_cset = cset;
4600 list_add(&it->iters_node, &cset->task_iters);
4601 }
4602
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4603 static void css_task_iter_skip(struct css_task_iter *it,
4604 struct task_struct *task)
4605 {
4606 lockdep_assert_held(&css_set_lock);
4607
4608 if (it->task_pos == &task->cg_list) {
4609 it->task_pos = it->task_pos->next;
4610 it->flags |= CSS_TASK_ITER_SKIPPED;
4611 }
4612 }
4613
css_task_iter_advance(struct css_task_iter * it)4614 static void css_task_iter_advance(struct css_task_iter *it)
4615 {
4616 struct task_struct *task;
4617
4618 lockdep_assert_held(&css_set_lock);
4619 repeat:
4620 if (it->task_pos) {
4621 /*
4622 * Advance iterator to find next entry. We go through cset
4623 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4624 * the next cset.
4625 */
4626 if (it->flags & CSS_TASK_ITER_SKIPPED)
4627 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4628 else
4629 it->task_pos = it->task_pos->next;
4630
4631 if (it->task_pos == &it->cur_cset->tasks) {
4632 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4633 it->task_pos = it->cur_tasks_head->next;
4634 }
4635 if (it->task_pos == &it->cur_cset->mg_tasks) {
4636 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4637 it->task_pos = it->cur_tasks_head->next;
4638 }
4639 if (it->task_pos == &it->cur_cset->dying_tasks)
4640 css_task_iter_advance_css_set(it);
4641 } else {
4642 /* called from start, proceed to the first cset */
4643 css_task_iter_advance_css_set(it);
4644 }
4645
4646 if (!it->task_pos)
4647 return;
4648
4649 task = list_entry(it->task_pos, struct task_struct, cg_list);
4650
4651 if (it->flags & CSS_TASK_ITER_PROCS) {
4652 /* if PROCS, skip over tasks which aren't group leaders */
4653 if (!thread_group_leader(task))
4654 goto repeat;
4655
4656 /* and dying leaders w/o live member threads */
4657 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4658 !atomic_read(&task->signal->live))
4659 goto repeat;
4660 } else {
4661 /* skip all dying ones */
4662 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4663 goto repeat;
4664 }
4665 }
4666
4667 /**
4668 * css_task_iter_start - initiate task iteration
4669 * @css: the css to walk tasks of
4670 * @flags: CSS_TASK_ITER_* flags
4671 * @it: the task iterator to use
4672 *
4673 * Initiate iteration through the tasks of @css. The caller can call
4674 * css_task_iter_next() to walk through the tasks until the function
4675 * returns NULL. On completion of iteration, css_task_iter_end() must be
4676 * called.
4677 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4678 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4679 struct css_task_iter *it)
4680 {
4681 memset(it, 0, sizeof(*it));
4682
4683 spin_lock_irq(&css_set_lock);
4684
4685 it->ss = css->ss;
4686 it->flags = flags;
4687
4688 if (it->ss)
4689 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4690 else
4691 it->cset_pos = &css->cgroup->cset_links;
4692
4693 it->cset_head = it->cset_pos;
4694
4695 css_task_iter_advance(it);
4696
4697 spin_unlock_irq(&css_set_lock);
4698 }
4699
4700 /**
4701 * css_task_iter_next - return the next task for the iterator
4702 * @it: the task iterator being iterated
4703 *
4704 * The "next" function for task iteration. @it should have been
4705 * initialized via css_task_iter_start(). Returns NULL when the iteration
4706 * reaches the end.
4707 */
css_task_iter_next(struct css_task_iter * it)4708 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4709 {
4710 if (it->cur_task) {
4711 put_task_struct(it->cur_task);
4712 it->cur_task = NULL;
4713 }
4714
4715 spin_lock_irq(&css_set_lock);
4716
4717 /* @it may be half-advanced by skips, finish advancing */
4718 if (it->flags & CSS_TASK_ITER_SKIPPED)
4719 css_task_iter_advance(it);
4720
4721 if (it->task_pos) {
4722 it->cur_task = list_entry(it->task_pos, struct task_struct,
4723 cg_list);
4724 get_task_struct(it->cur_task);
4725 css_task_iter_advance(it);
4726 }
4727
4728 spin_unlock_irq(&css_set_lock);
4729
4730 return it->cur_task;
4731 }
4732
4733 /**
4734 * css_task_iter_end - finish task iteration
4735 * @it: the task iterator to finish
4736 *
4737 * Finish task iteration started by css_task_iter_start().
4738 */
css_task_iter_end(struct css_task_iter * it)4739 void css_task_iter_end(struct css_task_iter *it)
4740 {
4741 if (it->cur_cset) {
4742 spin_lock_irq(&css_set_lock);
4743 list_del(&it->iters_node);
4744 put_css_set_locked(it->cur_cset);
4745 spin_unlock_irq(&css_set_lock);
4746 }
4747
4748 if (it->cur_dcset)
4749 put_css_set(it->cur_dcset);
4750
4751 if (it->cur_task)
4752 put_task_struct(it->cur_task);
4753 }
4754
cgroup_procs_release(struct kernfs_open_file * of)4755 static void cgroup_procs_release(struct kernfs_open_file *of)
4756 {
4757 struct cgroup_file_ctx *ctx = of->priv;
4758
4759 if (ctx->procs.started)
4760 css_task_iter_end(&ctx->procs.iter);
4761 }
4762
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4763 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4764 {
4765 struct kernfs_open_file *of = s->private;
4766 struct cgroup_file_ctx *ctx = of->priv;
4767
4768 if (pos)
4769 (*pos)++;
4770
4771 return css_task_iter_next(&ctx->procs.iter);
4772 }
4773
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4774 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4775 unsigned int iter_flags)
4776 {
4777 struct kernfs_open_file *of = s->private;
4778 struct cgroup *cgrp = seq_css(s)->cgroup;
4779 struct cgroup_file_ctx *ctx = of->priv;
4780 struct css_task_iter *it = &ctx->procs.iter;
4781
4782 /*
4783 * When a seq_file is seeked, it's always traversed sequentially
4784 * from position 0, so we can simply keep iterating on !0 *pos.
4785 */
4786 if (!ctx->procs.started) {
4787 if (WARN_ON_ONCE((*pos)))
4788 return ERR_PTR(-EINVAL);
4789 css_task_iter_start(&cgrp->self, iter_flags, it);
4790 ctx->procs.started = true;
4791 } else if (!(*pos)) {
4792 css_task_iter_end(it);
4793 css_task_iter_start(&cgrp->self, iter_flags, it);
4794 } else
4795 return it->cur_task;
4796
4797 return cgroup_procs_next(s, NULL, NULL);
4798 }
4799
cgroup_procs_start(struct seq_file * s,loff_t * pos)4800 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4801 {
4802 struct cgroup *cgrp = seq_css(s)->cgroup;
4803
4804 /*
4805 * All processes of a threaded subtree belong to the domain cgroup
4806 * of the subtree. Only threads can be distributed across the
4807 * subtree. Reject reads on cgroup.procs in the subtree proper.
4808 * They're always empty anyway.
4809 */
4810 if (cgroup_is_threaded(cgrp))
4811 return ERR_PTR(-EOPNOTSUPP);
4812
4813 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4814 CSS_TASK_ITER_THREADED);
4815 }
4816
cgroup_procs_show(struct seq_file * s,void * v)4817 static int cgroup_procs_show(struct seq_file *s, void *v)
4818 {
4819 seq_printf(s, "%d\n", task_pid_vnr(v));
4820 return 0;
4821 }
4822
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4823 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4824 {
4825 int ret;
4826 struct inode *inode;
4827
4828 lockdep_assert_held(&cgroup_mutex);
4829
4830 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4831 if (!inode)
4832 return -ENOMEM;
4833
4834 ret = inode_permission(inode, MAY_WRITE);
4835 iput(inode);
4836 return ret;
4837 }
4838
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4839 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4840 struct cgroup *dst_cgrp,
4841 struct super_block *sb,
4842 struct cgroup_namespace *ns)
4843 {
4844 struct cgroup *com_cgrp = src_cgrp;
4845 int ret;
4846
4847 lockdep_assert_held(&cgroup_mutex);
4848
4849 /* find the common ancestor */
4850 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4851 com_cgrp = cgroup_parent(com_cgrp);
4852
4853 /* %current should be authorized to migrate to the common ancestor */
4854 ret = cgroup_may_write(com_cgrp, sb);
4855 if (ret)
4856 return ret;
4857
4858 /*
4859 * If namespaces are delegation boundaries, %current must be able
4860 * to see both source and destination cgroups from its namespace.
4861 */
4862 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4863 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4864 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4865 return -ENOENT;
4866
4867 return 0;
4868 }
4869
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4870 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4871 struct cgroup *dst_cgrp,
4872 struct super_block *sb, bool threadgroup,
4873 struct cgroup_namespace *ns)
4874 {
4875 int ret = 0;
4876
4877 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4878 if (ret)
4879 return ret;
4880
4881 ret = cgroup_migrate_vet_dst(dst_cgrp);
4882 if (ret)
4883 return ret;
4884
4885 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4886 ret = -EOPNOTSUPP;
4887
4888 return ret;
4889 }
4890
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4891 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4892 char *buf, size_t nbytes, loff_t off)
4893 {
4894 struct cgroup_file_ctx *ctx = of->priv;
4895 struct cgroup *src_cgrp, *dst_cgrp;
4896 struct task_struct *task;
4897 const struct cred *saved_cred;
4898 ssize_t ret;
4899 bool threadgroup_locked;
4900
4901 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4902 if (!dst_cgrp)
4903 return -ENODEV;
4904
4905 task = cgroup_procs_write_start(buf, true, &threadgroup_locked, dst_cgrp);
4906 ret = PTR_ERR_OR_ZERO(task);
4907 if (ret)
4908 goto out_unlock;
4909
4910 /* find the source cgroup */
4911 spin_lock_irq(&css_set_lock);
4912 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4913 spin_unlock_irq(&css_set_lock);
4914
4915 /*
4916 * Process and thread migrations follow same delegation rule. Check
4917 * permissions using the credentials from file open to protect against
4918 * inherited fd attacks.
4919 */
4920 saved_cred = override_creds(of->file->f_cred);
4921 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4922 of->file->f_path.dentry->d_sb, true,
4923 ctx->ns);
4924 revert_creds(saved_cred);
4925 if (ret)
4926 goto out_finish;
4927
4928 ret = cgroup_attach_task(dst_cgrp, task, true);
4929
4930 out_finish:
4931 cgroup_procs_write_finish(task, threadgroup_locked);
4932 out_unlock:
4933 cgroup_kn_unlock(of->kn);
4934
4935 return ret ?: nbytes;
4936 }
4937
cgroup_threads_start(struct seq_file * s,loff_t * pos)4938 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4939 {
4940 return __cgroup_procs_start(s, pos, 0);
4941 }
4942
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4943 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4944 char *buf, size_t nbytes, loff_t off)
4945 {
4946 struct cgroup_file_ctx *ctx = of->priv;
4947 struct cgroup *src_cgrp, *dst_cgrp;
4948 struct task_struct *task;
4949 const struct cred *saved_cred;
4950 ssize_t ret;
4951 bool threadgroup_locked;
4952
4953 buf = strstrip(buf);
4954
4955 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4956 if (!dst_cgrp)
4957 return -ENODEV;
4958
4959 task = cgroup_procs_write_start(buf, false, &threadgroup_locked, dst_cgrp);
4960 ret = PTR_ERR_OR_ZERO(task);
4961 if (ret)
4962 goto out_unlock;
4963
4964 /* find the source cgroup */
4965 spin_lock_irq(&css_set_lock);
4966 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4967 spin_unlock_irq(&css_set_lock);
4968
4969 /*
4970 * Process and thread migrations follow same delegation rule. Check
4971 * permissions using the credentials from file open to protect against
4972 * inherited fd attacks.
4973 */
4974 saved_cred = override_creds(of->file->f_cred);
4975 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4976 of->file->f_path.dentry->d_sb, false,
4977 ctx->ns);
4978 revert_creds(saved_cred);
4979 if (ret)
4980 goto out_finish;
4981
4982 ret = cgroup_attach_task(dst_cgrp, task, false);
4983
4984 out_finish:
4985 cgroup_procs_write_finish(task, threadgroup_locked);
4986 out_unlock:
4987 cgroup_kn_unlock(of->kn);
4988
4989 return ret ?: nbytes;
4990 }
4991
4992 /* cgroup core interface files for the default hierarchy */
4993 static struct cftype cgroup_base_files[] = {
4994 {
4995 .name = "cgroup.type",
4996 .flags = CFTYPE_NOT_ON_ROOT,
4997 .seq_show = cgroup_type_show,
4998 .write = cgroup_type_write,
4999 },
5000 {
5001 .name = "cgroup.procs",
5002 .flags = CFTYPE_NS_DELEGATABLE,
5003 .file_offset = offsetof(struct cgroup, procs_file),
5004 .release = cgroup_procs_release,
5005 .seq_start = cgroup_procs_start,
5006 .seq_next = cgroup_procs_next,
5007 .seq_show = cgroup_procs_show,
5008 .write = cgroup_procs_write,
5009 },
5010 {
5011 .name = "cgroup.threads",
5012 .flags = CFTYPE_NS_DELEGATABLE,
5013 .release = cgroup_procs_release,
5014 .seq_start = cgroup_threads_start,
5015 .seq_next = cgroup_procs_next,
5016 .seq_show = cgroup_procs_show,
5017 .write = cgroup_threads_write,
5018 },
5019 {
5020 .name = "cgroup.controllers",
5021 .seq_show = cgroup_controllers_show,
5022 },
5023 {
5024 .name = "cgroup.subtree_control",
5025 .flags = CFTYPE_NS_DELEGATABLE,
5026 .seq_show = cgroup_subtree_control_show,
5027 .write = cgroup_subtree_control_write,
5028 },
5029 {
5030 .name = "cgroup.events",
5031 .flags = CFTYPE_NOT_ON_ROOT,
5032 .file_offset = offsetof(struct cgroup, events_file),
5033 .seq_show = cgroup_events_show,
5034 },
5035 {
5036 .name = "cgroup.max.descendants",
5037 .seq_show = cgroup_max_descendants_show,
5038 .write = cgroup_max_descendants_write,
5039 },
5040 {
5041 .name = "cgroup.max.depth",
5042 .seq_show = cgroup_max_depth_show,
5043 .write = cgroup_max_depth_write,
5044 },
5045 {
5046 .name = "cgroup.stat",
5047 .seq_show = cgroup_stat_show,
5048 },
5049 {
5050 .name = "cgroup.freeze",
5051 .flags = CFTYPE_NOT_ON_ROOT,
5052 .seq_show = cgroup_freeze_show,
5053 .write = cgroup_freeze_write,
5054 },
5055 {
5056 .name = "cpu.stat",
5057 .seq_show = cpu_stat_show,
5058 },
5059 #ifdef CONFIG_PSI
5060 {
5061 .name = "io.pressure",
5062 .flags = CFTYPE_PRESSURE,
5063 .seq_show = cgroup_io_pressure_show,
5064 .write = cgroup_io_pressure_write,
5065 .poll = cgroup_pressure_poll,
5066 .release = cgroup_pressure_release,
5067 },
5068 {
5069 .name = "memory.pressure",
5070 .flags = CFTYPE_PRESSURE,
5071 .seq_show = cgroup_memory_pressure_show,
5072 .write = cgroup_memory_pressure_write,
5073 .poll = cgroup_pressure_poll,
5074 .release = cgroup_pressure_release,
5075 },
5076 {
5077 .name = "cpu.pressure",
5078 .flags = CFTYPE_PRESSURE,
5079 .seq_show = cgroup_cpu_pressure_show,
5080 .write = cgroup_cpu_pressure_write,
5081 .poll = cgroup_pressure_poll,
5082 .release = cgroup_pressure_release,
5083 },
5084 #endif /* CONFIG_PSI */
5085 { } /* terminate */
5086 };
5087
5088 /*
5089 * css destruction is four-stage process.
5090 *
5091 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5092 * Implemented in kill_css().
5093 *
5094 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5095 * and thus css_tryget_online() is guaranteed to fail, the css can be
5096 * offlined by invoking offline_css(). After offlining, the base ref is
5097 * put. Implemented in css_killed_work_fn().
5098 *
5099 * 3. When the percpu_ref reaches zero, the only possible remaining
5100 * accessors are inside RCU read sections. css_release() schedules the
5101 * RCU callback.
5102 *
5103 * 4. After the grace period, the css can be freed. Implemented in
5104 * css_free_work_fn().
5105 *
5106 * It is actually hairier because both step 2 and 4 require process context
5107 * and thus involve punting to css->destroy_work adding two additional
5108 * steps to the already complex sequence.
5109 */
css_free_rwork_fn(struct work_struct * work)5110 static void css_free_rwork_fn(struct work_struct *work)
5111 {
5112 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5113 struct cgroup_subsys_state, destroy_rwork);
5114 struct cgroup_subsys *ss = css->ss;
5115 struct cgroup *cgrp = css->cgroup;
5116
5117 percpu_ref_exit(&css->refcnt);
5118
5119 if (ss) {
5120 /* css free path */
5121 struct cgroup_subsys_state *parent = css->parent;
5122 int id = css->id;
5123
5124 ss->css_free(css);
5125 cgroup_idr_remove(&ss->css_idr, id);
5126 cgroup_put(cgrp);
5127
5128 if (parent)
5129 css_put(parent);
5130 } else {
5131 /* cgroup free path */
5132 atomic_dec(&cgrp->root->nr_cgrps);
5133 cgroup1_pidlist_destroy_all(cgrp);
5134 cancel_work_sync(&cgrp->release_agent_work);
5135
5136 if (cgroup_parent(cgrp)) {
5137 /*
5138 * We get a ref to the parent, and put the ref when
5139 * this cgroup is being freed, so it's guaranteed
5140 * that the parent won't be destroyed before its
5141 * children.
5142 */
5143 cgroup_put(cgroup_parent(cgrp));
5144 kernfs_put(cgrp->kn);
5145 psi_cgroup_free(cgrp);
5146 if (cgroup_on_dfl(cgrp))
5147 cgroup_rstat_exit(cgrp);
5148 kfree(cgrp);
5149 } else {
5150 /*
5151 * This is root cgroup's refcnt reaching zero,
5152 * which indicates that the root should be
5153 * released.
5154 */
5155 cgroup_destroy_root(cgrp->root);
5156 }
5157 }
5158 }
5159
css_release_work_fn(struct work_struct * work)5160 static void css_release_work_fn(struct work_struct *work)
5161 {
5162 struct cgroup_subsys_state *css =
5163 container_of(work, struct cgroup_subsys_state, destroy_work);
5164 struct cgroup_subsys *ss = css->ss;
5165 struct cgroup *cgrp = css->cgroup;
5166
5167 mutex_lock(&cgroup_mutex);
5168
5169 css->flags |= CSS_RELEASED;
5170 list_del_rcu(&css->sibling);
5171
5172 if (ss) {
5173 /* css release path */
5174 if (!list_empty(&css->rstat_css_node)) {
5175 cgroup_rstat_flush(cgrp);
5176 list_del_rcu(&css->rstat_css_node);
5177 }
5178
5179 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5180 if (ss->css_released)
5181 ss->css_released(css);
5182 } else {
5183 struct cgroup *tcgrp;
5184
5185 /* cgroup release path */
5186 TRACE_CGROUP_PATH(release, cgrp);
5187
5188 if (cgroup_on_dfl(cgrp))
5189 cgroup_rstat_flush(cgrp);
5190
5191 spin_lock_irq(&css_set_lock);
5192 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5193 tcgrp = cgroup_parent(tcgrp))
5194 tcgrp->nr_dying_descendants--;
5195 spin_unlock_irq(&css_set_lock);
5196
5197 /*
5198 * There are two control paths which try to determine
5199 * cgroup from dentry without going through kernfs -
5200 * cgroupstats_build() and css_tryget_online_from_dir().
5201 * Those are supported by RCU protecting clearing of
5202 * cgrp->kn->priv backpointer.
5203 */
5204 if (cgrp->kn)
5205 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5206 NULL);
5207 }
5208
5209 mutex_unlock(&cgroup_mutex);
5210
5211 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5212 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5213 }
5214
css_release(struct percpu_ref * ref)5215 static void css_release(struct percpu_ref *ref)
5216 {
5217 struct cgroup_subsys_state *css =
5218 container_of(ref, struct cgroup_subsys_state, refcnt);
5219
5220 INIT_WORK(&css->destroy_work, css_release_work_fn);
5221 queue_work(cgroup_destroy_wq, &css->destroy_work);
5222 }
5223
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5224 static void init_and_link_css(struct cgroup_subsys_state *css,
5225 struct cgroup_subsys *ss, struct cgroup *cgrp)
5226 {
5227 lockdep_assert_held(&cgroup_mutex);
5228
5229 cgroup_get_live(cgrp);
5230
5231 memset(css, 0, sizeof(*css));
5232 css->cgroup = cgrp;
5233 css->ss = ss;
5234 css->id = -1;
5235 INIT_LIST_HEAD(&css->sibling);
5236 INIT_LIST_HEAD(&css->children);
5237 INIT_LIST_HEAD(&css->rstat_css_node);
5238 css->serial_nr = css_serial_nr_next++;
5239 atomic_set(&css->online_cnt, 0);
5240
5241 if (cgroup_parent(cgrp)) {
5242 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5243 css_get(css->parent);
5244 }
5245
5246 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5247 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5248
5249 BUG_ON(cgroup_css(cgrp, ss));
5250 }
5251
5252 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5253 static int online_css(struct cgroup_subsys_state *css)
5254 {
5255 struct cgroup_subsys *ss = css->ss;
5256 int ret = 0;
5257
5258 lockdep_assert_held(&cgroup_mutex);
5259
5260 if (ss->css_online)
5261 ret = ss->css_online(css);
5262 if (!ret) {
5263 css->flags |= CSS_ONLINE;
5264 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5265
5266 atomic_inc(&css->online_cnt);
5267 if (css->parent)
5268 atomic_inc(&css->parent->online_cnt);
5269 }
5270 return ret;
5271 }
5272
5273 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5274 static void offline_css(struct cgroup_subsys_state *css)
5275 {
5276 struct cgroup_subsys *ss = css->ss;
5277
5278 lockdep_assert_held(&cgroup_mutex);
5279
5280 if (!(css->flags & CSS_ONLINE))
5281 return;
5282
5283 if (ss->css_offline)
5284 ss->css_offline(css);
5285
5286 css->flags &= ~CSS_ONLINE;
5287 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5288
5289 wake_up_all(&css->cgroup->offline_waitq);
5290 }
5291
5292 /**
5293 * css_create - create a cgroup_subsys_state
5294 * @cgrp: the cgroup new css will be associated with
5295 * @ss: the subsys of new css
5296 *
5297 * Create a new css associated with @cgrp - @ss pair. On success, the new
5298 * css is online and installed in @cgrp. This function doesn't create the
5299 * interface files. Returns 0 on success, -errno on failure.
5300 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5301 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5302 struct cgroup_subsys *ss)
5303 {
5304 struct cgroup *parent = cgroup_parent(cgrp);
5305 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5306 struct cgroup_subsys_state *css;
5307 int err;
5308
5309 lockdep_assert_held(&cgroup_mutex);
5310
5311 css = ss->css_alloc(parent_css);
5312 if (!css)
5313 css = ERR_PTR(-ENOMEM);
5314 if (IS_ERR(css))
5315 return css;
5316
5317 init_and_link_css(css, ss, cgrp);
5318
5319 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5320 if (err)
5321 goto err_free_css;
5322
5323 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5324 if (err < 0)
5325 goto err_free_css;
5326 css->id = err;
5327
5328 /* @css is ready to be brought online now, make it visible */
5329 list_add_tail_rcu(&css->sibling, &parent_css->children);
5330 cgroup_idr_replace(&ss->css_idr, css, css->id);
5331
5332 err = online_css(css);
5333 if (err)
5334 goto err_list_del;
5335
5336 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5337 cgroup_parent(parent)) {
5338 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5339 current->comm, current->pid, ss->name);
5340 if (!strcmp(ss->name, "memory"))
5341 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5342 ss->warned_broken_hierarchy = true;
5343 }
5344
5345 return css;
5346
5347 err_list_del:
5348 list_del_rcu(&css->sibling);
5349 err_free_css:
5350 list_del_rcu(&css->rstat_css_node);
5351 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5352 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5353 return ERR_PTR(err);
5354 }
5355
5356 /*
5357 * The returned cgroup is fully initialized including its control mask, but
5358 * it isn't associated with its kernfs_node and doesn't have the control
5359 * mask applied.
5360 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5361 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5362 umode_t mode)
5363 {
5364 struct cgroup_root *root = parent->root;
5365 struct cgroup *cgrp, *tcgrp;
5366 struct kernfs_node *kn;
5367 int level = parent->level + 1;
5368 int ret;
5369
5370 /* allocate the cgroup and its ID, 0 is reserved for the root */
5371 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5372 GFP_KERNEL);
5373 if (!cgrp)
5374 return ERR_PTR(-ENOMEM);
5375
5376 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5377 if (ret)
5378 goto out_free_cgrp;
5379
5380 if (cgroup_on_dfl(parent)) {
5381 ret = cgroup_rstat_init(cgrp);
5382 if (ret)
5383 goto out_cancel_ref;
5384 }
5385
5386 /* create the directory */
5387 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5388 if (IS_ERR(kn)) {
5389 ret = PTR_ERR(kn);
5390 goto out_stat_exit;
5391 }
5392 cgrp->kn = kn;
5393
5394 init_cgroup_housekeeping(cgrp);
5395
5396 cgrp->self.parent = &parent->self;
5397 cgrp->root = root;
5398 cgrp->level = level;
5399
5400 ret = psi_cgroup_alloc(cgrp);
5401 if (ret)
5402 goto out_kernfs_remove;
5403
5404 ret = cgroup_bpf_inherit(cgrp);
5405 if (ret)
5406 goto out_psi_free;
5407
5408 /*
5409 * New cgroup inherits effective freeze counter, and
5410 * if the parent has to be frozen, the child has too.
5411 */
5412 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5413 if (cgrp->freezer.e_freeze) {
5414 /*
5415 * Set the CGRP_FREEZE flag, so when a process will be
5416 * attached to the child cgroup, it will become frozen.
5417 * At this point the new cgroup is unpopulated, so we can
5418 * consider it frozen immediately.
5419 */
5420 set_bit(CGRP_FREEZE, &cgrp->flags);
5421 set_bit(CGRP_FROZEN, &cgrp->flags);
5422 }
5423
5424 spin_lock_irq(&css_set_lock);
5425 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5426 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5427
5428 if (tcgrp != cgrp) {
5429 tcgrp->nr_descendants++;
5430
5431 /*
5432 * If the new cgroup is frozen, all ancestor cgroups
5433 * get a new frozen descendant, but their state can't
5434 * change because of this.
5435 */
5436 if (cgrp->freezer.e_freeze)
5437 tcgrp->freezer.nr_frozen_descendants++;
5438 }
5439 }
5440 spin_unlock_irq(&css_set_lock);
5441
5442 if (notify_on_release(parent))
5443 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5444
5445 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5446 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5447
5448 cgrp->self.serial_nr = css_serial_nr_next++;
5449
5450 /* allocation complete, commit to creation */
5451 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5452 atomic_inc(&root->nr_cgrps);
5453 cgroup_get_live(parent);
5454
5455 /*
5456 * On the default hierarchy, a child doesn't automatically inherit
5457 * subtree_control from the parent. Each is configured manually.
5458 */
5459 if (!cgroup_on_dfl(cgrp))
5460 cgrp->subtree_control = cgroup_control(cgrp);
5461
5462 cgroup_propagate_control(cgrp);
5463
5464 return cgrp;
5465
5466 out_psi_free:
5467 psi_cgroup_free(cgrp);
5468 out_kernfs_remove:
5469 kernfs_remove(cgrp->kn);
5470 out_stat_exit:
5471 if (cgroup_on_dfl(parent))
5472 cgroup_rstat_exit(cgrp);
5473 out_cancel_ref:
5474 percpu_ref_exit(&cgrp->self.refcnt);
5475 out_free_cgrp:
5476 kfree(cgrp);
5477 return ERR_PTR(ret);
5478 }
5479
cgroup_check_hierarchy_limits(struct cgroup * parent)5480 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5481 {
5482 struct cgroup *cgroup;
5483 int ret = false;
5484 int level = 1;
5485
5486 lockdep_assert_held(&cgroup_mutex);
5487
5488 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5489 if (cgroup->nr_descendants >= cgroup->max_descendants)
5490 goto fail;
5491
5492 if (level > cgroup->max_depth)
5493 goto fail;
5494
5495 level++;
5496 }
5497
5498 ret = true;
5499 fail:
5500 return ret;
5501 }
5502
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5503 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5504 {
5505 struct cgroup *parent, *cgrp;
5506 int ret;
5507
5508 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5509 if (strchr(name, '\n'))
5510 return -EINVAL;
5511
5512 parent = cgroup_kn_lock_live(parent_kn, false);
5513 if (!parent)
5514 return -ENODEV;
5515
5516 if (!cgroup_check_hierarchy_limits(parent)) {
5517 ret = -EAGAIN;
5518 goto out_unlock;
5519 }
5520
5521 cgrp = cgroup_create(parent, name, mode);
5522 if (IS_ERR(cgrp)) {
5523 ret = PTR_ERR(cgrp);
5524 goto out_unlock;
5525 }
5526
5527 /*
5528 * This extra ref will be put in cgroup_free_fn() and guarantees
5529 * that @cgrp->kn is always accessible.
5530 */
5531 kernfs_get(cgrp->kn);
5532
5533 ret = cgroup_kn_set_ugid(cgrp->kn);
5534 if (ret)
5535 goto out_destroy;
5536
5537 ret = css_populate_dir(&cgrp->self);
5538 if (ret)
5539 goto out_destroy;
5540
5541 ret = cgroup_apply_control_enable(cgrp);
5542 if (ret)
5543 goto out_destroy;
5544
5545 TRACE_CGROUP_PATH(mkdir, cgrp);
5546
5547 /* let's create and online css's */
5548 kernfs_activate(cgrp->kn);
5549
5550 ret = 0;
5551 goto out_unlock;
5552
5553 out_destroy:
5554 cgroup_destroy_locked(cgrp);
5555 out_unlock:
5556 cgroup_kn_unlock(parent_kn);
5557 return ret;
5558 }
5559
5560 /*
5561 * This is called when the refcnt of a css is confirmed to be killed.
5562 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5563 * initate destruction and put the css ref from kill_css().
5564 */
css_killed_work_fn(struct work_struct * work)5565 static void css_killed_work_fn(struct work_struct *work)
5566 {
5567 struct cgroup_subsys_state *css =
5568 container_of(work, struct cgroup_subsys_state, destroy_work);
5569
5570 mutex_lock(&cgroup_mutex);
5571
5572 do {
5573 offline_css(css);
5574 css_put(css);
5575 /* @css can't go away while we're holding cgroup_mutex */
5576 css = css->parent;
5577 } while (css && atomic_dec_and_test(&css->online_cnt));
5578
5579 mutex_unlock(&cgroup_mutex);
5580 }
5581
5582 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5583 static void css_killed_ref_fn(struct percpu_ref *ref)
5584 {
5585 struct cgroup_subsys_state *css =
5586 container_of(ref, struct cgroup_subsys_state, refcnt);
5587
5588 if (atomic_dec_and_test(&css->online_cnt)) {
5589 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5590 queue_work(cgroup_destroy_wq, &css->destroy_work);
5591 }
5592 }
5593
5594 /**
5595 * kill_css - destroy a css
5596 * @css: css to destroy
5597 *
5598 * This function initiates destruction of @css by removing cgroup interface
5599 * files and putting its base reference. ->css_offline() will be invoked
5600 * asynchronously once css_tryget_online() is guaranteed to fail and when
5601 * the reference count reaches zero, @css will be released.
5602 */
kill_css(struct cgroup_subsys_state * css)5603 static void kill_css(struct cgroup_subsys_state *css)
5604 {
5605 lockdep_assert_held(&cgroup_mutex);
5606
5607 if (css->flags & CSS_DYING)
5608 return;
5609
5610 css->flags |= CSS_DYING;
5611
5612 /*
5613 * This must happen before css is disassociated with its cgroup.
5614 * See seq_css() for details.
5615 */
5616 css_clear_dir(css);
5617
5618 /*
5619 * Killing would put the base ref, but we need to keep it alive
5620 * until after ->css_offline().
5621 */
5622 css_get(css);
5623
5624 /*
5625 * cgroup core guarantees that, by the time ->css_offline() is
5626 * invoked, no new css reference will be given out via
5627 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5628 * proceed to offlining css's because percpu_ref_kill() doesn't
5629 * guarantee that the ref is seen as killed on all CPUs on return.
5630 *
5631 * Use percpu_ref_kill_and_confirm() to get notifications as each
5632 * css is confirmed to be seen as killed on all CPUs.
5633 */
5634 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5635 }
5636
5637 /**
5638 * cgroup_destroy_locked - the first stage of cgroup destruction
5639 * @cgrp: cgroup to be destroyed
5640 *
5641 * css's make use of percpu refcnts whose killing latency shouldn't be
5642 * exposed to userland and are RCU protected. Also, cgroup core needs to
5643 * guarantee that css_tryget_online() won't succeed by the time
5644 * ->css_offline() is invoked. To satisfy all the requirements,
5645 * destruction is implemented in the following two steps.
5646 *
5647 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5648 * userland visible parts and start killing the percpu refcnts of
5649 * css's. Set up so that the next stage will be kicked off once all
5650 * the percpu refcnts are confirmed to be killed.
5651 *
5652 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5653 * rest of destruction. Once all cgroup references are gone, the
5654 * cgroup is RCU-freed.
5655 *
5656 * This function implements s1. After this step, @cgrp is gone as far as
5657 * the userland is concerned and a new cgroup with the same name may be
5658 * created. As cgroup doesn't care about the names internally, this
5659 * doesn't cause any problem.
5660 */
cgroup_destroy_locked(struct cgroup * cgrp)5661 static int cgroup_destroy_locked(struct cgroup *cgrp)
5662 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5663 {
5664 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5665 struct cgroup_subsys_state *css;
5666 struct cgrp_cset_link *link;
5667 int ssid;
5668
5669 lockdep_assert_held(&cgroup_mutex);
5670
5671 /*
5672 * Only migration can raise populated from zero and we're already
5673 * holding cgroup_mutex.
5674 */
5675 if (cgroup_is_populated(cgrp))
5676 return -EBUSY;
5677
5678 /*
5679 * Make sure there's no live children. We can't test emptiness of
5680 * ->self.children as dead children linger on it while being
5681 * drained; otherwise, "rmdir parent/child parent" may fail.
5682 */
5683 if (css_has_online_children(&cgrp->self))
5684 return -EBUSY;
5685
5686 /*
5687 * Mark @cgrp and the associated csets dead. The former prevents
5688 * further task migration and child creation by disabling
5689 * cgroup_lock_live_group(). The latter makes the csets ignored by
5690 * the migration path.
5691 */
5692 cgrp->self.flags &= ~CSS_ONLINE;
5693
5694 spin_lock_irq(&css_set_lock);
5695 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5696 link->cset->dead = true;
5697 spin_unlock_irq(&css_set_lock);
5698
5699 /* initiate massacre of all css's */
5700 for_each_css(css, ssid, cgrp)
5701 kill_css(css);
5702
5703 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5704 css_clear_dir(&cgrp->self);
5705 kernfs_remove(cgrp->kn);
5706
5707 if (parent && cgroup_is_threaded(cgrp))
5708 parent->nr_threaded_children--;
5709
5710 spin_lock_irq(&css_set_lock);
5711 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5712 tcgrp->nr_descendants--;
5713 tcgrp->nr_dying_descendants++;
5714 /*
5715 * If the dying cgroup is frozen, decrease frozen descendants
5716 * counters of ancestor cgroups.
5717 */
5718 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5719 tcgrp->freezer.nr_frozen_descendants--;
5720 }
5721 spin_unlock_irq(&css_set_lock);
5722
5723 cgroup1_check_for_release(parent);
5724
5725 cgroup_bpf_offline(cgrp);
5726
5727 /* put the base reference */
5728 percpu_ref_kill(&cgrp->self.refcnt);
5729
5730 return 0;
5731 };
5732
cgroup_rmdir(struct kernfs_node * kn)5733 int cgroup_rmdir(struct kernfs_node *kn)
5734 {
5735 struct cgroup *cgrp;
5736 int ret = 0;
5737
5738 cgrp = cgroup_kn_lock_live(kn, false);
5739 if (!cgrp)
5740 return 0;
5741
5742 ret = cgroup_destroy_locked(cgrp);
5743 if (!ret)
5744 TRACE_CGROUP_PATH(rmdir, cgrp);
5745
5746 cgroup_kn_unlock(kn);
5747 return ret;
5748 }
5749
5750 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5751 .show_options = cgroup_show_options,
5752 .mkdir = cgroup_mkdir,
5753 .rmdir = cgroup_rmdir,
5754 .show_path = cgroup_show_path,
5755 };
5756
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5757 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5758 {
5759 struct cgroup_subsys_state *css;
5760
5761 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5762
5763 mutex_lock(&cgroup_mutex);
5764
5765 idr_init(&ss->css_idr);
5766 INIT_LIST_HEAD(&ss->cfts);
5767
5768 /* Create the root cgroup state for this subsystem */
5769 ss->root = &cgrp_dfl_root;
5770 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5771 /* We don't handle early failures gracefully */
5772 BUG_ON(IS_ERR(css));
5773 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5774
5775 /*
5776 * Root csses are never destroyed and we can't initialize
5777 * percpu_ref during early init. Disable refcnting.
5778 */
5779 css->flags |= CSS_NO_REF;
5780
5781 if (early) {
5782 /* allocation can't be done safely during early init */
5783 css->id = 1;
5784 } else {
5785 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5786 BUG_ON(css->id < 0);
5787 }
5788
5789 /* Update the init_css_set to contain a subsys
5790 * pointer to this state - since the subsystem is
5791 * newly registered, all tasks and hence the
5792 * init_css_set is in the subsystem's root cgroup. */
5793 init_css_set.subsys[ss->id] = css;
5794
5795 have_fork_callback |= (bool)ss->fork << ss->id;
5796 have_exit_callback |= (bool)ss->exit << ss->id;
5797 have_release_callback |= (bool)ss->release << ss->id;
5798 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5799
5800 /* At system boot, before all subsystems have been
5801 * registered, no tasks have been forked, so we don't
5802 * need to invoke fork callbacks here. */
5803 BUG_ON(!list_empty(&init_task.tasks));
5804
5805 BUG_ON(online_css(css));
5806
5807 mutex_unlock(&cgroup_mutex);
5808 }
5809
5810 /**
5811 * cgroup_init_early - cgroup initialization at system boot
5812 *
5813 * Initialize cgroups at system boot, and initialize any
5814 * subsystems that request early init.
5815 */
cgroup_init_early(void)5816 int __init cgroup_init_early(void)
5817 {
5818 static struct cgroup_fs_context __initdata ctx;
5819 struct cgroup_subsys *ss;
5820 int i;
5821
5822 ctx.root = &cgrp_dfl_root;
5823 init_cgroup_root(&ctx);
5824 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5825
5826 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5827
5828 for_each_subsys(ss, i) {
5829 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5830 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5831 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5832 ss->id, ss->name);
5833 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5834 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5835
5836 ss->id = i;
5837 ss->name = cgroup_subsys_name[i];
5838 if (!ss->legacy_name)
5839 ss->legacy_name = cgroup_subsys_name[i];
5840
5841 if (ss->early_init)
5842 cgroup_init_subsys(ss, true);
5843 }
5844 return 0;
5845 }
5846
5847 /**
5848 * cgroup_init - cgroup initialization
5849 *
5850 * Register cgroup filesystem and /proc file, and initialize
5851 * any subsystems that didn't request early init.
5852 */
cgroup_init(void)5853 int __init cgroup_init(void)
5854 {
5855 struct cgroup_subsys *ss;
5856 int ssid;
5857
5858 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5859 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5860 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5861
5862 cgroup_rstat_boot();
5863
5864 /*
5865 * The latency of the synchronize_rcu() is too high for cgroups,
5866 * avoid it at the cost of forcing all readers into the slow path.
5867 */
5868 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5869
5870 get_user_ns(init_cgroup_ns.user_ns);
5871
5872 mutex_lock(&cgroup_mutex);
5873
5874 /*
5875 * Add init_css_set to the hash table so that dfl_root can link to
5876 * it during init.
5877 */
5878 hash_add(css_set_table, &init_css_set.hlist,
5879 css_set_hash(init_css_set.subsys));
5880
5881 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5882
5883 mutex_unlock(&cgroup_mutex);
5884
5885 for_each_subsys(ss, ssid) {
5886 if (ss->early_init) {
5887 struct cgroup_subsys_state *css =
5888 init_css_set.subsys[ss->id];
5889
5890 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5891 GFP_KERNEL);
5892 BUG_ON(css->id < 0);
5893 } else {
5894 cgroup_init_subsys(ss, false);
5895 }
5896
5897 list_add_tail(&init_css_set.e_cset_node[ssid],
5898 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5899
5900 /*
5901 * Setting dfl_root subsys_mask needs to consider the
5902 * disabled flag and cftype registration needs kmalloc,
5903 * both of which aren't available during early_init.
5904 */
5905 if (!cgroup_ssid_enabled(ssid))
5906 continue;
5907
5908 if (cgroup1_ssid_disabled(ssid))
5909 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5910 ss->name);
5911
5912 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5913
5914 /* implicit controllers must be threaded too */
5915 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5916
5917 if (ss->implicit_on_dfl)
5918 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5919 else if (!ss->dfl_cftypes)
5920 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5921
5922 if (ss->threaded)
5923 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5924
5925 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5926 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5927 } else {
5928 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5929 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5930 }
5931
5932 if (ss->bind)
5933 ss->bind(init_css_set.subsys[ssid]);
5934
5935 mutex_lock(&cgroup_mutex);
5936 css_populate_dir(init_css_set.subsys[ssid]);
5937 mutex_unlock(&cgroup_mutex);
5938 }
5939
5940 /* init_css_set.subsys[] has been updated, re-hash */
5941 hash_del(&init_css_set.hlist);
5942 hash_add(css_set_table, &init_css_set.hlist,
5943 css_set_hash(init_css_set.subsys));
5944
5945 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5946 WARN_ON(register_filesystem(&cgroup_fs_type));
5947 WARN_ON(register_filesystem(&cgroup2_fs_type));
5948 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5949 #ifdef CONFIG_CPUSETS
5950 WARN_ON(register_filesystem(&cpuset_fs_type));
5951 #endif
5952
5953 return 0;
5954 }
5955
cgroup_wq_init(void)5956 static int __init cgroup_wq_init(void)
5957 {
5958 /*
5959 * There isn't much point in executing destruction path in
5960 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5961 * Use 1 for @max_active.
5962 *
5963 * We would prefer to do this in cgroup_init() above, but that
5964 * is called before init_workqueues(): so leave this until after.
5965 */
5966 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5967 BUG_ON(!cgroup_destroy_wq);
5968 return 0;
5969 }
5970 core_initcall(cgroup_wq_init);
5971
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5972 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5973 {
5974 struct kernfs_node *kn;
5975
5976 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5977 if (!kn)
5978 return;
5979 kernfs_path(kn, buf, buflen);
5980 kernfs_put(kn);
5981 }
5982
5983 /*
5984 * proc_cgroup_show()
5985 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5986 * - Used for /proc/<pid>/cgroup.
5987 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5988 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5989 struct pid *pid, struct task_struct *tsk)
5990 {
5991 char *buf;
5992 int retval;
5993 struct cgroup_root *root;
5994
5995 retval = -ENOMEM;
5996 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5997 if (!buf)
5998 goto out;
5999
6000 mutex_lock(&cgroup_mutex);
6001 spin_lock_irq(&css_set_lock);
6002
6003 for_each_root(root) {
6004 struct cgroup_subsys *ss;
6005 struct cgroup *cgrp;
6006 int ssid, count = 0;
6007
6008 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6009 continue;
6010
6011 seq_printf(m, "%d:", root->hierarchy_id);
6012 if (root != &cgrp_dfl_root)
6013 for_each_subsys(ss, ssid)
6014 if (root->subsys_mask & (1 << ssid))
6015 seq_printf(m, "%s%s", count++ ? "," : "",
6016 ss->legacy_name);
6017 if (strlen(root->name))
6018 seq_printf(m, "%sname=%s", count ? "," : "",
6019 root->name);
6020 seq_putc(m, ':');
6021
6022 cgrp = task_cgroup_from_root(tsk, root);
6023
6024 /*
6025 * On traditional hierarchies, all zombie tasks show up as
6026 * belonging to the root cgroup. On the default hierarchy,
6027 * while a zombie doesn't show up in "cgroup.procs" and
6028 * thus can't be migrated, its /proc/PID/cgroup keeps
6029 * reporting the cgroup it belonged to before exiting. If
6030 * the cgroup is removed before the zombie is reaped,
6031 * " (deleted)" is appended to the cgroup path.
6032 */
6033 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6034 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6035 current->nsproxy->cgroup_ns);
6036 if (retval >= PATH_MAX)
6037 retval = -ENAMETOOLONG;
6038 if (retval < 0)
6039 goto out_unlock;
6040
6041 seq_puts(m, buf);
6042 } else {
6043 seq_puts(m, "/");
6044 }
6045
6046 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6047 seq_puts(m, " (deleted)\n");
6048 else
6049 seq_putc(m, '\n');
6050 }
6051
6052 retval = 0;
6053 out_unlock:
6054 spin_unlock_irq(&css_set_lock);
6055 mutex_unlock(&cgroup_mutex);
6056 kfree(buf);
6057 out:
6058 return retval;
6059 }
6060
6061 /**
6062 * cgroup_fork - initialize cgroup related fields during copy_process()
6063 * @child: pointer to task_struct of forking parent process.
6064 *
6065 * A task is associated with the init_css_set until cgroup_post_fork()
6066 * attaches it to the target css_set.
6067 */
cgroup_fork(struct task_struct * child)6068 void cgroup_fork(struct task_struct *child)
6069 {
6070 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6071 INIT_LIST_HEAD(&child->cg_list);
6072 }
6073
cgroup_get_from_file(struct file * f)6074 static struct cgroup *cgroup_get_from_file(struct file *f)
6075 {
6076 struct cgroup_subsys_state *css;
6077 struct cgroup *cgrp;
6078
6079 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6080 if (IS_ERR(css))
6081 return ERR_CAST(css);
6082
6083 cgrp = css->cgroup;
6084 if (!cgroup_on_dfl(cgrp)) {
6085 cgroup_put(cgrp);
6086 return ERR_PTR(-EBADF);
6087 }
6088
6089 return cgrp;
6090 }
6091
6092 /**
6093 * cgroup_css_set_fork - find or create a css_set for a child process
6094 * @kargs: the arguments passed to create the child process
6095 *
6096 * This functions finds or creates a new css_set which the child
6097 * process will be attached to in cgroup_post_fork(). By default,
6098 * the child process will be given the same css_set as its parent.
6099 *
6100 * If CLONE_INTO_CGROUP is specified this function will try to find an
6101 * existing css_set which includes the requested cgroup and if not create
6102 * a new css_set that the child will be attached to later. If this function
6103 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6104 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6105 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6106 * to the target cgroup.
6107 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6108 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6109 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6110 {
6111 int ret;
6112 struct cgroup *dst_cgrp = NULL;
6113 struct css_set *cset;
6114 struct super_block *sb;
6115 struct file *f;
6116
6117 if (kargs->flags & CLONE_INTO_CGROUP)
6118 mutex_lock(&cgroup_mutex);
6119
6120 cgroup_threadgroup_change_begin(current);
6121
6122 spin_lock_irq(&css_set_lock);
6123 cset = task_css_set(current);
6124 get_css_set(cset);
6125 spin_unlock_irq(&css_set_lock);
6126
6127 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6128 kargs->cset = cset;
6129 return 0;
6130 }
6131
6132 f = fget_raw(kargs->cgroup);
6133 if (!f) {
6134 ret = -EBADF;
6135 goto err;
6136 }
6137 sb = f->f_path.dentry->d_sb;
6138
6139 dst_cgrp = cgroup_get_from_file(f);
6140 if (IS_ERR(dst_cgrp)) {
6141 ret = PTR_ERR(dst_cgrp);
6142 dst_cgrp = NULL;
6143 goto err;
6144 }
6145
6146 if (cgroup_is_dead(dst_cgrp)) {
6147 ret = -ENODEV;
6148 goto err;
6149 }
6150
6151 /*
6152 * Verify that we the target cgroup is writable for us. This is
6153 * usually done by the vfs layer but since we're not going through
6154 * the vfs layer here we need to do it "manually".
6155 */
6156 ret = cgroup_may_write(dst_cgrp, sb);
6157 if (ret)
6158 goto err;
6159
6160 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6161 !(kargs->flags & CLONE_THREAD),
6162 current->nsproxy->cgroup_ns);
6163 if (ret)
6164 goto err;
6165
6166 kargs->cset = find_css_set(cset, dst_cgrp);
6167 if (!kargs->cset) {
6168 ret = -ENOMEM;
6169 goto err;
6170 }
6171
6172 put_css_set(cset);
6173 fput(f);
6174 kargs->cgrp = dst_cgrp;
6175 return ret;
6176
6177 err:
6178 cgroup_threadgroup_change_end(current);
6179 mutex_unlock(&cgroup_mutex);
6180 if (f)
6181 fput(f);
6182 if (dst_cgrp)
6183 cgroup_put(dst_cgrp);
6184 put_css_set(cset);
6185 if (kargs->cset)
6186 put_css_set(kargs->cset);
6187 return ret;
6188 }
6189
6190 /**
6191 * cgroup_css_set_put_fork - drop references we took during fork
6192 * @kargs: the arguments passed to create the child process
6193 *
6194 * Drop references to the prepared css_set and target cgroup if
6195 * CLONE_INTO_CGROUP was requested.
6196 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6197 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6198 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6199 {
6200 cgroup_threadgroup_change_end(current);
6201
6202 if (kargs->flags & CLONE_INTO_CGROUP) {
6203 struct cgroup *cgrp = kargs->cgrp;
6204 struct css_set *cset = kargs->cset;
6205
6206 mutex_unlock(&cgroup_mutex);
6207
6208 if (cset) {
6209 put_css_set(cset);
6210 kargs->cset = NULL;
6211 }
6212
6213 if (cgrp) {
6214 cgroup_put(cgrp);
6215 kargs->cgrp = NULL;
6216 }
6217 }
6218 }
6219
6220 /**
6221 * cgroup_can_fork - called on a new task before the process is exposed
6222 * @child: the child process
6223 *
6224 * This prepares a new css_set for the child process which the child will
6225 * be attached to in cgroup_post_fork().
6226 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6227 * callback returns an error, the fork aborts with that error code. This
6228 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6229 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6230 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6231 {
6232 struct cgroup_subsys *ss;
6233 int i, j, ret;
6234
6235 ret = cgroup_css_set_fork(kargs);
6236 if (ret)
6237 return ret;
6238
6239 do_each_subsys_mask(ss, i, have_canfork_callback) {
6240 ret = ss->can_fork(child, kargs->cset);
6241 if (ret)
6242 goto out_revert;
6243 } while_each_subsys_mask();
6244
6245 return 0;
6246
6247 out_revert:
6248 for_each_subsys(ss, j) {
6249 if (j >= i)
6250 break;
6251 if (ss->cancel_fork)
6252 ss->cancel_fork(child, kargs->cset);
6253 }
6254
6255 cgroup_css_set_put_fork(kargs);
6256
6257 return ret;
6258 }
6259
6260 /**
6261 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6262 * @child: the child process
6263 * @kargs: the arguments passed to create the child process
6264 *
6265 * This calls the cancel_fork() callbacks if a fork failed *after*
6266 * cgroup_can_fork() succeded and cleans up references we took to
6267 * prepare a new css_set for the child process in cgroup_can_fork().
6268 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6269 void cgroup_cancel_fork(struct task_struct *child,
6270 struct kernel_clone_args *kargs)
6271 {
6272 struct cgroup_subsys *ss;
6273 int i;
6274
6275 for_each_subsys(ss, i)
6276 if (ss->cancel_fork)
6277 ss->cancel_fork(child, kargs->cset);
6278
6279 cgroup_css_set_put_fork(kargs);
6280 }
6281
6282 /**
6283 * cgroup_post_fork - finalize cgroup setup for the child process
6284 * @child: the child process
6285 *
6286 * Attach the child process to its css_set calling the subsystem fork()
6287 * callbacks.
6288 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6289 void cgroup_post_fork(struct task_struct *child,
6290 struct kernel_clone_args *kargs)
6291 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6292 {
6293 struct cgroup_subsys *ss;
6294 struct css_set *cset;
6295 int i;
6296
6297 cset = kargs->cset;
6298 kargs->cset = NULL;
6299
6300 spin_lock_irq(&css_set_lock);
6301
6302 /* init tasks are special, only link regular threads */
6303 if (likely(child->pid)) {
6304 WARN_ON_ONCE(!list_empty(&child->cg_list));
6305 cset->nr_tasks++;
6306 css_set_move_task(child, NULL, cset, false);
6307 } else {
6308 put_css_set(cset);
6309 cset = NULL;
6310 }
6311
6312 /*
6313 * If the cgroup has to be frozen, the new task has too. Let's set
6314 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6315 * frozen state.
6316 */
6317 if (unlikely(cgroup_task_freeze(child))) {
6318 spin_lock(&child->sighand->siglock);
6319 WARN_ON_ONCE(child->frozen);
6320 child->jobctl |= JOBCTL_TRAP_FREEZE;
6321 spin_unlock(&child->sighand->siglock);
6322
6323 /*
6324 * Calling cgroup_update_frozen() isn't required here,
6325 * because it will be called anyway a bit later from
6326 * do_freezer_trap(). So we avoid cgroup's transient switch
6327 * from the frozen state and back.
6328 */
6329 }
6330
6331 spin_unlock_irq(&css_set_lock);
6332
6333 /*
6334 * Call ss->fork(). This must happen after @child is linked on
6335 * css_set; otherwise, @child might change state between ->fork()
6336 * and addition to css_set.
6337 */
6338 do_each_subsys_mask(ss, i, have_fork_callback) {
6339 ss->fork(child);
6340 } while_each_subsys_mask();
6341
6342 /* Make the new cset the root_cset of the new cgroup namespace. */
6343 if (kargs->flags & CLONE_NEWCGROUP) {
6344 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6345
6346 get_css_set(cset);
6347 child->nsproxy->cgroup_ns->root_cset = cset;
6348 put_css_set(rcset);
6349 }
6350
6351 cgroup_css_set_put_fork(kargs);
6352 }
6353
6354 /**
6355 * cgroup_exit - detach cgroup from exiting task
6356 * @tsk: pointer to task_struct of exiting process
6357 *
6358 * Description: Detach cgroup from @tsk.
6359 *
6360 */
cgroup_exit(struct task_struct * tsk)6361 void cgroup_exit(struct task_struct *tsk)
6362 {
6363 struct cgroup_subsys *ss;
6364 struct css_set *cset;
6365 int i;
6366
6367 spin_lock_irq(&css_set_lock);
6368
6369 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6370 cset = task_css_set(tsk);
6371 css_set_move_task(tsk, cset, NULL, false);
6372 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6373 cset->nr_tasks--;
6374
6375 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6376 if (unlikely(cgroup_task_freeze(tsk)))
6377 cgroup_update_frozen(task_dfl_cgroup(tsk));
6378
6379 spin_unlock_irq(&css_set_lock);
6380
6381 /* see cgroup_post_fork() for details */
6382 do_each_subsys_mask(ss, i, have_exit_callback) {
6383 ss->exit(tsk);
6384 } while_each_subsys_mask();
6385 }
6386
cgroup_release(struct task_struct * task)6387 void cgroup_release(struct task_struct *task)
6388 {
6389 struct cgroup_subsys *ss;
6390 int ssid;
6391
6392 do_each_subsys_mask(ss, ssid, have_release_callback) {
6393 ss->release(task);
6394 } while_each_subsys_mask();
6395
6396 spin_lock_irq(&css_set_lock);
6397 css_set_skip_task_iters(task_css_set(task), task);
6398 list_del_init(&task->cg_list);
6399 spin_unlock_irq(&css_set_lock);
6400 }
6401
cgroup_free(struct task_struct * task)6402 void cgroup_free(struct task_struct *task)
6403 {
6404 struct css_set *cset = task_css_set(task);
6405 put_css_set(cset);
6406 }
6407
cgroup_disable(char * str)6408 static int __init cgroup_disable(char *str)
6409 {
6410 struct cgroup_subsys *ss;
6411 char *token;
6412 int i;
6413
6414 while ((token = strsep(&str, ",")) != NULL) {
6415 if (!*token)
6416 continue;
6417
6418 for_each_subsys(ss, i) {
6419 if (strcmp(token, ss->name) &&
6420 strcmp(token, ss->legacy_name))
6421 continue;
6422
6423 static_branch_disable(cgroup_subsys_enabled_key[i]);
6424 pr_info("Disabling %s control group subsystem\n",
6425 ss->name);
6426 }
6427
6428 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6429 if (strcmp(token, cgroup_opt_feature_names[i]))
6430 continue;
6431 cgroup_feature_disable_mask |= 1 << i;
6432 pr_info("Disabling %s control group feature\n",
6433 cgroup_opt_feature_names[i]);
6434 break;
6435 }
6436 }
6437 return 1;
6438 }
6439 __setup("cgroup_disable=", cgroup_disable);
6440
enable_debug_cgroup(void)6441 void __init __weak enable_debug_cgroup(void) { }
6442
enable_cgroup_debug(char * str)6443 static int __init enable_cgroup_debug(char *str)
6444 {
6445 cgroup_debug = true;
6446 enable_debug_cgroup();
6447 return 1;
6448 }
6449 __setup("cgroup_debug", enable_cgroup_debug);
6450
6451 /**
6452 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6453 * @dentry: directory dentry of interest
6454 * @ss: subsystem of interest
6455 *
6456 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6457 * to get the corresponding css and return it. If such css doesn't exist
6458 * or can't be pinned, an ERR_PTR value is returned.
6459 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6460 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6461 struct cgroup_subsys *ss)
6462 {
6463 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6464 struct file_system_type *s_type = dentry->d_sb->s_type;
6465 struct cgroup_subsys_state *css = NULL;
6466 struct cgroup *cgrp;
6467
6468 /* is @dentry a cgroup dir? */
6469 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6470 !kn || kernfs_type(kn) != KERNFS_DIR)
6471 return ERR_PTR(-EBADF);
6472
6473 rcu_read_lock();
6474
6475 /*
6476 * This path doesn't originate from kernfs and @kn could already
6477 * have been or be removed at any point. @kn->priv is RCU
6478 * protected for this access. See css_release_work_fn() for details.
6479 */
6480 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6481 if (cgrp)
6482 css = cgroup_css(cgrp, ss);
6483
6484 if (!css || !css_tryget_online(css))
6485 css = ERR_PTR(-ENOENT);
6486
6487 rcu_read_unlock();
6488 return css;
6489 }
6490
6491 /**
6492 * css_from_id - lookup css by id
6493 * @id: the cgroup id
6494 * @ss: cgroup subsys to be looked into
6495 *
6496 * Returns the css if there's valid one with @id, otherwise returns NULL.
6497 * Should be called under rcu_read_lock().
6498 */
css_from_id(int id,struct cgroup_subsys * ss)6499 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6500 {
6501 WARN_ON_ONCE(!rcu_read_lock_held());
6502 return idr_find(&ss->css_idr, id);
6503 }
6504
6505 /**
6506 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6507 * @path: path on the default hierarchy
6508 *
6509 * Find the cgroup at @path on the default hierarchy, increment its
6510 * reference count and return it. Returns pointer to the found cgroup on
6511 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6512 * if @path points to a non-directory.
6513 */
cgroup_get_from_path(const char * path)6514 struct cgroup *cgroup_get_from_path(const char *path)
6515 {
6516 struct kernfs_node *kn;
6517 struct cgroup *cgrp;
6518
6519 mutex_lock(&cgroup_mutex);
6520
6521 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6522 if (kn) {
6523 if (kernfs_type(kn) == KERNFS_DIR) {
6524 cgrp = kn->priv;
6525 cgroup_get_live(cgrp);
6526 } else {
6527 cgrp = ERR_PTR(-ENOTDIR);
6528 }
6529 kernfs_put(kn);
6530 } else {
6531 cgrp = ERR_PTR(-ENOENT);
6532 }
6533
6534 mutex_unlock(&cgroup_mutex);
6535 return cgrp;
6536 }
6537 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6538
6539 /**
6540 * cgroup_get_from_fd - get a cgroup pointer from a fd
6541 * @fd: fd obtained by open(cgroup2_dir)
6542 *
6543 * Find the cgroup from a fd which should be obtained
6544 * by opening a cgroup directory. Returns a pointer to the
6545 * cgroup on success. ERR_PTR is returned if the cgroup
6546 * cannot be found.
6547 */
cgroup_get_from_fd(int fd)6548 struct cgroup *cgroup_get_from_fd(int fd)
6549 {
6550 struct cgroup *cgrp;
6551 struct file *f;
6552
6553 f = fget_raw(fd);
6554 if (!f)
6555 return ERR_PTR(-EBADF);
6556
6557 cgrp = cgroup_get_from_file(f);
6558 fput(f);
6559 return cgrp;
6560 }
6561 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6562
power_of_ten(int power)6563 static u64 power_of_ten(int power)
6564 {
6565 u64 v = 1;
6566 while (power--)
6567 v *= 10;
6568 return v;
6569 }
6570
6571 /**
6572 * cgroup_parse_float - parse a floating number
6573 * @input: input string
6574 * @dec_shift: number of decimal digits to shift
6575 * @v: output
6576 *
6577 * Parse a decimal floating point number in @input and store the result in
6578 * @v with decimal point right shifted @dec_shift times. For example, if
6579 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6580 * Returns 0 on success, -errno otherwise.
6581 *
6582 * There's nothing cgroup specific about this function except that it's
6583 * currently the only user.
6584 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6585 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6586 {
6587 s64 whole, frac = 0;
6588 int fstart = 0, fend = 0, flen;
6589
6590 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6591 return -EINVAL;
6592 if (frac < 0)
6593 return -EINVAL;
6594
6595 flen = fend > fstart ? fend - fstart : 0;
6596 if (flen < dec_shift)
6597 frac *= power_of_ten(dec_shift - flen);
6598 else
6599 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6600
6601 *v = whole * power_of_ten(dec_shift) + frac;
6602 return 0;
6603 }
6604
6605 /*
6606 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6607 * definition in cgroup-defs.h.
6608 */
6609 #ifdef CONFIG_SOCK_CGROUP_DATA
6610
6611 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6612
6613 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6614 static bool cgroup_sk_alloc_disabled __read_mostly;
6615
cgroup_sk_alloc_disable(void)6616 void cgroup_sk_alloc_disable(void)
6617 {
6618 if (cgroup_sk_alloc_disabled)
6619 return;
6620 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6621 cgroup_sk_alloc_disabled = true;
6622 }
6623
6624 #else
6625
6626 #define cgroup_sk_alloc_disabled false
6627
6628 #endif
6629
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6630 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6631 {
6632 if (cgroup_sk_alloc_disabled) {
6633 skcd->no_refcnt = 1;
6634 return;
6635 }
6636
6637 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6638 if (in_interrupt())
6639 return;
6640
6641 rcu_read_lock();
6642
6643 while (true) {
6644 struct css_set *cset;
6645
6646 cset = task_css_set(current);
6647 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6648 skcd->val = (unsigned long)cset->dfl_cgrp;
6649 cgroup_bpf_get(cset->dfl_cgrp);
6650 break;
6651 }
6652 cpu_relax();
6653 }
6654
6655 rcu_read_unlock();
6656 }
6657
cgroup_sk_clone(struct sock_cgroup_data * skcd)6658 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6659 {
6660 if (skcd->val) {
6661 if (skcd->no_refcnt)
6662 return;
6663 /*
6664 * We might be cloning a socket which is left in an empty
6665 * cgroup and the cgroup might have already been rmdir'd.
6666 * Don't use cgroup_get_live().
6667 */
6668 cgroup_get(sock_cgroup_ptr(skcd));
6669 cgroup_bpf_get(sock_cgroup_ptr(skcd));
6670 }
6671 }
6672
cgroup_sk_free(struct sock_cgroup_data * skcd)6673 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6674 {
6675 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6676
6677 if (skcd->no_refcnt)
6678 return;
6679 cgroup_bpf_put(cgrp);
6680 cgroup_put(cgrp);
6681 }
6682
6683 #endif /* CONFIG_SOCK_CGROUP_DATA */
6684
6685 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)6686 int cgroup_bpf_attach(struct cgroup *cgrp,
6687 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6688 struct bpf_cgroup_link *link,
6689 enum bpf_attach_type type,
6690 u32 flags)
6691 {
6692 int ret;
6693
6694 mutex_lock(&cgroup_mutex);
6695 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6696 mutex_unlock(&cgroup_mutex);
6697 return ret;
6698 }
6699
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type)6700 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6701 enum bpf_attach_type type)
6702 {
6703 int ret;
6704
6705 mutex_lock(&cgroup_mutex);
6706 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6707 mutex_unlock(&cgroup_mutex);
6708 return ret;
6709 }
6710
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6711 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6712 union bpf_attr __user *uattr)
6713 {
6714 int ret;
6715
6716 mutex_lock(&cgroup_mutex);
6717 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6718 mutex_unlock(&cgroup_mutex);
6719 return ret;
6720 }
6721 #endif /* CONFIG_CGROUP_BPF */
6722
6723 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6724 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6725 ssize_t size, const char *prefix)
6726 {
6727 struct cftype *cft;
6728 ssize_t ret = 0;
6729
6730 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6731 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6732 continue;
6733
6734 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6735 continue;
6736
6737 if (prefix)
6738 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6739
6740 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6741
6742 if (WARN_ON(ret >= size))
6743 break;
6744 }
6745
6746 return ret;
6747 }
6748
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6749 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6750 char *buf)
6751 {
6752 struct cgroup_subsys *ss;
6753 int ssid;
6754 ssize_t ret = 0;
6755
6756 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6757 NULL);
6758
6759 for_each_subsys(ss, ssid)
6760 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6761 PAGE_SIZE - ret,
6762 cgroup_subsys_name[ssid]);
6763
6764 return ret;
6765 }
6766 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6767
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6768 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6769 char *buf)
6770 {
6771 return snprintf(buf, PAGE_SIZE,
6772 "nsdelegate\n"
6773 "memory_localevents\n"
6774 "memory_recursiveprot\n");
6775 }
6776 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6777
6778 static struct attribute *cgroup_sysfs_attrs[] = {
6779 &cgroup_delegate_attr.attr,
6780 &cgroup_features_attr.attr,
6781 NULL,
6782 };
6783
6784 static const struct attribute_group cgroup_sysfs_attr_group = {
6785 .attrs = cgroup_sysfs_attrs,
6786 .name = "cgroup",
6787 };
6788
cgroup_sysfs_init(void)6789 static int __init cgroup_sysfs_init(void)
6790 {
6791 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6792 }
6793 subsys_initcall(cgroup_sysfs_init);
6794
6795 #endif /* CONFIG_SYSFS */
6796