xref: /OK3568_Linux_fs/kernel/include/linux/workqueue.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 #include <linux/android_kabi.h>
18 
19 struct workqueue_struct;
20 
21 struct work_struct;
22 typedef void (*work_func_t)(struct work_struct *work);
23 void delayed_work_timer_fn(struct timer_list *t);
24 
25 /*
26  * The first word is the work queue pointer and the flags rolled into
27  * one
28  */
29 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
30 
31 enum {
32 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
33 	WORK_STRUCT_DELAYED_BIT	= 1,	/* work item is delayed */
34 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
35 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
36 #ifdef CONFIG_DEBUG_OBJECTS_WORK
37 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
38 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
39 #else
40 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
41 #endif
42 
43 	WORK_STRUCT_COLOR_BITS	= 4,
44 
45 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
46 	WORK_STRUCT_DELAYED	= 1 << WORK_STRUCT_DELAYED_BIT,
47 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
48 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
49 #ifdef CONFIG_DEBUG_OBJECTS_WORK
50 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
51 #else
52 	WORK_STRUCT_STATIC	= 0,
53 #endif
54 
55 	/*
56 	 * The last color is no color used for works which don't
57 	 * participate in workqueue flushing.
58 	 */
59 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS) - 1,
60 	WORK_NO_COLOR		= WORK_NR_COLORS,
61 
62 	/* not bound to any CPU, prefer the local CPU */
63 	WORK_CPU_UNBOUND	= NR_CPUS,
64 
65 	/*
66 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
67 	 * This makes pwqs aligned to 256 bytes and allows 15 workqueue
68 	 * flush colors.
69 	 */
70 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
71 				  WORK_STRUCT_COLOR_BITS,
72 
73 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
74 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
75 
76 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
77 	WORK_OFFQ_CANCELING	= (1 << __WORK_OFFQ_CANCELING),
78 
79 	/*
80 	 * When a work item is off queue, its high bits point to the last
81 	 * pool it was on.  Cap at 31 bits and use the highest number to
82 	 * indicate that no pool is associated.
83 	 */
84 	WORK_OFFQ_FLAG_BITS	= 1,
85 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
86 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
87 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
88 	WORK_OFFQ_POOL_NONE	= (1LU << WORK_OFFQ_POOL_BITS) - 1,
89 
90 	/* convenience constants */
91 	WORK_STRUCT_FLAG_MASK	= (1UL << WORK_STRUCT_FLAG_BITS) - 1,
92 	WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK,
93 	WORK_STRUCT_NO_POOL	= (unsigned long)WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT,
94 
95 	/* bit mask for work_busy() return values */
96 	WORK_BUSY_PENDING	= 1 << 0,
97 	WORK_BUSY_RUNNING	= 1 << 1,
98 
99 	/* maximum string length for set_worker_desc() */
100 	WORKER_DESC_LEN		= 24,
101 };
102 
103 struct work_struct {
104 	atomic_long_t data;
105 	struct list_head entry;
106 	work_func_t func;
107 #ifdef CONFIG_LOCKDEP
108 	struct lockdep_map lockdep_map;
109 #endif
110 	ANDROID_KABI_RESERVE(1);
111 	ANDROID_KABI_RESERVE(2);
112 };
113 
114 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
115 #define WORK_DATA_STATIC_INIT()	\
116 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
117 
118 struct delayed_work {
119 	struct work_struct work;
120 	struct timer_list timer;
121 
122 	/* target workqueue and CPU ->timer uses to queue ->work */
123 	struct workqueue_struct *wq;
124 	int cpu;
125 
126 	ANDROID_KABI_RESERVE(1);
127 	ANDROID_KABI_RESERVE(2);
128 };
129 
130 struct rcu_work {
131 	struct work_struct work;
132 	struct rcu_head rcu;
133 
134 	/* target workqueue ->rcu uses to queue ->work */
135 	struct workqueue_struct *wq;
136 };
137 
138 /**
139  * struct workqueue_attrs - A struct for workqueue attributes.
140  *
141  * This can be used to change attributes of an unbound workqueue.
142  */
143 struct workqueue_attrs {
144 	/**
145 	 * @nice: nice level
146 	 */
147 	int nice;
148 
149 	/**
150 	 * @cpumask: allowed CPUs
151 	 */
152 	cpumask_var_t cpumask;
153 
154 	/**
155 	 * @no_numa: disable NUMA affinity
156 	 *
157 	 * Unlike other fields, ``no_numa`` isn't a property of a worker_pool. It
158 	 * only modifies how :c:func:`apply_workqueue_attrs` select pools and thus
159 	 * doesn't participate in pool hash calculations or equality comparisons.
160 	 */
161 	bool no_numa;
162 };
163 
to_delayed_work(struct work_struct * work)164 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
165 {
166 	return container_of(work, struct delayed_work, work);
167 }
168 
to_rcu_work(struct work_struct * work)169 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
170 {
171 	return container_of(work, struct rcu_work, work);
172 }
173 
174 struct execute_work {
175 	struct work_struct work;
176 };
177 
178 #ifdef CONFIG_LOCKDEP
179 /*
180  * NB: because we have to copy the lockdep_map, setting _key
181  * here is required, otherwise it could get initialised to the
182  * copy of the lockdep_map!
183  */
184 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
185 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
186 #else
187 #define __WORK_INIT_LOCKDEP_MAP(n, k)
188 #endif
189 
190 #define __WORK_INITIALIZER(n, f) {					\
191 	.data = WORK_DATA_STATIC_INIT(),				\
192 	.entry	= { &(n).entry, &(n).entry },				\
193 	.func = (f),							\
194 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
195 	}
196 
197 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
198 	.work = __WORK_INITIALIZER((n).work, (f)),			\
199 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
200 				     (tflags) | TIMER_IRQSAFE),		\
201 	}
202 
203 #define DECLARE_WORK(n, f)						\
204 	struct work_struct n = __WORK_INITIALIZER(n, f)
205 
206 #define DECLARE_DELAYED_WORK(n, f)					\
207 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
208 
209 #define DECLARE_DEFERRABLE_WORK(n, f)					\
210 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
211 
212 #ifdef CONFIG_DEBUG_OBJECTS_WORK
213 extern void __init_work(struct work_struct *work, int onstack);
214 extern void destroy_work_on_stack(struct work_struct *work);
215 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
work_static(struct work_struct * work)216 static inline unsigned int work_static(struct work_struct *work)
217 {
218 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
219 }
220 #else
__init_work(struct work_struct * work,int onstack)221 static inline void __init_work(struct work_struct *work, int onstack) { }
destroy_work_on_stack(struct work_struct * work)222 static inline void destroy_work_on_stack(struct work_struct *work) { }
destroy_delayed_work_on_stack(struct delayed_work * work)223 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
work_static(struct work_struct * work)224 static inline unsigned int work_static(struct work_struct *work) { return 0; }
225 #endif
226 
227 /*
228  * initialize all of a work item in one go
229  *
230  * NOTE! No point in using "atomic_long_set()": using a direct
231  * assignment of the work data initializer allows the compiler
232  * to generate better code.
233  */
234 #ifdef CONFIG_LOCKDEP
235 #define __INIT_WORK(_work, _func, _onstack)				\
236 	do {								\
237 		static struct lock_class_key __key;			\
238 									\
239 		__init_work((_work), _onstack);				\
240 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
241 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
242 		INIT_LIST_HEAD(&(_work)->entry);			\
243 		(_work)->func = (_func);				\
244 	} while (0)
245 #else
246 #define __INIT_WORK(_work, _func, _onstack)				\
247 	do {								\
248 		__init_work((_work), _onstack);				\
249 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
250 		INIT_LIST_HEAD(&(_work)->entry);			\
251 		(_work)->func = (_func);				\
252 	} while (0)
253 #endif
254 
255 #define INIT_WORK(_work, _func)						\
256 	__INIT_WORK((_work), (_func), 0)
257 
258 #define INIT_WORK_ONSTACK(_work, _func)					\
259 	__INIT_WORK((_work), (_func), 1)
260 
261 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
262 	do {								\
263 		INIT_WORK(&(_work)->work, (_func));			\
264 		__init_timer(&(_work)->timer,				\
265 			     delayed_work_timer_fn,			\
266 			     (_tflags) | TIMER_IRQSAFE);		\
267 	} while (0)
268 
269 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
270 	do {								\
271 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
272 		__init_timer_on_stack(&(_work)->timer,			\
273 				      delayed_work_timer_fn,		\
274 				      (_tflags) | TIMER_IRQSAFE);	\
275 	} while (0)
276 
277 #define INIT_DELAYED_WORK(_work, _func)					\
278 	__INIT_DELAYED_WORK(_work, _func, 0)
279 
280 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
281 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
282 
283 #define INIT_DEFERRABLE_WORK(_work, _func)				\
284 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
285 
286 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
287 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
288 
289 #define INIT_RCU_WORK(_work, _func)					\
290 	INIT_WORK(&(_work)->work, (_func))
291 
292 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
293 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
294 
295 /**
296  * work_pending - Find out whether a work item is currently pending
297  * @work: The work item in question
298  */
299 #define work_pending(work) \
300 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
301 
302 /**
303  * delayed_work_pending - Find out whether a delayable work item is currently
304  * pending
305  * @w: The work item in question
306  */
307 #define delayed_work_pending(w) \
308 	work_pending(&(w)->work)
309 
310 /*
311  * Workqueue flags and constants.  For details, please refer to
312  * Documentation/core-api/workqueue.rst.
313  */
314 enum {
315 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
316 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
317 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
318 	WQ_HIGHPRI		= 1 << 4, /* high priority */
319 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
320 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see wq_sysfs_register() */
321 
322 	/*
323 	 * Per-cpu workqueues are generally preferred because they tend to
324 	 * show better performance thanks to cache locality.  Per-cpu
325 	 * workqueues exclude the scheduler from choosing the CPU to
326 	 * execute the worker threads, which has an unfortunate side effect
327 	 * of increasing power consumption.
328 	 *
329 	 * The scheduler considers a CPU idle if it doesn't have any task
330 	 * to execute and tries to keep idle cores idle to conserve power;
331 	 * however, for example, a per-cpu work item scheduled from an
332 	 * interrupt handler on an idle CPU will force the scheduler to
333 	 * excute the work item on that CPU breaking the idleness, which in
334 	 * turn may lead to more scheduling choices which are sub-optimal
335 	 * in terms of power consumption.
336 	 *
337 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
338 	 * but become unbound if workqueue.power_efficient kernel param is
339 	 * specified.  Per-cpu workqueues which are identified to
340 	 * contribute significantly to power-consumption are identified and
341 	 * marked with this flag and enabling the power_efficient mode
342 	 * leads to noticeable power saving at the cost of small
343 	 * performance disadvantage.
344 	 *
345 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
346 	 */
347 	WQ_POWER_EFFICIENT	= 1 << 7,
348 
349 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
350 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
351 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
352 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
353 
354 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
355 	WQ_MAX_UNBOUND_PER_CPU	= 4,	  /* 4 * #cpus for unbound wq */
356 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
357 };
358 
359 /* unbound wq's aren't per-cpu, scale max_active according to #cpus */
360 #define WQ_UNBOUND_MAX_ACTIVE	\
361 	max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
362 
363 /*
364  * System-wide workqueues which are always present.
365  *
366  * system_wq is the one used by schedule[_delayed]_work[_on]().
367  * Multi-CPU multi-threaded.  There are users which expect relatively
368  * short queue flush time.  Don't queue works which can run for too
369  * long.
370  *
371  * system_highpri_wq is similar to system_wq but for work items which
372  * require WQ_HIGHPRI.
373  *
374  * system_long_wq is similar to system_wq but may host long running
375  * works.  Queue flushing might take relatively long.
376  *
377  * system_unbound_wq is unbound workqueue.  Workers are not bound to
378  * any specific CPU, not concurrency managed, and all queued works are
379  * executed immediately as long as max_active limit is not reached and
380  * resources are available.
381  *
382  * system_freezable_wq is equivalent to system_wq except that it's
383  * freezable.
384  *
385  * *_power_efficient_wq are inclined towards saving power and converted
386  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
387  * they are same as their non-power-efficient counterparts - e.g.
388  * system_power_efficient_wq is identical to system_wq if
389  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
390  */
391 extern struct workqueue_struct *system_wq;
392 extern struct workqueue_struct *system_highpri_wq;
393 extern struct workqueue_struct *system_long_wq;
394 extern struct workqueue_struct *system_unbound_wq;
395 extern struct workqueue_struct *system_freezable_wq;
396 extern struct workqueue_struct *system_power_efficient_wq;
397 extern struct workqueue_struct *system_freezable_power_efficient_wq;
398 
399 /**
400  * alloc_workqueue - allocate a workqueue
401  * @fmt: printf format for the name of the workqueue
402  * @flags: WQ_* flags
403  * @max_active: max in-flight work items, 0 for default
404  * remaining args: args for @fmt
405  *
406  * Allocate a workqueue with the specified parameters.  For detailed
407  * information on WQ_* flags, please refer to
408  * Documentation/core-api/workqueue.rst.
409  *
410  * RETURNS:
411  * Pointer to the allocated workqueue on success, %NULL on failure.
412  */
413 struct workqueue_struct *alloc_workqueue(const char *fmt,
414 					 unsigned int flags,
415 					 int max_active, ...);
416 
417 /**
418  * alloc_ordered_workqueue - allocate an ordered workqueue
419  * @fmt: printf format for the name of the workqueue
420  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
421  * @args...: args for @fmt
422  *
423  * Allocate an ordered workqueue.  An ordered workqueue executes at
424  * most one work item at any given time in the queued order.  They are
425  * implemented as unbound workqueues with @max_active of one.
426  *
427  * RETURNS:
428  * Pointer to the allocated workqueue on success, %NULL on failure.
429  */
430 #define alloc_ordered_workqueue(fmt, flags, args...)			\
431 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
432 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
433 
434 #define create_workqueue(name)						\
435 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
436 #define create_freezable_workqueue(name)				\
437 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
438 			WQ_MEM_RECLAIM, 1, (name))
439 #define create_singlethread_workqueue(name)				\
440 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
441 
442 extern void destroy_workqueue(struct workqueue_struct *wq);
443 
444 struct workqueue_attrs *alloc_workqueue_attrs(void);
445 void free_workqueue_attrs(struct workqueue_attrs *attrs);
446 int apply_workqueue_attrs(struct workqueue_struct *wq,
447 			  const struct workqueue_attrs *attrs);
448 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
449 
450 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
451 			struct work_struct *work);
452 extern bool queue_work_node(int node, struct workqueue_struct *wq,
453 			    struct work_struct *work);
454 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
455 			struct delayed_work *work, unsigned long delay);
456 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
457 			struct delayed_work *dwork, unsigned long delay);
458 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
459 
460 extern void flush_workqueue(struct workqueue_struct *wq);
461 extern void drain_workqueue(struct workqueue_struct *wq);
462 
463 extern int schedule_on_each_cpu(work_func_t func);
464 
465 int execute_in_process_context(work_func_t fn, struct execute_work *);
466 
467 extern bool flush_work(struct work_struct *work);
468 extern bool cancel_work_sync(struct work_struct *work);
469 
470 extern bool flush_delayed_work(struct delayed_work *dwork);
471 extern bool cancel_delayed_work(struct delayed_work *dwork);
472 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
473 
474 extern bool flush_rcu_work(struct rcu_work *rwork);
475 
476 extern void workqueue_set_max_active(struct workqueue_struct *wq,
477 				     int max_active);
478 extern struct work_struct *current_work(void);
479 extern bool current_is_workqueue_rescuer(void);
480 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
481 extern unsigned int work_busy(struct work_struct *work);
482 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
483 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
484 extern void show_workqueue_state(void);
485 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
486 
487 /**
488  * queue_work - queue work on a workqueue
489  * @wq: workqueue to use
490  * @work: work to queue
491  *
492  * Returns %false if @work was already on a queue, %true otherwise.
493  *
494  * We queue the work to the CPU on which it was submitted, but if the CPU dies
495  * it can be processed by another CPU.
496  *
497  * Memory-ordering properties:  If it returns %true, guarantees that all stores
498  * preceding the call to queue_work() in the program order will be visible from
499  * the CPU which will execute @work by the time such work executes, e.g.,
500  *
501  * { x is initially 0 }
502  *
503  *   CPU0				CPU1
504  *
505  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
506  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
507  *
508  * Forbids: r0 == true && r1 == 0
509  */
queue_work(struct workqueue_struct * wq,struct work_struct * work)510 static inline bool queue_work(struct workqueue_struct *wq,
511 			      struct work_struct *work)
512 {
513 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
514 }
515 
516 /**
517  * queue_delayed_work - queue work on a workqueue after delay
518  * @wq: workqueue to use
519  * @dwork: delayable work to queue
520  * @delay: number of jiffies to wait before queueing
521  *
522  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
523  */
queue_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)524 static inline bool queue_delayed_work(struct workqueue_struct *wq,
525 				      struct delayed_work *dwork,
526 				      unsigned long delay)
527 {
528 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
529 }
530 
531 /**
532  * mod_delayed_work - modify delay of or queue a delayed work
533  * @wq: workqueue to use
534  * @dwork: work to queue
535  * @delay: number of jiffies to wait before queueing
536  *
537  * mod_delayed_work_on() on local CPU.
538  */
mod_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)539 static inline bool mod_delayed_work(struct workqueue_struct *wq,
540 				    struct delayed_work *dwork,
541 				    unsigned long delay)
542 {
543 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
544 }
545 
546 /**
547  * schedule_work_on - put work task on a specific cpu
548  * @cpu: cpu to put the work task on
549  * @work: job to be done
550  *
551  * This puts a job on a specific cpu
552  */
schedule_work_on(int cpu,struct work_struct * work)553 static inline bool schedule_work_on(int cpu, struct work_struct *work)
554 {
555 	return queue_work_on(cpu, system_wq, work);
556 }
557 
558 /**
559  * schedule_work - put work task in global workqueue
560  * @work: job to be done
561  *
562  * Returns %false if @work was already on the kernel-global workqueue and
563  * %true otherwise.
564  *
565  * This puts a job in the kernel-global workqueue if it was not already
566  * queued and leaves it in the same position on the kernel-global
567  * workqueue otherwise.
568  *
569  * Shares the same memory-ordering properties of queue_work(), cf. the
570  * DocBook header of queue_work().
571  */
schedule_work(struct work_struct * work)572 static inline bool schedule_work(struct work_struct *work)
573 {
574 	return queue_work(system_wq, work);
575 }
576 
577 /**
578  * flush_scheduled_work - ensure that any scheduled work has run to completion.
579  *
580  * Forces execution of the kernel-global workqueue and blocks until its
581  * completion.
582  *
583  * Think twice before calling this function!  It's very easy to get into
584  * trouble if you don't take great care.  Either of the following situations
585  * will lead to deadlock:
586  *
587  *	One of the work items currently on the workqueue needs to acquire
588  *	a lock held by your code or its caller.
589  *
590  *	Your code is running in the context of a work routine.
591  *
592  * They will be detected by lockdep when they occur, but the first might not
593  * occur very often.  It depends on what work items are on the workqueue and
594  * what locks they need, which you have no control over.
595  *
596  * In most situations flushing the entire workqueue is overkill; you merely
597  * need to know that a particular work item isn't queued and isn't running.
598  * In such cases you should use cancel_delayed_work_sync() or
599  * cancel_work_sync() instead.
600  */
flush_scheduled_work(void)601 static inline void flush_scheduled_work(void)
602 {
603 	flush_workqueue(system_wq);
604 }
605 
606 /**
607  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
608  * @cpu: cpu to use
609  * @dwork: job to be done
610  * @delay: number of jiffies to wait
611  *
612  * After waiting for a given time this puts a job in the kernel-global
613  * workqueue on the specified CPU.
614  */
schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)615 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
616 					    unsigned long delay)
617 {
618 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
619 }
620 
621 /**
622  * schedule_delayed_work - put work task in global workqueue after delay
623  * @dwork: job to be done
624  * @delay: number of jiffies to wait or 0 for immediate execution
625  *
626  * After waiting for a given time this puts a job in the kernel-global
627  * workqueue.
628  */
schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)629 static inline bool schedule_delayed_work(struct delayed_work *dwork,
630 					 unsigned long delay)
631 {
632 	return queue_delayed_work(system_wq, dwork, delay);
633 }
634 
635 #ifndef CONFIG_SMP
work_on_cpu(int cpu,long (* fn)(void *),void * arg)636 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
637 {
638 	return fn(arg);
639 }
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)640 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
641 {
642 	return fn(arg);
643 }
644 #else
645 long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
646 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
647 #endif /* CONFIG_SMP */
648 
649 #ifdef CONFIG_FREEZER
650 extern void freeze_workqueues_begin(void);
651 extern bool freeze_workqueues_busy(void);
652 extern void thaw_workqueues(void);
653 #endif /* CONFIG_FREEZER */
654 
655 #ifdef CONFIG_SYSFS
656 int workqueue_sysfs_register(struct workqueue_struct *wq);
657 #else	/* CONFIG_SYSFS */
workqueue_sysfs_register(struct workqueue_struct * wq)658 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
659 { return 0; }
660 #endif	/* CONFIG_SYSFS */
661 
662 #ifdef CONFIG_WQ_WATCHDOG
663 void wq_watchdog_touch(int cpu);
664 #else	/* CONFIG_WQ_WATCHDOG */
wq_watchdog_touch(int cpu)665 static inline void wq_watchdog_touch(int cpu) { }
666 #endif	/* CONFIG_WQ_WATCHDOG */
667 
668 #ifdef CONFIG_SMP
669 int workqueue_prepare_cpu(unsigned int cpu);
670 int workqueue_online_cpu(unsigned int cpu);
671 int workqueue_offline_cpu(unsigned int cpu);
672 #endif
673 
674 void __init workqueue_init_early(void);
675 void __init workqueue_init(void);
676 
677 #endif
678