xref: /optee_os/core/mm/core_mmu.c (revision 003383344c26be3589383acc87c1ebb2860e9317)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct memory_map static_memory_map __nex_bss;
66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
67 
68 /* Offset of the first TEE RAM mapping from start of secure RAM */
69 static size_t tee_ram_initial_offs __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
mmu_lock(void)112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
mmu_unlock(uint32_t exceptions)117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
heap_realloc_memory_map(struct memory_map * mem_map)122 static void heap_realloc_memory_map(struct memory_map *mem_map)
123 {
124 	struct tee_mmap_region *m = NULL;
125 	struct tee_mmap_region *old = mem_map->map;
126 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
127 	size_t sz = old_sz + sizeof(*m);
128 
129 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
130 	m = nex_realloc(old, sz);
131 	if (!m)
132 		panic();
133 	mem_map->map = m;
134 	mem_map->alloc_count++;
135 }
136 
boot_mem_realloc_memory_map(struct memory_map * mem_map)137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
138 {
139 	struct tee_mmap_region *m = NULL;
140 	struct tee_mmap_region *old = mem_map->map;
141 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
142 	size_t sz = old_sz * 2;
143 
144 	m = boot_mem_alloc_tmp(sz, alignof(*m));
145 	memcpy(m, old, old_sz);
146 	mem_map->map = m;
147 	mem_map->alloc_count *= 2;
148 }
149 
grow_mem_map(struct memory_map * mem_map)150 static void grow_mem_map(struct memory_map *mem_map)
151 {
152 	if (mem_map->count == mem_map->alloc_count) {
153 		if (!memory_map_realloc_func) {
154 			EMSG("Out of entries (%zu) in mem_map",
155 			     mem_map->alloc_count);
156 			panic();
157 		}
158 		memory_map_realloc_func(mem_map);
159 	}
160 	mem_map->count++;
161 }
162 
core_mmu_get_secure_memory(paddr_t * base,paddr_size_t * size)163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
164 {
165 	/*
166 	 * The first range is always used to cover OP-TEE core memory, but
167 	 * depending on configuration it may cover more than that.
168 	 */
169 	*base = secure_only[0].paddr;
170 	*size = secure_only[0].size;
171 }
172 
core_mmu_set_secure_memory(paddr_t base,size_t size)173 void core_mmu_set_secure_memory(paddr_t base, size_t size)
174 {
175 #ifdef CFG_CORE_PHYS_RELOCATABLE
176 	static_assert(ARRAY_SIZE(secure_only) == 1);
177 #endif
178 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
179 	assert(!secure_only[0].size);
180 	assert(base && size);
181 
182 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
183 	secure_only[0].paddr = base;
184 	secure_only[0].size = size;
185 }
186 
get_memory_map(void)187 static struct memory_map *get_memory_map(void)
188 {
189 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
190 		struct memory_map *map = virt_get_memory_map();
191 
192 		if (map)
193 			return map;
194 	}
195 
196 	return &static_memory_map;
197 }
198 
_pbuf_intersects(struct memaccess_area * a,size_t alen,paddr_t pa,size_t size)199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
200 			     paddr_t pa, size_t size)
201 {
202 	size_t n;
203 
204 	for (n = 0; n < alen; n++)
205 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
206 			return true;
207 	return false;
208 }
209 
210 #define pbuf_intersects(a, pa, size) \
211 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
212 
_pbuf_is_inside(struct memaccess_area * a,size_t alen,paddr_t pa,size_t size)213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
214 			    paddr_t pa, size_t size)
215 {
216 	size_t n;
217 
218 	for (n = 0; n < alen; n++)
219 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
220 			return true;
221 	return false;
222 }
223 
224 #define pbuf_is_inside(a, pa, size) \
225 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
226 
pa_is_in_map(struct tee_mmap_region * map,paddr_t pa,size_t len)227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
228 {
229 	paddr_t end_pa = 0;
230 
231 	if (!map)
232 		return false;
233 
234 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
235 		return false;
236 
237 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
238 }
239 
va_is_in_map(struct tee_mmap_region * map,vaddr_t va)240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
241 {
242 	if (!map)
243 		return false;
244 	return (va >= map->va && va <= (map->va + map->size - 1));
245 }
246 
247 /* check if target buffer fits in a core default map area */
pbuf_inside_map_area(unsigned long p,size_t l,struct tee_mmap_region * map)248 static bool pbuf_inside_map_area(unsigned long p, size_t l,
249 				 struct tee_mmap_region *map)
250 {
251 	return core_is_buffer_inside(p, l, map->pa, map->size);
252 }
253 
core_mmu_for_each_map(void * ptr,TEE_Result (* fn)(struct tee_mmap_region * map,void * ptr))254 TEE_Result core_mmu_for_each_map(void *ptr,
255 				 TEE_Result (*fn)(struct tee_mmap_region *map,
256 						  void *ptr))
257 {
258 	struct memory_map *mem_map = get_memory_map();
259 	TEE_Result res = TEE_SUCCESS;
260 	size_t n = 0;
261 
262 	for (n = 0; n < mem_map->count; n++) {
263 		res = fn(mem_map->map + n, ptr);
264 		if (res)
265 			return res;
266 	}
267 
268 	return TEE_SUCCESS;
269 }
270 
find_map_by_type(enum teecore_memtypes type)271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
272 {
273 	struct memory_map *mem_map = get_memory_map();
274 	size_t n = 0;
275 
276 	for (n = 0; n < mem_map->count; n++) {
277 		if (mem_map->map[n].type == type)
278 			return mem_map->map + n;
279 	}
280 	return NULL;
281 }
282 
283 static struct tee_mmap_region *
find_map_by_type_and_pa(enum teecore_memtypes type,paddr_t pa,size_t len)284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
285 {
286 	struct memory_map *mem_map = get_memory_map();
287 	size_t n = 0;
288 
289 	for (n = 0; n < mem_map->count; n++) {
290 		if (mem_map->map[n].type != type)
291 			continue;
292 		if (pa_is_in_map(mem_map->map + n, pa, len))
293 			return mem_map->map + n;
294 	}
295 	return NULL;
296 }
297 
find_map_by_va(void * va)298 static struct tee_mmap_region *find_map_by_va(void *va)
299 {
300 	struct memory_map *mem_map = get_memory_map();
301 	vaddr_t a = (vaddr_t)va;
302 	size_t n = 0;
303 
304 	for (n = 0; n < mem_map->count; n++) {
305 		if (a >= mem_map->map[n].va &&
306 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
307 			return mem_map->map + n;
308 	}
309 
310 	return NULL;
311 }
312 
find_map_by_pa(unsigned long pa)313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
314 {
315 	struct memory_map *mem_map = get_memory_map();
316 	size_t n = 0;
317 
318 	for (n = 0; n < mem_map->count; n++) {
319 		/* Skip unmapped regions */
320 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
321 		    pa >= mem_map->map[n].pa &&
322 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
323 			return mem_map->map + n;
324 	}
325 
326 	return NULL;
327 }
328 
329 #if defined(CFG_SECURE_DATA_PATH)
dtb_get_sdp_region(void)330 static bool dtb_get_sdp_region(void)
331 {
332 	void *fdt = NULL;
333 	int node = 0;
334 	int tmp_node = 0;
335 	paddr_t tmp_addr = 0;
336 	size_t tmp_size = 0;
337 
338 	if (!IS_ENABLED(CFG_EMBED_DTB))
339 		return false;
340 
341 	fdt = get_embedded_dt();
342 	if (!fdt)
343 		panic("No DTB found");
344 
345 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
346 	if (node < 0) {
347 		DMSG("No %s compatible node found", tz_sdp_match);
348 		return false;
349 	}
350 	tmp_node = node;
351 	while (tmp_node >= 0) {
352 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
353 							 tz_sdp_match);
354 		if (tmp_node >= 0)
355 			DMSG("Ignore SDP pool node %s, supports only 1 node",
356 			     fdt_get_name(fdt, tmp_node, NULL));
357 	}
358 
359 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
360 		EMSG("%s: Unable to get base addr or size from DT",
361 		     tz_sdp_match);
362 		return false;
363 	}
364 
365 	sec_sdp.paddr = tmp_addr;
366 	sec_sdp.size = tmp_size;
367 
368 	return true;
369 }
370 #endif
371 
372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
pbuf_is_special_mem(paddr_t pbuf,size_t len,const struct core_mmu_phys_mem * start,const struct core_mmu_phys_mem * end)373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
374 				const struct core_mmu_phys_mem *start,
375 				const struct core_mmu_phys_mem *end)
376 {
377 	const struct core_mmu_phys_mem *mem;
378 
379 	for (mem = start; mem < end; mem++) {
380 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
381 			return true;
382 	}
383 
384 	return false;
385 }
386 #endif
387 
388 #ifdef CFG_CORE_DYN_SHM
carve_out_phys_mem(struct core_mmu_phys_mem ** mem,size_t * nelems,paddr_t pa,size_t size)389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
390 			       paddr_t pa, size_t size)
391 {
392 	struct core_mmu_phys_mem *m = *mem;
393 	size_t n = 0;
394 
395 	while (n < *nelems) {
396 		if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) {
397 			n++;
398 			continue;
399 		}
400 
401 		if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) {
402 			/* m[n] is completely covered by pa:size */
403 			rem_array_elem(m, *nelems, sizeof(*m), n);
404 			(*nelems)--;
405 			m = nex_realloc(m, sizeof(*m) * *nelems);
406 			if (!m)
407 				panic();
408 			*mem = m;
409 			continue;
410 		}
411 
412 		if (pa > m[n].addr &&
413 		    pa + size - 1 < m[n].addr + m[n].size - 1) {
414 			/*
415 			 * pa:size is strictly inside m[n] range so split
416 			 * m[n] entry.
417 			 */
418 			m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
419 			if (!m)
420 				panic();
421 			*mem = m;
422 			(*nelems)++;
423 			ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL);
424 			m[n + 1].addr = pa + size;
425 			m[n + 1].size = m[n].addr + m[n].size - pa - size;
426 			m[n].size = pa - m[n].addr;
427 			n++;
428 		} else if (pa <= m[n].addr) {
429 			/*
430 			 * pa:size is overlapping (possibly partially) at the
431 			 * beginning of m[n].
432 			 */
433 			m[n].size = m[n].addr + m[n].size - pa - size;
434 			m[n].addr = pa + size;
435 		} else {
436 			/*
437 			 * pa:size is overlapping (possibly partially) at
438 			 * the end of m[n].
439 			 */
440 			m[n].size = pa - m[n].addr;
441 		}
442 		n++;
443 	}
444 }
445 
check_phys_mem_is_outside(struct core_mmu_phys_mem * start,size_t nelems,struct tee_mmap_region * map)446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
447 				      size_t nelems,
448 				      struct tee_mmap_region *map)
449 {
450 	size_t n;
451 
452 	for (n = 0; n < nelems; n++) {
453 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
454 					    map->pa, map->size)) {
455 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
456 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
457 			     start[n].addr, start[n].size,
458 			     map->type, map->pa, map->size);
459 			panic();
460 		}
461 	}
462 }
463 
464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
465 static size_t discovered_nsec_ddr_nelems __nex_bss;
466 
cmp_pmem_by_addr(const void * a,const void * b)467 static int cmp_pmem_by_addr(const void *a, const void *b)
468 {
469 	const struct core_mmu_phys_mem *pmem_a = a;
470 	const struct core_mmu_phys_mem *pmem_b = b;
471 
472 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
473 }
474 
core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem * start,size_t nelems)475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
476 				      size_t nelems)
477 {
478 	struct core_mmu_phys_mem *m = start;
479 	size_t num_elems = nelems;
480 	struct memory_map *mem_map = &static_memory_map;
481 	const struct core_mmu_phys_mem __maybe_unused *pmem;
482 	size_t n = 0;
483 
484 	assert(!discovered_nsec_ddr_start);
485 	assert(m && num_elems);
486 
487 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
488 
489 	/*
490 	 * Non-secure shared memory and also secure data
491 	 * path memory are supposed to reside inside
492 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
493 	 * are used for a specific purpose make holes for
494 	 * those memory in the normal non-secure memory.
495 	 *
496 	 * This has to be done since for instance QEMU
497 	 * isn't aware of which memory range in the
498 	 * non-secure memory is used for NSEC_SHM.
499 	 */
500 
501 #ifdef CFG_SECURE_DATA_PATH
502 	if (dtb_get_sdp_region())
503 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
504 
505 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
506 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
507 #endif
508 
509 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
510 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
511 				   secure_only[n].size);
512 
513 	for  (n = 0; n < mem_map->count; n++) {
514 		switch (mem_map->map[n].type) {
515 		case MEM_AREA_NSEC_SHM:
516 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
517 					   mem_map->map[n].size);
518 			break;
519 		case MEM_AREA_EXT_DT:
520 		case MEM_AREA_MANIFEST_DT:
521 		case MEM_AREA_RAM_NSEC:
522 		case MEM_AREA_RES_VASPACE:
523 		case MEM_AREA_SHM_VASPACE:
524 		case MEM_AREA_TS_VASPACE:
525 		case MEM_AREA_PAGER_VASPACE:
526 		case MEM_AREA_NEX_DYN_VASPACE:
527 		case MEM_AREA_TEE_DYN_VASPACE:
528 			break;
529 		default:
530 			check_phys_mem_is_outside(m, num_elems,
531 						  mem_map->map + n);
532 		}
533 	}
534 
535 	discovered_nsec_ddr_start = m;
536 	discovered_nsec_ddr_nelems = num_elems;
537 
538 	DMSG("Non-secure RAM:");
539 	for (n = 0; n < num_elems; n++)
540 		DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ,
541 		     n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size);
542 
543 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
544 				   m[num_elems - 1].size))
545 		panic();
546 }
547 
get_discovered_nsec_ddr(const struct core_mmu_phys_mem ** start,const struct core_mmu_phys_mem ** end)548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
549 				    const struct core_mmu_phys_mem **end)
550 {
551 	if (!discovered_nsec_ddr_start)
552 		return false;
553 
554 	*start = discovered_nsec_ddr_start;
555 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
556 
557 	return true;
558 }
559 
pbuf_is_nsec_ddr(paddr_t pbuf,size_t len)560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
561 {
562 	const struct core_mmu_phys_mem *start;
563 	const struct core_mmu_phys_mem *end;
564 
565 	if (!get_discovered_nsec_ddr(&start, &end))
566 		return false;
567 
568 	return pbuf_is_special_mem(pbuf, len, start, end);
569 }
570 
core_mmu_nsec_ddr_is_defined(void)571 bool core_mmu_nsec_ddr_is_defined(void)
572 {
573 	const struct core_mmu_phys_mem *start;
574 	const struct core_mmu_phys_mem *end;
575 
576 	if (!get_discovered_nsec_ddr(&start, &end))
577 		return false;
578 
579 	return start != end;
580 }
581 #else
pbuf_is_nsec_ddr(paddr_t pbuf __unused,size_t len __unused)582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
583 {
584 	return false;
585 }
586 #endif /*CFG_CORE_DYN_SHM*/
587 
588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
589 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
590 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
591 
592 #ifdef CFG_SECURE_DATA_PATH
pbuf_is_sdp_mem(paddr_t pbuf,size_t len)593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
594 {
595 	bool is_sdp_mem = false;
596 
597 	if (sec_sdp.size)
598 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
599 						   sec_sdp.size);
600 
601 	if (!is_sdp_mem)
602 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
603 						 phys_sdp_mem_end);
604 
605 	if (!is_sdp_mem) {
606 		struct mobj *m = mobj_protmem_get_by_pa(pbuf, len);
607 
608 		if (!m)
609 			m = mobj_ffa_protmem_get_by_pa(pbuf, len);
610 		if (m) {
611 			mobj_put(m);
612 			is_sdp_mem = true;
613 		}
614 	}
615 
616 	return is_sdp_mem;
617 }
618 
core_sdp_mem_alloc_mobj(paddr_t pa,size_t size)619 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
620 {
621 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
622 					    CORE_MEM_SDP_MEM);
623 
624 	if (!mobj)
625 		panic("can't create SDP physical memory object");
626 
627 	return mobj;
628 }
629 
core_sdp_mem_create_mobjs(void)630 struct mobj **core_sdp_mem_create_mobjs(void)
631 {
632 	const struct core_mmu_phys_mem *mem = NULL;
633 	struct mobj **mobj_base = NULL;
634 	struct mobj **mobj = NULL;
635 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
636 
637 	if (sec_sdp.size)
638 		cnt++;
639 
640 	/* SDP mobjs table must end with a NULL entry */
641 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
642 	if (!mobj_base)
643 		panic("Out of memory");
644 
645 	mobj = mobj_base;
646 
647 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
648 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
649 
650 	if (sec_sdp.size)
651 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
652 
653 	return mobj_base;
654 }
655 
656 #else /* CFG_SECURE_DATA_PATH */
pbuf_is_sdp_mem(paddr_t pbuf __unused,size_t len __unused)657 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
658 {
659 	return false;
660 }
661 
662 #endif /* CFG_SECURE_DATA_PATH */
663 
664 /* Check special memories comply with registered memories */
verify_special_mem_areas(struct memory_map * mem_map,const struct core_mmu_phys_mem * start,const struct core_mmu_phys_mem * end,const char * area_name __maybe_unused)665 static void verify_special_mem_areas(struct memory_map *mem_map,
666 				     const struct core_mmu_phys_mem *start,
667 				     const struct core_mmu_phys_mem *end,
668 				     const char *area_name __maybe_unused)
669 {
670 	const struct core_mmu_phys_mem *mem = NULL;
671 	const struct core_mmu_phys_mem *mem2 = NULL;
672 	size_t n = 0;
673 
674 	if (start == end) {
675 		DMSG("No %s memory area defined", area_name);
676 		return;
677 	}
678 
679 	for (mem = start; mem < end; mem++)
680 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
681 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
682 
683 	/* Check memories do not intersect each other */
684 	for (mem = start; mem + 1 < end; mem++) {
685 		for (mem2 = mem + 1; mem2 < end; mem2++) {
686 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
687 						     mem->addr, mem->size)) {
688 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
689 						   mem->addr, mem->size);
690 				panic("Special memory intersection");
691 			}
692 		}
693 	}
694 
695 	/*
696 	 * Check memories do not intersect any mapped memory.
697 	 * This is called before reserved VA space is loaded in mem_map.
698 	 */
699 	for (mem = start; mem < end; mem++) {
700 		for (n = 0; n < mem_map->count; n++) {
701 #ifdef TEE_SDP_TEST_MEM_BASE
702 			/*
703 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
704 			 * TEE_SDP_TEST_MEM too.
705 			 */
706 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
707 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
708 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
709 				continue;
710 #endif
711 			if (core_is_buffer_intersect(mem->addr, mem->size,
712 						     mem_map->map[n].pa,
713 						     mem_map->map[n].size)) {
714 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
715 						   mem_map->map[n].pa,
716 						   mem_map->map[n].size);
717 				panic("Special memory intersection");
718 			}
719 		}
720 	}
721 }
722 
merge_mmaps(struct tee_mmap_region * dst,const struct tee_mmap_region * src)723 static void merge_mmaps(struct tee_mmap_region *dst,
724 			const struct tee_mmap_region *src)
725 {
726 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
727 	paddr_t pa = MIN(dst->pa, src->pa);
728 
729 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
730 	     dst->pa, dst->pa + dst->size - 1, src->pa,
731 	     src->pa + src->size - 1);
732 	dst->pa = pa;
733 	dst->size = end_pa - pa + 1;
734 }
735 
mmaps_are_mergeable(const struct tee_mmap_region * r1,const struct tee_mmap_region * r2)736 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
737 				const struct tee_mmap_region *r2)
738 {
739 	if (r1->type != r2->type)
740 		return false;
741 
742 	if (r1->pa == r2->pa)
743 		return true;
744 
745 	if (r1->pa < r2->pa)
746 		return r1->pa + r1->size >= r2->pa;
747 	else
748 		return r2->pa + r2->size >= r1->pa;
749 }
750 
add_phys_mem(struct memory_map * mem_map,const char * mem_name __maybe_unused,enum teecore_memtypes mem_type,paddr_t mem_addr,paddr_size_t mem_size)751 static void add_phys_mem(struct memory_map *mem_map,
752 			 const char *mem_name __maybe_unused,
753 			 enum teecore_memtypes mem_type,
754 			 paddr_t mem_addr, paddr_size_t mem_size)
755 {
756 	size_t n = 0;
757 	const struct tee_mmap_region m0 = {
758 		.type = mem_type,
759 		.pa = mem_addr,
760 		.size = mem_size,
761 	};
762 
763 	if (!mem_size)	/* Discard null size entries */
764 		return;
765 
766 	/*
767 	 * If some ranges of memory of the same type do overlap
768 	 * each others they are coalesced into one entry. To help this
769 	 * added entries are sorted by increasing physical.
770 	 *
771 	 * Note that it's valid to have the same physical memory as several
772 	 * different memory types, for instance the same device memory
773 	 * mapped as both secure and non-secure. This will probably not
774 	 * happen often in practice.
775 	 */
776 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
777 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
778 	for  (n = 0; n < mem_map->count; n++) {
779 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
780 			merge_mmaps(mem_map->map + n, &m0);
781 			/*
782 			 * The merged result might be mergeable with the
783 			 * next or previous entry.
784 			 */
785 			if (n + 1 < mem_map->count &&
786 			    mmaps_are_mergeable(mem_map->map + n,
787 						mem_map->map + n + 1)) {
788 				merge_mmaps(mem_map->map + n,
789 					    mem_map->map + n + 1);
790 				rem_array_elem(mem_map->map, mem_map->count,
791 					       sizeof(*mem_map->map), n + 1);
792 				mem_map->count--;
793 			}
794 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
795 							 mem_map->map + n)) {
796 				merge_mmaps(mem_map->map + n - 1,
797 					    mem_map->map + n);
798 				rem_array_elem(mem_map->map, mem_map->count,
799 					       sizeof(*mem_map->map), n);
800 				mem_map->count--;
801 			}
802 			return;
803 		}
804 		if (mem_type < mem_map->map[n].type ||
805 		    (mem_type == mem_map->map[n].type &&
806 		     mem_addr < mem_map->map[n].pa))
807 			break; /* found the spot where to insert this memory */
808 	}
809 
810 	grow_mem_map(mem_map);
811 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
812 		       n, &m0);
813 }
814 
add_va_space(struct memory_map * mem_map,enum teecore_memtypes type,size_t size)815 static void add_va_space(struct memory_map *mem_map,
816 			 enum teecore_memtypes type, size_t size)
817 {
818 	size_t n = 0;
819 
820 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
821 	for  (n = 0; n < mem_map->count; n++) {
822 		if (type < mem_map->map[n].type)
823 			break;
824 	}
825 
826 	grow_mem_map(mem_map);
827 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
828 		       n, NULL);
829 	mem_map->map[n] = (struct tee_mmap_region){
830 		.type = type,
831 		.size = size,
832 	};
833 }
834 
core_mmu_type_to_attr(enum teecore_memtypes t)835 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
836 {
837 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
838 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
839 				TEE_MATTR_MEM_TYPE_SHIFT;
840 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
841 				TEE_MATTR_MEM_TYPE_SHIFT;
842 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
843 				  TEE_MATTR_MEM_TYPE_SHIFT;
844 
845 	switch (t) {
846 	case MEM_AREA_TEE_RAM:
847 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
848 	case MEM_AREA_TEE_RAM_RX:
849 	case MEM_AREA_INIT_RAM_RX:
850 	case MEM_AREA_IDENTITY_MAP_RX:
851 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
852 	case MEM_AREA_TEE_RAM_RO:
853 	case MEM_AREA_INIT_RAM_RO:
854 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
855 	case MEM_AREA_TEE_RAM_RW:
856 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
857 	case MEM_AREA_NEX_RAM_RW:
858 	case MEM_AREA_NEX_DYN_VASPACE:
859 	case MEM_AREA_TEE_DYN_VASPACE:
860 	case MEM_AREA_TEE_ASAN:
861 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
862 	case MEM_AREA_TEE_COHERENT:
863 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
864 	case MEM_AREA_NSEC_SHM:
865 	case MEM_AREA_NEX_NSEC_SHM:
866 		return attr | TEE_MATTR_PRW | cached;
867 	case MEM_AREA_MANIFEST_DT:
868 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
869 	case MEM_AREA_TRANSFER_LIST:
870 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
871 	case MEM_AREA_EXT_DT:
872 		/*
873 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
874 		 * tree as secure non-cached memory, otherwise, fall back to
875 		 * non-secure mapping.
876 		 */
877 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
878 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
879 			       noncache;
880 		fallthrough;
881 	case MEM_AREA_IO_NSEC:
882 		return attr | TEE_MATTR_PRW | noncache;
883 	case MEM_AREA_IO_SEC:
884 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
885 	case MEM_AREA_RAM_NSEC:
886 		return attr | TEE_MATTR_PRW | cached;
887 	case MEM_AREA_RAM_SEC:
888 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
889 	case MEM_AREA_SEC_RAM_OVERALL:
890 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
891 	case MEM_AREA_ROM_SEC:
892 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
893 	case MEM_AREA_RES_VASPACE:
894 	case MEM_AREA_SHM_VASPACE:
895 		return 0;
896 	case MEM_AREA_PAGER_VASPACE:
897 		return TEE_MATTR_SECURE;
898 	default:
899 		panic("invalid type");
900 	}
901 }
902 
map_is_tee_ram(const struct tee_mmap_region * mm)903 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
904 {
905 	switch (mm->type) {
906 	case MEM_AREA_TEE_RAM:
907 	case MEM_AREA_TEE_RAM_RX:
908 	case MEM_AREA_TEE_RAM_RO:
909 	case MEM_AREA_TEE_RAM_RW:
910 	case MEM_AREA_INIT_RAM_RX:
911 	case MEM_AREA_INIT_RAM_RO:
912 	case MEM_AREA_NEX_RAM_RW:
913 	case MEM_AREA_NEX_RAM_RO:
914 	case MEM_AREA_TEE_ASAN:
915 		return true;
916 	default:
917 		return false;
918 	}
919 }
920 
map_is_secure(const struct tee_mmap_region * mm)921 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
922 {
923 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
924 }
925 
map_is_pgdir(const struct tee_mmap_region * mm)926 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
927 {
928 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
929 }
930 
cmp_mmap_by_lower_va(const void * a,const void * b)931 static int cmp_mmap_by_lower_va(const void *a, const void *b)
932 {
933 	const struct tee_mmap_region *mm_a = a;
934 	const struct tee_mmap_region *mm_b = b;
935 
936 	return CMP_TRILEAN(mm_a->va, mm_b->va);
937 }
938 
dump_mmap_table(struct memory_map * mem_map)939 static void dump_mmap_table(struct memory_map *mem_map)
940 {
941 	size_t n = 0;
942 
943 	for (n = 0; n < mem_map->count; n++) {
944 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
945 
946 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
947 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
948 		     teecore_memtype_name(map->type), map->va,
949 		     map->va + map->size - 1, map->pa,
950 		     (paddr_t)(map->pa + map->size - 1), map->size,
951 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
952 	}
953 }
954 
955 #if DEBUG_XLAT_TABLE
956 
dump_xlat_table(vaddr_t va,unsigned int level)957 static void dump_xlat_table(vaddr_t va, unsigned int level)
958 {
959 	struct core_mmu_table_info tbl_info;
960 	unsigned int idx = 0;
961 	paddr_t pa;
962 	uint32_t attr;
963 
964 	core_mmu_find_table(NULL, va, level, &tbl_info);
965 	va = tbl_info.va_base;
966 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
967 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
968 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
969 			const char *security_bit = "";
970 
971 			if (core_mmu_entry_have_security_bit(attr)) {
972 				if (attr & TEE_MATTR_SECURE)
973 					security_bit = "S";
974 				else
975 					security_bit = "NS";
976 			}
977 
978 			if (attr & TEE_MATTR_TABLE) {
979 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
980 					" TBL:0x%010" PRIxPA " %s",
981 					level * 2, "", level, va, pa,
982 					security_bit);
983 				dump_xlat_table(va, level + 1);
984 			} else if (attr) {
985 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
986 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
987 					level * 2, "", level, va, pa,
988 					mattr_is_cached(attr) ? "MEM" :
989 					"DEV",
990 					attr & TEE_MATTR_PW ? "RW" : "RO",
991 					attr & TEE_MATTR_PX ? "X " : "XN",
992 					security_bit);
993 			} else {
994 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
995 					    " INVALID\n",
996 					    level * 2, "", level, va);
997 			}
998 		}
999 		va += BIT64(tbl_info.shift);
1000 	}
1001 }
1002 
1003 #else
1004 
dump_xlat_table(vaddr_t va __unused,int level __unused)1005 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
1006 {
1007 }
1008 
1009 #endif
1010 
1011 /*
1012  * Reserves virtual memory space for pager usage.
1013  *
1014  * From the start of the first memory used by the link script +
1015  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
1016  * mapping for pager usage. This adds translation tables as needed for the
1017  * pager to operate.
1018  */
add_pager_vaspace(struct memory_map * mem_map)1019 static void add_pager_vaspace(struct memory_map *mem_map)
1020 {
1021 	paddr_t begin = 0;
1022 	paddr_t end = 0;
1023 	size_t size = 0;
1024 	size_t pos = 0;
1025 	size_t n = 0;
1026 
1027 
1028 	for (n = 0; n < mem_map->count; n++) {
1029 		if (map_is_tee_ram(mem_map->map + n)) {
1030 			if (!begin)
1031 				begin = mem_map->map[n].pa;
1032 			pos = n + 1;
1033 		}
1034 	}
1035 
1036 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1037 	assert(end - begin < TEE_RAM_VA_SIZE);
1038 	size = TEE_RAM_VA_SIZE - (end - begin);
1039 
1040 	grow_mem_map(mem_map);
1041 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1042 		       n, NULL);
1043 	mem_map->map[n] = (struct tee_mmap_region){
1044 		.type = MEM_AREA_PAGER_VASPACE,
1045 		.size = size,
1046 		.region_size = SMALL_PAGE_SIZE,
1047 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1048 	};
1049 }
1050 
check_sec_nsec_mem_config(void)1051 static void check_sec_nsec_mem_config(void)
1052 {
1053 	size_t n = 0;
1054 
1055 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1056 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1057 				    secure_only[n].size))
1058 			panic("Invalid memory access config: sec/nsec");
1059 	}
1060 }
1061 
collect_device_mem_ranges(struct memory_map * mem_map)1062 static void collect_device_mem_ranges(struct memory_map *mem_map)
1063 {
1064 	const char *compatible = "arm,ffa-manifest-device-regions";
1065 	void *fdt = get_manifest_dt();
1066 	const char *name = NULL;
1067 	uint64_t page_count = 0;
1068 	uint64_t base = 0;
1069 	int subnode = 0;
1070 	int node = 0;
1071 
1072 	assert(fdt);
1073 
1074 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1075 	if (node < 0)
1076 		return;
1077 
1078 	fdt_for_each_subnode(subnode, fdt, node) {
1079 		name = fdt_get_name(fdt, subnode, NULL);
1080 		if (!name)
1081 			continue;
1082 
1083 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1084 					 &base)) {
1085 			EMSG("Mandatory field is missing: base-address");
1086 			continue;
1087 		}
1088 
1089 		if (base & SMALL_PAGE_MASK) {
1090 			EMSG("base-address is not page aligned");
1091 			continue;
1092 		}
1093 
1094 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1095 					 &page_count)) {
1096 			EMSG("Mandatory field is missing: pages-count");
1097 			continue;
1098 		}
1099 
1100 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1101 			     base, page_count * SMALL_PAGE_SIZE);
1102 	}
1103 }
1104 
collect_mem_ranges(struct memory_map * mem_map)1105 static void collect_mem_ranges(struct memory_map *mem_map)
1106 {
1107 	const struct core_mmu_phys_mem *mem = NULL;
1108 	vaddr_t ram_start = secure_only[0].paddr;
1109 	size_t n = 0;
1110 
1111 #define ADD_PHYS_MEM(_type, _addr, _size) \
1112 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1113 
1114 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1115 		paddr_t next_pa = 0;
1116 
1117 		/*
1118 		 * Read-only and read-execute physical memory areas must
1119 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1120 		 * read/write should.
1121 		 */
1122 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1123 			     VCORE_UNPG_RX_PA - ram_start);
1124 		assert(VCORE_UNPG_RX_PA >= ram_start);
1125 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1126 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1127 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1128 			     VCORE_UNPG_RX_SZ);
1129 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1130 			     VCORE_UNPG_RO_SZ);
1131 
1132 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1133 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1134 				     VCORE_UNPG_RW_SZ);
1135 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1136 				     VCORE_UNPG_RW_SZ);
1137 
1138 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1139 				     VCORE_NEX_RW_SZ);
1140 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1141 				     VCORE_NEX_RW_SZ);
1142 
1143 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1144 				     VCORE_FREE_SZ);
1145 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1146 				     VCORE_FREE_SZ);
1147 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1148 		} else {
1149 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1150 				     VCORE_UNPG_RW_SZ);
1151 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1152 				     VCORE_UNPG_RW_SZ);
1153 
1154 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1155 				     VCORE_FREE_SZ);
1156 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1157 				     VCORE_FREE_SZ);
1158 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1159 		}
1160 
1161 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1162 			paddr_t pa = 0;
1163 			size_t sz = 0;
1164 
1165 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1166 				     VCORE_INIT_RX_SZ);
1167 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1168 				     VCORE_INIT_RO_SZ);
1169 			/*
1170 			 * Core init mapping shall cover up to end of the
1171 			 * physical RAM.  This is required since the hash
1172 			 * table is appended to the binary data after the
1173 			 * firmware build sequence.
1174 			 */
1175 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1176 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1177 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1178 		} else {
1179 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1180 				     secure_only[0].paddr +
1181 				     secure_only[0].size - next_pa);
1182 		}
1183 	} else {
1184 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1185 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1186 			     secure_only[0].size);
1187 	}
1188 
1189 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1190 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1191 			     secure_only[n].size);
1192 
1193 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS))
1194 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1195 
1196 #undef ADD_PHYS_MEM
1197 
1198 	/* Collect device memory info from SP manifest */
1199 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1200 		collect_device_mem_ranges(mem_map);
1201 
1202 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1203 		/* Only unmapped virtual range may have a null phys addr */
1204 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1205 
1206 		add_phys_mem(mem_map, mem->name, mem->type,
1207 			     mem->addr, mem->size);
1208 	}
1209 
1210 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1211 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1212 					 phys_sdp_mem_end, "SDP");
1213 
1214 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1215 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1216 	if (IS_ENABLED(CFG_DYN_CONFIG)) {
1217 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1218 			add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE,
1219 				     ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE,
1220 					     CORE_MMU_PGDIR_SIZE));
1221 		add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE,
1222 			     CFG_TEE_DYN_VASPACE_SIZE);
1223 	}
1224 }
1225 
assign_mem_granularity(struct memory_map * mem_map)1226 static void assign_mem_granularity(struct memory_map *mem_map)
1227 {
1228 	size_t n = 0;
1229 
1230 	/*
1231 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1232 	 * SMALL_PAGE_SIZE.
1233 	 */
1234 	for  (n = 0; n < mem_map->count; n++) {
1235 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1236 
1237 		if (mask & SMALL_PAGE_MASK)
1238 			panic("Impossible memory alignment");
1239 
1240 		if (map_is_tee_ram(mem_map->map + n))
1241 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1242 		else
1243 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1244 	}
1245 }
1246 
place_tee_ram_at_top(paddr_t paddr)1247 static bool place_tee_ram_at_top(paddr_t paddr)
1248 {
1249 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1250 }
1251 
1252 /*
1253  * MMU arch driver shall override this function if it helps
1254  * optimizing the memory footprint of the address translation tables.
1255  */
core_mmu_prefer_tee_ram_at_top(paddr_t paddr)1256 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1257 {
1258 	return place_tee_ram_at_top(paddr);
1259 }
1260 
assign_mem_va_dir(vaddr_t tee_ram_va,struct memory_map * mem_map,bool tee_ram_at_top)1261 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1262 			      bool tee_ram_at_top)
1263 {
1264 	struct tee_mmap_region *map = NULL;
1265 	bool va_is_nex_shared = false;
1266 	bool va_is_secure = true;
1267 	vaddr_t va = 0;
1268 	size_t n = 0;
1269 
1270 	/*
1271 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1272 	 * 0 is by design an invalid va, so return false directly.
1273 	 */
1274 	if (!tee_ram_va)
1275 		return false;
1276 
1277 	/* Clear eventual previous assignments */
1278 	for (n = 0; n < mem_map->count; n++)
1279 		mem_map->map[n].va = 0;
1280 
1281 	/*
1282 	 * TEE RAM regions are always aligned with region_size.
1283 	 *
1284 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1285 	 * since it handles virtual memory which covers the part of the ELF
1286 	 * that cannot fit directly into memory.
1287 	 */
1288 	va = tee_ram_va + tee_ram_initial_offs;
1289 	for (n = 0; n < mem_map->count; n++) {
1290 		map = mem_map->map + n;
1291 		if (map_is_tee_ram(map) ||
1292 		    map->type == MEM_AREA_PAGER_VASPACE) {
1293 			assert(!(va & (map->region_size - 1)));
1294 			assert(!(map->size & (map->region_size - 1)));
1295 			map->va = va;
1296 			if (ADD_OVERFLOW(va, map->size, &va))
1297 				return false;
1298 			if (!core_mmu_va_is_valid(va))
1299 				return false;
1300 		}
1301 	}
1302 
1303 	if (tee_ram_at_top) {
1304 		/*
1305 		 * Map non-tee ram regions at addresses lower than the tee
1306 		 * ram region.
1307 		 */
1308 		va = tee_ram_va;
1309 		for (n = 0; n < mem_map->count; n++) {
1310 			map = mem_map->map + n;
1311 			map->attr = core_mmu_type_to_attr(map->type);
1312 			if (map->va)
1313 				continue;
1314 
1315 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1316 			    va_is_secure != map_is_secure(map)) {
1317 				va_is_secure = !va_is_secure;
1318 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1319 			} else if (va_is_nex_shared !=
1320 				   core_mmu_type_is_nex_shared(map->type)) {
1321 				va_is_nex_shared = !va_is_nex_shared;
1322 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1323 			}
1324 
1325 			if (SUB_OVERFLOW(va, map->size, &va))
1326 				return false;
1327 			va = ROUNDDOWN2(va, map->region_size);
1328 			/*
1329 			 * Make sure that va is aligned with pa for
1330 			 * efficient pgdir mapping. Basically pa &
1331 			 * pgdir_mask should be == va & pgdir_mask
1332 			 */
1333 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1334 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1335 					return false;
1336 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1337 			}
1338 			map->va = va;
1339 		}
1340 	} else {
1341 		/*
1342 		 * Map non-tee ram regions at addresses higher than the tee
1343 		 * ram region.
1344 		 */
1345 		for (n = 0; n < mem_map->count; n++) {
1346 			map = mem_map->map + n;
1347 			map->attr = core_mmu_type_to_attr(map->type);
1348 			if (map->va)
1349 				continue;
1350 
1351 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1352 			    va_is_secure != map_is_secure(map)) {
1353 				va_is_secure = !va_is_secure;
1354 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1355 						     &va))
1356 					return false;
1357 			} else if (va_is_nex_shared !=
1358 				   core_mmu_type_is_nex_shared(map->type)) {
1359 				va_is_nex_shared = !va_is_nex_shared;
1360 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1361 						     &va))
1362 					return false;
1363 			}
1364 
1365 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1366 				return false;
1367 			/*
1368 			 * Make sure that va is aligned with pa for
1369 			 * efficient pgdir mapping. Basically pa &
1370 			 * pgdir_mask should be == va & pgdir_mask
1371 			 */
1372 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1373 				vaddr_t offs = (map->pa - va) &
1374 					       CORE_MMU_PGDIR_MASK;
1375 
1376 				if (ADD_OVERFLOW(va, offs, &va))
1377 					return false;
1378 			}
1379 
1380 			map->va = va;
1381 			if (ADD_OVERFLOW(va, map->size, &va))
1382 				return false;
1383 			if (!core_mmu_va_is_valid(va))
1384 				return false;
1385 		}
1386 	}
1387 
1388 	return true;
1389 }
1390 
assign_mem_va(vaddr_t tee_ram_va,struct memory_map * mem_map)1391 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1392 {
1393 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1394 
1395 	/*
1396 	 * Check that we're not overlapping with the user VA range.
1397 	 */
1398 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1399 		/*
1400 		 * User VA range is supposed to be defined after these
1401 		 * mappings have been established.
1402 		 */
1403 		assert(!core_mmu_user_va_range_is_defined());
1404 	} else {
1405 		vaddr_t user_va_base = 0;
1406 		size_t user_va_size = 0;
1407 
1408 		assert(core_mmu_user_va_range_is_defined());
1409 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1410 		if (tee_ram_va < (user_va_base + user_va_size))
1411 			return false;
1412 	}
1413 
1414 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1415 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1416 
1417 		/* Try whole mapping covered by a single base xlat entry */
1418 		if (prefered_dir != tee_ram_at_top &&
1419 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1420 			return true;
1421 	}
1422 
1423 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1424 }
1425 
cmp_init_mem_map(const void * a,const void * b)1426 static int cmp_init_mem_map(const void *a, const void *b)
1427 {
1428 	const struct tee_mmap_region *mm_a = a;
1429 	const struct tee_mmap_region *mm_b = b;
1430 	int rc = 0;
1431 
1432 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1433 	if (!rc)
1434 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1435 	/*
1436 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1437 	 * the same level2 table. Hence sort secure mapping from non-secure
1438 	 * mapping.
1439 	 */
1440 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1441 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1442 
1443 	/*
1444 	 * Nexus mappings shared between partitions should not be mixed
1445 	 * with other mappings in the same translation table. Hence sort
1446 	 * nexus shared mappings from other mappings.
1447 	 */
1448 	if (!rc)
1449 		rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type),
1450 				 core_mmu_type_is_nex_shared(mm_b->type));
1451 
1452 	return rc;
1453 }
1454 
mem_map_add_id_map(struct memory_map * mem_map,vaddr_t id_map_start,vaddr_t id_map_end)1455 static bool mem_map_add_id_map(struct memory_map *mem_map,
1456 			       vaddr_t id_map_start, vaddr_t id_map_end)
1457 {
1458 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1459 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1460 	size_t len = end - start;
1461 	size_t n = 0;
1462 
1463 
1464 	for (n = 0; n < mem_map->count; n++)
1465 		if (core_is_buffer_intersect(mem_map->map[n].va,
1466 					     mem_map->map[n].size, start, len))
1467 			return false;
1468 
1469 	grow_mem_map(mem_map);
1470 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1471 		.type = MEM_AREA_IDENTITY_MAP_RX,
1472 		/*
1473 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1474 		 * translation table, at the increased risk of clashes with
1475 		 * the rest of the memory map.
1476 		 */
1477 		.region_size = SMALL_PAGE_SIZE,
1478 		.pa = start,
1479 		.va = start,
1480 		.size = len,
1481 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1482 	};
1483 
1484 	return true;
1485 }
1486 
init_mem_map(struct memory_map * mem_map,unsigned long seed,unsigned long * ret_offs)1487 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1488 				       unsigned long seed,
1489 				       unsigned long *ret_offs)
1490 {
1491 	/*
1492 	 * @id_map_start and @id_map_end describes a physical memory range
1493 	 * that must be mapped Read-Only eXecutable at identical virtual
1494 	 * addresses.
1495 	 */
1496 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1497 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1498 	vaddr_t start_addr = secure_only[0].paddr;
1499 	unsigned long offs = 0;
1500 
1501 	collect_mem_ranges(mem_map);
1502 	assign_mem_granularity(mem_map);
1503 
1504 	/*
1505 	 * To ease mapping and lower use of xlat tables, sort mapping
1506 	 * description moving small-page regions after the pgdir regions.
1507 	 */
1508 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1509 	      cmp_init_mem_map);
1510 
1511 	if (IS_ENABLED(CFG_WITH_PAGER))
1512 		add_pager_vaspace(mem_map);
1513 
1514 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1515 		vaddr_t ba = 0;
1516 		size_t n = 0;
1517 
1518 		for (n = 0; n < 3; n++) {
1519 			ba = arch_aslr_base_addr(start_addr, seed, n);
1520 			if (assign_mem_va(ba, mem_map) &&
1521 			    mem_map_add_id_map(mem_map, id_map_start,
1522 					       id_map_end)) {
1523 				offs = ba - start_addr;
1524 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1525 				     ba, offs);
1526 				goto out;
1527 			} else {
1528 				DMSG("Failed to map core at %#"PRIxVA, ba);
1529 			}
1530 		}
1531 		EMSG("Failed to map core with seed %#lx", seed);
1532 	}
1533 
1534 	if (!assign_mem_va(start_addr, mem_map))
1535 		panic();
1536 
1537 out:
1538 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1539 	      cmp_mmap_by_lower_va);
1540 
1541 	dump_mmap_table(mem_map);
1542 
1543 	*ret_offs = offs;
1544 	return mem_map;
1545 }
1546 
check_mem_map(struct memory_map * mem_map)1547 static void check_mem_map(struct memory_map *mem_map)
1548 {
1549 	struct tee_mmap_region *m = NULL;
1550 	size_t n = 0;
1551 
1552 	for (n = 0; n < mem_map->count; n++) {
1553 		m = mem_map->map + n;
1554 		switch (m->type) {
1555 		case MEM_AREA_TEE_RAM:
1556 		case MEM_AREA_TEE_RAM_RX:
1557 		case MEM_AREA_TEE_RAM_RO:
1558 		case MEM_AREA_TEE_RAM_RW:
1559 		case MEM_AREA_INIT_RAM_RX:
1560 		case MEM_AREA_INIT_RAM_RO:
1561 		case MEM_AREA_NEX_RAM_RW:
1562 		case MEM_AREA_NEX_RAM_RO:
1563 		case MEM_AREA_IDENTITY_MAP_RX:
1564 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1565 				panic("TEE_RAM can't fit in secure_only");
1566 			break;
1567 		case MEM_AREA_SEC_RAM_OVERALL:
1568 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1569 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1570 			break;
1571 		case MEM_AREA_NSEC_SHM:
1572 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1573 				panic("NS_SHM can't fit in nsec_shared");
1574 			break;
1575 		case MEM_AREA_TEE_COHERENT:
1576 		case MEM_AREA_TEE_ASAN:
1577 		case MEM_AREA_IO_SEC:
1578 		case MEM_AREA_IO_NSEC:
1579 		case MEM_AREA_EXT_DT:
1580 		case MEM_AREA_MANIFEST_DT:
1581 		case MEM_AREA_TRANSFER_LIST:
1582 		case MEM_AREA_RAM_SEC:
1583 		case MEM_AREA_RAM_NSEC:
1584 		case MEM_AREA_ROM_SEC:
1585 		case MEM_AREA_RES_VASPACE:
1586 		case MEM_AREA_SHM_VASPACE:
1587 		case MEM_AREA_PAGER_VASPACE:
1588 		case MEM_AREA_NEX_DYN_VASPACE:
1589 		case MEM_AREA_TEE_DYN_VASPACE:
1590 			break;
1591 		default:
1592 			EMSG("Uhandled memtype %d", m->type);
1593 			panic();
1594 		}
1595 	}
1596 }
1597 
1598 /*
1599  * core_init_mmu_map() - init tee core default memory mapping
1600  *
1601  * This routine sets the static default TEE core mapping. If @seed is > 0
1602  * and configured with CFG_CORE_ASLR it will map tee core at a location
1603  * based on the seed and return the offset from the link address.
1604  *
1605  * If an error happened: core_init_mmu_map is expected to panic.
1606  *
1607  * Note: this function is weak just to make it possible to exclude it from
1608  * the unpaged area.
1609  */
core_init_mmu_map(unsigned long seed,struct core_mmu_config * cfg)1610 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1611 {
1612 #ifndef CFG_NS_VIRTUALIZATION
1613 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1614 #else
1615 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1616 				  SMALL_PAGE_SIZE);
1617 #endif
1618 #ifdef CFG_DYN_CONFIG
1619 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1620 #else
1621 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1622 #endif
1623 	struct tee_mmap_region tmp_mmap_region = { };
1624 	struct memory_map mem_map = { };
1625 	unsigned long offs = 0;
1626 
1627 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1628 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1629 		panic("OP-TEE load address is not page aligned");
1630 
1631 	check_sec_nsec_mem_config();
1632 
1633 	mem_map.alloc_count = CFG_MMAP_REGIONS;
1634 	mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1635 						sizeof(*mem_map.map),
1636 					 alignof(*mem_map.map));
1637 	memory_map_realloc_func = boot_mem_realloc_memory_map;
1638 
1639 	static_memory_map = (struct memory_map){
1640 		.map = &tmp_mmap_region,
1641 		.alloc_count = 1,
1642 		.count = 1,
1643 	};
1644 	/*
1645 	 * Add a entry covering the translation tables which will be
1646 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1647 	 */
1648 	static_memory_map.map[0] = (struct tee_mmap_region){
1649 		.type = MEM_AREA_TEE_RAM,
1650 		.region_size = SMALL_PAGE_SIZE,
1651 		.pa = start,
1652 		.va = start,
1653 		.size = len,
1654 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1655 	};
1656 
1657 	init_mem_map(&mem_map, seed, &offs);
1658 
1659 	check_mem_map(&mem_map);
1660 	core_init_mmu(&mem_map);
1661 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1662 	core_init_mmu_regs(cfg);
1663 	cfg->map_offset = offs;
1664 	static_memory_map = mem_map;
1665 	boot_mem_add_reloc(&static_memory_map.map);
1666 }
1667 
core_mmu_save_mem_map(void)1668 void core_mmu_save_mem_map(void)
1669 {
1670 	size_t alloc_count = static_memory_map.count + 5;
1671 	size_t elem_sz = sizeof(*static_memory_map.map);
1672 	void *p = NULL;
1673 
1674 	p = nex_calloc(alloc_count, elem_sz);
1675 	if (!p)
1676 		panic();
1677 	memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz);
1678 	static_memory_map.map = p;
1679 	static_memory_map.alloc_count = alloc_count;
1680 	memory_map_realloc_func = heap_realloc_memory_map;
1681 }
1682 
core_mmu_mattr_is_ok(uint32_t mattr)1683 bool core_mmu_mattr_is_ok(uint32_t mattr)
1684 {
1685 	/*
1686 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1687 	 * core_mmu_v7.c:mattr_to_texcb
1688 	 */
1689 
1690 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1691 	case TEE_MATTR_MEM_TYPE_DEV:
1692 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1693 	case TEE_MATTR_MEM_TYPE_CACHED:
1694 	case TEE_MATTR_MEM_TYPE_TAGGED:
1695 		return true;
1696 	default:
1697 		return false;
1698 	}
1699 }
1700 
1701 /*
1702  * test attributes of target physical buffer
1703  *
1704  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1705  *
1706  */
core_pbuf_is(uint32_t attr,paddr_t pbuf,size_t len)1707 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1708 {
1709 	struct tee_mmap_region *map;
1710 
1711 	/* Empty buffers complies with anything */
1712 	if (len == 0)
1713 		return true;
1714 
1715 	switch (attr) {
1716 	case CORE_MEM_SEC:
1717 		return pbuf_is_inside(secure_only, pbuf, len);
1718 	case CORE_MEM_NON_SEC:
1719 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1720 			pbuf_is_nsec_ddr(pbuf, len);
1721 	case CORE_MEM_TEE_RAM:
1722 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1723 							TEE_RAM_PH_SIZE);
1724 #ifdef CFG_CORE_RESERVED_SHM
1725 	case CORE_MEM_NSEC_SHM:
1726 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1727 							TEE_SHMEM_SIZE);
1728 #endif
1729 	case CORE_MEM_SDP_MEM:
1730 		return pbuf_is_sdp_mem(pbuf, len);
1731 	case CORE_MEM_CACHED:
1732 		map = find_map_by_pa(pbuf);
1733 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1734 			return false;
1735 		return mattr_is_cached(map->attr);
1736 	default:
1737 		return false;
1738 	}
1739 }
1740 
1741 /* test attributes of target virtual buffer (in core mapping) */
core_vbuf_is(uint32_t attr,const void * vbuf,size_t len)1742 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1743 {
1744 	paddr_t p;
1745 
1746 	/* Empty buffers complies with anything */
1747 	if (len == 0)
1748 		return true;
1749 
1750 	p = virt_to_phys((void *)vbuf);
1751 	if (!p)
1752 		return false;
1753 
1754 	return core_pbuf_is(attr, p, len);
1755 }
1756 
1757 /* core_va2pa - teecore exported service */
core_va2pa_helper(void * va,paddr_t * pa)1758 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1759 {
1760 	struct tee_mmap_region *map;
1761 
1762 	map = find_map_by_va(va);
1763 	if (!va_is_in_map(map, (vaddr_t)va))
1764 		return -1;
1765 
1766 	/*
1767 	 * We can calculate PA for static map. Virtual address ranges
1768 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1769 	 * together with an invalid null physical address.
1770 	 */
1771 	if (map->pa)
1772 		*pa = map->pa + (vaddr_t)va  - map->va;
1773 	else
1774 		*pa = 0;
1775 
1776 	return 0;
1777 }
1778 
map_pa2va(struct tee_mmap_region * map,paddr_t pa,size_t len)1779 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1780 {
1781 	if (!pa_is_in_map(map, pa, len))
1782 		return NULL;
1783 
1784 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1785 }
1786 
1787 /*
1788  * teecore gets some memory area definitions
1789  */
core_mmu_get_mem_by_type(enum teecore_memtypes type,vaddr_t * s,vaddr_t * e)1790 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1791 			      vaddr_t *e)
1792 {
1793 	struct tee_mmap_region *map = find_map_by_type(type);
1794 
1795 	if (map) {
1796 		*s = map->va;
1797 		*e = map->va + map->size;
1798 	} else {
1799 		*s = 0;
1800 		*e = 0;
1801 	}
1802 }
1803 
core_mmu_get_type_by_pa(paddr_t pa)1804 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1805 {
1806 	struct tee_mmap_region *map = find_map_by_pa(pa);
1807 
1808 	/* VA spaces have no valid PAs in the memory map */
1809 	if (!map || map->type == MEM_AREA_RES_VASPACE ||
1810 	    map->type == MEM_AREA_SHM_VASPACE)
1811 		return MEM_AREA_MAXTYPE;
1812 	return map->type;
1813 }
1814 
core_mmu_set_entry(struct core_mmu_table_info * tbl_info,unsigned int idx,paddr_t pa,uint32_t attr)1815 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1816 			paddr_t pa, uint32_t attr)
1817 {
1818 	assert(idx < tbl_info->num_entries);
1819 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1820 				     idx, pa, attr);
1821 }
1822 
core_mmu_get_entry(struct core_mmu_table_info * tbl_info,unsigned int idx,paddr_t * pa,uint32_t * attr)1823 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1824 			paddr_t *pa, uint32_t *attr)
1825 {
1826 	assert(idx < tbl_info->num_entries);
1827 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1828 				     idx, pa, attr);
1829 }
1830 
clear_region(struct core_mmu_table_info * tbl_info,struct tee_mmap_region * region)1831 static void clear_region(struct core_mmu_table_info *tbl_info,
1832 			 struct tee_mmap_region *region)
1833 {
1834 	unsigned int end = 0;
1835 	unsigned int idx = 0;
1836 
1837 	/* va, len and pa should be block aligned */
1838 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1839 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1840 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1841 
1842 	idx = core_mmu_va2idx(tbl_info, region->va);
1843 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1844 
1845 	while (idx < end) {
1846 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1847 		idx++;
1848 	}
1849 }
1850 
set_region(struct core_mmu_table_info * tbl_info,struct tee_mmap_region * region)1851 static void set_region(struct core_mmu_table_info *tbl_info,
1852 		       struct tee_mmap_region *region)
1853 {
1854 	unsigned int end;
1855 	unsigned int idx;
1856 	paddr_t pa;
1857 
1858 	/* va, len and pa should be block aligned */
1859 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1860 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1861 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1862 
1863 	idx = core_mmu_va2idx(tbl_info, region->va);
1864 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1865 	pa = region->pa;
1866 
1867 	while (idx < end) {
1868 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1869 		idx++;
1870 		pa += BIT64(tbl_info->shift);
1871 	}
1872 }
1873 
set_pg_region(struct core_mmu_table_info * dir_info,struct vm_region * region,struct pgt ** pgt,struct core_mmu_table_info * pg_info)1874 static void set_pg_region(struct core_mmu_table_info *dir_info,
1875 			  struct vm_region *region, struct pgt **pgt,
1876 			  struct core_mmu_table_info *pg_info)
1877 {
1878 	struct tee_mmap_region r = {
1879 		.va = region->va,
1880 		.size = region->size,
1881 		.attr = region->attr,
1882 	};
1883 	vaddr_t end = r.va + r.size;
1884 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1885 
1886 	while (r.va < end) {
1887 		if (!pg_info->table ||
1888 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1889 			/*
1890 			 * We're assigning a new translation table.
1891 			 */
1892 			unsigned int idx;
1893 
1894 			/* Virtual addresses must grow */
1895 			assert(r.va > pg_info->va_base);
1896 
1897 			idx = core_mmu_va2idx(dir_info, r.va);
1898 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1899 
1900 			/*
1901 			 * Advance pgt to va_base, note that we may need to
1902 			 * skip multiple page tables if there are large
1903 			 * holes in the vm map.
1904 			 */
1905 			while ((*pgt)->vabase < pg_info->va_base) {
1906 				*pgt = SLIST_NEXT(*pgt, link);
1907 				/* We should have allocated enough */
1908 				assert(*pgt);
1909 			}
1910 			assert((*pgt)->vabase == pg_info->va_base);
1911 			pg_info->table = (*pgt)->tbl;
1912 
1913 			core_mmu_set_entry(dir_info, idx,
1914 					   virt_to_phys(pg_info->table),
1915 					   pgt_attr);
1916 		}
1917 
1918 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1919 			     end - r.va);
1920 
1921 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1922 			size_t granule = BIT(pg_info->shift);
1923 			size_t offset = r.va - region->va + region->offset;
1924 
1925 			r.size = MIN(r.size,
1926 				     mobj_get_phys_granule(region->mobj));
1927 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1928 
1929 			if (mobj_get_pa(region->mobj, offset, granule,
1930 					&r.pa) != TEE_SUCCESS)
1931 				panic("Failed to get PA of unpaged mobj");
1932 			set_region(pg_info, &r);
1933 		}
1934 		r.va += r.size;
1935 	}
1936 }
1937 
can_map_at_level(paddr_t paddr,vaddr_t vaddr,size_t size_left,paddr_t block_size,struct tee_mmap_region * mm)1938 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1939 			     size_t size_left, paddr_t block_size,
1940 			     struct tee_mmap_region *mm)
1941 {
1942 	/* VA and PA are aligned to block size at current level */
1943 	if ((vaddr | paddr) & (block_size - 1))
1944 		return false;
1945 
1946 	/* Remainder fits into block at current level */
1947 	if (size_left < block_size)
1948 		return false;
1949 
1950 	/*
1951 	 * The required block size of the region is compatible with the
1952 	 * block size of the current level.
1953 	 */
1954 	if (mm->region_size < block_size)
1955 		return false;
1956 
1957 #ifdef CFG_WITH_PAGER
1958 	/*
1959 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1960 	 * regions with small pages only
1961 	 */
1962 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1963 	    block_size != SMALL_PAGE_SIZE)
1964 		return false;
1965 #endif
1966 
1967 	return true;
1968 }
1969 
core_mmu_map_region(struct mmu_partition * prtn,struct tee_mmap_region * mm)1970 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1971 {
1972 	struct core_mmu_table_info tbl_info = { };
1973 	unsigned int idx = 0;
1974 	vaddr_t vaddr = mm->va;
1975 	paddr_t paddr = mm->pa;
1976 	ssize_t size_left = mm->size;
1977 	uint32_t attr = mm->attr;
1978 	unsigned int level = 0;
1979 	bool table_found = false;
1980 	uint32_t old_attr = 0;
1981 
1982 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1983 	if (!paddr)
1984 		attr = 0;
1985 
1986 	while (size_left > 0) {
1987 		level = CORE_MMU_BASE_TABLE_LEVEL;
1988 
1989 		while (true) {
1990 			paddr_t block_size = 0;
1991 
1992 			assert(core_mmu_level_in_range(level));
1993 
1994 			table_found = core_mmu_find_table(prtn, vaddr, level,
1995 							  &tbl_info);
1996 			if (!table_found)
1997 				panic("can't find table for mapping");
1998 
1999 			block_size = BIT64(tbl_info.shift);
2000 
2001 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2002 			if (!can_map_at_level(paddr, vaddr, size_left,
2003 					      block_size, mm)) {
2004 				bool secure = mm->attr & TEE_MATTR_SECURE;
2005 
2006 				/*
2007 				 * This part of the region can't be mapped at
2008 				 * this level. Need to go deeper.
2009 				 */
2010 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
2011 								     idx,
2012 								     secure))
2013 					panic("Can't divide MMU entry");
2014 				level = tbl_info.next_level;
2015 				continue;
2016 			}
2017 
2018 			/* We can map part of the region at current level */
2019 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2020 			if (old_attr)
2021 				panic("Page is already mapped");
2022 
2023 			core_mmu_set_entry(&tbl_info, idx, paddr, attr);
2024 			/*
2025 			 * Dynamic vaspace regions don't have a physical
2026 			 * address initially but we need to allocate and
2027 			 * initialize the translation tables now for later
2028 			 * updates to work properly.
2029 			 */
2030 			if (paddr)
2031 				paddr += block_size;
2032 			vaddr += block_size;
2033 			size_left -= block_size;
2034 
2035 			break;
2036 		}
2037 	}
2038 }
2039 
core_mmu_map_pages(vaddr_t vstart,paddr_t * pages,size_t num_pages,enum teecore_memtypes memtype)2040 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
2041 			      enum teecore_memtypes memtype)
2042 {
2043 	TEE_Result ret;
2044 	struct core_mmu_table_info tbl_info;
2045 	struct tee_mmap_region *mm;
2046 	unsigned int idx;
2047 	uint32_t old_attr;
2048 	uint32_t exceptions;
2049 	vaddr_t vaddr = vstart;
2050 	size_t i;
2051 	bool secure;
2052 
2053 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2054 
2055 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2056 
2057 	if (vaddr & SMALL_PAGE_MASK)
2058 		return TEE_ERROR_BAD_PARAMETERS;
2059 
2060 	exceptions = mmu_lock();
2061 
2062 	mm = find_map_by_va((void *)vaddr);
2063 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2064 		panic("VA does not belong to any known mm region");
2065 
2066 	if (!core_mmu_is_dynamic_vaspace(mm))
2067 		panic("Trying to map into static region");
2068 
2069 	for (i = 0; i < num_pages; i++) {
2070 		if (pages[i] & SMALL_PAGE_MASK) {
2071 			ret = TEE_ERROR_BAD_PARAMETERS;
2072 			goto err;
2073 		}
2074 
2075 		while (true) {
2076 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2077 						 &tbl_info))
2078 				panic("Can't find pagetable for vaddr ");
2079 
2080 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2081 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2082 				break;
2083 
2084 			/* This is supertable. Need to divide it. */
2085 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2086 							     secure))
2087 				panic("Failed to spread pgdir on small tables");
2088 		}
2089 
2090 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2091 		if (old_attr)
2092 			panic("Page is already mapped");
2093 
2094 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2095 				   core_mmu_type_to_attr(memtype));
2096 		vaddr += SMALL_PAGE_SIZE;
2097 	}
2098 
2099 	/*
2100 	 * Make sure all the changes to translation tables are visible
2101 	 * before returning. TLB doesn't need to be invalidated as we are
2102 	 * guaranteed that there's no valid mapping in this range.
2103 	 */
2104 	core_mmu_table_write_barrier();
2105 	mmu_unlock(exceptions);
2106 
2107 	return TEE_SUCCESS;
2108 err:
2109 	mmu_unlock(exceptions);
2110 
2111 	if (i)
2112 		core_mmu_unmap_pages(vstart, i);
2113 
2114 	return ret;
2115 }
2116 
core_mmu_map_contiguous_pages(vaddr_t vstart,paddr_t pstart,size_t num_pages,enum teecore_memtypes memtype)2117 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2118 					 size_t num_pages,
2119 					 enum teecore_memtypes memtype)
2120 {
2121 	struct core_mmu_table_info tbl_info = { };
2122 	struct tee_mmap_region *mm = NULL;
2123 	unsigned int idx = 0;
2124 	uint32_t old_attr = 0;
2125 	uint32_t exceptions = 0;
2126 	vaddr_t vaddr = vstart;
2127 	paddr_t paddr = pstart;
2128 	size_t i = 0;
2129 	bool secure = false;
2130 
2131 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2132 
2133 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2134 
2135 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2136 		return TEE_ERROR_BAD_PARAMETERS;
2137 
2138 	exceptions = mmu_lock();
2139 
2140 	mm = find_map_by_va((void *)vaddr);
2141 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2142 		panic("VA does not belong to any known mm region");
2143 
2144 	if (!core_mmu_is_dynamic_vaspace(mm))
2145 		panic("Trying to map into static region");
2146 
2147 	for (i = 0; i < num_pages; i++) {
2148 		while (true) {
2149 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2150 						 &tbl_info))
2151 				panic("Can't find pagetable for vaddr ");
2152 
2153 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2154 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2155 				break;
2156 
2157 			/* This is supertable. Need to divide it. */
2158 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2159 							     secure))
2160 				panic("Failed to spread pgdir on small tables");
2161 		}
2162 
2163 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2164 		if (old_attr)
2165 			panic("Page is already mapped");
2166 
2167 		core_mmu_set_entry(&tbl_info, idx, paddr,
2168 				   core_mmu_type_to_attr(memtype));
2169 		paddr += SMALL_PAGE_SIZE;
2170 		vaddr += SMALL_PAGE_SIZE;
2171 	}
2172 
2173 	/*
2174 	 * Make sure all the changes to translation tables are visible
2175 	 * before returning. TLB doesn't need to be invalidated as we are
2176 	 * guaranteed that there's no valid mapping in this range.
2177 	 */
2178 	core_mmu_table_write_barrier();
2179 	mmu_unlock(exceptions);
2180 
2181 	return TEE_SUCCESS;
2182 }
2183 
mem_range_is_in_vcore_free(vaddr_t vstart,size_t num_pages)2184 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2185 {
2186 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2187 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2188 }
2189 
maybe_remove_from_mem_map(vaddr_t vstart,size_t num_pages)2190 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2191 {
2192 	struct memory_map *mem_map = NULL;
2193 	struct tee_mmap_region *mm = NULL;
2194 	size_t idx = 0;
2195 	vaddr_t va = 0;
2196 
2197 	mm = find_map_by_va((void *)vstart);
2198 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2199 		panic("VA does not belong to any known mm region");
2200 
2201 	if (core_mmu_is_dynamic_vaspace(mm))
2202 		return;
2203 
2204 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2205 		panic("Trying to unmap static region");
2206 
2207 	/*
2208 	 * We're going to remove a memory from the VCORE_FREE memory range.
2209 	 * Depending where the range is we may need to remove the matching
2210 	 * mm, peal of a bit from the start or end of the mm, or split it
2211 	 * into two with a whole in the middle.
2212 	 */
2213 
2214 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2215 	assert(mm->region_size == SMALL_PAGE_SIZE);
2216 
2217 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2218 		mem_map = get_memory_map();
2219 		idx = mm - mem_map->map;
2220 		assert(idx < mem_map->count);
2221 
2222 		rem_array_elem(mem_map->map, mem_map->count,
2223 			       sizeof(*mem_map->map), idx);
2224 		mem_map->count--;
2225 	} else if (va == mm->va) {
2226 		mm->va += num_pages * SMALL_PAGE_SIZE;
2227 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2228 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2229 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2230 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2231 	} else {
2232 		struct tee_mmap_region m = *mm;
2233 
2234 		mem_map = get_memory_map();
2235 		idx = mm - mem_map->map;
2236 		assert(idx < mem_map->count);
2237 
2238 		mm->size = va - mm->va;
2239 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2240 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2241 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2242 		grow_mem_map(mem_map);
2243 		ins_array_elem(mem_map->map, mem_map->count,
2244 			       sizeof(*mem_map->map), idx + 1, &m);
2245 	}
2246 }
2247 
core_mmu_unmap_pages(vaddr_t vstart,size_t num_pages)2248 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2249 {
2250 	struct core_mmu_table_info tbl_info;
2251 	size_t i;
2252 	unsigned int idx;
2253 	uint32_t exceptions;
2254 
2255 	exceptions = mmu_lock();
2256 
2257 	maybe_remove_from_mem_map(vstart, num_pages);
2258 
2259 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2260 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2261 			panic("Can't find pagetable");
2262 
2263 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2264 			panic("Invalid pagetable level");
2265 
2266 		idx = core_mmu_va2idx(&tbl_info, vstart);
2267 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2268 	}
2269 	tlbi_all();
2270 
2271 	mmu_unlock(exceptions);
2272 }
2273 
core_mmu_populate_user_map(struct core_mmu_table_info * dir_info,struct user_mode_ctx * uctx)2274 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2275 				struct user_mode_ctx *uctx)
2276 {
2277 	struct core_mmu_table_info pg_info = { };
2278 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2279 	struct pgt *pgt = NULL;
2280 	struct pgt *p = NULL;
2281 	struct vm_region *r = NULL;
2282 
2283 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2284 		return; /* Nothing to map */
2285 
2286 	/*
2287 	 * Allocate all page tables in advance.
2288 	 */
2289 	pgt_get_all(uctx);
2290 	pgt = SLIST_FIRST(pgt_cache);
2291 
2292 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2293 
2294 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2295 		set_pg_region(dir_info, r, &pgt, &pg_info);
2296 	/* Record that the translation tables now are populated. */
2297 	SLIST_FOREACH(p, pgt_cache, link) {
2298 		p->populated = true;
2299 		if (p == pgt)
2300 			break;
2301 	}
2302 	assert(p == pgt);
2303 }
2304 
core_mmu_remove_mapping(enum teecore_memtypes type,void * addr,size_t len)2305 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2306 				   size_t len)
2307 {
2308 	struct core_mmu_table_info tbl_info = { };
2309 	struct tee_mmap_region *res_map = NULL;
2310 	struct tee_mmap_region *map = NULL;
2311 	paddr_t pa = virt_to_phys(addr);
2312 	size_t granule = 0;
2313 	ptrdiff_t i = 0;
2314 	paddr_t p = 0;
2315 	size_t l = 0;
2316 
2317 	map = find_map_by_type_and_pa(type, pa, len);
2318 	if (!map)
2319 		return TEE_ERROR_GENERIC;
2320 
2321 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2322 	if (!res_map)
2323 		return TEE_ERROR_GENERIC;
2324 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2325 		return TEE_ERROR_GENERIC;
2326 	granule = BIT(tbl_info.shift);
2327 
2328 	if (map < static_memory_map.map ||
2329 	    map >= static_memory_map.map + static_memory_map.count)
2330 		return TEE_ERROR_GENERIC;
2331 	i = map - static_memory_map.map;
2332 
2333 	/* Check that we have a full match */
2334 	p = ROUNDDOWN2(pa, granule);
2335 	l = ROUNDUP2(len + pa - p, granule);
2336 	if (map->pa != p || map->size != l)
2337 		return TEE_ERROR_GENERIC;
2338 
2339 	clear_region(&tbl_info, map);
2340 	tlbi_all();
2341 
2342 	/* If possible remove the va range from res_map */
2343 	if (res_map->va - map->size == map->va) {
2344 		res_map->va -= map->size;
2345 		res_map->size += map->size;
2346 	}
2347 
2348 	/* Remove the entry. */
2349 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2350 		       sizeof(*static_memory_map.map), i);
2351 	static_memory_map.count--;
2352 
2353 	return TEE_SUCCESS;
2354 }
2355 
2356 struct tee_mmap_region *
core_mmu_find_mapping_exclusive(enum teecore_memtypes type,size_t len)2357 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2358 {
2359 	struct memory_map *mem_map = get_memory_map();
2360 	struct tee_mmap_region *map_found = NULL;
2361 	size_t n = 0;
2362 
2363 	if (!len)
2364 		return NULL;
2365 
2366 	for (n = 0; n < mem_map->count; n++) {
2367 		if (mem_map->map[n].type != type)
2368 			continue;
2369 
2370 		if (map_found)
2371 			return NULL;
2372 
2373 		map_found = mem_map->map + n;
2374 	}
2375 
2376 	if (!map_found || map_found->size < len)
2377 		return NULL;
2378 
2379 	return map_found;
2380 }
2381 
core_mmu_add_mapping(enum teecore_memtypes type,paddr_t addr,size_t len)2382 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2383 {
2384 	struct memory_map *mem_map = &static_memory_map;
2385 	struct core_mmu_table_info tbl_info = { };
2386 	struct tee_mmap_region *map = NULL;
2387 	size_t granule = 0;
2388 	paddr_t p = 0;
2389 	size_t l = 0;
2390 
2391 	if (!len)
2392 		return NULL;
2393 
2394 	if (!core_mmu_check_end_pa(addr, len))
2395 		return NULL;
2396 
2397 	/* Check if the memory is already mapped */
2398 	map = find_map_by_type_and_pa(type, addr, len);
2399 	if (map && pbuf_inside_map_area(addr, len, map))
2400 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2401 
2402 	/* Find the reserved va space used for late mappings */
2403 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2404 	if (!map)
2405 		return NULL;
2406 
2407 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2408 		return NULL;
2409 
2410 	granule = BIT64(tbl_info.shift);
2411 	p = ROUNDDOWN2(addr, granule);
2412 	l = ROUNDUP2(len + addr - p, granule);
2413 
2414 	/* Ban overflowing virtual addresses */
2415 	if (map->size < l)
2416 		return NULL;
2417 
2418 	/*
2419 	 * Something is wrong, we can't fit the va range into the selected
2420 	 * table. The reserved va range is possibly missaligned with
2421 	 * granule.
2422 	 */
2423 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2424 		return NULL;
2425 
2426 	if (static_memory_map.count >= static_memory_map.alloc_count)
2427 		return NULL;
2428 
2429 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2430 		.va = map->va,
2431 		.size = l,
2432 		.type = type,
2433 		.region_size = granule,
2434 		.attr = core_mmu_type_to_attr(type),
2435 		.pa = p,
2436 	};
2437 	map->va += l;
2438 	map->size -= l;
2439 	map = mem_map->map + mem_map->count;
2440 	mem_map->count++;
2441 
2442 	set_region(&tbl_info, map);
2443 
2444 	/* Make sure the new entry is visible before continuing. */
2445 	core_mmu_table_write_barrier();
2446 
2447 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2448 }
2449 
2450 #ifdef CFG_WITH_PAGER
get_linear_map_end_va(void)2451 static vaddr_t get_linear_map_end_va(void)
2452 {
2453 	/* this is synced with the generic linker file kern.ld.S */
2454 	return (vaddr_t)__heap2_end;
2455 }
2456 
get_linear_map_end_pa(void)2457 static paddr_t get_linear_map_end_pa(void)
2458 {
2459 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2460 }
2461 #endif
2462 
2463 #if defined(CFG_TEE_CORE_DEBUG)
check_pa_matches_va(void * va,paddr_t pa)2464 static void check_pa_matches_va(void *va, paddr_t pa)
2465 {
2466 	TEE_Result res = TEE_ERROR_GENERIC;
2467 	vaddr_t v = (vaddr_t)va;
2468 	paddr_t p = 0;
2469 	struct core_mmu_table_info ti __maybe_unused = { };
2470 
2471 	if (core_mmu_user_va_range_is_defined()) {
2472 		vaddr_t user_va_base = 0;
2473 		size_t user_va_size = 0;
2474 
2475 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2476 		if (v >= user_va_base &&
2477 		    v <= (user_va_base - 1 + user_va_size)) {
2478 			if (!core_mmu_user_mapping_is_active()) {
2479 				if (pa)
2480 					panic("issue in linear address space");
2481 				return;
2482 			}
2483 
2484 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2485 				       va, &p);
2486 			if (res == TEE_ERROR_NOT_SUPPORTED)
2487 				return;
2488 			if (res == TEE_SUCCESS && pa != p)
2489 				panic("bad pa");
2490 			if (res != TEE_SUCCESS && pa)
2491 				panic("false pa");
2492 			return;
2493 		}
2494 	}
2495 #ifdef CFG_WITH_PAGER
2496 	if (is_unpaged(va)) {
2497 		if (v - boot_mmu_config.map_offset != pa)
2498 			panic("issue in linear address space");
2499 		return;
2500 	}
2501 
2502 	if (tee_pager_get_table_info(v, &ti)) {
2503 		uint32_t a;
2504 
2505 		/*
2506 		 * Lookups in the page table managed by the pager is
2507 		 * dangerous for addresses in the paged area as those pages
2508 		 * changes all the time. But some ranges are safe,
2509 		 * rw-locked areas when the page is populated for instance.
2510 		 */
2511 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2512 		if (a & TEE_MATTR_VALID_BLOCK) {
2513 			paddr_t mask = BIT64(ti.shift) - 1;
2514 
2515 			p |= v & mask;
2516 			if (pa != p)
2517 				panic();
2518 		} else {
2519 			if (pa)
2520 				panic();
2521 		}
2522 		return;
2523 	}
2524 #endif
2525 
2526 	if (!core_va2pa_helper(va, &p)) {
2527 		/* Verfiy only the static mapping (case non null phys addr) */
2528 		if (p && pa != p) {
2529 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2530 			     va, p, pa);
2531 			panic();
2532 		}
2533 	} else {
2534 		if (pa) {
2535 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2536 			panic();
2537 		}
2538 	}
2539 }
2540 #else
check_pa_matches_va(void * va __unused,paddr_t pa __unused)2541 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2542 {
2543 }
2544 #endif
2545 
virt_to_phys(void * va)2546 paddr_t virt_to_phys(void *va)
2547 {
2548 	paddr_t pa = 0;
2549 
2550 	if (!arch_va2pa_helper(va, &pa))
2551 		pa = 0;
2552 	check_pa_matches_va(memtag_strip_tag(va), pa);
2553 	return pa;
2554 }
2555 
2556 /*
2557  * Don't use check_va_matches_pa() for RISC-V, as its callee
2558  * arch_va2pa_helper() will call it eventually, this creates
2559  * indirect recursion and can lead to a stack overflow.
2560  * Moreover, if arch_va2pa_helper() returns true, it implies
2561  * the va2pa mapping is matched, no need to check it again.
2562  */
2563 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
check_va_matches_pa(paddr_t pa,void * va)2564 static void check_va_matches_pa(paddr_t pa, void *va)
2565 {
2566 	paddr_t p = 0;
2567 
2568 	if (!va)
2569 		return;
2570 
2571 	p = virt_to_phys(va);
2572 	if (p != pa) {
2573 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2574 		panic();
2575 	}
2576 }
2577 #else
check_va_matches_pa(paddr_t pa __unused,void * va __unused)2578 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2579 {
2580 }
2581 #endif
2582 
phys_to_virt_ts_vaspace(paddr_t pa,size_t len)2583 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2584 {
2585 	if (!core_mmu_user_mapping_is_active())
2586 		return NULL;
2587 
2588 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2589 }
2590 
2591 #ifdef CFG_WITH_PAGER
phys_to_virt_tee_ram(paddr_t pa,size_t len)2592 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2593 {
2594 	paddr_t end_pa = 0;
2595 
2596 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2597 		return NULL;
2598 
2599 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2600 		if (end_pa > get_linear_map_end_pa())
2601 			return NULL;
2602 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2603 	}
2604 
2605 	return tee_pager_phys_to_virt(pa, len);
2606 }
2607 #else
phys_to_virt_tee_ram(paddr_t pa,size_t len)2608 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2609 {
2610 	struct tee_mmap_region *mmap = NULL;
2611 
2612 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2613 	if (!mmap)
2614 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2615 	if (!mmap)
2616 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2617 	if (!mmap)
2618 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2619 	if (!mmap)
2620 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2621 	if (!mmap)
2622 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2623 
2624 	/*
2625 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2626 	 * used with pager and not needed here.
2627 	 */
2628 	return map_pa2va(mmap, pa, len);
2629 }
2630 #endif
2631 
phys_to_virt(paddr_t pa,enum teecore_memtypes m,size_t len)2632 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2633 {
2634 	void *va = NULL;
2635 
2636 	switch (m) {
2637 	case MEM_AREA_TS_VASPACE:
2638 		va = phys_to_virt_ts_vaspace(pa, len);
2639 		break;
2640 	case MEM_AREA_TEE_RAM:
2641 	case MEM_AREA_TEE_RAM_RX:
2642 	case MEM_AREA_TEE_RAM_RO:
2643 	case MEM_AREA_TEE_RAM_RW:
2644 	case MEM_AREA_NEX_RAM_RO:
2645 	case MEM_AREA_NEX_RAM_RW:
2646 		va = phys_to_virt_tee_ram(pa, len);
2647 		break;
2648 	case MEM_AREA_SHM_VASPACE:
2649 	case MEM_AREA_NEX_DYN_VASPACE:
2650 	case MEM_AREA_TEE_DYN_VASPACE:
2651 		/* Find VA from PA in dynamic SHM is not yet supported */
2652 		va = NULL;
2653 		break;
2654 	default:
2655 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2656 	}
2657 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2658 		check_va_matches_pa(pa, va);
2659 	return va;
2660 }
2661 
phys_to_virt_io(paddr_t pa,size_t len)2662 void *phys_to_virt_io(paddr_t pa, size_t len)
2663 {
2664 	struct tee_mmap_region *map = NULL;
2665 	void *va = NULL;
2666 
2667 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2668 	if (!map)
2669 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2670 	if (!map)
2671 		return NULL;
2672 	va = map_pa2va(map, pa, len);
2673 	check_va_matches_pa(pa, va);
2674 	return va;
2675 }
2676 
core_mmu_get_va(paddr_t pa,enum teecore_memtypes type,size_t len)2677 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2678 {
2679 	if (cpu_mmu_enabled())
2680 		return (vaddr_t)phys_to_virt(pa, type, len);
2681 
2682 	return (vaddr_t)pa;
2683 }
2684 
2685 #ifdef CFG_WITH_PAGER
is_unpaged(const void * va)2686 bool is_unpaged(const void *va)
2687 {
2688 	vaddr_t v = (vaddr_t)va;
2689 
2690 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2691 }
2692 #endif
2693 
2694 #ifdef CFG_NS_VIRTUALIZATION
is_nexus(const void * va)2695 bool is_nexus(const void *va)
2696 {
2697 	vaddr_t v = (vaddr_t)va;
2698 
2699 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2700 }
2701 #endif
2702 
io_pa_or_va(struct io_pa_va * p,size_t len)2703 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2704 {
2705 	assert(p->pa);
2706 	if (cpu_mmu_enabled()) {
2707 		if (!p->va)
2708 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2709 		assert(p->va);
2710 		return p->va;
2711 	}
2712 	return p->pa;
2713 }
2714 
io_pa_or_va_secure(struct io_pa_va * p,size_t len)2715 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2716 {
2717 	assert(p->pa);
2718 	if (cpu_mmu_enabled()) {
2719 		if (!p->va)
2720 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2721 						      len);
2722 		assert(p->va);
2723 		return p->va;
2724 	}
2725 	return p->pa;
2726 }
2727 
io_pa_or_va_nsec(struct io_pa_va * p,size_t len)2728 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2729 {
2730 	assert(p->pa);
2731 	if (cpu_mmu_enabled()) {
2732 		if (!p->va)
2733 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2734 						      len);
2735 		assert(p->va);
2736 		return p->va;
2737 	}
2738 	return p->pa;
2739 }
2740 
2741 #ifdef CFG_CORE_RESERVED_SHM
teecore_init_pub_ram(void)2742 static TEE_Result teecore_init_pub_ram(void)
2743 {
2744 	vaddr_t s = 0;
2745 	vaddr_t e = 0;
2746 
2747 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2748 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2749 
2750 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2751 		panic("invalid PUB RAM");
2752 
2753 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2754 	if (!tee_vbuf_is_non_sec(s, e - s))
2755 		panic("PUB RAM is not non-secure");
2756 
2757 #ifdef CFG_PL310
2758 	/* Allocate statically the l2cc mutex */
2759 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2760 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2761 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2762 #endif
2763 
2764 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2765 	default_nsec_shm_size = e - s;
2766 
2767 	return TEE_SUCCESS;
2768 }
2769 early_init(teecore_init_pub_ram);
2770 #endif /*CFG_CORE_RESERVED_SHM*/
2771 
carve_out_core_mem(paddr_t pa,paddr_t end_pa)2772 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2773 {
2774 	tee_mm_entry_t *mm __maybe_unused = NULL;
2775 
2776 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2777 	mm = phys_mem_alloc2(pa, end_pa - pa);
2778 	assert(mm);
2779 }
2780 
core_mmu_init_phys_mem(void)2781 void core_mmu_init_phys_mem(void)
2782 {
2783 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2784 		paddr_t b1 = 0;
2785 		paddr_size_t s1 = 0;
2786 
2787 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2788 
2789 		if (ARRAY_SIZE(secure_only) == 2) {
2790 			b1 = secure_only[1].paddr;
2791 			s1 = secure_only[1].size;
2792 		}
2793 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2794 				 secure_only[0].size, b1, s1);
2795 	} else {
2796 #ifdef CFG_WITH_PAGER
2797 		/*
2798 		 * The pager uses all core memory so there's no need to add
2799 		 * it to the pool.
2800 		 */
2801 		static_assert(ARRAY_SIZE(secure_only) == 2);
2802 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2803 #else /*!CFG_WITH_PAGER*/
2804 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2805 		paddr_t end_pa = 0;
2806 		size_t size = 0;
2807 		paddr_t ps = 0;
2808 		paddr_t pa = 0;
2809 
2810 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2811 		if (ARRAY_SIZE(secure_only) == 2) {
2812 			ps = secure_only[1].paddr;
2813 			size = secure_only[1].size;
2814 		}
2815 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2816 			      ps, size);
2817 
2818 		/*
2819 		 * The VCORE macros are relocatable so we need to translate
2820 		 * the addresses now that the MMU is enabled.
2821 		 */
2822 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2823 						align) - 1) + 1;
2824 		/* Carve out the part used by OP-TEE core */
2825 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2826 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2827 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2828 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2829 		}
2830 
2831 		/* Carve out test SDP memory */
2832 #ifdef TEE_SDP_TEST_MEM_BASE
2833 		if (TEE_SDP_TEST_MEM_SIZE) {
2834 			pa = TEE_SDP_TEST_MEM_BASE;
2835 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2836 		}
2837 #endif
2838 #endif /*!CFG_WITH_PAGER*/
2839 	}
2840 }
2841