xref: /OK3568_Linux_fs/kernel/drivers/usb/dwc2/gadget.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 #include <linux/platform_data/s3c-hsotg.h>
27 
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/phy.h>
31 #include <linux/usb/composite.h>
32 
33 
34 #include "core.h"
35 #include "hw.h"
36 
37 /* conversion functions */
our_req(struct usb_request * req)38 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39 {
40 	return container_of(req, struct dwc2_hsotg_req, req);
41 }
42 
our_ep(struct usb_ep * ep)43 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44 {
45 	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 }
47 
to_hsotg(struct usb_gadget * gadget)48 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49 {
50 	return container_of(gadget, struct dwc2_hsotg, gadget);
51 }
52 
dwc2_set_bit(struct dwc2_hsotg * hsotg,u32 offset,u32 val)53 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
54 {
55 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
56 }
57 
dwc2_clear_bit(struct dwc2_hsotg * hsotg,u32 offset,u32 val)58 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
59 {
60 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
61 }
62 
index_to_ep(struct dwc2_hsotg * hsotg,u32 ep_index,u32 dir_in)63 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 						u32 ep_index, u32 dir_in)
65 {
66 	if (dir_in)
67 		return hsotg->eps_in[ep_index];
68 	else
69 		return hsotg->eps_out[ep_index];
70 }
71 
72 /* forward declaration of functions */
73 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 
75 /**
76  * using_dma - return the DMA status of the driver.
77  * @hsotg: The driver state.
78  *
79  * Return true if we're using DMA.
80  *
81  * Currently, we have the DMA support code worked into everywhere
82  * that needs it, but the AMBA DMA implementation in the hardware can
83  * only DMA from 32bit aligned addresses. This means that gadgets such
84  * as the CDC Ethernet cannot work as they often pass packets which are
85  * not 32bit aligned.
86  *
87  * Unfortunately the choice to use DMA or not is global to the controller
88  * and seems to be only settable when the controller is being put through
89  * a core reset. This means we either need to fix the gadgets to take
90  * account of DMA alignment, or add bounce buffers (yuerk).
91  *
92  * g_using_dma is set depending on dts flag.
93  */
using_dma(struct dwc2_hsotg * hsotg)94 static inline bool using_dma(struct dwc2_hsotg *hsotg)
95 {
96 	return hsotg->params.g_dma;
97 }
98 
99 /*
100  * using_desc_dma - return the descriptor DMA status of the driver.
101  * @hsotg: The driver state.
102  *
103  * Return true if we're using descriptor DMA.
104  */
using_desc_dma(struct dwc2_hsotg * hsotg)105 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
106 {
107 	return hsotg->params.g_dma_desc;
108 }
109 
110 /**
111  * dwc2_hsotg_read_frameno - read current frame number
112  * @hsotg: The device instance
113  *
114  * Return the current frame number
115  */
dwc2_hsotg_read_frameno(struct dwc2_hsotg * hsotg)116 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
117 {
118 	u32 dsts;
119 
120 	dsts = dwc2_readl(hsotg, DSTS);
121 	dsts &= DSTS_SOFFN_MASK;
122 	dsts >>= DSTS_SOFFN_SHIFT;
123 
124 	return dsts;
125 }
126 
127 /**
128  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
129  * @hs_ep: The endpoint
130  *
131  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
132  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
133  */
dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep * hs_ep)134 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
135 {
136 	struct dwc2_hsotg *hsotg = hs_ep->parent;
137 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
138 	u16 limit = DSTS_SOFFN_LIMIT;
139 
140 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
141 		limit >>= 3;
142 
143 	hs_ep->target_frame += hs_ep->interval;
144 	if (hs_ep->target_frame > limit) {
145 		hs_ep->frame_overrun = true;
146 		hs_ep->target_frame &= limit;
147 	} else if (current_frame <= hs_ep->target_frame) {
148 		hs_ep->frame_overrun = false;
149 	}
150 }
151 
152 /**
153  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
154  *                                    by one.
155  * @hs_ep: The endpoint.
156  *
157  * This function used in service interval based scheduling flow to calculate
158  * descriptor frame number filed value. For service interval mode frame
159  * number in descriptor should point to last (u)frame in the interval.
160  *
161  */
dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep * hs_ep)162 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
163 {
164 	struct dwc2_hsotg *hsotg = hs_ep->parent;
165 	u16 limit = DSTS_SOFFN_LIMIT;
166 
167 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
168 		limit >>= 3;
169 
170 	if (hs_ep->target_frame)
171 		hs_ep->target_frame -= 1;
172 	else
173 		hs_ep->target_frame = limit;
174 }
175 
176 /**
177  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
178  * @hsotg: The device state
179  * @ints: A bitmask of the interrupts to enable
180  */
dwc2_hsotg_en_gsint(struct dwc2_hsotg * hsotg,u32 ints)181 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
182 {
183 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
184 	u32 new_gsintmsk;
185 
186 	new_gsintmsk = gsintmsk | ints;
187 
188 	if (new_gsintmsk != gsintmsk) {
189 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
190 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
191 	}
192 }
193 
194 /**
195  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
196  * @hsotg: The device state
197  * @ints: A bitmask of the interrupts to enable
198  */
dwc2_hsotg_disable_gsint(struct dwc2_hsotg * hsotg,u32 ints)199 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
200 {
201 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
202 	u32 new_gsintmsk;
203 
204 	new_gsintmsk = gsintmsk & ~ints;
205 
206 	if (new_gsintmsk != gsintmsk)
207 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
208 }
209 
210 /**
211  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
212  * @hsotg: The device state
213  * @ep: The endpoint index
214  * @dir_in: True if direction is in.
215  * @en: The enable value, true to enable
216  *
217  * Set or clear the mask for an individual endpoint's interrupt
218  * request.
219  */
dwc2_hsotg_ctrl_epint(struct dwc2_hsotg * hsotg,unsigned int ep,unsigned int dir_in,unsigned int en)220 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
221 				  unsigned int ep, unsigned int dir_in,
222 				 unsigned int en)
223 {
224 	unsigned long flags;
225 	u32 bit = 1 << ep;
226 	u32 daint;
227 
228 	if (!dir_in)
229 		bit <<= 16;
230 
231 	local_irq_save(flags);
232 	daint = dwc2_readl(hsotg, DAINTMSK);
233 	if (en)
234 		daint |= bit;
235 	else
236 		daint &= ~bit;
237 	dwc2_writel(hsotg, daint, DAINTMSK);
238 	local_irq_restore(flags);
239 }
240 
241 /**
242  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
243  *
244  * @hsotg: Programming view of the DWC_otg controller
245  */
dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg * hsotg)246 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
247 {
248 	if (hsotg->hw_params.en_multiple_tx_fifo)
249 		/* In dedicated FIFO mode we need count of IN EPs */
250 		return hsotg->hw_params.num_dev_in_eps;
251 	else
252 		/* In shared FIFO mode we need count of Periodic IN EPs */
253 		return hsotg->hw_params.num_dev_perio_in_ep;
254 }
255 
256 /**
257  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
258  * device mode TX FIFOs
259  *
260  * @hsotg: Programming view of the DWC_otg controller
261  */
dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg * hsotg)262 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
263 {
264 	int addr;
265 	int tx_addr_max;
266 	u32 np_tx_fifo_size;
267 
268 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
269 				hsotg->params.g_np_tx_fifo_size);
270 
271 	/* Get Endpoint Info Control block size in DWORDs. */
272 	tx_addr_max = hsotg->hw_params.total_fifo_size;
273 
274 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
275 	if (tx_addr_max <= addr)
276 		return 0;
277 
278 	return tx_addr_max - addr;
279 }
280 
281 /**
282  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
283  *
284  * @hsotg: Programming view of the DWC_otg controller
285  *
286  */
dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg * hsotg)287 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
288 {
289 	u32 gintsts2;
290 	u32 gintmsk2;
291 
292 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
293 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
294 	gintsts2 &= gintmsk2;
295 
296 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
297 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
298 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
299 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
300 	}
301 }
302 
303 /**
304  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
305  * TX FIFOs
306  *
307  * @hsotg: Programming view of the DWC_otg controller
308  */
dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg * hsotg)309 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
310 {
311 	int tx_fifo_count;
312 	int tx_fifo_depth;
313 
314 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
315 
316 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
317 
318 	if (!tx_fifo_count)
319 		return tx_fifo_depth;
320 	else
321 		return tx_fifo_depth / tx_fifo_count;
322 }
323 
324 /**
325  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
326  * @hsotg: The device instance.
327  */
dwc2_hsotg_init_fifo(struct dwc2_hsotg * hsotg)328 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
329 {
330 	unsigned int ep;
331 	unsigned int addr;
332 	int timeout;
333 
334 	u32 val;
335 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
336 
337 	/* Reset fifo map if not correctly cleared during previous session */
338 	WARN_ON(hsotg->fifo_map);
339 	hsotg->fifo_map = 0;
340 
341 	/* set RX/NPTX FIFO sizes */
342 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
343 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
344 		    FIFOSIZE_STARTADDR_SHIFT) |
345 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
346 		    GNPTXFSIZ);
347 
348 	/*
349 	 * arange all the rest of the TX FIFOs, as some versions of this
350 	 * block have overlapping default addresses. This also ensures
351 	 * that if the settings have been changed, then they are set to
352 	 * known values.
353 	 */
354 
355 	/* start at the end of the GNPTXFSIZ, rounded up */
356 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
357 
358 	/*
359 	 * Configure fifos sizes from provided configuration and assign
360 	 * them to endpoints dynamically according to maxpacket size value of
361 	 * given endpoint.
362 	 */
363 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
364 		if (!txfsz[ep])
365 			continue;
366 		val = addr;
367 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
368 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
369 			  "insufficient fifo memory");
370 		addr += txfsz[ep];
371 
372 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
373 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
374 	}
375 
376 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
377 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
378 		    GDFIFOCFG);
379 	/*
380 	 * according to p428 of the design guide, we need to ensure that
381 	 * all fifos are flushed before continuing
382 	 */
383 
384 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
385 	       GRSTCTL_RXFFLSH, GRSTCTL);
386 
387 	/* wait until the fifos are both flushed */
388 	timeout = 100;
389 	while (1) {
390 		val = dwc2_readl(hsotg, GRSTCTL);
391 
392 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
393 			break;
394 
395 		if (--timeout == 0) {
396 			dev_err(hsotg->dev,
397 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
398 				__func__, val);
399 			break;
400 		}
401 
402 		udelay(1);
403 	}
404 
405 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
406 }
407 
408 /**
409  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
410  * @ep: USB endpoint to allocate request for.
411  * @flags: Allocation flags
412  *
413  * Allocate a new USB request structure appropriate for the specified endpoint
414  */
dwc2_hsotg_ep_alloc_request(struct usb_ep * ep,gfp_t flags)415 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
416 						       gfp_t flags)
417 {
418 	struct dwc2_hsotg_req *req;
419 
420 	req = kzalloc(sizeof(*req), flags);
421 	if (!req)
422 		return NULL;
423 
424 	INIT_LIST_HEAD(&req->queue);
425 
426 	return &req->req;
427 }
428 
429 /**
430  * is_ep_periodic - return true if the endpoint is in periodic mode.
431  * @hs_ep: The endpoint to query.
432  *
433  * Returns true if the endpoint is in periodic mode, meaning it is being
434  * used for an Interrupt or ISO transfer.
435  */
is_ep_periodic(struct dwc2_hsotg_ep * hs_ep)436 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
437 {
438 	return hs_ep->periodic;
439 }
440 
441 /**
442  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
443  * @hsotg: The device state.
444  * @hs_ep: The endpoint for the request
445  * @hs_req: The request being processed.
446  *
447  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
448  * of a request to ensure the buffer is ready for access by the caller.
449  */
dwc2_hsotg_unmap_dma(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)450 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
451 				 struct dwc2_hsotg_ep *hs_ep,
452 				struct dwc2_hsotg_req *hs_req)
453 {
454 	struct usb_request *req = &hs_req->req;
455 
456 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
457 }
458 
459 /*
460  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
461  * for Control endpoint
462  * @hsotg: The device state.
463  *
464  * This function will allocate 4 descriptor chains for EP 0: 2 for
465  * Setup stage, per one for IN and OUT data/status transactions.
466  */
dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg * hsotg)467 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
468 {
469 	hsotg->setup_desc[0] =
470 		dmam_alloc_coherent(hsotg->dev,
471 				    sizeof(struct dwc2_dma_desc),
472 				    &hsotg->setup_desc_dma[0],
473 				    GFP_KERNEL);
474 	if (!hsotg->setup_desc[0])
475 		goto fail;
476 
477 	hsotg->setup_desc[1] =
478 		dmam_alloc_coherent(hsotg->dev,
479 				    sizeof(struct dwc2_dma_desc),
480 				    &hsotg->setup_desc_dma[1],
481 				    GFP_KERNEL);
482 	if (!hsotg->setup_desc[1])
483 		goto fail;
484 
485 	hsotg->ctrl_in_desc =
486 		dmam_alloc_coherent(hsotg->dev,
487 				    sizeof(struct dwc2_dma_desc),
488 				    &hsotg->ctrl_in_desc_dma,
489 				    GFP_KERNEL);
490 	if (!hsotg->ctrl_in_desc)
491 		goto fail;
492 
493 	hsotg->ctrl_out_desc =
494 		dmam_alloc_coherent(hsotg->dev,
495 				    sizeof(struct dwc2_dma_desc),
496 				    &hsotg->ctrl_out_desc_dma,
497 				    GFP_KERNEL);
498 	if (!hsotg->ctrl_out_desc)
499 		goto fail;
500 
501 	return 0;
502 
503 fail:
504 	return -ENOMEM;
505 }
506 
507 /**
508  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
509  * @hsotg: The controller state.
510  * @hs_ep: The endpoint we're going to write for.
511  * @hs_req: The request to write data for.
512  *
513  * This is called when the TxFIFO has some space in it to hold a new
514  * transmission and we have something to give it. The actual setup of
515  * the data size is done elsewhere, so all we have to do is to actually
516  * write the data.
517  *
518  * The return value is zero if there is more space (or nothing was done)
519  * otherwise -ENOSPC is returned if the FIFO space was used up.
520  *
521  * This routine is only needed for PIO
522  */
dwc2_hsotg_write_fifo(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)523 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
524 				 struct dwc2_hsotg_ep *hs_ep,
525 				struct dwc2_hsotg_req *hs_req)
526 {
527 	bool periodic = is_ep_periodic(hs_ep);
528 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
529 	int buf_pos = hs_req->req.actual;
530 	int to_write = hs_ep->size_loaded;
531 	void *data;
532 	int can_write;
533 	int pkt_round;
534 	int max_transfer;
535 
536 	to_write -= (buf_pos - hs_ep->last_load);
537 
538 	/* if there's nothing to write, get out early */
539 	if (to_write == 0)
540 		return 0;
541 
542 	if (periodic && !hsotg->dedicated_fifos) {
543 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
544 		int size_left;
545 		int size_done;
546 
547 		/*
548 		 * work out how much data was loaded so we can calculate
549 		 * how much data is left in the fifo.
550 		 */
551 
552 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
553 
554 		/*
555 		 * if shared fifo, we cannot write anything until the
556 		 * previous data has been completely sent.
557 		 */
558 		if (hs_ep->fifo_load != 0) {
559 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
560 			return -ENOSPC;
561 		}
562 
563 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
564 			__func__, size_left,
565 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
566 
567 		/* how much of the data has moved */
568 		size_done = hs_ep->size_loaded - size_left;
569 
570 		/* how much data is left in the fifo */
571 		can_write = hs_ep->fifo_load - size_done;
572 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
573 			__func__, can_write);
574 
575 		can_write = hs_ep->fifo_size - can_write;
576 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
577 			__func__, can_write);
578 
579 		if (can_write <= 0) {
580 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
581 			return -ENOSPC;
582 		}
583 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
584 		can_write = dwc2_readl(hsotg,
585 				       DTXFSTS(hs_ep->fifo_index));
586 
587 		can_write &= 0xffff;
588 		can_write *= 4;
589 	} else {
590 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
591 			dev_dbg(hsotg->dev,
592 				"%s: no queue slots available (0x%08x)\n",
593 				__func__, gnptxsts);
594 
595 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
596 			return -ENOSPC;
597 		}
598 
599 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
600 		can_write *= 4;	/* fifo size is in 32bit quantities. */
601 	}
602 
603 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
604 
605 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
606 		__func__, gnptxsts, can_write, to_write, max_transfer);
607 
608 	/*
609 	 * limit to 512 bytes of data, it seems at least on the non-periodic
610 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
611 	 * fragment of the end of the transfer in it.
612 	 */
613 	if (can_write > 512 && !periodic)
614 		can_write = 512;
615 
616 	/*
617 	 * limit the write to one max-packet size worth of data, but allow
618 	 * the transfer to return that it did not run out of fifo space
619 	 * doing it.
620 	 */
621 	if (to_write > max_transfer) {
622 		to_write = max_transfer;
623 
624 		/* it's needed only when we do not use dedicated fifos */
625 		if (!hsotg->dedicated_fifos)
626 			dwc2_hsotg_en_gsint(hsotg,
627 					    periodic ? GINTSTS_PTXFEMP :
628 					   GINTSTS_NPTXFEMP);
629 	}
630 
631 	/* see if we can write data */
632 
633 	if (to_write > can_write) {
634 		to_write = can_write;
635 		pkt_round = to_write % max_transfer;
636 
637 		/*
638 		 * Round the write down to an
639 		 * exact number of packets.
640 		 *
641 		 * Note, we do not currently check to see if we can ever
642 		 * write a full packet or not to the FIFO.
643 		 */
644 
645 		if (pkt_round)
646 			to_write -= pkt_round;
647 
648 		/*
649 		 * enable correct FIFO interrupt to alert us when there
650 		 * is more room left.
651 		 */
652 
653 		/* it's needed only when we do not use dedicated fifos */
654 		if (!hsotg->dedicated_fifos)
655 			dwc2_hsotg_en_gsint(hsotg,
656 					    periodic ? GINTSTS_PTXFEMP :
657 					   GINTSTS_NPTXFEMP);
658 	}
659 
660 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
661 		to_write, hs_req->req.length, can_write, buf_pos);
662 
663 	if (to_write <= 0)
664 		return -ENOSPC;
665 
666 	hs_req->req.actual = buf_pos + to_write;
667 	hs_ep->total_data += to_write;
668 
669 	if (periodic)
670 		hs_ep->fifo_load += to_write;
671 
672 	to_write = DIV_ROUND_UP(to_write, 4);
673 	data = hs_req->req.buf + buf_pos;
674 
675 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
676 
677 	return (to_write >= can_write) ? -ENOSPC : 0;
678 }
679 
680 /**
681  * get_ep_limit - get the maximum data legnth for this endpoint
682  * @hs_ep: The endpoint
683  *
684  * Return the maximum data that can be queued in one go on a given endpoint
685  * so that transfers that are too long can be split.
686  */
get_ep_limit(struct dwc2_hsotg_ep * hs_ep)687 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
688 {
689 	int index = hs_ep->index;
690 	unsigned int maxsize;
691 	unsigned int maxpkt;
692 
693 	if (index != 0) {
694 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
695 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
696 	} else {
697 		maxsize = 64 + 64;
698 		if (hs_ep->dir_in)
699 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
700 		else
701 			maxpkt = 2;
702 	}
703 
704 	/* we made the constant loading easier above by using +1 */
705 	maxpkt--;
706 	maxsize--;
707 
708 	/*
709 	 * constrain by packet count if maxpkts*pktsize is greater
710 	 * than the length register size.
711 	 */
712 
713 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
714 		maxsize = maxpkt * hs_ep->ep.maxpacket;
715 
716 	return maxsize;
717 }
718 
719 /**
720  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
721  * DMA descriptor chain prepared for specific endpoint
722  * @hs_ep: The endpoint
723  *
724  * Return the maximum data that can be queued in one go on a given endpoint
725  * depending on its descriptor chain capacity so that transfers that
726  * are too long can be split.
727  */
dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep * hs_ep)728 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
729 {
730 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
731 	int is_isoc = hs_ep->isochronous;
732 	unsigned int maxsize;
733 	u32 mps = hs_ep->ep.maxpacket;
734 	int dir_in = hs_ep->dir_in;
735 
736 	if (is_isoc)
737 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
738 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
739 					   MAX_DMA_DESC_NUM_HS_ISOC;
740 	else
741 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
742 
743 	/* Interrupt OUT EP with mps not multiple of 4 */
744 	if (hs_ep->index)
745 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
746 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
747 
748 	return maxsize;
749 }
750 
751 /*
752  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
753  * @hs_ep: The endpoint
754  * @mask: RX/TX bytes mask to be defined
755  *
756  * Returns maximum data payload for one descriptor after analyzing endpoint
757  * characteristics.
758  * DMA descriptor transfer bytes limit depends on EP type:
759  * Control out - MPS,
760  * Isochronous - descriptor rx/tx bytes bitfield limit,
761  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
762  * have concatenations from various descriptors within one packet.
763  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
764  * to a single descriptor.
765  *
766  * Selects corresponding mask for RX/TX bytes as well.
767  */
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep * hs_ep,u32 * mask)768 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
769 {
770 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
771 	u32 mps = hs_ep->ep.maxpacket;
772 	int dir_in = hs_ep->dir_in;
773 	u32 desc_size = 0;
774 
775 	if (!hs_ep->index && !dir_in) {
776 		desc_size = mps;
777 		*mask = DEV_DMA_NBYTES_MASK;
778 	} else if (hs_ep->isochronous) {
779 		if (dir_in) {
780 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
781 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
782 		} else {
783 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
784 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
785 		}
786 	} else {
787 		desc_size = DEV_DMA_NBYTES_LIMIT;
788 		*mask = DEV_DMA_NBYTES_MASK;
789 
790 		/* Round down desc_size to be mps multiple */
791 		desc_size -= desc_size % mps;
792 	}
793 
794 	/* Interrupt OUT EP with mps not multiple of 4 */
795 	if (hs_ep->index)
796 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
797 			desc_size = mps;
798 			*mask = DEV_DMA_NBYTES_MASK;
799 		}
800 
801 	return desc_size;
802 }
803 
dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep * hs_ep,struct dwc2_dma_desc ** desc,dma_addr_t dma_buff,unsigned int len,bool true_last)804 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
805 						 struct dwc2_dma_desc **desc,
806 						 dma_addr_t dma_buff,
807 						 unsigned int len,
808 						 bool true_last)
809 {
810 	int dir_in = hs_ep->dir_in;
811 	u32 mps = hs_ep->ep.maxpacket;
812 	u32 maxsize = 0;
813 	u32 offset = 0;
814 	u32 mask = 0;
815 	int i;
816 
817 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
818 
819 	hs_ep->desc_count = (len / maxsize) +
820 				((len % maxsize) ? 1 : 0);
821 	if (len == 0)
822 		hs_ep->desc_count = 1;
823 
824 	for (i = 0; i < hs_ep->desc_count; ++i) {
825 		(*desc)->status = 0;
826 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
827 				 << DEV_DMA_BUFF_STS_SHIFT);
828 
829 		if (len > maxsize) {
830 			if (!hs_ep->index && !dir_in)
831 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
832 
833 			(*desc)->status |=
834 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
835 			(*desc)->buf = dma_buff + offset;
836 
837 			len -= maxsize;
838 			offset += maxsize;
839 		} else {
840 			if (true_last)
841 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
842 
843 			if (dir_in)
844 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
845 					((hs_ep->send_zlp && true_last) ?
846 					DEV_DMA_SHORT : 0);
847 
848 			(*desc)->status |=
849 				len << DEV_DMA_NBYTES_SHIFT & mask;
850 			(*desc)->buf = dma_buff + offset;
851 		}
852 
853 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
854 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
855 				 << DEV_DMA_BUFF_STS_SHIFT);
856 		(*desc)++;
857 	}
858 }
859 
860 /*
861  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
862  * @hs_ep: The endpoint
863  * @ureq: Request to transfer
864  * @offset: offset in bytes
865  * @len: Length of the transfer
866  *
867  * This function will iterate over descriptor chain and fill its entries
868  * with corresponding information based on transfer data.
869  */
dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep * hs_ep,dma_addr_t dma_buff,unsigned int len)870 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
871 						 dma_addr_t dma_buff,
872 						 unsigned int len)
873 {
874 	struct usb_request *ureq = NULL;
875 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
876 	struct scatterlist *sg;
877 	int i;
878 	u8 desc_count = 0;
879 
880 	if (hs_ep->req)
881 		ureq = &hs_ep->req->req;
882 
883 	/* non-DMA sg buffer */
884 	if (!ureq || !ureq->num_sgs) {
885 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
886 			dma_buff, len, true);
887 		return;
888 	}
889 
890 	/* DMA sg buffer */
891 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
892 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
893 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
894 			sg_is_last(sg));
895 		desc_count += hs_ep->desc_count;
896 	}
897 
898 	hs_ep->desc_count = desc_count;
899 }
900 
901 /*
902  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
903  * @hs_ep: The isochronous endpoint.
904  * @dma_buff: usb requests dma buffer.
905  * @len: usb request transfer length.
906  *
907  * Fills next free descriptor with the data of the arrived usb request,
908  * frame info, sets Last and IOC bits increments next_desc. If filled
909  * descriptor is not the first one, removes L bit from the previous descriptor
910  * status.
911  */
dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep * hs_ep,dma_addr_t dma_buff,unsigned int len)912 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
913 				      dma_addr_t dma_buff, unsigned int len)
914 {
915 	struct dwc2_dma_desc *desc;
916 	struct dwc2_hsotg *hsotg = hs_ep->parent;
917 	u32 index;
918 	u32 mask = 0;
919 	u8 pid = 0;
920 
921 	dwc2_gadget_get_desc_params(hs_ep, &mask);
922 
923 	index = hs_ep->next_desc;
924 	desc = &hs_ep->desc_list[index];
925 
926 	/* Check if descriptor chain full */
927 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
928 	    DEV_DMA_BUFF_STS_HREADY) {
929 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
930 		return 1;
931 	}
932 
933 	/* Clear L bit of previous desc if more than one entries in the chain */
934 	if (hs_ep->next_desc)
935 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
936 
937 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
938 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
939 
940 	desc->status = 0;
941 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
942 
943 	desc->buf = dma_buff;
944 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
945 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
946 
947 	if (hs_ep->dir_in) {
948 		if (len)
949 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
950 		else
951 			pid = 1;
952 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
953 				 DEV_DMA_ISOC_PID_MASK) |
954 				((len % hs_ep->ep.maxpacket) ?
955 				 DEV_DMA_SHORT : 0) |
956 				((hs_ep->target_frame <<
957 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
958 				 DEV_DMA_ISOC_FRNUM_MASK);
959 	}
960 
961 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
962 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
963 
964 	/* Increment frame number by interval for IN */
965 	if (hs_ep->dir_in)
966 		dwc2_gadget_incr_frame_num(hs_ep);
967 
968 	/* Update index of last configured entry in the chain */
969 	hs_ep->next_desc++;
970 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
971 		hs_ep->next_desc = 0;
972 
973 	return 0;
974 }
975 
976 /*
977  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
978  * @hs_ep: The isochronous endpoint.
979  *
980  * Prepare descriptor chain for isochronous endpoints. Afterwards
981  * write DMA address to HW and enable the endpoint.
982  */
dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep * hs_ep)983 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
984 {
985 	struct dwc2_hsotg *hsotg = hs_ep->parent;
986 	struct dwc2_hsotg_req *hs_req, *treq;
987 	int index = hs_ep->index;
988 	int ret;
989 	int i;
990 	u32 dma_reg;
991 	u32 depctl;
992 	u32 ctrl;
993 	struct dwc2_dma_desc *desc;
994 
995 	if (list_empty(&hs_ep->queue)) {
996 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
997 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
998 		return;
999 	}
1000 
1001 	/* Initialize descriptor chain by Host Busy status */
1002 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1003 		desc = &hs_ep->desc_list[i];
1004 		desc->status = 0;
1005 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1006 				    << DEV_DMA_BUFF_STS_SHIFT);
1007 	}
1008 
1009 	hs_ep->next_desc = 0;
1010 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1011 		dma_addr_t dma_addr = hs_req->req.dma;
1012 
1013 		if (hs_req->req.num_sgs) {
1014 			WARN_ON(hs_req->req.num_sgs > 1);
1015 			dma_addr = sg_dma_address(hs_req->req.sg);
1016 		}
1017 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1018 						 hs_req->req.length);
1019 		if (ret)
1020 			break;
1021 	}
1022 
1023 	hs_ep->compl_desc = 0;
1024 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1025 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1026 
1027 	/* write descriptor chain address to control register */
1028 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1029 
1030 	ctrl = dwc2_readl(hsotg, depctl);
1031 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1032 	dwc2_writel(hsotg, ctrl, depctl);
1033 }
1034 
1035 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1036 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1037 					struct dwc2_hsotg_ep *hs_ep,
1038 				       struct dwc2_hsotg_req *hs_req,
1039 				       int result);
1040 
1041 /**
1042  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1043  * @hsotg: The controller state.
1044  * @hs_ep: The endpoint to process a request for
1045  * @hs_req: The request to start.
1046  * @continuing: True if we are doing more for the current request.
1047  *
1048  * Start the given request running by setting the endpoint registers
1049  * appropriately, and writing any data to the FIFOs.
1050  */
dwc2_hsotg_start_req(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req,bool continuing)1051 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1052 				 struct dwc2_hsotg_ep *hs_ep,
1053 				struct dwc2_hsotg_req *hs_req,
1054 				bool continuing)
1055 {
1056 	struct usb_request *ureq = &hs_req->req;
1057 	int index = hs_ep->index;
1058 	int dir_in = hs_ep->dir_in;
1059 	u32 epctrl_reg;
1060 	u32 epsize_reg;
1061 	u32 epsize;
1062 	u32 ctrl;
1063 	unsigned int length;
1064 	unsigned int packets;
1065 	unsigned int maxreq;
1066 	unsigned int dma_reg;
1067 
1068 	if (index != 0) {
1069 		if (hs_ep->req && !continuing) {
1070 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1071 			WARN_ON(1);
1072 			return;
1073 		} else if (hs_ep->req != hs_req && continuing) {
1074 			dev_err(hsotg->dev,
1075 				"%s: continue different req\n", __func__);
1076 			WARN_ON(1);
1077 			return;
1078 		}
1079 	}
1080 
1081 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1082 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1083 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1084 
1085 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1086 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1087 		hs_ep->dir_in ? "in" : "out");
1088 
1089 	/* If endpoint is stalled, we will restart request later */
1090 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1091 
1092 	if (index && ctrl & DXEPCTL_STALL) {
1093 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1094 		return;
1095 	}
1096 
1097 	length = ureq->length - ureq->actual;
1098 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1099 		ureq->length, ureq->actual);
1100 
1101 	if (!using_desc_dma(hsotg))
1102 		maxreq = get_ep_limit(hs_ep);
1103 	else
1104 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1105 
1106 	if (length > maxreq) {
1107 		int round = maxreq % hs_ep->ep.maxpacket;
1108 
1109 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1110 			__func__, length, maxreq, round);
1111 
1112 		/* round down to multiple of packets */
1113 		if (round)
1114 			maxreq -= round;
1115 
1116 		length = maxreq;
1117 	}
1118 
1119 	if (length)
1120 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1121 	else
1122 		packets = 1;	/* send one packet if length is zero. */
1123 
1124 	if (dir_in && index != 0)
1125 		if (hs_ep->isochronous)
1126 			epsize = DXEPTSIZ_MC(packets);
1127 		else
1128 			epsize = DXEPTSIZ_MC(1);
1129 	else
1130 		epsize = 0;
1131 
1132 	/*
1133 	 * zero length packet should be programmed on its own and should not
1134 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1135 	 */
1136 	if (dir_in && ureq->zero && !continuing) {
1137 		/* Test if zlp is actually required. */
1138 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1139 		    !(ureq->length % hs_ep->ep.maxpacket))
1140 			hs_ep->send_zlp = 1;
1141 	}
1142 
1143 	epsize |= DXEPTSIZ_PKTCNT(packets);
1144 	epsize |= DXEPTSIZ_XFERSIZE(length);
1145 
1146 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1147 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1148 
1149 	/* store the request as the current one we're doing */
1150 	hs_ep->req = hs_req;
1151 
1152 	if (using_desc_dma(hsotg)) {
1153 		u32 offset = 0;
1154 		u32 mps = hs_ep->ep.maxpacket;
1155 
1156 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1157 		if (!dir_in) {
1158 			if (!index)
1159 				length = mps;
1160 			else if (length % mps)
1161 				length += (mps - (length % mps));
1162 		}
1163 
1164 		if (continuing)
1165 			offset = ureq->actual;
1166 
1167 		/* Fill DDMA chain entries */
1168 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1169 						     length);
1170 
1171 		/* write descriptor chain address to control register */
1172 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1173 
1174 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1175 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1176 	} else {
1177 		/* write size / packets */
1178 		dwc2_writel(hsotg, epsize, epsize_reg);
1179 
1180 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1181 			/*
1182 			 * write DMA address to control register, buffer
1183 			 * already synced by dwc2_hsotg_ep_queue().
1184 			 */
1185 
1186 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1187 
1188 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1189 				__func__, &ureq->dma, dma_reg);
1190 		}
1191 	}
1192 
1193 	if (hs_ep->isochronous) {
1194 		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1195 			if (hs_ep->interval == 1) {
1196 				if (hs_ep->target_frame & 0x1)
1197 					ctrl |= DXEPCTL_SETODDFR;
1198 				else
1199 					ctrl |= DXEPCTL_SETEVENFR;
1200 			}
1201 			ctrl |= DXEPCTL_CNAK;
1202 		} else {
1203 			hs_req->req.frame_number = hs_ep->target_frame;
1204 			hs_req->req.actual = 0;
1205 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1206 			return;
1207 		}
1208 	}
1209 
1210 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1211 
1212 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1213 
1214 	/* For Setup request do not clear NAK */
1215 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1216 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1217 
1218 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1219 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1220 
1221 	/*
1222 	 * set these, it seems that DMA support increments past the end
1223 	 * of the packet buffer so we need to calculate the length from
1224 	 * this information.
1225 	 */
1226 	hs_ep->size_loaded = length;
1227 	hs_ep->last_load = ureq->actual;
1228 
1229 	if (dir_in && !using_dma(hsotg)) {
1230 		/* set these anyway, we may need them for non-periodic in */
1231 		hs_ep->fifo_load = 0;
1232 
1233 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1234 	}
1235 
1236 	/*
1237 	 * Note, trying to clear the NAK here causes problems with transmit
1238 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1239 	 */
1240 
1241 	/* check ep is enabled */
1242 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1243 		dev_dbg(hsotg->dev,
1244 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1245 			 index, dwc2_readl(hsotg, epctrl_reg));
1246 
1247 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1248 		__func__, dwc2_readl(hsotg, epctrl_reg));
1249 
1250 	/* enable ep interrupts */
1251 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1252 }
1253 
1254 /**
1255  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1256  * @hsotg: The device state.
1257  * @hs_ep: The endpoint the request is on.
1258  * @req: The request being processed.
1259  *
1260  * We've been asked to queue a request, so ensure that the memory buffer
1261  * is correctly setup for DMA. If we've been passed an extant DMA address
1262  * then ensure the buffer has been synced to memory. If our buffer has no
1263  * DMA memory, then we map the memory and mark our request to allow us to
1264  * cleanup on completion.
1265  */
dwc2_hsotg_map_dma(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct usb_request * req)1266 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1267 			      struct dwc2_hsotg_ep *hs_ep,
1268 			     struct usb_request *req)
1269 {
1270 	int ret;
1271 
1272 	hs_ep->map_dir = hs_ep->dir_in;
1273 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1274 	if (ret)
1275 		goto dma_error;
1276 
1277 	return 0;
1278 
1279 dma_error:
1280 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1281 		__func__, req->buf, req->length);
1282 
1283 	return -EIO;
1284 }
1285 
dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)1286 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1287 						 struct dwc2_hsotg_ep *hs_ep,
1288 						 struct dwc2_hsotg_req *hs_req)
1289 {
1290 	void *req_buf = hs_req->req.buf;
1291 
1292 	/* If dma is not being used or buffer is aligned */
1293 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1294 		return 0;
1295 
1296 	WARN_ON(hs_req->saved_req_buf);
1297 
1298 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1299 		hs_ep->ep.name, req_buf, hs_req->req.length);
1300 
1301 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1302 	if (!hs_req->req.buf) {
1303 		hs_req->req.buf = req_buf;
1304 		dev_err(hsotg->dev,
1305 			"%s: unable to allocate memory for bounce buffer\n",
1306 			__func__);
1307 		return -ENOMEM;
1308 	}
1309 
1310 	/* Save actual buffer */
1311 	hs_req->saved_req_buf = req_buf;
1312 
1313 	if (hs_ep->dir_in)
1314 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1315 	return 0;
1316 }
1317 
1318 static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req)1319 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1320 					 struct dwc2_hsotg_ep *hs_ep,
1321 					 struct dwc2_hsotg_req *hs_req)
1322 {
1323 	/* If dma is not being used or buffer was aligned */
1324 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1325 		return;
1326 
1327 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1328 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1329 
1330 	/* Copy data from bounce buffer on successful out transfer */
1331 	if (!hs_ep->dir_in && !hs_req->req.status)
1332 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1333 		       hs_req->req.actual);
1334 
1335 	/* Free bounce buffer */
1336 	kfree(hs_req->req.buf);
1337 
1338 	hs_req->req.buf = hs_req->saved_req_buf;
1339 	hs_req->saved_req_buf = NULL;
1340 }
1341 
1342 /**
1343  * dwc2_gadget_target_frame_elapsed - Checks target frame
1344  * @hs_ep: The driver endpoint to check
1345  *
1346  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1347  * corresponding transfer.
1348  */
dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep * hs_ep)1349 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1350 {
1351 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1352 	u32 target_frame = hs_ep->target_frame;
1353 	u32 current_frame = hsotg->frame_number;
1354 	bool frame_overrun = hs_ep->frame_overrun;
1355 	u16 limit = DSTS_SOFFN_LIMIT;
1356 
1357 	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1358 		limit >>= 3;
1359 
1360 	if (!frame_overrun && current_frame >= target_frame)
1361 		return true;
1362 
1363 	if (frame_overrun && current_frame >= target_frame &&
1364 	    ((current_frame - target_frame) < limit / 2))
1365 		return true;
1366 
1367 	return false;
1368 }
1369 
1370 /*
1371  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1372  * @hsotg: The driver state
1373  * @hs_ep: the ep descriptor chain is for
1374  *
1375  * Called to update EP0 structure's pointers depend on stage of
1376  * control transfer.
1377  */
dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)1378 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1379 					  struct dwc2_hsotg_ep *hs_ep)
1380 {
1381 	switch (hsotg->ep0_state) {
1382 	case DWC2_EP0_SETUP:
1383 	case DWC2_EP0_STATUS_OUT:
1384 		hs_ep->desc_list = hsotg->setup_desc[0];
1385 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1386 		break;
1387 	case DWC2_EP0_DATA_IN:
1388 	case DWC2_EP0_STATUS_IN:
1389 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1390 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1391 		break;
1392 	case DWC2_EP0_DATA_OUT:
1393 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1394 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1395 		break;
1396 	default:
1397 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1398 			hsotg->ep0_state);
1399 		return -EINVAL;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep);
1406 
dwc2_hsotg_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)1407 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1408 			       gfp_t gfp_flags)
1409 {
1410 	struct dwc2_hsotg_req *hs_req = our_req(req);
1411 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1412 	struct dwc2_hsotg *hs = hs_ep->parent;
1413 	bool first;
1414 	int ret;
1415 	u32 maxsize = 0;
1416 	u32 mask = 0;
1417 
1418 
1419 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1420 		ep->name, req, req->length, req->buf, req->no_interrupt,
1421 		req->zero, req->short_not_ok);
1422 
1423 	/* Prevent new request submission when controller is suspended */
1424 	if (hs->lx_state != DWC2_L0) {
1425 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1426 			__func__);
1427 		return -EAGAIN;
1428 	}
1429 
1430 	/* initialise status of the request */
1431 	INIT_LIST_HEAD(&hs_req->queue);
1432 	req->actual = 0;
1433 	req->status = -EINPROGRESS;
1434 
1435 	/* Don't queue ISOC request if length greater than mps*mc */
1436 	if (hs_ep->isochronous &&
1437 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1438 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1439 		return -EINVAL;
1440 	}
1441 
1442 	/* In DDMA mode for ISOC's don't queue request if length greater
1443 	 * than descriptor limits.
1444 	 */
1445 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1446 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1447 		if (hs_ep->dir_in && req->length > maxsize) {
1448 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1449 				req->length, maxsize);
1450 			return -EINVAL;
1451 		}
1452 
1453 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1454 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1455 				req->length, hs_ep->ep.maxpacket);
1456 			return -EINVAL;
1457 		}
1458 	}
1459 
1460 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1461 	if (ret)
1462 		return ret;
1463 
1464 	/* if we're using DMA, sync the buffers as necessary */
1465 	if (using_dma(hs)) {
1466 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1467 		if (ret)
1468 			return ret;
1469 	}
1470 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1471 	if (using_desc_dma(hs) && !hs_ep->index) {
1472 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1473 		if (ret)
1474 			return ret;
1475 	}
1476 
1477 	first = list_empty(&hs_ep->queue);
1478 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1479 
1480 	/*
1481 	 * Handle DDMA isochronous transfers separately - just add new entry
1482 	 * to the descriptor chain.
1483 	 * Transfer will be started once SW gets either one of NAK or
1484 	 * OutTknEpDis interrupts.
1485 	 */
1486 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1487 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1488 			dma_addr_t dma_addr = hs_req->req.dma;
1489 
1490 			if (hs_req->req.num_sgs) {
1491 				WARN_ON(hs_req->req.num_sgs > 1);
1492 				dma_addr = sg_dma_address(hs_req->req.sg);
1493 			}
1494 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1495 						   hs_req->req.length);
1496 		}
1497 		return 0;
1498 	}
1499 
1500 	/* Change EP direction if status phase request is after data out */
1501 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1502 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1503 		hs_ep->dir_in = 1;
1504 
1505 	if (first) {
1506 		if (!hs_ep->isochronous) {
1507 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1508 			return 0;
1509 		}
1510 
1511 		/* Update current frame number value. */
1512 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1513 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1514 			dwc2_gadget_incr_frame_num(hs_ep);
1515 			/* Update current frame number value once more as it
1516 			 * changes here.
1517 			 */
1518 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1519 		}
1520 
1521 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1522 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1523 	} else if (hs_ep->isochronous && hs_ep->dir_in && !hs_ep->req &&
1524 		   !(dwc2_readl(hs, GHWCFG2) & GHWCFG2_MULTI_PROC_INT)) {
1525 		/* Update current frame number value. */
1526 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1527 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1528 			dwc2_gadget_incr_frame_num(hs_ep);
1529 			/* Update current frame number value once more as it
1530 			 * changes here.
1531 			 */
1532 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1533 		}
1534 
1535 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1536 			dwc2_gadget_start_next_request(hs_ep);
1537 	}
1538 	return 0;
1539 }
1540 
dwc2_hsotg_ep_queue_lock(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)1541 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1542 				    gfp_t gfp_flags)
1543 {
1544 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1545 	struct dwc2_hsotg *hs = hs_ep->parent;
1546 	unsigned long flags = 0;
1547 	int ret = 0;
1548 
1549 	spin_lock_irqsave(&hs->lock, flags);
1550 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1551 	spin_unlock_irqrestore(&hs->lock, flags);
1552 
1553 	return ret;
1554 }
1555 
dwc2_hsotg_ep_free_request(struct usb_ep * ep,struct usb_request * req)1556 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1557 				       struct usb_request *req)
1558 {
1559 	struct dwc2_hsotg_req *hs_req = our_req(req);
1560 
1561 	kfree(hs_req);
1562 }
1563 
1564 /**
1565  * dwc2_hsotg_complete_oursetup - setup completion callback
1566  * @ep: The endpoint the request was on.
1567  * @req: The request completed.
1568  *
1569  * Called on completion of any requests the driver itself
1570  * submitted that need cleaning up.
1571  */
dwc2_hsotg_complete_oursetup(struct usb_ep * ep,struct usb_request * req)1572 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1573 					 struct usb_request *req)
1574 {
1575 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1576 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1577 
1578 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1579 
1580 	dwc2_hsotg_ep_free_request(ep, req);
1581 }
1582 
1583 /**
1584  * ep_from_windex - convert control wIndex value to endpoint
1585  * @hsotg: The driver state.
1586  * @windex: The control request wIndex field (in host order).
1587  *
1588  * Convert the given wIndex into a pointer to an driver endpoint
1589  * structure, or return NULL if it is not a valid endpoint.
1590  */
ep_from_windex(struct dwc2_hsotg * hsotg,u32 windex)1591 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1592 					    u32 windex)
1593 {
1594 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1595 	int idx = windex & 0x7F;
1596 
1597 	if (windex >= 0x100)
1598 		return NULL;
1599 
1600 	if (idx > hsotg->num_of_eps)
1601 		return NULL;
1602 
1603 	return index_to_ep(hsotg, idx, dir);
1604 }
1605 
1606 /**
1607  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1608  * @hsotg: The driver state.
1609  * @testmode: requested usb test mode
1610  * Enable usb Test Mode requested by the Host.
1611  */
dwc2_hsotg_set_test_mode(struct dwc2_hsotg * hsotg,int testmode)1612 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1613 {
1614 	int dctl = dwc2_readl(hsotg, DCTL);
1615 
1616 	dctl &= ~DCTL_TSTCTL_MASK;
1617 	switch (testmode) {
1618 	case USB_TEST_J:
1619 	case USB_TEST_K:
1620 	case USB_TEST_SE0_NAK:
1621 	case USB_TEST_PACKET:
1622 	case USB_TEST_FORCE_ENABLE:
1623 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1624 		break;
1625 	default:
1626 		return -EINVAL;
1627 	}
1628 	dwc2_writel(hsotg, dctl, DCTL);
1629 	return 0;
1630 }
1631 
1632 /**
1633  * dwc2_hsotg_send_reply - send reply to control request
1634  * @hsotg: The device state
1635  * @ep: Endpoint 0
1636  * @buff: Buffer for request
1637  * @length: Length of reply.
1638  *
1639  * Create a request and queue it on the given endpoint. This is useful as
1640  * an internal method of sending replies to certain control requests, etc.
1641  */
dwc2_hsotg_send_reply(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * ep,void * buff,int length)1642 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1643 				 struct dwc2_hsotg_ep *ep,
1644 				void *buff,
1645 				int length)
1646 {
1647 	struct usb_request *req;
1648 	int ret;
1649 
1650 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1651 
1652 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1653 	hsotg->ep0_reply = req;
1654 	if (!req) {
1655 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1656 		return -ENOMEM;
1657 	}
1658 
1659 	req->buf = hsotg->ep0_buff;
1660 	req->length = length;
1661 	/*
1662 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1663 	 * STATUS stage.
1664 	 */
1665 	req->zero = 0;
1666 	req->complete = dwc2_hsotg_complete_oursetup;
1667 
1668 	if (length)
1669 		memcpy(req->buf, buff, length);
1670 
1671 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1672 	if (ret) {
1673 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1674 		return ret;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 /**
1681  * dwc2_hsotg_process_req_status - process request GET_STATUS
1682  * @hsotg: The device state
1683  * @ctrl: USB control request
1684  */
dwc2_hsotg_process_req_status(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1685 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1686 					 struct usb_ctrlrequest *ctrl)
1687 {
1688 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1689 	struct dwc2_hsotg_ep *ep;
1690 	__le16 reply;
1691 	u16 status;
1692 	int ret;
1693 
1694 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1695 
1696 	if (!ep0->dir_in) {
1697 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1698 		return -EINVAL;
1699 	}
1700 
1701 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1702 	case USB_RECIP_DEVICE:
1703 		status = hsotg->gadget.is_selfpowered <<
1704 			 USB_DEVICE_SELF_POWERED;
1705 		status |= hsotg->remote_wakeup_allowed <<
1706 			  USB_DEVICE_REMOTE_WAKEUP;
1707 		reply = cpu_to_le16(status);
1708 		break;
1709 
1710 	case USB_RECIP_INTERFACE:
1711 		/* currently, the data result should be zero */
1712 		reply = cpu_to_le16(0);
1713 		break;
1714 
1715 	case USB_RECIP_ENDPOINT:
1716 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1717 		if (!ep)
1718 			return -ENOENT;
1719 
1720 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1721 		break;
1722 
1723 	default:
1724 		return 0;
1725 	}
1726 
1727 	if (le16_to_cpu(ctrl->wLength) != 2)
1728 		return -EINVAL;
1729 
1730 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1731 	if (ret) {
1732 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1733 		return ret;
1734 	}
1735 
1736 	return 1;
1737 }
1738 
1739 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1740 
1741 /**
1742  * get_ep_head - return the first request on the endpoint
1743  * @hs_ep: The controller endpoint to get
1744  *
1745  * Get the first request on the endpoint.
1746  */
get_ep_head(struct dwc2_hsotg_ep * hs_ep)1747 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1748 {
1749 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1750 					queue);
1751 }
1752 
1753 /**
1754  * dwc2_gadget_start_next_request - Starts next request from ep queue
1755  * @hs_ep: Endpoint structure
1756  *
1757  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1758  * in its handler. Hence we need to unmask it here to be able to do
1759  * resynchronization.
1760  */
dwc2_gadget_start_next_request(struct dwc2_hsotg_ep * hs_ep)1761 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1762 {
1763 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1764 	int dir_in = hs_ep->dir_in;
1765 	struct dwc2_hsotg_req *hs_req;
1766 
1767 	if (!list_empty(&hs_ep->queue)) {
1768 		hs_req = get_ep_head(hs_ep);
1769 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1770 		return;
1771 	}
1772 	if (!hs_ep->isochronous)
1773 		return;
1774 
1775 	if (dir_in) {
1776 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1777 			__func__);
1778 	} else {
1779 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1780 			__func__);
1781 	}
1782 }
1783 
1784 /**
1785  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1786  * @hsotg: The device state
1787  * @ctrl: USB control request
1788  */
dwc2_hsotg_process_req_feature(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1789 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1790 					  struct usb_ctrlrequest *ctrl)
1791 {
1792 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1793 	struct dwc2_hsotg_req *hs_req;
1794 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1795 	struct dwc2_hsotg_ep *ep;
1796 	int ret;
1797 	bool halted;
1798 	u32 recip;
1799 	u32 wValue;
1800 	u32 wIndex;
1801 
1802 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1803 		__func__, set ? "SET" : "CLEAR");
1804 
1805 	wValue = le16_to_cpu(ctrl->wValue);
1806 	wIndex = le16_to_cpu(ctrl->wIndex);
1807 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1808 
1809 	switch (recip) {
1810 	case USB_RECIP_DEVICE:
1811 		switch (wValue) {
1812 		case USB_DEVICE_REMOTE_WAKEUP:
1813 			if (set)
1814 				hsotg->remote_wakeup_allowed = 1;
1815 			else
1816 				hsotg->remote_wakeup_allowed = 0;
1817 			break;
1818 
1819 		case USB_DEVICE_TEST_MODE:
1820 			if ((wIndex & 0xff) != 0)
1821 				return -EINVAL;
1822 			if (!set)
1823 				return -EINVAL;
1824 
1825 			hsotg->test_mode = wIndex >> 8;
1826 			break;
1827 		default:
1828 			return -ENOENT;
1829 		}
1830 
1831 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1832 		if (ret) {
1833 			dev_err(hsotg->dev,
1834 				"%s: failed to send reply\n", __func__);
1835 			return ret;
1836 		}
1837 		break;
1838 
1839 	case USB_RECIP_ENDPOINT:
1840 		ep = ep_from_windex(hsotg, wIndex);
1841 		if (!ep) {
1842 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1843 				__func__, wIndex);
1844 			return -ENOENT;
1845 		}
1846 
1847 		switch (wValue) {
1848 		case USB_ENDPOINT_HALT:
1849 			halted = ep->halted;
1850 
1851 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1852 
1853 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1854 			if (ret) {
1855 				dev_err(hsotg->dev,
1856 					"%s: failed to send reply\n", __func__);
1857 				return ret;
1858 			}
1859 
1860 			/*
1861 			 * we have to complete all requests for ep if it was
1862 			 * halted, and the halt was cleared by CLEAR_FEATURE
1863 			 */
1864 
1865 			if (!set && halted) {
1866 				/*
1867 				 * If we have request in progress,
1868 				 * then complete it
1869 				 */
1870 				if (ep->req) {
1871 					hs_req = ep->req;
1872 					ep->req = NULL;
1873 					list_del_init(&hs_req->queue);
1874 					if (hs_req->req.complete) {
1875 						spin_unlock(&hsotg->lock);
1876 						usb_gadget_giveback_request(
1877 							&ep->ep, &hs_req->req);
1878 						spin_lock(&hsotg->lock);
1879 					}
1880 				}
1881 
1882 				/* If we have pending request, then start it */
1883 				if (!ep->req)
1884 					dwc2_gadget_start_next_request(ep);
1885 			}
1886 
1887 			break;
1888 
1889 		default:
1890 			return -ENOENT;
1891 		}
1892 		break;
1893 	default:
1894 		return -ENOENT;
1895 	}
1896 	return 1;
1897 }
1898 
1899 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1900 
1901 /**
1902  * dwc2_hsotg_stall_ep0 - stall ep0
1903  * @hsotg: The device state
1904  *
1905  * Set stall for ep0 as response for setup request.
1906  */
dwc2_hsotg_stall_ep0(struct dwc2_hsotg * hsotg)1907 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1908 {
1909 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1910 	u32 reg;
1911 	u32 ctrl;
1912 
1913 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1914 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1915 
1916 	/*
1917 	 * DxEPCTL_Stall will be cleared by EP once it has
1918 	 * taken effect, so no need to clear later.
1919 	 */
1920 
1921 	ctrl = dwc2_readl(hsotg, reg);
1922 	ctrl |= DXEPCTL_STALL;
1923 	ctrl |= DXEPCTL_CNAK;
1924 	dwc2_writel(hsotg, ctrl, reg);
1925 
1926 	dev_dbg(hsotg->dev,
1927 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1928 		ctrl, reg, dwc2_readl(hsotg, reg));
1929 
1930 	 /*
1931 	  * complete won't be called, so we enqueue
1932 	  * setup request here
1933 	  */
1934 	 dwc2_hsotg_enqueue_setup(hsotg);
1935 }
1936 
1937 /**
1938  * dwc2_hsotg_process_control - process a control request
1939  * @hsotg: The device state
1940  * @ctrl: The control request received
1941  *
1942  * The controller has received the SETUP phase of a control request, and
1943  * needs to work out what to do next (and whether to pass it on to the
1944  * gadget driver).
1945  */
dwc2_hsotg_process_control(struct dwc2_hsotg * hsotg,struct usb_ctrlrequest * ctrl)1946 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1947 				       struct usb_ctrlrequest *ctrl)
1948 {
1949 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1950 	int ret = 0;
1951 	u32 dcfg;
1952 
1953 	dev_dbg(hsotg->dev,
1954 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1955 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1956 		ctrl->wIndex, ctrl->wLength);
1957 
1958 	if (ctrl->wLength == 0) {
1959 		ep0->dir_in = 1;
1960 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1961 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1962 		ep0->dir_in = 1;
1963 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1964 	} else {
1965 		ep0->dir_in = 0;
1966 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1967 	}
1968 
1969 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1970 		switch (ctrl->bRequest) {
1971 		case USB_REQ_SET_ADDRESS:
1972 			hsotg->connected = 1;
1973 			dcfg = dwc2_readl(hsotg, DCFG);
1974 			dcfg &= ~DCFG_DEVADDR_MASK;
1975 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1976 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1977 			dwc2_writel(hsotg, dcfg, DCFG);
1978 
1979 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1980 
1981 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1982 			return;
1983 
1984 		case USB_REQ_GET_STATUS:
1985 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1986 			break;
1987 
1988 		case USB_REQ_CLEAR_FEATURE:
1989 		case USB_REQ_SET_FEATURE:
1990 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1991 			break;
1992 		}
1993 	}
1994 
1995 	/* as a fallback, try delivering it to the driver to deal with */
1996 
1997 	if (ret == 0 && hsotg->driver) {
1998 		spin_unlock(&hsotg->lock);
1999 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
2000 		spin_lock(&hsotg->lock);
2001 		if (ret < 0)
2002 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
2003 	}
2004 
2005 	hsotg->delayed_status = false;
2006 	if (ret == USB_GADGET_DELAYED_STATUS)
2007 		hsotg->delayed_status = true;
2008 
2009 	/*
2010 	 * the request is either unhandlable, or is not formatted correctly
2011 	 * so respond with a STALL for the status stage to indicate failure.
2012 	 */
2013 
2014 	if (ret < 0)
2015 		dwc2_hsotg_stall_ep0(hsotg);
2016 }
2017 
2018 /**
2019  * dwc2_hsotg_complete_setup - completion of a setup transfer
2020  * @ep: The endpoint the request was on.
2021  * @req: The request completed.
2022  *
2023  * Called on completion of any requests the driver itself submitted for
2024  * EP0 setup packets
2025  */
dwc2_hsotg_complete_setup(struct usb_ep * ep,struct usb_request * req)2026 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2027 				      struct usb_request *req)
2028 {
2029 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2030 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2031 
2032 	if (req->status < 0) {
2033 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2034 		return;
2035 	}
2036 
2037 	spin_lock(&hsotg->lock);
2038 	if (req->actual == 0)
2039 		dwc2_hsotg_enqueue_setup(hsotg);
2040 	else
2041 		dwc2_hsotg_process_control(hsotg, req->buf);
2042 	spin_unlock(&hsotg->lock);
2043 }
2044 
2045 /**
2046  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2047  * @hsotg: The device state.
2048  *
2049  * Enqueue a request on EP0 if necessary to received any SETUP packets
2050  * received from the host.
2051  */
dwc2_hsotg_enqueue_setup(struct dwc2_hsotg * hsotg)2052 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2053 {
2054 	struct usb_request *req = hsotg->ctrl_req;
2055 	struct dwc2_hsotg_req *hs_req = our_req(req);
2056 	int ret;
2057 
2058 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2059 
2060 	req->zero = 0;
2061 	req->length = 8;
2062 	req->buf = hsotg->ctrl_buff;
2063 	req->complete = dwc2_hsotg_complete_setup;
2064 
2065 	if (!list_empty(&hs_req->queue)) {
2066 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2067 		return;
2068 	}
2069 
2070 	hsotg->eps_out[0]->dir_in = 0;
2071 	hsotg->eps_out[0]->send_zlp = 0;
2072 	hsotg->ep0_state = DWC2_EP0_SETUP;
2073 
2074 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2075 	if (ret < 0) {
2076 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2077 		/*
2078 		 * Don't think there's much we can do other than watch the
2079 		 * driver fail.
2080 		 */
2081 	}
2082 }
2083 
dwc2_hsotg_program_zlp(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2084 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2085 				   struct dwc2_hsotg_ep *hs_ep)
2086 {
2087 	u32 ctrl;
2088 	u8 index = hs_ep->index;
2089 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2090 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2091 
2092 	if (hs_ep->dir_in)
2093 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2094 			index);
2095 	else
2096 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2097 			index);
2098 	if (using_desc_dma(hsotg)) {
2099 		/* Not specific buffer needed for ep0 ZLP */
2100 		dma_addr_t dma = hs_ep->desc_list_dma;
2101 
2102 		if (!index)
2103 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2104 
2105 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2106 	} else {
2107 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2108 			    DXEPTSIZ_XFERSIZE(0),
2109 			    epsiz_reg);
2110 	}
2111 
2112 	ctrl = dwc2_readl(hsotg, epctl_reg);
2113 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2114 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2115 	ctrl |= DXEPCTL_USBACTEP;
2116 	dwc2_writel(hsotg, ctrl, epctl_reg);
2117 }
2118 
2119 /**
2120  * dwc2_hsotg_complete_request - complete a request given to us
2121  * @hsotg: The device state.
2122  * @hs_ep: The endpoint the request was on.
2123  * @hs_req: The request to complete.
2124  * @result: The result code (0 => Ok, otherwise errno)
2125  *
2126  * The given request has finished, so call the necessary completion
2127  * if it has one and then look to see if we can start a new request
2128  * on the endpoint.
2129  *
2130  * Note, expects the ep to already be locked as appropriate.
2131  */
dwc2_hsotg_complete_request(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,struct dwc2_hsotg_req * hs_req,int result)2132 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2133 					struct dwc2_hsotg_ep *hs_ep,
2134 				       struct dwc2_hsotg_req *hs_req,
2135 				       int result)
2136 {
2137 	if (!hs_req) {
2138 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2139 		return;
2140 	}
2141 
2142 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2143 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2144 
2145 	/*
2146 	 * only replace the status if we've not already set an error
2147 	 * from a previous transaction
2148 	 */
2149 
2150 	if (hs_req->req.status == -EINPROGRESS)
2151 		hs_req->req.status = result;
2152 
2153 	if (using_dma(hsotg))
2154 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2155 
2156 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2157 
2158 	hs_ep->req = NULL;
2159 	list_del_init(&hs_req->queue);
2160 
2161 	/*
2162 	 * call the complete request with the locks off, just in case the
2163 	 * request tries to queue more work for this endpoint.
2164 	 */
2165 
2166 	if (hs_req->req.complete) {
2167 		spin_unlock(&hsotg->lock);
2168 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2169 		spin_lock(&hsotg->lock);
2170 	}
2171 
2172 	/* In DDMA don't need to proceed to starting of next ISOC request */
2173 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2174 		return;
2175 
2176 	/*
2177 	 * Look to see if there is anything else to do. Note, the completion
2178 	 * of the previous request may have caused a new request to be started
2179 	 * so be careful when doing this.
2180 	 */
2181 
2182 	if (!hs_ep->req && result >= 0)
2183 		dwc2_gadget_start_next_request(hs_ep);
2184 }
2185 
2186 /*
2187  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2188  * @hs_ep: The endpoint the request was on.
2189  *
2190  * Get first request from the ep queue, determine descriptor on which complete
2191  * happened. SW discovers which descriptor currently in use by HW, adjusts
2192  * dma_address and calculates index of completed descriptor based on the value
2193  * of DEPDMA register. Update actual length of request, giveback to gadget.
2194  */
dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep * hs_ep)2195 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2196 {
2197 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2198 	struct dwc2_hsotg_req *hs_req;
2199 	struct usb_request *ureq;
2200 	u32 desc_sts;
2201 	u32 mask;
2202 
2203 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2204 
2205 	/* Process only descriptors with buffer status set to DMA done */
2206 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2207 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2208 
2209 		hs_req = get_ep_head(hs_ep);
2210 		if (!hs_req) {
2211 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2212 			return;
2213 		}
2214 		ureq = &hs_req->req;
2215 
2216 		/* Check completion status */
2217 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2218 			DEV_DMA_STS_SUCC) {
2219 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2220 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2221 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2222 				DEV_DMA_ISOC_NBYTES_SHIFT);
2223 
2224 			/* Adjust actual len for ISOC Out if len is
2225 			 * not align of 4
2226 			 */
2227 			if (!hs_ep->dir_in && ureq->length & 0x3)
2228 				ureq->actual += 4 - (ureq->length & 0x3);
2229 
2230 			/* Set actual frame number for completed transfers */
2231 			ureq->frame_number =
2232 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2233 				DEV_DMA_ISOC_FRNUM_SHIFT;
2234 		}
2235 
2236 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2237 
2238 		hs_ep->compl_desc++;
2239 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2240 			hs_ep->compl_desc = 0;
2241 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2242 	}
2243 }
2244 
2245 /*
2246  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2247  * @hs_ep: The isochronous endpoint.
2248  *
2249  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2250  * interrupt. Reset target frame and next_desc to allow to start
2251  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2252  * interrupt for OUT direction.
2253  */
dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep * hs_ep)2254 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2255 {
2256 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2257 
2258 	if (!hs_ep->dir_in)
2259 		dwc2_flush_rx_fifo(hsotg);
2260 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2261 
2262 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2263 	hs_ep->next_desc = 0;
2264 	hs_ep->compl_desc = 0;
2265 }
2266 
2267 /**
2268  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2269  * @hsotg: The device state.
2270  * @ep_idx: The endpoint index for the data
2271  * @size: The size of data in the fifo, in bytes
2272  *
2273  * The FIFO status shows there is data to read from the FIFO for a given
2274  * endpoint, so sort out whether we need to read the data into a request
2275  * that has been made for that endpoint.
2276  */
dwc2_hsotg_rx_data(struct dwc2_hsotg * hsotg,int ep_idx,int size)2277 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2278 {
2279 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2280 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2281 	int to_read;
2282 	int max_req;
2283 	int read_ptr;
2284 
2285 	if (!hs_req) {
2286 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2287 		int ptr;
2288 
2289 		dev_dbg(hsotg->dev,
2290 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2291 			 __func__, size, ep_idx, epctl);
2292 
2293 		/* dump the data from the FIFO, we've nothing we can do */
2294 		for (ptr = 0; ptr < size; ptr += 4)
2295 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2296 
2297 		return;
2298 	}
2299 
2300 	to_read = size;
2301 	read_ptr = hs_req->req.actual;
2302 	max_req = hs_req->req.length - read_ptr;
2303 
2304 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2305 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2306 
2307 	if (to_read > max_req) {
2308 		/*
2309 		 * more data appeared than we where willing
2310 		 * to deal with in this request.
2311 		 */
2312 
2313 		/* currently we don't deal this */
2314 		WARN_ON_ONCE(1);
2315 	}
2316 
2317 	hs_ep->total_data += to_read;
2318 	hs_req->req.actual += to_read;
2319 	to_read = DIV_ROUND_UP(to_read, 4);
2320 
2321 	/*
2322 	 * note, we might over-write the buffer end by 3 bytes depending on
2323 	 * alignment of the data.
2324 	 */
2325 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2326 		       hs_req->req.buf + read_ptr, to_read);
2327 }
2328 
2329 /**
2330  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2331  * @hsotg: The device instance
2332  * @dir_in: If IN zlp
2333  *
2334  * Generate a zero-length IN packet request for terminating a SETUP
2335  * transaction.
2336  *
2337  * Note, since we don't write any data to the TxFIFO, then it is
2338  * currently believed that we do not need to wait for any space in
2339  * the TxFIFO.
2340  */
dwc2_hsotg_ep0_zlp(struct dwc2_hsotg * hsotg,bool dir_in)2341 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2342 {
2343 	/* eps_out[0] is used in both directions */
2344 	hsotg->eps_out[0]->dir_in = dir_in;
2345 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2346 
2347 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2348 }
2349 
2350 /*
2351  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2352  * @hs_ep - The endpoint on which transfer went
2353  *
2354  * Iterate over endpoints descriptor chain and get info on bytes remained
2355  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2356  */
dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep * hs_ep)2357 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2358 {
2359 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2360 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2361 	unsigned int bytes_rem = 0;
2362 	unsigned int bytes_rem_correction = 0;
2363 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2364 	int i;
2365 	u32 status;
2366 	u32 mps = hs_ep->ep.maxpacket;
2367 	int dir_in = hs_ep->dir_in;
2368 
2369 	if (!desc)
2370 		return -EINVAL;
2371 
2372 	/* Interrupt OUT EP with mps not multiple of 4 */
2373 	if (hs_ep->index)
2374 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2375 			bytes_rem_correction = 4 - (mps % 4);
2376 
2377 	for (i = 0; i < hs_ep->desc_count; ++i) {
2378 		status = desc->status;
2379 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2380 		bytes_rem -= bytes_rem_correction;
2381 
2382 		if (status & DEV_DMA_STS_MASK)
2383 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2384 				i, status & DEV_DMA_STS_MASK);
2385 
2386 		if (status & DEV_DMA_L)
2387 			break;
2388 
2389 		desc++;
2390 	}
2391 
2392 	return bytes_rem;
2393 }
2394 
2395 /**
2396  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2397  * @hsotg: The device instance
2398  * @epnum: The endpoint received from
2399  *
2400  * The RXFIFO has delivered an OutDone event, which means that the data
2401  * transfer for an OUT endpoint has been completed, either by a short
2402  * packet or by the finish of a transfer.
2403  */
dwc2_hsotg_handle_outdone(struct dwc2_hsotg * hsotg,int epnum)2404 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2405 {
2406 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2407 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2408 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2409 	struct usb_request *req = &hs_req->req;
2410 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2411 	int result = 0;
2412 
2413 	if (!hs_req) {
2414 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2415 		return;
2416 	}
2417 
2418 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2419 		dev_dbg(hsotg->dev, "zlp packet received\n");
2420 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2421 		dwc2_hsotg_enqueue_setup(hsotg);
2422 		return;
2423 	}
2424 
2425 	if (using_desc_dma(hsotg))
2426 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2427 
2428 	if (using_dma(hsotg)) {
2429 		unsigned int size_done;
2430 
2431 		/*
2432 		 * Calculate the size of the transfer by checking how much
2433 		 * is left in the endpoint size register and then working it
2434 		 * out from the amount we loaded for the transfer.
2435 		 *
2436 		 * We need to do this as DMA pointers are always 32bit aligned
2437 		 * so may overshoot/undershoot the transfer.
2438 		 */
2439 
2440 		size_done = hs_ep->size_loaded - size_left;
2441 		size_done += hs_ep->last_load;
2442 
2443 		req->actual = size_done;
2444 	}
2445 
2446 	/* if there is more request to do, schedule new transfer */
2447 	if (req->actual < req->length && size_left == 0) {
2448 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2449 		return;
2450 	}
2451 
2452 	if (req->actual < req->length && req->short_not_ok) {
2453 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2454 			__func__, req->actual, req->length);
2455 
2456 		/*
2457 		 * todo - what should we return here? there's no one else
2458 		 * even bothering to check the status.
2459 		 */
2460 	}
2461 
2462 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2463 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2464 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2465 		/* Move to STATUS IN */
2466 		if (!hsotg->delayed_status)
2467 			dwc2_hsotg_ep0_zlp(hsotg, true);
2468 	}
2469 
2470 	/* Set actual frame number for completed transfers */
2471 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2472 		req->frame_number = hs_ep->target_frame;
2473 		dwc2_gadget_incr_frame_num(hs_ep);
2474 	}
2475 
2476 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2477 }
2478 
2479 /**
2480  * dwc2_hsotg_handle_rx - RX FIFO has data
2481  * @hsotg: The device instance
2482  *
2483  * The IRQ handler has detected that the RX FIFO has some data in it
2484  * that requires processing, so find out what is in there and do the
2485  * appropriate read.
2486  *
2487  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2488  * chunks, so if you have x packets received on an endpoint you'll get x
2489  * FIFO events delivered, each with a packet's worth of data in it.
2490  *
2491  * When using DMA, we should not be processing events from the RXFIFO
2492  * as the actual data should be sent to the memory directly and we turn
2493  * on the completion interrupts to get notifications of transfer completion.
2494  */
dwc2_hsotg_handle_rx(struct dwc2_hsotg * hsotg)2495 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2496 {
2497 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2498 	u32 epnum, status, size;
2499 
2500 	WARN_ON(using_dma(hsotg));
2501 
2502 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2503 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2504 
2505 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2506 	size >>= GRXSTS_BYTECNT_SHIFT;
2507 
2508 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2509 		__func__, grxstsr, size, epnum);
2510 
2511 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2512 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2513 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2514 		break;
2515 
2516 	case GRXSTS_PKTSTS_OUTDONE:
2517 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2518 			dwc2_hsotg_read_frameno(hsotg));
2519 
2520 		if (!using_dma(hsotg))
2521 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2522 		break;
2523 
2524 	case GRXSTS_PKTSTS_SETUPDONE:
2525 		dev_dbg(hsotg->dev,
2526 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2527 			dwc2_hsotg_read_frameno(hsotg),
2528 			dwc2_readl(hsotg, DOEPCTL(0)));
2529 		/*
2530 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2531 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2532 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2533 		 */
2534 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2535 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2536 		break;
2537 
2538 	case GRXSTS_PKTSTS_OUTRX:
2539 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2540 		break;
2541 
2542 	case GRXSTS_PKTSTS_SETUPRX:
2543 		dev_dbg(hsotg->dev,
2544 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2545 			dwc2_hsotg_read_frameno(hsotg),
2546 			dwc2_readl(hsotg, DOEPCTL(0)));
2547 
2548 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2549 
2550 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2551 		break;
2552 
2553 	default:
2554 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2555 			 __func__, grxstsr);
2556 
2557 		dwc2_hsotg_dump(hsotg);
2558 		break;
2559 	}
2560 }
2561 
2562 /**
2563  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2564  * @mps: The maximum packet size in bytes.
2565  */
dwc2_hsotg_ep0_mps(unsigned int mps)2566 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2567 {
2568 	switch (mps) {
2569 	case 64:
2570 		return D0EPCTL_MPS_64;
2571 	case 32:
2572 		return D0EPCTL_MPS_32;
2573 	case 16:
2574 		return D0EPCTL_MPS_16;
2575 	case 8:
2576 		return D0EPCTL_MPS_8;
2577 	}
2578 
2579 	/* bad max packet size, warn and return invalid result */
2580 	WARN_ON(1);
2581 	return (u32)-1;
2582 }
2583 
2584 /**
2585  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2586  * @hsotg: The driver state.
2587  * @ep: The index number of the endpoint
2588  * @mps: The maximum packet size in bytes
2589  * @mc: The multicount value
2590  * @dir_in: True if direction is in.
2591  *
2592  * Configure the maximum packet size for the given endpoint, updating
2593  * the hardware control registers to reflect this.
2594  */
dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg * hsotg,unsigned int ep,unsigned int mps,unsigned int mc,unsigned int dir_in)2595 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2596 					unsigned int ep, unsigned int mps,
2597 					unsigned int mc, unsigned int dir_in)
2598 {
2599 	struct dwc2_hsotg_ep *hs_ep;
2600 	u32 reg;
2601 
2602 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2603 	if (!hs_ep)
2604 		return;
2605 
2606 	if (ep == 0) {
2607 		u32 mps_bytes = mps;
2608 
2609 		/* EP0 is a special case */
2610 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2611 		if (mps > 3)
2612 			goto bad_mps;
2613 		hs_ep->ep.maxpacket = mps_bytes;
2614 		hs_ep->mc = 1;
2615 	} else {
2616 		if (mps > 1024)
2617 			goto bad_mps;
2618 		hs_ep->mc = mc;
2619 		if (mc > 3)
2620 			goto bad_mps;
2621 		hs_ep->ep.maxpacket = mps;
2622 	}
2623 
2624 	if (dir_in) {
2625 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2626 		reg &= ~DXEPCTL_MPS_MASK;
2627 		reg |= mps;
2628 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2629 	} else {
2630 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2631 		reg &= ~DXEPCTL_MPS_MASK;
2632 		reg |= mps;
2633 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2634 	}
2635 
2636 	return;
2637 
2638 bad_mps:
2639 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2640 }
2641 
2642 /**
2643  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2644  * @hsotg: The driver state
2645  * @idx: The index for the endpoint (0..15)
2646  */
dwc2_hsotg_txfifo_flush(struct dwc2_hsotg * hsotg,unsigned int idx)2647 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2648 {
2649 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2650 		    GRSTCTL);
2651 
2652 	/* wait until the fifo is flushed */
2653 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2654 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2655 			 __func__);
2656 }
2657 
2658 /**
2659  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2660  * @hsotg: The driver state
2661  * @hs_ep: The driver endpoint to check.
2662  *
2663  * Check to see if there is a request that has data to send, and if so
2664  * make an attempt to write data into the FIFO.
2665  */
dwc2_hsotg_trytx(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2666 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2667 			    struct dwc2_hsotg_ep *hs_ep)
2668 {
2669 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2670 
2671 	if (!hs_ep->dir_in || !hs_req) {
2672 		/**
2673 		 * if request is not enqueued, we disable interrupts
2674 		 * for endpoints, excepting ep0
2675 		 */
2676 		if (hs_ep->index != 0)
2677 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2678 					      hs_ep->dir_in, 0);
2679 		return 0;
2680 	}
2681 
2682 	if (hs_req->req.actual < hs_req->req.length) {
2683 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2684 			hs_ep->index);
2685 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 /**
2692  * dwc2_hsotg_complete_in - complete IN transfer
2693  * @hsotg: The device state.
2694  * @hs_ep: The endpoint that has just completed.
2695  *
2696  * An IN transfer has been completed, update the transfer's state and then
2697  * call the relevant completion routines.
2698  */
dwc2_hsotg_complete_in(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)2699 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2700 				   struct dwc2_hsotg_ep *hs_ep)
2701 {
2702 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2703 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2704 	int size_left, size_done;
2705 
2706 	if (!hs_req) {
2707 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2708 		return;
2709 	}
2710 
2711 	/* Finish ZLP handling for IN EP0 transactions */
2712 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2713 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2714 
2715 		/*
2716 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2717 		 * changed to IN. Change back to complete OUT transfer request
2718 		 */
2719 		hs_ep->dir_in = 0;
2720 
2721 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2722 		if (hsotg->test_mode) {
2723 			int ret;
2724 
2725 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2726 			if (ret < 0) {
2727 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2728 					hsotg->test_mode);
2729 				dwc2_hsotg_stall_ep0(hsotg);
2730 				return;
2731 			}
2732 		}
2733 		dwc2_hsotg_enqueue_setup(hsotg);
2734 		return;
2735 	}
2736 
2737 	/*
2738 	 * Calculate the size of the transfer by checking how much is left
2739 	 * in the endpoint size register and then working it out from
2740 	 * the amount we loaded for the transfer.
2741 	 *
2742 	 * We do this even for DMA, as the transfer may have incremented
2743 	 * past the end of the buffer (DMA transfers are always 32bit
2744 	 * aligned).
2745 	 */
2746 	if (using_desc_dma(hsotg)) {
2747 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2748 		if (size_left < 0)
2749 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2750 				size_left);
2751 	} else {
2752 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2753 	}
2754 
2755 	size_done = hs_ep->size_loaded - size_left;
2756 	size_done += hs_ep->last_load;
2757 
2758 	if (hs_req->req.actual != size_done)
2759 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2760 			__func__, hs_req->req.actual, size_done);
2761 
2762 	hs_req->req.actual = size_done;
2763 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2764 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2765 
2766 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2767 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2768 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2769 		return;
2770 	}
2771 
2772 	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2773 	if (hs_ep->send_zlp) {
2774 		hs_ep->send_zlp = 0;
2775 		if (!using_desc_dma(hsotg)) {
2776 			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2777 			/* transfer will be completed on next complete interrupt */
2778 			return;
2779 		}
2780 	}
2781 
2782 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2783 		/* Move to STATUS OUT */
2784 		dwc2_hsotg_ep0_zlp(hsotg, false);
2785 		return;
2786 	}
2787 
2788 	/* Set actual frame number for completed transfers */
2789 	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2790 		hs_req->req.frame_number = hs_ep->target_frame;
2791 		dwc2_gadget_incr_frame_num(hs_ep);
2792 	}
2793 
2794 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2795 }
2796 
2797 /**
2798  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2799  * @hsotg: The device state.
2800  * @idx: Index of ep.
2801  * @dir_in: Endpoint direction 1-in 0-out.
2802  *
2803  * Reads for endpoint with given index and direction, by masking
2804  * epint_reg with coresponding mask.
2805  */
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg * hsotg,unsigned int idx,int dir_in)2806 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2807 					  unsigned int idx, int dir_in)
2808 {
2809 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2810 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2811 	u32 ints;
2812 	u32 mask;
2813 	u32 diepempmsk;
2814 
2815 	mask = dwc2_readl(hsotg, epmsk_reg);
2816 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2817 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2818 	mask |= DXEPINT_SETUP_RCVD;
2819 
2820 	ints = dwc2_readl(hsotg, epint_reg);
2821 	ints &= mask;
2822 	return ints;
2823 }
2824 
2825 /**
2826  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2827  * @hs_ep: The endpoint on which interrupt is asserted.
2828  *
2829  * This interrupt indicates that the endpoint has been disabled per the
2830  * application's request.
2831  *
2832  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2833  * in case of ISOC completes current request.
2834  *
2835  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2836  * request starts it.
2837  */
dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep * hs_ep)2838 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2839 {
2840 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2841 	struct dwc2_hsotg_req *hs_req;
2842 	unsigned char idx = hs_ep->index;
2843 	int dir_in = hs_ep->dir_in;
2844 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2845 	int dctl = dwc2_readl(hsotg, DCTL);
2846 
2847 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2848 
2849 	if (dir_in) {
2850 		int epctl = dwc2_readl(hsotg, epctl_reg);
2851 
2852 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2853 
2854 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2855 			int dctl = dwc2_readl(hsotg, DCTL);
2856 
2857 			dctl |= DCTL_CGNPINNAK;
2858 			dwc2_writel(hsotg, dctl, DCTL);
2859 		}
2860 	} else {
2861 
2862 		if (dctl & DCTL_GOUTNAKSTS) {
2863 			dctl |= DCTL_CGOUTNAK;
2864 			dwc2_writel(hsotg, dctl, DCTL);
2865 		}
2866 	}
2867 
2868 	if (!hs_ep->isochronous)
2869 		return;
2870 
2871 	if (list_empty(&hs_ep->queue)) {
2872 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2873 			__func__, hs_ep);
2874 		return;
2875 	}
2876 
2877 	do {
2878 		hs_req = get_ep_head(hs_ep);
2879 		if (hs_req) {
2880 			hs_req->req.frame_number = hs_ep->target_frame;
2881 			hs_req->req.actual = 0;
2882 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2883 						    -ENODATA);
2884 		}
2885 		dwc2_gadget_incr_frame_num(hs_ep);
2886 		/* Update current frame number value. */
2887 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2888 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2889 }
2890 
2891 /**
2892  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2893  * @ep: The endpoint on which interrupt is asserted.
2894  *
2895  * This is starting point for ISOC-OUT transfer, synchronization done with
2896  * first out token received from host while corresponding EP is disabled.
2897  *
2898  * Device does not know initial frame in which out token will come. For this
2899  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2900  * getting this interrupt SW starts calculation for next transfer frame.
2901  */
dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep * ep)2902 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2903 {
2904 	struct dwc2_hsotg *hsotg = ep->parent;
2905 	struct dwc2_hsotg_req *hs_req;
2906 	int dir_in = ep->dir_in;
2907 
2908 	if (dir_in || !ep->isochronous)
2909 		return;
2910 
2911 	if (using_desc_dma(hsotg)) {
2912 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2913 			/* Start first ISO Out */
2914 			ep->target_frame = hsotg->frame_number;
2915 			dwc2_gadget_start_isoc_ddma(ep);
2916 		}
2917 		return;
2918 	}
2919 
2920 	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2921 		u32 ctrl;
2922 
2923 		ep->target_frame = hsotg->frame_number;
2924 		if (ep->interval > 1) {
2925 			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2926 			if (ep->target_frame & 0x1)
2927 				ctrl |= DXEPCTL_SETODDFR;
2928 			else
2929 				ctrl |= DXEPCTL_SETEVENFR;
2930 
2931 			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2932 		}
2933 	}
2934 
2935 	while (dwc2_gadget_target_frame_elapsed(ep)) {
2936 		hs_req = get_ep_head(ep);
2937 		if (hs_req) {
2938 			hs_req->req.frame_number = ep->target_frame;
2939 			hs_req->req.actual = 0;
2940 			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2941 		}
2942 
2943 		dwc2_gadget_incr_frame_num(ep);
2944 		/* Update current frame number value. */
2945 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2946 	}
2947 
2948 	if (!ep->req)
2949 		dwc2_gadget_start_next_request(ep);
2950 
2951 }
2952 
2953 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2954 				   struct dwc2_hsotg_ep *hs_ep);
2955 
2956 /**
2957  * dwc2_gadget_handle_nak - handle NAK interrupt
2958  * @hs_ep: The endpoint on which interrupt is asserted.
2959  *
2960  * This is starting point for ISOC-IN transfer, synchronization done with
2961  * first IN token received from host while corresponding EP is disabled.
2962  *
2963  * Device does not know when first one token will arrive from host. On first
2964  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2965  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2966  * sent in response to that as there was no data in FIFO. SW is basing on this
2967  * interrupt to obtain frame in which token has come and then based on the
2968  * interval calculates next frame for transfer.
2969  */
dwc2_gadget_handle_nak(struct dwc2_hsotg_ep * hs_ep)2970 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2971 {
2972 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2973 	struct dwc2_hsotg_req *hs_req;
2974 	int dir_in = hs_ep->dir_in;
2975 	u32 ctrl;
2976 
2977 	if (!dir_in || !hs_ep->isochronous)
2978 		return;
2979 
2980 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2981 
2982 		if (using_desc_dma(hsotg)) {
2983 			hs_ep->target_frame = hsotg->frame_number;
2984 			dwc2_gadget_incr_frame_num(hs_ep);
2985 
2986 			/* In service interval mode target_frame must
2987 			 * be set to last (u)frame of the service interval.
2988 			 */
2989 			if (hsotg->params.service_interval) {
2990 				/* Set target_frame to the first (u)frame of
2991 				 * the service interval
2992 				 */
2993 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2994 
2995 				/* Set target_frame to the last (u)frame of
2996 				 * the service interval
2997 				 */
2998 				dwc2_gadget_incr_frame_num(hs_ep);
2999 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
3000 			}
3001 
3002 			dwc2_gadget_start_isoc_ddma(hs_ep);
3003 			return;
3004 		}
3005 
3006 		hs_ep->target_frame = hsotg->frame_number;
3007 		if (hs_ep->interval > 1) {
3008 			u32 mask;
3009 			u32 ctrl;
3010 
3011 			/*
3012 			 * Disable nak interrupt when we have got the first
3013 			 * isoc in token. This can avoid nak interrupt storm
3014 			 * on the Rockchip platforms which don't support the
3015 			 * "OTG_MULTI_PROC_INTRPT", and all device endpoints
3016 			 * share the same nak mask and interrupt.
3017 			 */
3018 			if (!(dwc2_readl(hsotg, GHWCFG2) &
3019 			    GHWCFG2_MULTI_PROC_INT)) {
3020 				mask = dwc2_readl(hsotg, DIEPMSK);
3021 				mask &= ~DIEPMSK_NAKMSK;
3022 				dwc2_writel(hsotg, mask, DIEPMSK);
3023 			}
3024 
3025 			ctrl = dwc2_readl(hsotg,
3026 					  DIEPCTL(hs_ep->index));
3027 			if (hs_ep->target_frame & 0x1)
3028 				ctrl |= DXEPCTL_SETODDFR;
3029 			else
3030 				ctrl |= DXEPCTL_SETEVENFR;
3031 
3032 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
3033 		}
3034 	}
3035 
3036 	if (using_desc_dma(hsotg))
3037 		return;
3038 
3039 	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3040 	if (ctrl & DXEPCTL_EPENA)
3041 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3042 	else
3043 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3044 
3045 	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3046 		hs_req = get_ep_head(hs_ep);
3047 		if (hs_req) {
3048 			hs_req->req.frame_number = hs_ep->target_frame;
3049 			hs_req->req.actual = 0;
3050 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3051 		}
3052 
3053 		dwc2_gadget_incr_frame_num(hs_ep);
3054 		/* Update current frame number value. */
3055 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3056 	}
3057 
3058 	if (!hs_ep->req)
3059 		dwc2_gadget_start_next_request(hs_ep);
3060 }
3061 
3062 /**
3063  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3064  * @hsotg: The driver state
3065  * @idx: The index for the endpoint (0..15)
3066  * @dir_in: Set if this is an IN endpoint
3067  *
3068  * Process and clear any interrupt pending for an individual endpoint
3069  */
dwc2_hsotg_epint(struct dwc2_hsotg * hsotg,unsigned int idx,int dir_in)3070 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3071 			     int dir_in)
3072 {
3073 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3074 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3075 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3076 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3077 	u32 ints;
3078 
3079 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3080 
3081 	/* Clear endpoint interrupts */
3082 	dwc2_writel(hsotg, ints, epint_reg);
3083 
3084 	if (!hs_ep) {
3085 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3086 			__func__, idx, dir_in ? "in" : "out");
3087 		return;
3088 	}
3089 
3090 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3091 		__func__, idx, dir_in ? "in" : "out", ints);
3092 
3093 	/* Don't process XferCompl interrupt if it is a setup packet */
3094 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3095 		ints &= ~DXEPINT_XFERCOMPL;
3096 
3097 	/*
3098 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3099 	 * stage and xfercomplete was generated without SETUP phase done
3100 	 * interrupt. SW should parse received setup packet only after host's
3101 	 * exit from setup phase of control transfer.
3102 	 */
3103 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3104 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3105 		ints &= ~DXEPINT_XFERCOMPL;
3106 
3107 	if (ints & DXEPINT_XFERCOMPL) {
3108 		dev_dbg(hsotg->dev,
3109 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3110 			__func__, dwc2_readl(hsotg, epctl_reg),
3111 			dwc2_readl(hsotg, epsiz_reg));
3112 
3113 		/* In DDMA handle isochronous requests separately */
3114 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3115 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3116 		} else if (dir_in) {
3117 			/*
3118 			 * We get OutDone from the FIFO, so we only
3119 			 * need to look at completing IN requests here
3120 			 * if operating slave mode
3121 			 */
3122 			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3123 				dwc2_hsotg_complete_in(hsotg, hs_ep);
3124 
3125 			if (idx == 0 && !hs_ep->req)
3126 				dwc2_hsotg_enqueue_setup(hsotg);
3127 		} else if (using_dma(hsotg)) {
3128 			/*
3129 			 * We're using DMA, we need to fire an OutDone here
3130 			 * as we ignore the RXFIFO.
3131 			 */
3132 			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3133 				dwc2_hsotg_handle_outdone(hsotg, idx);
3134 		}
3135 	}
3136 
3137 	if (ints & DXEPINT_EPDISBLD)
3138 		dwc2_gadget_handle_ep_disabled(hs_ep);
3139 
3140 	if (ints & DXEPINT_OUTTKNEPDIS)
3141 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3142 
3143 	if (ints & DXEPINT_NAKINTRPT)
3144 		dwc2_gadget_handle_nak(hs_ep);
3145 
3146 	if (ints & DXEPINT_AHBERR)
3147 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3148 
3149 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3150 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3151 
3152 		if (using_dma(hsotg) && idx == 0) {
3153 			/*
3154 			 * this is the notification we've received a
3155 			 * setup packet. In non-DMA mode we'd get this
3156 			 * from the RXFIFO, instead we need to process
3157 			 * the setup here.
3158 			 */
3159 
3160 			if (dir_in)
3161 				WARN_ON_ONCE(1);
3162 			else
3163 				dwc2_hsotg_handle_outdone(hsotg, 0);
3164 		}
3165 	}
3166 
3167 	if (ints & DXEPINT_STSPHSERCVD) {
3168 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3169 
3170 		/* Safety check EP0 state when STSPHSERCVD asserted */
3171 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3172 			/* Move to STATUS IN for DDMA */
3173 			if (using_desc_dma(hsotg)) {
3174 				if (!hsotg->delayed_status)
3175 					dwc2_hsotg_ep0_zlp(hsotg, true);
3176 				else
3177 				/* In case of 3 stage Control Write with delayed
3178 				 * status, when Status IN transfer started
3179 				 * before STSPHSERCVD asserted, NAKSTS bit not
3180 				 * cleared by CNAK in dwc2_hsotg_start_req()
3181 				 * function. Clear now NAKSTS to allow complete
3182 				 * transfer.
3183 				 */
3184 					dwc2_set_bit(hsotg, DIEPCTL(0),
3185 						     DXEPCTL_CNAK);
3186 			}
3187 		}
3188 
3189 	}
3190 
3191 	if (ints & DXEPINT_BACK2BACKSETUP)
3192 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3193 
3194 	if (ints & DXEPINT_BNAINTR) {
3195 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3196 		if (hs_ep->isochronous)
3197 			dwc2_gadget_handle_isoc_bna(hs_ep);
3198 	}
3199 
3200 	if (dir_in && !hs_ep->isochronous) {
3201 		/* not sure if this is important, but we'll clear it anyway */
3202 		if (ints & DXEPINT_INTKNTXFEMP) {
3203 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3204 				__func__, idx);
3205 		}
3206 
3207 		/* this probably means something bad is happening */
3208 		if (ints & DXEPINT_INTKNEPMIS) {
3209 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3210 				 __func__, idx);
3211 		}
3212 
3213 		/* FIFO has space or is empty (see GAHBCFG) */
3214 		if (hsotg->dedicated_fifos &&
3215 		    ints & DXEPINT_TXFEMP) {
3216 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3217 				__func__, idx);
3218 			if (!using_dma(hsotg))
3219 				dwc2_hsotg_trytx(hsotg, hs_ep);
3220 		}
3221 	}
3222 }
3223 
3224 /**
3225  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3226  * @hsotg: The device state.
3227  *
3228  * Handle updating the device settings after the enumeration phase has
3229  * been completed.
3230  */
dwc2_hsotg_irq_enumdone(struct dwc2_hsotg * hsotg)3231 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3232 {
3233 	u32 dsts = dwc2_readl(hsotg, DSTS);
3234 	int ep0_mps = 0, ep_mps = 8;
3235 
3236 	/*
3237 	 * This should signal the finish of the enumeration phase
3238 	 * of the USB handshaking, so we should now know what rate
3239 	 * we connected at.
3240 	 */
3241 
3242 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3243 
3244 	/*
3245 	 * note, since we're limited by the size of transfer on EP0, and
3246 	 * it seems IN transfers must be a even number of packets we do
3247 	 * not advertise a 64byte MPS on EP0.
3248 	 */
3249 
3250 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3251 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3252 	case DSTS_ENUMSPD_FS:
3253 	case DSTS_ENUMSPD_FS48:
3254 		hsotg->gadget.speed = USB_SPEED_FULL;
3255 		ep0_mps = EP0_MPS_LIMIT;
3256 		ep_mps = 1023;
3257 		break;
3258 
3259 	case DSTS_ENUMSPD_HS:
3260 		hsotg->gadget.speed = USB_SPEED_HIGH;
3261 		ep0_mps = EP0_MPS_LIMIT;
3262 		ep_mps = 1024;
3263 		break;
3264 
3265 	case DSTS_ENUMSPD_LS:
3266 		hsotg->gadget.speed = USB_SPEED_LOW;
3267 		ep0_mps = 8;
3268 		ep_mps = 8;
3269 		/*
3270 		 * note, we don't actually support LS in this driver at the
3271 		 * moment, and the documentation seems to imply that it isn't
3272 		 * supported by the PHYs on some of the devices.
3273 		 */
3274 		break;
3275 	}
3276 	dev_info(hsotg->dev, "new device is %s\n",
3277 		 usb_speed_string(hsotg->gadget.speed));
3278 
3279 	/*
3280 	 * we should now know the maximum packet size for an
3281 	 * endpoint, so set the endpoints to a default value.
3282 	 */
3283 
3284 	if (ep0_mps) {
3285 		int i;
3286 		/* Initialize ep0 for both in and out directions */
3287 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3288 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3289 		for (i = 1; i < hsotg->num_of_eps; i++) {
3290 			if (hsotg->eps_in[i])
3291 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3292 							    0, 1);
3293 			if (hsotg->eps_out[i])
3294 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3295 							    0, 0);
3296 		}
3297 	}
3298 
3299 	/* ensure after enumeration our EP0 is active */
3300 
3301 	dwc2_hsotg_enqueue_setup(hsotg);
3302 
3303 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3304 		dwc2_readl(hsotg, DIEPCTL0),
3305 		dwc2_readl(hsotg, DOEPCTL0));
3306 }
3307 
3308 /**
3309  * kill_all_requests - remove all requests from the endpoint's queue
3310  * @hsotg: The device state.
3311  * @ep: The endpoint the requests may be on.
3312  * @result: The result code to use.
3313  *
3314  * Go through the requests on the given endpoint and mark them
3315  * completed with the given result code.
3316  */
kill_all_requests(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * ep,int result)3317 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3318 			      struct dwc2_hsotg_ep *ep,
3319 			      int result)
3320 {
3321 	unsigned int size;
3322 
3323 	ep->req = NULL;
3324 
3325 	while (!list_empty(&ep->queue)) {
3326 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3327 
3328 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3329 	}
3330 
3331 	if (!hsotg->dedicated_fifos)
3332 		return;
3333 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3334 	if (size < ep->fifo_size)
3335 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3336 }
3337 
3338 /**
3339  * dwc2_hsotg_disconnect - disconnect service
3340  * @hsotg: The device state.
3341  *
3342  * The device has been disconnected. Remove all current
3343  * transactions and signal the gadget driver that this
3344  * has happened.
3345  */
dwc2_hsotg_disconnect(struct dwc2_hsotg * hsotg)3346 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3347 {
3348 	unsigned int ep;
3349 
3350 	if (!hsotg->connected)
3351 		return;
3352 
3353 	hsotg->connected = 0;
3354 	hsotg->test_mode = 0;
3355 
3356 	/* all endpoints should be shutdown */
3357 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3358 		if (hsotg->eps_in[ep])
3359 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3360 					  -ESHUTDOWN);
3361 		if (hsotg->eps_out[ep])
3362 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3363 					  -ESHUTDOWN);
3364 	}
3365 
3366 	call_gadget(hsotg, disconnect);
3367 	hsotg->lx_state = DWC2_L3;
3368 
3369 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3370 }
3371 
3372 /**
3373  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3374  * @hsotg: The device state:
3375  * @periodic: True if this is a periodic FIFO interrupt
3376  */
dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg * hsotg,bool periodic)3377 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3378 {
3379 	struct dwc2_hsotg_ep *ep;
3380 	int epno, ret;
3381 
3382 	/* look through for any more data to transmit */
3383 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3384 		ep = index_to_ep(hsotg, epno, 1);
3385 
3386 		if (!ep)
3387 			continue;
3388 
3389 		if (!ep->dir_in)
3390 			continue;
3391 
3392 		if ((periodic && !ep->periodic) ||
3393 		    (!periodic && ep->periodic))
3394 			continue;
3395 
3396 		ret = dwc2_hsotg_trytx(hsotg, ep);
3397 		if (ret < 0)
3398 			break;
3399 	}
3400 }
3401 
3402 /* IRQ flags which will trigger a retry around the IRQ loop */
3403 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3404 			GINTSTS_PTXFEMP |  \
3405 			GINTSTS_RXFLVL)
3406 
3407 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3408 /**
3409  * dwc2_hsotg_core_init - issue softreset to the core
3410  * @hsotg: The device state
3411  * @is_usb_reset: Usb resetting flag
3412  *
3413  * Issue a soft reset to the core, and await the core finishing it.
3414  */
dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg * hsotg,bool is_usb_reset)3415 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3416 				       bool is_usb_reset)
3417 {
3418 	u32 intmsk;
3419 	u32 val;
3420 	u32 usbcfg;
3421 	u32 dcfg = 0;
3422 	int ep;
3423 
3424 	/* Kill any ep0 requests as controller will be reinitialized */
3425 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3426 
3427 	if (!is_usb_reset) {
3428 		if (dwc2_core_reset(hsotg, true))
3429 			return;
3430 	} else {
3431 		/* all endpoints should be shutdown */
3432 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3433 			if (hsotg->eps_in[ep])
3434 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3435 			if (hsotg->eps_out[ep])
3436 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3437 		}
3438 	}
3439 
3440 	/*
3441 	 * we must now enable ep0 ready for host detection and then
3442 	 * set configuration.
3443 	 */
3444 
3445 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3446 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3447 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3448 	usbcfg |= GUSBCFG_TOUTCAL(7);
3449 
3450 	/* remove the HNP/SRP and set the PHY */
3451 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3452         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3453 
3454 	dwc2_phy_init(hsotg, true);
3455 
3456 	dwc2_hsotg_init_fifo(hsotg);
3457 
3458 	if (!is_usb_reset)
3459 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3460 
3461 	dcfg |= DCFG_EPMISCNT(1);
3462 
3463 	switch (hsotg->params.speed) {
3464 	case DWC2_SPEED_PARAM_LOW:
3465 		dcfg |= DCFG_DEVSPD_LS;
3466 		break;
3467 	case DWC2_SPEED_PARAM_FULL:
3468 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3469 			dcfg |= DCFG_DEVSPD_FS48;
3470 		else
3471 			dcfg |= DCFG_DEVSPD_FS;
3472 		break;
3473 	default:
3474 		dcfg |= DCFG_DEVSPD_HS;
3475 	}
3476 
3477 	if (hsotg->params.ipg_isoc_en)
3478 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3479 
3480 	dwc2_writel(hsotg, dcfg,  DCFG);
3481 
3482 	/* Clear any pending OTG interrupts */
3483 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3484 
3485 	/* Clear any pending interrupts */
3486 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3487 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3488 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3489 		GINTSTS_USBRST | GINTSTS_RESETDET |
3490 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3491 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3492 		GINTSTS_LPMTRANRCVD;
3493 
3494 	if (!using_desc_dma(hsotg))
3495 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3496 
3497 	if (!hsotg->params.external_id_pin_ctl)
3498 		intmsk |= GINTSTS_CONIDSTSCHNG;
3499 
3500 	dwc2_writel(hsotg, intmsk, GINTMSK);
3501 
3502 	if (using_dma(hsotg)) {
3503 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3504 			    hsotg->params.ahbcfg,
3505 			    GAHBCFG);
3506 
3507 		/* Set DDMA mode support in the core if needed */
3508 		if (using_desc_dma(hsotg))
3509 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3510 
3511 	} else {
3512 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3513 						(GAHBCFG_NP_TXF_EMP_LVL |
3514 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3515 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3516 	}
3517 
3518 	/*
3519 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3520 	 * when we have no data to transfer. Otherwise we get being flooded by
3521 	 * interrupts.
3522 	 */
3523 
3524 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3525 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3526 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3527 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3528 		DIEPMSK);
3529 
3530 	/*
3531 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3532 	 * DMA mode we may need this and StsPhseRcvd.
3533 	 */
3534 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3535 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3536 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3537 		DOEPMSK_SETUPMSK,
3538 		DOEPMSK);
3539 
3540 	/* Enable BNA interrupt for DDMA */
3541 	if (using_desc_dma(hsotg)) {
3542 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3543 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3544 	}
3545 
3546 	/* Enable Service Interval mode if supported */
3547 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3548 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3549 
3550 	dwc2_writel(hsotg, 0, DAINTMSK);
3551 
3552 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3553 		dwc2_readl(hsotg, DIEPCTL0),
3554 		dwc2_readl(hsotg, DOEPCTL0));
3555 
3556 	/* enable in and out endpoint interrupts */
3557 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3558 
3559 	/*
3560 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3561 	 * the data. In DMA mode, we get events from the FIFO but also
3562 	 * things we cannot process, so do not use it.
3563 	 */
3564 	if (!using_dma(hsotg))
3565 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3566 
3567 	/* Enable interrupts for EP0 in and out */
3568 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3569 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3570 
3571 	if (!is_usb_reset) {
3572 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3573 		udelay(10);  /* see openiboot */
3574 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3575 	}
3576 
3577 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3578 
3579 	/*
3580 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3581 	 * writing to the EPCTL register..
3582 	 */
3583 
3584 	/* set to read 1 8byte packet */
3585 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3586 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3587 
3588 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3589 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3590 	       DXEPCTL_USBACTEP,
3591 	       DOEPCTL0);
3592 
3593 	/* enable, but don't activate EP0in */
3594 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3595 	       DXEPCTL_USBACTEP, DIEPCTL0);
3596 
3597 	/* clear global NAKs */
3598 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3599 	if (!is_usb_reset)
3600 		val |= DCTL_SFTDISCON;
3601 	dwc2_set_bit(hsotg, DCTL, val);
3602 
3603 	/* configure the core to support LPM */
3604 	dwc2_gadget_init_lpm(hsotg);
3605 
3606 	/* program GREFCLK register if needed */
3607 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3608 		dwc2_gadget_program_ref_clk(hsotg);
3609 
3610 	/* must be at-least 3ms to allow bus to see disconnect */
3611 	mdelay(3);
3612 
3613 	hsotg->lx_state = DWC2_L0;
3614 
3615 	dwc2_hsotg_enqueue_setup(hsotg);
3616 
3617 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3618 		dwc2_readl(hsotg, DIEPCTL0),
3619 		dwc2_readl(hsotg, DOEPCTL0));
3620 }
3621 
dwc2_hsotg_core_disconnect(struct dwc2_hsotg * hsotg)3622 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3623 {
3624 	/* set the soft-disconnect bit */
3625 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3626 }
3627 
dwc2_hsotg_core_connect(struct dwc2_hsotg * hsotg)3628 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3629 {
3630 	/* remove the soft-disconnect and let's go */
3631 	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3632 		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3633 }
3634 
3635 /**
3636  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3637  * @hsotg: The device state:
3638  *
3639  * This interrupt indicates one of the following conditions occurred while
3640  * transmitting an ISOC transaction.
3641  * - Corrupted IN Token for ISOC EP.
3642  * - Packet not complete in FIFO.
3643  *
3644  * The following actions will be taken:
3645  * - Determine the EP
3646  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3647  */
dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg * hsotg)3648 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3649 {
3650 	struct dwc2_hsotg_ep *hs_ep;
3651 	u32 epctrl;
3652 	u32 daintmsk;
3653 	u32 idx;
3654 
3655 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3656 
3657 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3658 
3659 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3660 		hs_ep = hsotg->eps_in[idx];
3661 		/* Proceed only unmasked ISOC EPs */
3662 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3663 			continue;
3664 
3665 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3666 		if ((epctrl & DXEPCTL_EPENA) &&
3667 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3668 			epctrl |= DXEPCTL_SNAK;
3669 			epctrl |= DXEPCTL_EPDIS;
3670 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3671 		}
3672 	}
3673 
3674 	/* Clear interrupt */
3675 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3676 }
3677 
3678 /**
3679  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3680  * @hsotg: The device state:
3681  *
3682  * This interrupt indicates one of the following conditions occurred while
3683  * transmitting an ISOC transaction.
3684  * - Corrupted OUT Token for ISOC EP.
3685  * - Packet not complete in FIFO.
3686  *
3687  * The following actions will be taken:
3688  * - Determine the EP
3689  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3690  */
dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg * hsotg)3691 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3692 {
3693 	u32 gintsts;
3694 	u32 gintmsk;
3695 	u32 daintmsk;
3696 	u32 epctrl;
3697 	struct dwc2_hsotg_ep *hs_ep;
3698 	int idx;
3699 
3700 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3701 
3702 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3703 	daintmsk >>= DAINT_OUTEP_SHIFT;
3704 
3705 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3706 		hs_ep = hsotg->eps_out[idx];
3707 		/* Proceed only unmasked ISOC EPs */
3708 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3709 			continue;
3710 
3711 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3712 		if ((epctrl & DXEPCTL_EPENA) &&
3713 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3714 			/* Unmask GOUTNAKEFF interrupt */
3715 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3716 			gintmsk |= GINTSTS_GOUTNAKEFF;
3717 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3718 
3719 			gintsts = dwc2_readl(hsotg, GINTSTS);
3720 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3721 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3722 				break;
3723 			}
3724 		}
3725 	}
3726 
3727 	/* Clear interrupt */
3728 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3729 }
3730 
3731 /**
3732  * dwc2_hsotg_irq - handle device interrupt
3733  * @irq: The IRQ number triggered
3734  * @pw: The pw value when registered the handler.
3735  */
dwc2_hsotg_irq(int irq,void * pw)3736 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3737 {
3738 	struct dwc2_hsotg *hsotg = pw;
3739 	int retry_count = 8;
3740 	u32 gintsts;
3741 	u32 gintmsk;
3742 
3743 	if (!dwc2_is_device_mode(hsotg))
3744 		return IRQ_NONE;
3745 
3746 	spin_lock(&hsotg->lock);
3747 irq_retry:
3748 	gintsts = dwc2_readl(hsotg, GINTSTS);
3749 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3750 
3751 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3752 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3753 
3754 	gintsts &= gintmsk;
3755 
3756 	if (gintsts & GINTSTS_RESETDET) {
3757 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3758 
3759 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3760 
3761 		/* This event must be used only if controller is suspended */
3762 		if (hsotg->lx_state == DWC2_L2) {
3763 			dwc2_exit_partial_power_down(hsotg, true);
3764 			hsotg->lx_state = DWC2_L0;
3765 		}
3766 	}
3767 
3768 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3769 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3770 		u32 connected = hsotg->connected;
3771 
3772 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3773 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3774 			dwc2_readl(hsotg, GNPTXSTS));
3775 
3776 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3777 
3778 		/* Report disconnection if it is not already done. */
3779 		dwc2_hsotg_disconnect(hsotg);
3780 
3781 		/* Reset device address to zero */
3782 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3783 
3784 		if (usb_status & GOTGCTL_BSESVLD && connected)
3785 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3786 	}
3787 
3788 	if (gintsts & GINTSTS_ENUMDONE) {
3789 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3790 
3791 		dwc2_hsotg_irq_enumdone(hsotg);
3792 	}
3793 
3794 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3795 		u32 daint = dwc2_readl(hsotg, DAINT);
3796 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3797 		u32 daint_out, daint_in;
3798 		int ep;
3799 
3800 		daint &= daintmsk;
3801 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3802 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3803 
3804 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3805 
3806 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3807 						ep++, daint_out >>= 1) {
3808 			if (daint_out & 1)
3809 				dwc2_hsotg_epint(hsotg, ep, 0);
3810 		}
3811 
3812 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3813 						ep++, daint_in >>= 1) {
3814 			if (daint_in & 1)
3815 				dwc2_hsotg_epint(hsotg, ep, 1);
3816 		}
3817 	}
3818 
3819 	/* check both FIFOs */
3820 
3821 	if (gintsts & GINTSTS_NPTXFEMP) {
3822 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3823 
3824 		/*
3825 		 * Disable the interrupt to stop it happening again
3826 		 * unless one of these endpoint routines decides that
3827 		 * it needs re-enabling
3828 		 */
3829 
3830 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3831 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3832 	}
3833 
3834 	if (gintsts & GINTSTS_PTXFEMP) {
3835 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3836 
3837 		/* See note in GINTSTS_NPTxFEmp */
3838 
3839 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3840 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3841 	}
3842 
3843 	if (gintsts & GINTSTS_RXFLVL) {
3844 		/*
3845 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3846 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3847 		 * set.
3848 		 */
3849 
3850 		dwc2_hsotg_handle_rx(hsotg);
3851 	}
3852 
3853 	if (gintsts & GINTSTS_ERLYSUSP) {
3854 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3855 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3856 	}
3857 
3858 	/*
3859 	 * these next two seem to crop-up occasionally causing the core
3860 	 * to shutdown the USB transfer, so try clearing them and logging
3861 	 * the occurrence.
3862 	 */
3863 
3864 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3865 		u8 idx;
3866 		u32 epctrl;
3867 		u32 gintmsk;
3868 		u32 daintmsk;
3869 		struct dwc2_hsotg_ep *hs_ep;
3870 
3871 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3872 		daintmsk >>= DAINT_OUTEP_SHIFT;
3873 		/* Mask this interrupt */
3874 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3875 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3876 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3877 
3878 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3879 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3880 			hs_ep = hsotg->eps_out[idx];
3881 			/* Proceed only unmasked ISOC EPs */
3882 			if (BIT(idx) & ~daintmsk)
3883 				continue;
3884 
3885 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3886 
3887 			//ISOC Ep's only
3888 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3889 				epctrl |= DXEPCTL_SNAK;
3890 				epctrl |= DXEPCTL_EPDIS;
3891 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3892 				continue;
3893 			}
3894 
3895 			//Non-ISOC EP's
3896 			if (hs_ep->halted) {
3897 				if (!(epctrl & DXEPCTL_EPENA))
3898 					epctrl |= DXEPCTL_EPENA;
3899 				epctrl |= DXEPCTL_EPDIS;
3900 				epctrl |= DXEPCTL_STALL;
3901 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3902 			}
3903 		}
3904 
3905 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3906 	}
3907 
3908 	if (gintsts & GINTSTS_GINNAKEFF) {
3909 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3910 
3911 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3912 
3913 		dwc2_hsotg_dump(hsotg);
3914 	}
3915 
3916 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3917 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3918 
3919 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3920 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3921 
3922 	/*
3923 	 * if we've had fifo events, we should try and go around the
3924 	 * loop again to see if there's any point in returning yet.
3925 	 */
3926 
3927 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3928 		goto irq_retry;
3929 
3930 	/* Check WKUP_ALERT interrupt*/
3931 	if (hsotg->params.service_interval)
3932 		dwc2_gadget_wkup_alert_handler(hsotg);
3933 
3934 	spin_unlock(&hsotg->lock);
3935 
3936 	return IRQ_HANDLED;
3937 }
3938 
dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep)3939 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3940 				   struct dwc2_hsotg_ep *hs_ep)
3941 {
3942 	u32 epctrl_reg;
3943 	u32 epint_reg;
3944 
3945 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3946 		DOEPCTL(hs_ep->index);
3947 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3948 		DOEPINT(hs_ep->index);
3949 
3950 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3951 		hs_ep->name);
3952 
3953 	if (hs_ep->dir_in) {
3954 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3955 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3956 			/* Wait for Nak effect */
3957 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3958 						    DXEPINT_INEPNAKEFF, 100))
3959 				dev_warn(hsotg->dev,
3960 					 "%s: timeout DIEPINT.NAKEFF\n",
3961 					 __func__);
3962 		} else {
3963 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3964 			/* Wait for Nak effect */
3965 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3966 						    GINTSTS_GINNAKEFF, 100))
3967 				dev_warn(hsotg->dev,
3968 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3969 					 __func__);
3970 		}
3971 	} else {
3972 		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3973 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3974 
3975 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3976 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3977 
3978 		if (!using_dma(hsotg)) {
3979 			/* Wait for GINTSTS_RXFLVL interrupt */
3980 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3981 						    GINTSTS_RXFLVL, 100)) {
3982 				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3983 					 __func__);
3984 			} else {
3985 				/*
3986 				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3987 				 * to assert GOUTNAKEFF interrupt
3988 				 */
3989 				dwc2_readl(hsotg, GRXSTSP);
3990 			}
3991 		}
3992 
3993 		/* Wait for global nak to take effect */
3994 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3995 					    GINTSTS_GOUTNAKEFF, 100))
3996 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3997 				 __func__);
3998 	}
3999 
4000 	/* Disable ep */
4001 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
4002 
4003 	/* Wait for ep to be disabled */
4004 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
4005 		dev_warn(hsotg->dev,
4006 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
4007 
4008 	/* Clear EPDISBLD interrupt */
4009 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
4010 
4011 	if (hs_ep->dir_in) {
4012 		unsigned short fifo_index;
4013 
4014 		if (hsotg->dedicated_fifos || hs_ep->periodic)
4015 			fifo_index = hs_ep->fifo_index;
4016 		else
4017 			fifo_index = 0;
4018 
4019 		/* Flush TX FIFO */
4020 		dwc2_flush_tx_fifo(hsotg, fifo_index);
4021 
4022 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
4023 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
4024 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
4025 
4026 	} else {
4027 		/* Remove global NAKs */
4028 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
4029 	}
4030 }
4031 
4032 /**
4033  * dwc2_hsotg_ep_enable - enable the given endpoint
4034  * @ep: The USB endpint to configure
4035  * @desc: The USB endpoint descriptor to configure with.
4036  *
4037  * This is called from the USB gadget code's usb_ep_enable().
4038  */
dwc2_hsotg_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)4039 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4040 				const struct usb_endpoint_descriptor *desc)
4041 {
4042 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4043 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4044 	unsigned long flags;
4045 	unsigned int index = hs_ep->index;
4046 	u32 epctrl_reg;
4047 	u32 epctrl;
4048 	u32 mps;
4049 	u32 mc;
4050 	u32 mask;
4051 	unsigned int dir_in;
4052 	unsigned int i, val, size;
4053 	int ret = 0;
4054 	unsigned char ep_type;
4055 	int desc_num;
4056 
4057 	dev_dbg(hsotg->dev,
4058 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4059 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4060 		desc->wMaxPacketSize, desc->bInterval);
4061 
4062 	/* not to be called for EP0 */
4063 	if (index == 0) {
4064 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4065 		return -EINVAL;
4066 	}
4067 
4068 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4069 	if (dir_in != hs_ep->dir_in) {
4070 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4071 		return -EINVAL;
4072 	}
4073 
4074 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4075 	mps = usb_endpoint_maxp(desc);
4076 	mc = usb_endpoint_maxp_mult(desc);
4077 
4078 	/* ISOC IN in DDMA supported bInterval up to 10 */
4079 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4080 	    dir_in && desc->bInterval > 10) {
4081 		dev_err(hsotg->dev,
4082 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4083 		return -EINVAL;
4084 	}
4085 
4086 	/* High bandwidth ISOC OUT in DDMA not supported */
4087 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4088 	    !dir_in && mc > 1) {
4089 		dev_err(hsotg->dev,
4090 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4091 		return -EINVAL;
4092 	}
4093 
4094 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4095 
4096 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4097 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4098 
4099 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4100 		__func__, epctrl, epctrl_reg);
4101 
4102 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4103 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4104 	else
4105 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4106 
4107 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4108 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4109 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4110 			desc_num * sizeof(struct dwc2_dma_desc),
4111 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4112 		if (!hs_ep->desc_list) {
4113 			ret = -ENOMEM;
4114 			goto error2;
4115 		}
4116 	}
4117 
4118 	spin_lock_irqsave(&hsotg->lock, flags);
4119 
4120 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4121 	epctrl |= DXEPCTL_MPS(mps);
4122 
4123 	/*
4124 	 * mark the endpoint as active, otherwise the core may ignore
4125 	 * transactions entirely for this endpoint
4126 	 */
4127 	epctrl |= DXEPCTL_USBACTEP;
4128 
4129 	/* update the endpoint state */
4130 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4131 
4132 	/* default, set to non-periodic */
4133 	hs_ep->isochronous = 0;
4134 	hs_ep->periodic = 0;
4135 	hs_ep->halted = 0;
4136 	hs_ep->interval = desc->bInterval;
4137 
4138 	switch (ep_type) {
4139 	case USB_ENDPOINT_XFER_ISOC:
4140 		epctrl |= DXEPCTL_EPTYPE_ISO;
4141 		epctrl |= DXEPCTL_SETEVENFR;
4142 		hs_ep->isochronous = 1;
4143 		hs_ep->interval = 1 << (desc->bInterval - 1);
4144 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4145 		hs_ep->next_desc = 0;
4146 		hs_ep->compl_desc = 0;
4147 		if (dir_in) {
4148 			hs_ep->periodic = 1;
4149 			mask = dwc2_readl(hsotg, DIEPMSK);
4150 			mask |= DIEPMSK_NAKMSK;
4151 			dwc2_writel(hsotg, mask, DIEPMSK);
4152 		} else {
4153 			epctrl |= DXEPCTL_SNAK;
4154 			mask = dwc2_readl(hsotg, DOEPMSK);
4155 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4156 			dwc2_writel(hsotg, mask, DOEPMSK);
4157 		}
4158 		break;
4159 
4160 	case USB_ENDPOINT_XFER_BULK:
4161 		epctrl |= DXEPCTL_EPTYPE_BULK;
4162 		break;
4163 
4164 	case USB_ENDPOINT_XFER_INT:
4165 		if (dir_in)
4166 			hs_ep->periodic = 1;
4167 
4168 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4169 			hs_ep->interval = 1 << (desc->bInterval - 1);
4170 
4171 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4172 		break;
4173 
4174 	case USB_ENDPOINT_XFER_CONTROL:
4175 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4176 		break;
4177 	}
4178 
4179 	/*
4180 	 * if the hardware has dedicated fifos, we must give each IN EP
4181 	 * a unique tx-fifo even if it is non-periodic.
4182 	 */
4183 	if (dir_in && hsotg->dedicated_fifos) {
4184 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4185 		u32 fifo_index = 0;
4186 		u32 fifo_size = UINT_MAX;
4187 
4188 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4189 		for (i = 1; i <= fifo_count; ++i) {
4190 			if (hsotg->fifo_map & (1 << i))
4191 				continue;
4192 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4193 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4194 			if (val < size)
4195 				continue;
4196 			/* Search for smallest acceptable fifo */
4197 			if (val < fifo_size) {
4198 				fifo_size = val;
4199 				fifo_index = i;
4200 			}
4201 		}
4202 		if (!fifo_index) {
4203 			dev_err(hsotg->dev,
4204 				"%s: No suitable fifo found\n", __func__);
4205 			ret = -ENOMEM;
4206 			goto error1;
4207 		}
4208 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4209 		hsotg->fifo_map |= 1 << fifo_index;
4210 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4211 		hs_ep->fifo_index = fifo_index;
4212 		hs_ep->fifo_size = fifo_size;
4213 	}
4214 
4215 	/* for non control endpoints, set PID to D0 */
4216 	if (index && !hs_ep->isochronous)
4217 		epctrl |= DXEPCTL_SETD0PID;
4218 
4219 	/* WA for Full speed ISOC IN in DDMA mode.
4220 	 * By Clear NAK status of EP, core will send ZLP
4221 	 * to IN token and assert NAK interrupt relying
4222 	 * on TxFIFO status only
4223 	 */
4224 
4225 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4226 	    hs_ep->isochronous && dir_in) {
4227 		/* The WA applies only to core versions from 2.72a
4228 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4229 		 * and HS_IOT_1.00a.
4230 		 */
4231 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4232 
4233 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4234 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4235 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4236 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4237 			epctrl |= DXEPCTL_CNAK;
4238 	}
4239 
4240 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4241 		__func__, epctrl);
4242 
4243 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4244 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4245 		__func__, dwc2_readl(hsotg, epctrl_reg));
4246 
4247 	/* enable the endpoint interrupt */
4248 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4249 
4250 error1:
4251 	spin_unlock_irqrestore(&hsotg->lock, flags);
4252 
4253 error2:
4254 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4255 		dmam_free_coherent(hsotg->dev, desc_num *
4256 			sizeof(struct dwc2_dma_desc),
4257 			hs_ep->desc_list, hs_ep->desc_list_dma);
4258 		hs_ep->desc_list = NULL;
4259 	}
4260 
4261 	return ret;
4262 }
4263 
4264 /**
4265  * dwc2_hsotg_ep_disable - disable given endpoint
4266  * @ep: The endpoint to disable.
4267  */
dwc2_hsotg_ep_disable(struct usb_ep * ep)4268 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4269 {
4270 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4271 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4272 	int dir_in = hs_ep->dir_in;
4273 	int index = hs_ep->index;
4274 	u32 epctrl_reg;
4275 	u32 ctrl;
4276 
4277 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4278 
4279 	if (ep == &hsotg->eps_out[0]->ep) {
4280 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4281 		return -EINVAL;
4282 	}
4283 
4284 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4285 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4286 		return -EINVAL;
4287 	}
4288 
4289 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4290 
4291 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4292 
4293 	if (ctrl & DXEPCTL_EPENA)
4294 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4295 
4296 	ctrl &= ~DXEPCTL_EPENA;
4297 	ctrl &= ~DXEPCTL_USBACTEP;
4298 	ctrl |= DXEPCTL_SNAK;
4299 
4300 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4301 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4302 
4303 	/* disable endpoint interrupts */
4304 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4305 
4306 	/* terminate all requests with shutdown */
4307 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4308 
4309 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4310 	hs_ep->fifo_index = 0;
4311 	hs_ep->fifo_size = 0;
4312 
4313 	return 0;
4314 }
4315 
dwc2_hsotg_ep_disable_lock(struct usb_ep * ep)4316 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4317 {
4318 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4319 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4320 	unsigned long flags;
4321 	int ret;
4322 
4323 	spin_lock_irqsave(&hsotg->lock, flags);
4324 	ret = dwc2_hsotg_ep_disable(ep);
4325 	spin_unlock_irqrestore(&hsotg->lock, flags);
4326 	return ret;
4327 }
4328 
4329 /**
4330  * on_list - check request is on the given endpoint
4331  * @ep: The endpoint to check.
4332  * @test: The request to test if it is on the endpoint.
4333  */
on_list(struct dwc2_hsotg_ep * ep,struct dwc2_hsotg_req * test)4334 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4335 {
4336 	struct dwc2_hsotg_req *req, *treq;
4337 
4338 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4339 		if (req == test)
4340 			return true;
4341 	}
4342 
4343 	return false;
4344 }
4345 
4346 /**
4347  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4348  * @ep: The endpoint to dequeue.
4349  * @req: The request to be removed from a queue.
4350  */
dwc2_hsotg_ep_dequeue(struct usb_ep * ep,struct usb_request * req)4351 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4352 {
4353 	struct dwc2_hsotg_req *hs_req = our_req(req);
4354 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4355 	struct dwc2_hsotg *hs = hs_ep->parent;
4356 	unsigned long flags;
4357 
4358 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4359 
4360 	spin_lock_irqsave(&hs->lock, flags);
4361 
4362 	if (!on_list(hs_ep, hs_req)) {
4363 		spin_unlock_irqrestore(&hs->lock, flags);
4364 		return -EINVAL;
4365 	}
4366 
4367 	/* Dequeue already started request */
4368 	if (req == &hs_ep->req->req)
4369 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4370 
4371 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4372 	spin_unlock_irqrestore(&hs->lock, flags);
4373 
4374 	return 0;
4375 }
4376 
4377 /**
4378  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4379  * @ep: The endpoint to set halt.
4380  * @value: Set or unset the halt.
4381  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4382  *       the endpoint is busy processing requests.
4383  *
4384  * We need to stall the endpoint immediately if request comes from set_feature
4385  * protocol command handler.
4386  */
dwc2_hsotg_ep_sethalt(struct usb_ep * ep,int value,bool now)4387 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4388 {
4389 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4390 	struct dwc2_hsotg *hs = hs_ep->parent;
4391 	int index = hs_ep->index;
4392 	u32 epreg;
4393 	u32 epctl;
4394 	u32 xfertype;
4395 
4396 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4397 
4398 	if (index == 0) {
4399 		if (value)
4400 			dwc2_hsotg_stall_ep0(hs);
4401 		else
4402 			dev_warn(hs->dev,
4403 				 "%s: can't clear halt on ep0\n", __func__);
4404 		return 0;
4405 	}
4406 
4407 	if (hs_ep->isochronous) {
4408 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4409 		return -EINVAL;
4410 	}
4411 
4412 	if (!now && value && !list_empty(&hs_ep->queue)) {
4413 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4414 			ep->name);
4415 		return -EAGAIN;
4416 	}
4417 
4418 	if (hs_ep->dir_in) {
4419 		epreg = DIEPCTL(index);
4420 		epctl = dwc2_readl(hs, epreg);
4421 
4422 		if (value) {
4423 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4424 			if (epctl & DXEPCTL_EPENA)
4425 				epctl |= DXEPCTL_EPDIS;
4426 		} else {
4427 			epctl &= ~DXEPCTL_STALL;
4428 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4429 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4430 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4431 				epctl |= DXEPCTL_SETD0PID;
4432 		}
4433 		dwc2_writel(hs, epctl, epreg);
4434 	} else {
4435 		epreg = DOEPCTL(index);
4436 		epctl = dwc2_readl(hs, epreg);
4437 
4438 		if (value) {
4439 			/* Unmask GOUTNAKEFF interrupt */
4440 			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4441 
4442 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4443 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4444 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4445 		} else {
4446 			epctl &= ~DXEPCTL_STALL;
4447 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4448 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4449 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4450 				epctl |= DXEPCTL_SETD0PID;
4451 			dwc2_writel(hs, epctl, epreg);
4452 		}
4453 	}
4454 
4455 	hs_ep->halted = value;
4456 	return 0;
4457 }
4458 
4459 /**
4460  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4461  * @ep: The endpoint to set halt.
4462  * @value: Set or unset the halt.
4463  */
dwc2_hsotg_ep_sethalt_lock(struct usb_ep * ep,int value)4464 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4465 {
4466 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4467 	struct dwc2_hsotg *hs = hs_ep->parent;
4468 	unsigned long flags = 0;
4469 	int ret = 0;
4470 
4471 	spin_lock_irqsave(&hs->lock, flags);
4472 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4473 	spin_unlock_irqrestore(&hs->lock, flags);
4474 
4475 	return ret;
4476 }
4477 
4478 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4479 	.enable		= dwc2_hsotg_ep_enable,
4480 	.disable	= dwc2_hsotg_ep_disable_lock,
4481 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4482 	.free_request	= dwc2_hsotg_ep_free_request,
4483 	.queue		= dwc2_hsotg_ep_queue_lock,
4484 	.dequeue	= dwc2_hsotg_ep_dequeue,
4485 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4486 	/* note, don't believe we have any call for the fifo routines */
4487 };
4488 
4489 /**
4490  * dwc2_hsotg_init - initialize the usb core
4491  * @hsotg: The driver state
4492  */
dwc2_hsotg_init(struct dwc2_hsotg * hsotg)4493 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4494 {
4495 	/* unmask subset of endpoint interrupts */
4496 
4497 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4498 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4499 		    DIEPMSK);
4500 
4501 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4502 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4503 		    DOEPMSK);
4504 
4505 	dwc2_writel(hsotg, 0, DAINTMSK);
4506 
4507 	/* Be in disconnected state until gadget is registered */
4508 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4509 
4510 	/* setup fifos */
4511 
4512 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4513 		dwc2_readl(hsotg, GRXFSIZ),
4514 		dwc2_readl(hsotg, GNPTXFSIZ));
4515 
4516 	dwc2_hsotg_init_fifo(hsotg);
4517 
4518 	if (using_dma(hsotg))
4519 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4520 }
4521 
4522 /**
4523  * dwc2_hsotg_udc_start - prepare the udc for work
4524  * @gadget: The usb gadget state
4525  * @driver: The usb gadget driver
4526  *
4527  * Perform initialization to prepare udc device and driver
4528  * to work.
4529  */
dwc2_hsotg_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)4530 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4531 				struct usb_gadget_driver *driver)
4532 {
4533 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4534 	unsigned long flags;
4535 	int ret;
4536 
4537 	if (!hsotg) {
4538 		pr_err("%s: called with no device\n", __func__);
4539 		return -ENODEV;
4540 	}
4541 
4542 	if (!driver) {
4543 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4544 		return -EINVAL;
4545 	}
4546 
4547 	if (driver->max_speed < USB_SPEED_FULL)
4548 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4549 
4550 	if (!driver->setup) {
4551 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4552 		return -EINVAL;
4553 	}
4554 
4555 	WARN_ON(hsotg->driver);
4556 
4557 	hsotg->driver = driver;
4558 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4559 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4560 
4561 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4562 		ret = dwc2_lowlevel_hw_enable(hsotg);
4563 		if (ret)
4564 			goto err;
4565 	}
4566 
4567 	if (hsotg->dr_mode == USB_DR_MODE_OTG && dwc2_is_device_mode(hsotg)) {
4568 		if (!hsotg->ll_phy_enabled) {
4569 			ret = dwc2_lowlevel_phy_enable(hsotg);
4570 			if (ret)
4571 				goto err;
4572 		}
4573 	}
4574 
4575 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4576 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4577 
4578 	spin_lock_irqsave(&hsotg->lock, flags);
4579 	if (dwc2_hw_is_device(hsotg)) {
4580 		dwc2_hsotg_init(hsotg);
4581 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4582 	}
4583 
4584 	hsotg->enabled = 0;
4585 	spin_unlock_irqrestore(&hsotg->lock, flags);
4586 
4587 	gadget->sg_supported = using_desc_dma(hsotg);
4588 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4589 
4590 	return 0;
4591 
4592 err:
4593 	hsotg->driver = NULL;
4594 	return ret;
4595 }
4596 
4597 /**
4598  * dwc2_hsotg_udc_stop - stop the udc
4599  * @gadget: The usb gadget state
4600  *
4601  * Stop udc hw block and stay tunned for future transmissions
4602  */
dwc2_hsotg_udc_stop(struct usb_gadget * gadget)4603 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4604 {
4605 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4606 	unsigned long flags = 0;
4607 	int ep;
4608 
4609 	if (!hsotg)
4610 		return -ENODEV;
4611 
4612 	/* all endpoints should be shutdown */
4613 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4614 		if (hsotg->eps_in[ep])
4615 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4616 		if (hsotg->eps_out[ep])
4617 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4618 	}
4619 
4620 	spin_lock_irqsave(&hsotg->lock, flags);
4621 
4622 	hsotg->driver = NULL;
4623 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4624 	hsotg->enabled = 0;
4625 
4626 	spin_unlock_irqrestore(&hsotg->lock, flags);
4627 
4628 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4629 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4630 
4631 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4632 		dwc2_lowlevel_hw_disable(hsotg);
4633 
4634 	if (hsotg->dr_mode == USB_DR_MODE_OTG && dwc2_is_device_mode(hsotg)) {
4635 		if (hsotg->ll_phy_enabled)
4636 			dwc2_lowlevel_phy_disable(hsotg);
4637 	}
4638 
4639 	return 0;
4640 }
4641 
4642 /**
4643  * dwc2_hsotg_gadget_getframe - read the frame number
4644  * @gadget: The usb gadget state
4645  *
4646  * Read the {micro} frame number
4647  */
dwc2_hsotg_gadget_getframe(struct usb_gadget * gadget)4648 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4649 {
4650 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4651 }
4652 
4653 /**
4654  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4655  * @gadget: The usb gadget state
4656  * @is_selfpowered: Whether the device is self-powered
4657  *
4658  * Set if the device is self or bus powered.
4659  */
dwc2_hsotg_set_selfpowered(struct usb_gadget * gadget,int is_selfpowered)4660 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4661 				      int is_selfpowered)
4662 {
4663 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4664 	unsigned long flags;
4665 
4666 	spin_lock_irqsave(&hsotg->lock, flags);
4667 	gadget->is_selfpowered = !!is_selfpowered;
4668 	spin_unlock_irqrestore(&hsotg->lock, flags);
4669 
4670 	return 0;
4671 }
4672 
4673 /**
4674  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4675  * @gadget: The usb gadget state
4676  * @is_on: Current state of the USB PHY
4677  *
4678  * Connect/Disconnect the USB PHY pullup
4679  */
dwc2_hsotg_pullup(struct usb_gadget * gadget,int is_on)4680 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4681 {
4682 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4683 	unsigned long flags = 0;
4684 
4685 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4686 		hsotg->op_state);
4687 
4688 	/* Don't modify pullup state while in host mode */
4689 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4690 		hsotg->enabled = is_on;
4691 		return 0;
4692 	}
4693 
4694 	spin_lock_irqsave(&hsotg->lock, flags);
4695 	if (is_on) {
4696 		hsotg->enabled = 1;
4697 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4698 		/* Enable ACG feature in device mode,if supported */
4699 		dwc2_enable_acg(hsotg);
4700 		dwc2_hsotg_core_connect(hsotg);
4701 	} else {
4702 		dwc2_hsotg_core_disconnect(hsotg);
4703 		dwc2_hsotg_disconnect(hsotg);
4704 		hsotg->enabled = 0;
4705 	}
4706 
4707 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4708 	spin_unlock_irqrestore(&hsotg->lock, flags);
4709 
4710 	return 0;
4711 }
4712 
dwc2_hsotg_vbus_session(struct usb_gadget * gadget,int is_active)4713 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4714 {
4715 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4716 	unsigned long flags;
4717 
4718 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4719 	spin_lock_irqsave(&hsotg->lock, flags);
4720 
4721 	/*
4722 	 * If controller is hibernated, it must exit from power_down
4723 	 * before being initialized / de-initialized
4724 	 */
4725 	if (hsotg->lx_state == DWC2_L2)
4726 		dwc2_exit_partial_power_down(hsotg, false);
4727 
4728 	if (is_active) {
4729 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4730 
4731 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4732 		if (hsotg->enabled) {
4733 			/* Enable ACG feature in device mode,if supported */
4734 			dwc2_enable_acg(hsotg);
4735 			dwc2_hsotg_core_connect(hsotg);
4736 		}
4737 	} else {
4738 		dwc2_hsotg_core_disconnect(hsotg);
4739 		dwc2_hsotg_disconnect(hsotg);
4740 	}
4741 
4742 	spin_unlock_irqrestore(&hsotg->lock, flags);
4743 	return 0;
4744 }
4745 
4746 /**
4747  * dwc2_hsotg_vbus_draw - report bMaxPower field
4748  * @gadget: The usb gadget state
4749  * @mA: Amount of current
4750  *
4751  * Report how much power the device may consume to the phy.
4752  */
dwc2_hsotg_vbus_draw(struct usb_gadget * gadget,unsigned int mA)4753 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4754 {
4755 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4756 
4757 	if (IS_ERR_OR_NULL(hsotg->uphy))
4758 		return -ENOTSUPP;
4759 	return usb_phy_set_power(hsotg->uphy, mA);
4760 }
4761 
4762 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4763 	.get_frame	= dwc2_hsotg_gadget_getframe,
4764 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4765 	.udc_start		= dwc2_hsotg_udc_start,
4766 	.udc_stop		= dwc2_hsotg_udc_stop,
4767 	.pullup                 = dwc2_hsotg_pullup,
4768 	.vbus_session		= dwc2_hsotg_vbus_session,
4769 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4770 };
4771 
4772 /**
4773  * dwc2_hsotg_initep - initialise a single endpoint
4774  * @hsotg: The device state.
4775  * @hs_ep: The endpoint to be initialised.
4776  * @epnum: The endpoint number
4777  * @dir_in: True if direction is in.
4778  *
4779  * Initialise the given endpoint (as part of the probe and device state
4780  * creation) to give to the gadget driver. Setup the endpoint name, any
4781  * direction information and other state that may be required.
4782  */
dwc2_hsotg_initep(struct dwc2_hsotg * hsotg,struct dwc2_hsotg_ep * hs_ep,int epnum,bool dir_in)4783 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4784 			      struct dwc2_hsotg_ep *hs_ep,
4785 				       int epnum,
4786 				       bool dir_in)
4787 {
4788 	char *dir;
4789 
4790 	if (epnum == 0)
4791 		dir = "";
4792 	else if (dir_in)
4793 		dir = "in";
4794 	else
4795 		dir = "out";
4796 
4797 	hs_ep->dir_in = dir_in;
4798 	hs_ep->index = epnum;
4799 
4800 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4801 
4802 	INIT_LIST_HEAD(&hs_ep->queue);
4803 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4804 
4805 	/* add to the list of endpoints known by the gadget driver */
4806 	if (epnum)
4807 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4808 
4809 	hs_ep->parent = hsotg;
4810 	hs_ep->ep.name = hs_ep->name;
4811 
4812 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4813 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4814 	else
4815 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4816 					   epnum ? 1024 : EP0_MPS_LIMIT);
4817 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4818 
4819 	if (epnum == 0) {
4820 		hs_ep->ep.caps.type_control = true;
4821 	} else {
4822 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4823 			hs_ep->ep.caps.type_iso = true;
4824 			hs_ep->ep.caps.type_bulk = true;
4825 		}
4826 		hs_ep->ep.caps.type_int = true;
4827 	}
4828 
4829 	if (dir_in)
4830 		hs_ep->ep.caps.dir_in = true;
4831 	else
4832 		hs_ep->ep.caps.dir_out = true;
4833 
4834 	/*
4835 	 * if we're using dma, we need to set the next-endpoint pointer
4836 	 * to be something valid.
4837 	 */
4838 
4839 	if (using_dma(hsotg)) {
4840 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4841 
4842 		if (dir_in)
4843 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4844 		else
4845 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4846 	}
4847 }
4848 
4849 /**
4850  * dwc2_hsotg_hw_cfg - read HW configuration registers
4851  * @hsotg: Programming view of the DWC_otg controller
4852  *
4853  * Read the USB core HW configuration registers
4854  */
dwc2_hsotg_hw_cfg(struct dwc2_hsotg * hsotg)4855 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4856 {
4857 	u32 cfg;
4858 	u32 ep_type;
4859 	u32 i;
4860 
4861 	/* check hardware configuration */
4862 
4863 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4864 
4865 	/* Add ep0 */
4866 	hsotg->num_of_eps++;
4867 
4868 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4869 					sizeof(struct dwc2_hsotg_ep),
4870 					GFP_KERNEL);
4871 	if (!hsotg->eps_in[0])
4872 		return -ENOMEM;
4873 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4874 	hsotg->eps_out[0] = hsotg->eps_in[0];
4875 
4876 	cfg = hsotg->hw_params.dev_ep_dirs;
4877 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4878 		ep_type = cfg & 3;
4879 		/* Direction in or both */
4880 		if (!(ep_type & 2)) {
4881 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4882 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4883 			if (!hsotg->eps_in[i])
4884 				return -ENOMEM;
4885 		}
4886 		/* Direction out or both */
4887 		if (!(ep_type & 1)) {
4888 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4889 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4890 			if (!hsotg->eps_out[i])
4891 				return -ENOMEM;
4892 		}
4893 	}
4894 
4895 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4896 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4897 
4898 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4899 		 hsotg->num_of_eps,
4900 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4901 		 hsotg->fifo_mem);
4902 	return 0;
4903 }
4904 
4905 /**
4906  * dwc2_hsotg_dump - dump state of the udc
4907  * @hsotg: Programming view of the DWC_otg controller
4908  *
4909  */
dwc2_hsotg_dump(struct dwc2_hsotg * hsotg)4910 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4911 {
4912 #ifdef DEBUG
4913 	struct device *dev = hsotg->dev;
4914 	u32 val;
4915 	int idx;
4916 
4917 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4918 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4919 		 dwc2_readl(hsotg, DIEPMSK));
4920 
4921 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4922 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4923 
4924 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4925 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4926 
4927 	/* show periodic fifo settings */
4928 
4929 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4930 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4931 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4932 			 val >> FIFOSIZE_DEPTH_SHIFT,
4933 			 val & FIFOSIZE_STARTADDR_MASK);
4934 	}
4935 
4936 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4937 		dev_info(dev,
4938 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4939 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4940 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4941 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4942 
4943 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4944 		dev_info(dev,
4945 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4946 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4947 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4948 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4949 	}
4950 
4951 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4952 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4953 #endif
4954 }
4955 
4956 /**
4957  * dwc2_gadget_init - init function for gadget
4958  * @hsotg: Programming view of the DWC_otg controller
4959  *
4960  */
dwc2_gadget_init(struct dwc2_hsotg * hsotg)4961 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4962 {
4963 	struct device *dev = hsotg->dev;
4964 	int epnum;
4965 	int ret;
4966 
4967 	/* Dump fifo information */
4968 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4969 		hsotg->params.g_np_tx_fifo_size);
4970 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4971 
4972 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4973 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4974 	hsotg->gadget.name = dev_name(dev);
4975 	hsotg->remote_wakeup_allowed = 0;
4976 
4977 	if (hsotg->params.lpm)
4978 		hsotg->gadget.lpm_capable = true;
4979 
4980 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4981 		hsotg->gadget.is_otg = 1;
4982 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4983 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4984 
4985 	ret = dwc2_hsotg_hw_cfg(hsotg);
4986 	if (ret) {
4987 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4988 		return ret;
4989 	}
4990 
4991 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4992 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4993 	if (!hsotg->ctrl_buff)
4994 		return -ENOMEM;
4995 
4996 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4997 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4998 	if (!hsotg->ep0_buff)
4999 		return -ENOMEM;
5000 
5001 	if (using_desc_dma(hsotg)) {
5002 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5003 		if (ret < 0)
5004 			return ret;
5005 	}
5006 
5007 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5008 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5009 	if (ret < 0) {
5010 		dev_err(dev, "cannot claim IRQ for gadget\n");
5011 		return ret;
5012 	}
5013 
5014 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5015 
5016 	if (hsotg->num_of_eps == 0) {
5017 		dev_err(dev, "wrong number of EPs (zero)\n");
5018 		return -EINVAL;
5019 	}
5020 
5021 	/* setup endpoint information */
5022 
5023 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5024 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5025 
5026 	/* allocate EP0 request */
5027 
5028 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5029 						     GFP_KERNEL);
5030 	if (!hsotg->ctrl_req) {
5031 		dev_err(dev, "failed to allocate ctrl req\n");
5032 		return -ENOMEM;
5033 	}
5034 
5035 	/* initialise the endpoints now the core has been initialised */
5036 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5037 		if (hsotg->eps_in[epnum])
5038 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5039 					  epnum, 1);
5040 		if (hsotg->eps_out[epnum])
5041 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5042 					  epnum, 0);
5043 	}
5044 
5045 	dwc2_hsotg_dump(hsotg);
5046 
5047 	return 0;
5048 }
5049 
5050 /**
5051  * dwc2_hsotg_remove - remove function for hsotg driver
5052  * @hsotg: Programming view of the DWC_otg controller
5053  *
5054  */
dwc2_hsotg_remove(struct dwc2_hsotg * hsotg)5055 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5056 {
5057 	usb_del_gadget_udc(&hsotg->gadget);
5058 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5059 
5060 	return 0;
5061 }
5062 
dwc2_hsotg_suspend(struct dwc2_hsotg * hsotg)5063 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5064 {
5065 	unsigned long flags;
5066 
5067 	if (hsotg->lx_state != DWC2_L0)
5068 		return 0;
5069 
5070 	if (hsotg->driver) {
5071 		int ep;
5072 
5073 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5074 			 hsotg->driver->driver.name);
5075 
5076 		spin_lock_irqsave(&hsotg->lock, flags);
5077 		if (hsotg->enabled)
5078 			dwc2_hsotg_core_disconnect(hsotg);
5079 		dwc2_hsotg_disconnect(hsotg);
5080 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5081 		spin_unlock_irqrestore(&hsotg->lock, flags);
5082 
5083 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5084 			if (hsotg->eps_in[ep])
5085 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5086 			if (hsotg->eps_out[ep])
5087 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5088 		}
5089 	}
5090 
5091 	return 0;
5092 }
5093 
dwc2_hsotg_resume(struct dwc2_hsotg * hsotg)5094 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5095 {
5096 	unsigned long flags;
5097 
5098 	if (hsotg->lx_state == DWC2_L2)
5099 		return 0;
5100 
5101 	if (hsotg->driver) {
5102 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5103 			 hsotg->driver->driver.name);
5104 
5105 		spin_lock_irqsave(&hsotg->lock, flags);
5106 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5107 		if (hsotg->enabled) {
5108 			/* Enable ACG feature in device mode,if supported */
5109 			dwc2_enable_acg(hsotg);
5110 			dwc2_hsotg_core_connect(hsotg);
5111 		}
5112 		spin_unlock_irqrestore(&hsotg->lock, flags);
5113 	}
5114 
5115 	return 0;
5116 }
5117 
5118 /**
5119  * dwc2_backup_device_registers() - Backup controller device registers.
5120  * When suspending usb bus, registers needs to be backuped
5121  * if controller power is disabled once suspended.
5122  *
5123  * @hsotg: Programming view of the DWC_otg controller
5124  */
dwc2_backup_device_registers(struct dwc2_hsotg * hsotg)5125 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5126 {
5127 	struct dwc2_dregs_backup *dr;
5128 	int i;
5129 
5130 	dev_dbg(hsotg->dev, "%s\n", __func__);
5131 
5132 	/* Backup dev regs */
5133 	dr = &hsotg->dr_backup;
5134 
5135 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5136 	dr->dctl = dwc2_readl(hsotg, DCTL);
5137 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5138 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5139 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5140 
5141 	for (i = 0; i < hsotg->num_of_eps; i++) {
5142 		/* Backup IN EPs */
5143 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5144 
5145 		/* Ensure DATA PID is correctly configured */
5146 		if (dr->diepctl[i] & DXEPCTL_DPID)
5147 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5148 		else
5149 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5150 
5151 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5152 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5153 
5154 		/* Backup OUT EPs */
5155 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5156 
5157 		/* Ensure DATA PID is correctly configured */
5158 		if (dr->doepctl[i] & DXEPCTL_DPID)
5159 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5160 		else
5161 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5162 
5163 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5164 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5165 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5166 	}
5167 	dr->valid = true;
5168 	return 0;
5169 }
5170 
5171 /**
5172  * dwc2_restore_device_registers() - Restore controller device registers.
5173  * When resuming usb bus, device registers needs to be restored
5174  * if controller power were disabled.
5175  *
5176  * @hsotg: Programming view of the DWC_otg controller
5177  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5178  *
5179  * Return: 0 if successful, negative error code otherwise
5180  */
dwc2_restore_device_registers(struct dwc2_hsotg * hsotg,int remote_wakeup)5181 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5182 {
5183 	struct dwc2_dregs_backup *dr;
5184 	int i;
5185 
5186 	dev_dbg(hsotg->dev, "%s\n", __func__);
5187 
5188 	/* Restore dev regs */
5189 	dr = &hsotg->dr_backup;
5190 	if (!dr->valid) {
5191 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5192 			__func__);
5193 		return -EINVAL;
5194 	}
5195 	dr->valid = false;
5196 
5197 	if (!remote_wakeup)
5198 		dwc2_writel(hsotg, dr->dctl, DCTL);
5199 
5200 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5201 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5202 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5203 
5204 	for (i = 0; i < hsotg->num_of_eps; i++) {
5205 		/* Restore IN EPs */
5206 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5207 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5208 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5209 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5210 		 * hibernation wrong value read and saved from DIEPDMAx,
5211 		 * as result BNA interrupt asserted on hibernation exit
5212 		 * by restoring from saved area.
5213 		 */
5214 		if (hsotg->params.g_dma_desc &&
5215 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5216 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5217 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5218 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5219 		/* Restore OUT EPs */
5220 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5221 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5222 		 * hibernation wrong value read and saved from DOEPDMAx,
5223 		 * as result BNA interrupt asserted on hibernation exit
5224 		 * by restoring from saved area.
5225 		 */
5226 		if (hsotg->params.g_dma_desc &&
5227 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5228 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5229 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5230 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5231 	}
5232 
5233 	return 0;
5234 }
5235 
5236 /**
5237  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5238  *
5239  * @hsotg: Programming view of DWC_otg controller
5240  *
5241  */
dwc2_gadget_init_lpm(struct dwc2_hsotg * hsotg)5242 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5243 {
5244 	u32 val;
5245 
5246 	if (!hsotg->params.lpm)
5247 		return;
5248 
5249 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5250 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5251 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5252 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5253 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5254 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5255 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5256 	dwc2_writel(hsotg, val, GLPMCFG);
5257 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5258 
5259 	/* Unmask WKUP_ALERT Interrupt */
5260 	if (hsotg->params.service_interval)
5261 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5262 }
5263 
5264 /**
5265  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5266  *
5267  * @hsotg: Programming view of DWC_otg controller
5268  *
5269  */
dwc2_gadget_program_ref_clk(struct dwc2_hsotg * hsotg)5270 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5271 {
5272 	u32 val = 0;
5273 
5274 	val |= GREFCLK_REF_CLK_MODE;
5275 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5276 	val |= hsotg->params.sof_cnt_wkup_alert <<
5277 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5278 
5279 	dwc2_writel(hsotg, val, GREFCLK);
5280 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5281 }
5282 
5283 /**
5284  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5285  *
5286  * @hsotg: Programming view of the DWC_otg controller
5287  *
5288  * Return non-zero if failed to enter to hibernation.
5289  */
dwc2_gadget_enter_hibernation(struct dwc2_hsotg * hsotg)5290 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5291 {
5292 	u32 gpwrdn;
5293 	int ret = 0;
5294 
5295 	/* Change to L2(suspend) state */
5296 	hsotg->lx_state = DWC2_L2;
5297 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5298 	ret = dwc2_backup_global_registers(hsotg);
5299 	if (ret) {
5300 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5301 			__func__);
5302 		return ret;
5303 	}
5304 	ret = dwc2_backup_device_registers(hsotg);
5305 	if (ret) {
5306 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5307 			__func__);
5308 		return ret;
5309 	}
5310 
5311 	gpwrdn = GPWRDN_PWRDNRSTN;
5312 	gpwrdn |= GPWRDN_PMUACTV;
5313 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5314 	udelay(10);
5315 
5316 	/* Set flag to indicate that we are in hibernation */
5317 	hsotg->hibernated = 1;
5318 
5319 	/* Enable interrupts from wake up logic */
5320 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5321 	gpwrdn |= GPWRDN_PMUINTSEL;
5322 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5323 	udelay(10);
5324 
5325 	/* Unmask device mode interrupts in GPWRDN */
5326 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5327 	gpwrdn |= GPWRDN_RST_DET_MSK;
5328 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5329 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5330 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5331 	udelay(10);
5332 
5333 	/* Enable Power Down Clamp */
5334 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5335 	gpwrdn |= GPWRDN_PWRDNCLMP;
5336 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5337 	udelay(10);
5338 
5339 	/* Switch off VDD */
5340 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5341 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5342 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5343 	udelay(10);
5344 
5345 	/* Save gpwrdn register for further usage if stschng interrupt */
5346 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5347 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5348 
5349 	return ret;
5350 }
5351 
5352 /**
5353  * dwc2_gadget_exit_hibernation()
5354  * This function is for exiting from Device mode hibernation by host initiated
5355  * resume/reset and device initiated remote-wakeup.
5356  *
5357  * @hsotg: Programming view of the DWC_otg controller
5358  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5359  * @reset: indicates whether resume is initiated by Reset.
5360  *
5361  * Return non-zero if failed to exit from hibernation.
5362  */
dwc2_gadget_exit_hibernation(struct dwc2_hsotg * hsotg,int rem_wakeup,int reset)5363 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5364 				 int rem_wakeup, int reset)
5365 {
5366 	u32 pcgcctl;
5367 	u32 gpwrdn;
5368 	u32 dctl;
5369 	int ret = 0;
5370 	struct dwc2_gregs_backup *gr;
5371 	struct dwc2_dregs_backup *dr;
5372 
5373 	gr = &hsotg->gr_backup;
5374 	dr = &hsotg->dr_backup;
5375 
5376 	if (!hsotg->hibernated) {
5377 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5378 		return 1;
5379 	}
5380 	dev_dbg(hsotg->dev,
5381 		"%s: called with rem_wakeup = %d reset = %d\n",
5382 		__func__, rem_wakeup, reset);
5383 
5384 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5385 
5386 	if (!reset) {
5387 		/* Clear all pending interupts */
5388 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5389 	}
5390 
5391 	/* De-assert Restore */
5392 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5393 	gpwrdn &= ~GPWRDN_RESTORE;
5394 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5395 	udelay(10);
5396 
5397 	if (!rem_wakeup) {
5398 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5399 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5400 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5401 	}
5402 
5403 	/* Restore GUSBCFG, DCFG and DCTL */
5404 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5405 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5406 	dwc2_writel(hsotg, dr->dctl, DCTL);
5407 
5408 	/* De-assert Wakeup Logic */
5409 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5410 	gpwrdn &= ~GPWRDN_PMUACTV;
5411 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5412 
5413 	if (rem_wakeup) {
5414 		udelay(10);
5415 		/* Start Remote Wakeup Signaling */
5416 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5417 	} else {
5418 		udelay(50);
5419 		/* Set Device programming done bit */
5420 		dctl = dwc2_readl(hsotg, DCTL);
5421 		dctl |= DCTL_PWRONPRGDONE;
5422 		dwc2_writel(hsotg, dctl, DCTL);
5423 	}
5424 	/* Wait for interrupts which must be cleared */
5425 	mdelay(2);
5426 	/* Clear all pending interupts */
5427 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5428 
5429 	/* Restore global registers */
5430 	ret = dwc2_restore_global_registers(hsotg);
5431 	if (ret) {
5432 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5433 			__func__);
5434 		return ret;
5435 	}
5436 
5437 	/* Restore device registers */
5438 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5439 	if (ret) {
5440 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5441 			__func__);
5442 		return ret;
5443 	}
5444 
5445 	if (rem_wakeup) {
5446 		mdelay(10);
5447 		dctl = dwc2_readl(hsotg, DCTL);
5448 		dctl &= ~DCTL_RMTWKUPSIG;
5449 		dwc2_writel(hsotg, dctl, DCTL);
5450 	}
5451 
5452 	hsotg->hibernated = 0;
5453 	hsotg->lx_state = DWC2_L0;
5454 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5455 
5456 	return ret;
5457 }
5458