1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
count_compact_event(enum vm_event_item item)29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
count_compact_events(enum vm_event_item item,long delta)34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 /*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
release_freepages(struct list_head * freelist)71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
78 list_del(&page->lru);
79 __free_page(page);
80 if (pfn > high_pfn)
81 high_pfn = pfn;
82 }
83
84 return high_pfn;
85 }
86
split_map_pages(struct list_head * list)87 static void split_map_pages(struct list_head *list)
88 {
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
98
99 post_alloc_hook(page, order, __GFP_MOVABLE);
100 if (order)
101 split_page(page, order);
102
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
107 }
108
109 list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
PageMovable(struct page * page)114 int PageMovable(struct page *page)
115 {
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
__SetPageMovable(struct page * page,struct address_space * mapping)130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
__ClearPageMovable(struct page * page)138 void __ClearPageMovable(struct page *page)
139 {
140 VM_BUG_ON_PAGE(!PageLocked(page), page);
141 VM_BUG_ON_PAGE(!PageMovable(page), page);
142 /*
143 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144 * flag so that VM can catch up released page by driver after isolation.
145 * With it, VM migration doesn't try to put it back.
146 */
147 page->mapping = (void *)((unsigned long)page->mapping &
148 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156 * Compaction is deferred when compaction fails to result in a page
157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159 */
defer_compaction(struct zone * zone,int order)160 void defer_compaction(struct zone *zone, int order)
161 {
162 zone->compact_considered = 0;
163 zone->compact_defer_shift++;
164
165 if (order < zone->compact_order_failed)
166 zone->compact_order_failed = order;
167
168 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171 trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
compaction_deferred(struct zone * zone,int order)175 bool compaction_deferred(struct zone *zone, int order)
176 {
177 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179 if (order < zone->compact_order_failed)
180 return false;
181
182 /* Avoid possible overflow */
183 if (++zone->compact_considered >= defer_limit) {
184 zone->compact_considered = defer_limit;
185 return false;
186 }
187
188 trace_mm_compaction_deferred(zone, order);
189
190 return true;
191 }
192
193 /*
194 * Update defer tracking counters after successful compaction of given order,
195 * which means an allocation either succeeded (alloc_success == true) or is
196 * expected to succeed.
197 */
compaction_defer_reset(struct zone * zone,int order,bool alloc_success)198 void compaction_defer_reset(struct zone *zone, int order,
199 bool alloc_success)
200 {
201 if (alloc_success) {
202 zone->compact_considered = 0;
203 zone->compact_defer_shift = 0;
204 }
205 if (order >= zone->compact_order_failed)
206 zone->compact_order_failed = order + 1;
207
208 trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
compaction_restarting(struct zone * zone,int order)212 bool compaction_restarting(struct zone *zone, int order)
213 {
214 if (order < zone->compact_order_failed)
215 return false;
216
217 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
isolation_suitable(struct compact_control * cc,struct page * page)222 static inline bool isolation_suitable(struct compact_control *cc,
223 struct page *page)
224 {
225 if (cc->ignore_skip_hint)
226 return true;
227
228 return !get_pageblock_skip(page);
229 }
230
reset_cached_positions(struct zone * zone)231 static void reset_cached_positions(struct zone *zone)
232 {
233 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235 zone->compact_cached_free_pfn =
236 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240 * Compound pages of >= pageblock_order should consistenly be skipped until
241 * released. It is always pointless to compact pages of such order (if they are
242 * migratable), and the pageblocks they occupy cannot contain any free pages.
243 */
pageblock_skip_persistent(struct page * page)244 static bool pageblock_skip_persistent(struct page *page)
245 {
246 if (!PageCompound(page))
247 return false;
248
249 page = compound_head(page);
250
251 if (compound_order(page) >= pageblock_order)
252 return true;
253
254 return false;
255 }
256
257 static bool
__reset_isolation_pfn(struct zone * zone,unsigned long pfn,bool check_source,bool check_target)258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259 bool check_target)
260 {
261 struct page *page = pfn_to_online_page(pfn);
262 struct page *block_page;
263 struct page *end_page;
264 unsigned long block_pfn;
265
266 if (!page)
267 return false;
268 if (zone != page_zone(page))
269 return false;
270 if (pageblock_skip_persistent(page))
271 return false;
272
273 /*
274 * If skip is already cleared do no further checking once the
275 * restart points have been set.
276 */
277 if (check_source && check_target && !get_pageblock_skip(page))
278 return true;
279
280 /*
281 * If clearing skip for the target scanner, do not select a
282 * non-movable pageblock as the starting point.
283 */
284 if (!check_source && check_target &&
285 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286 return false;
287
288 /* Ensure the start of the pageblock or zone is online and valid */
289 block_pfn = pageblock_start_pfn(pfn);
290 block_pfn = max(block_pfn, zone->zone_start_pfn);
291 block_page = pfn_to_online_page(block_pfn);
292 if (block_page) {
293 page = block_page;
294 pfn = block_pfn;
295 }
296
297 /* Ensure the end of the pageblock or zone is online and valid */
298 block_pfn = pageblock_end_pfn(pfn) - 1;
299 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300 end_page = pfn_to_online_page(block_pfn);
301 if (!end_page)
302 return false;
303
304 /*
305 * Only clear the hint if a sample indicates there is either a
306 * free page or an LRU page in the block. One or other condition
307 * is necessary for the block to be a migration source/target.
308 */
309 do {
310 if (pfn_valid_within(pfn)) {
311 if (check_source && PageLRU(page)) {
312 clear_pageblock_skip(page);
313 return true;
314 }
315
316 if (check_target && PageBuddy(page)) {
317 clear_pageblock_skip(page);
318 return true;
319 }
320 }
321
322 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324 } while (page <= end_page);
325
326 return false;
327 }
328
329 /*
330 * This function is called to clear all cached information on pageblocks that
331 * should be skipped for page isolation when the migrate and free page scanner
332 * meet.
333 */
__reset_isolation_suitable(struct zone * zone)334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336 unsigned long migrate_pfn = zone->zone_start_pfn;
337 unsigned long free_pfn = zone_end_pfn(zone) - 1;
338 unsigned long reset_migrate = free_pfn;
339 unsigned long reset_free = migrate_pfn;
340 bool source_set = false;
341 bool free_set = false;
342
343 if (!zone->compact_blockskip_flush)
344 return;
345
346 zone->compact_blockskip_flush = false;
347
348 /*
349 * Walk the zone and update pageblock skip information. Source looks
350 * for PageLRU while target looks for PageBuddy. When the scanner
351 * is found, both PageBuddy and PageLRU are checked as the pageblock
352 * is suitable as both source and target.
353 */
354 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355 free_pfn -= pageblock_nr_pages) {
356 cond_resched();
357
358 /* Update the migrate PFN */
359 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360 migrate_pfn < reset_migrate) {
361 source_set = true;
362 reset_migrate = migrate_pfn;
363 zone->compact_init_migrate_pfn = reset_migrate;
364 zone->compact_cached_migrate_pfn[0] = reset_migrate;
365 zone->compact_cached_migrate_pfn[1] = reset_migrate;
366 }
367
368 /* Update the free PFN */
369 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370 free_pfn > reset_free) {
371 free_set = true;
372 reset_free = free_pfn;
373 zone->compact_init_free_pfn = reset_free;
374 zone->compact_cached_free_pfn = reset_free;
375 }
376 }
377
378 /* Leave no distance if no suitable block was reset */
379 if (reset_migrate >= reset_free) {
380 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382 zone->compact_cached_free_pfn = free_pfn;
383 }
384 }
385
reset_isolation_suitable(pg_data_t * pgdat)386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388 int zoneid;
389
390 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391 struct zone *zone = &pgdat->node_zones[zoneid];
392 if (!populated_zone(zone))
393 continue;
394
395 /* Only flush if a full compaction finished recently */
396 if (zone->compact_blockskip_flush)
397 __reset_isolation_suitable(zone);
398 }
399 }
400
401 /*
402 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403 * locks are not required for read/writers. Returns true if it was already set.
404 */
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406 unsigned long pfn)
407 {
408 bool skip;
409
410 /* Do no update if skip hint is being ignored */
411 if (cc->ignore_skip_hint)
412 return false;
413
414 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415 return false;
416
417 skip = get_pageblock_skip(page);
418 if (!skip && !cc->no_set_skip_hint)
419 set_pageblock_skip(page);
420
421 return skip;
422 }
423
update_cached_migrate(struct compact_control * cc,unsigned long pfn)424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426 struct zone *zone = cc->zone;
427
428 pfn = pageblock_end_pfn(pfn);
429
430 /* Set for isolation rather than compaction */
431 if (cc->no_set_skip_hint)
432 return;
433
434 if (pfn > zone->compact_cached_migrate_pfn[0])
435 zone->compact_cached_migrate_pfn[0] = pfn;
436 if (cc->mode != MIGRATE_ASYNC &&
437 pfn > zone->compact_cached_migrate_pfn[1])
438 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442 * If no pages were isolated then mark this pageblock to be skipped in the
443 * future. The information is later cleared by __reset_isolation_suitable().
444 */
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)445 static void update_pageblock_skip(struct compact_control *cc,
446 struct page *page, unsigned long pfn)
447 {
448 struct zone *zone = cc->zone;
449
450 if (cc->no_set_skip_hint)
451 return;
452
453 if (!page)
454 return;
455
456 set_pageblock_skip(page);
457
458 /* Update where async and sync compaction should restart */
459 if (pfn < zone->compact_cached_free_pfn)
460 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
isolation_suitable(struct compact_control * cc,struct page * page)463 static inline bool isolation_suitable(struct compact_control *cc,
464 struct page *page)
465 {
466 return true;
467 }
468
pageblock_skip_persistent(struct page * page)469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471 return false;
472 }
473
update_pageblock_skip(struct compact_control * cc,struct page * page,unsigned long pfn)474 static inline void update_pageblock_skip(struct compact_control *cc,
475 struct page *page, unsigned long pfn)
476 {
477 }
478
update_cached_migrate(struct compact_control * cc,unsigned long pfn)479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
test_and_set_skip(struct compact_control * cc,struct page * page,unsigned long pfn)483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484 unsigned long pfn)
485 {
486 return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491 * Compaction requires the taking of some coarse locks that are potentially
492 * very heavily contended. For async compaction, trylock and record if the
493 * lock is contended. The lock will still be acquired but compaction will
494 * abort when the current block is finished regardless of success rate.
495 * Sync compaction acquires the lock.
496 *
497 * Always returns true which makes it easier to track lock state in callers.
498 */
compact_lock_irqsave(spinlock_t * lock,unsigned long * flags,struct compact_control * cc)499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500 struct compact_control *cc)
501 __acquires(lock)
502 {
503 /* Track if the lock is contended in async mode */
504 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505 if (spin_trylock_irqsave(lock, *flags))
506 return true;
507
508 cc->contended = true;
509 }
510
511 spin_lock_irqsave(lock, *flags);
512 return true;
513 }
514
515 /*
516 * Compaction requires the taking of some coarse locks that are potentially
517 * very heavily contended. The lock should be periodically unlocked to avoid
518 * having disabled IRQs for a long time, even when there is nobody waiting on
519 * the lock. It might also be that allowing the IRQs will result in
520 * need_resched() becoming true. If scheduling is needed, async compaction
521 * aborts. Sync compaction schedules.
522 * Either compaction type will also abort if a fatal signal is pending.
523 * In either case if the lock was locked, it is dropped and not regained.
524 *
525 * Returns true if compaction should abort due to fatal signal pending, or
526 * async compaction due to need_resched()
527 * Returns false when compaction can continue (sync compaction might have
528 * scheduled)
529 */
compact_unlock_should_abort(spinlock_t * lock,unsigned long flags,bool * locked,struct compact_control * cc)530 static bool compact_unlock_should_abort(spinlock_t *lock,
531 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533 if (*locked) {
534 spin_unlock_irqrestore(lock, flags);
535 *locked = false;
536 }
537
538 if (fatal_signal_pending(current)) {
539 cc->contended = true;
540 return true;
541 }
542
543 cond_resched();
544
545 return false;
546 }
547
548 /*
549 * Isolate free pages onto a private freelist. If @strict is true, will abort
550 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551 * (even though it may still end up isolating some pages).
552 */
isolate_freepages_block(struct compact_control * cc,unsigned long * start_pfn,unsigned long end_pfn,struct list_head * freelist,unsigned int stride,bool strict)553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554 unsigned long *start_pfn,
555 unsigned long end_pfn,
556 struct list_head *freelist,
557 unsigned int stride,
558 bool strict)
559 {
560 int nr_scanned = 0, total_isolated = 0;
561 struct page *cursor;
562 unsigned long flags = 0;
563 bool locked = false;
564 unsigned long blockpfn = *start_pfn;
565 unsigned int order;
566
567 /* Strict mode is for isolation, speed is secondary */
568 if (strict)
569 stride = 1;
570
571 cursor = pfn_to_page(blockpfn);
572
573 /* Isolate free pages. */
574 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575 int isolated;
576 struct page *page = cursor;
577
578 /*
579 * Periodically drop the lock (if held) regardless of its
580 * contention, to give chance to IRQs. Abort if fatal signal
581 * pending or async compaction detects need_resched()
582 */
583 if (!(blockpfn % SWAP_CLUSTER_MAX)
584 && compact_unlock_should_abort(&cc->zone->lock, flags,
585 &locked, cc))
586 break;
587
588 nr_scanned++;
589 if (!pfn_valid_within(blockpfn))
590 goto isolate_fail;
591
592 /*
593 * For compound pages such as THP and hugetlbfs, we can save
594 * potentially a lot of iterations if we skip them at once.
595 * The check is racy, but we can consider only valid values
596 * and the only danger is skipping too much.
597 */
598 if (PageCompound(page)) {
599 const unsigned int order = compound_order(page);
600
601 if (likely(order < MAX_ORDER)) {
602 blockpfn += (1UL << order) - 1;
603 cursor += (1UL << order) - 1;
604 }
605 goto isolate_fail;
606 }
607
608 if (!PageBuddy(page))
609 goto isolate_fail;
610
611 /*
612 * If we already hold the lock, we can skip some rechecking.
613 * Note that if we hold the lock now, checked_pageblock was
614 * already set in some previous iteration (or strict is true),
615 * so it is correct to skip the suitable migration target
616 * recheck as well.
617 */
618 if (!locked) {
619 locked = compact_lock_irqsave(&cc->zone->lock,
620 &flags, cc);
621
622 /* Recheck this is a buddy page under lock */
623 if (!PageBuddy(page))
624 goto isolate_fail;
625 }
626
627 /* Found a free page, will break it into order-0 pages */
628 order = buddy_order(page);
629 isolated = __isolate_free_page(page, order);
630 if (!isolated)
631 break;
632 set_page_private(page, order);
633
634 total_isolated += isolated;
635 cc->nr_freepages += isolated;
636 list_add_tail(&page->lru, freelist);
637
638 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639 blockpfn += isolated;
640 break;
641 }
642 /* Advance to the end of split page */
643 blockpfn += isolated - 1;
644 cursor += isolated - 1;
645 continue;
646
647 isolate_fail:
648 if (strict)
649 break;
650 else
651 continue;
652
653 }
654
655 if (locked)
656 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658 /*
659 * There is a tiny chance that we have read bogus compound_order(),
660 * so be careful to not go outside of the pageblock.
661 */
662 if (unlikely(blockpfn > end_pfn))
663 blockpfn = end_pfn;
664
665 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666 nr_scanned, total_isolated);
667
668 /* Record how far we have got within the block */
669 *start_pfn = blockpfn;
670
671 /*
672 * If strict isolation is requested by CMA then check that all the
673 * pages requested were isolated. If there were any failures, 0 is
674 * returned and CMA will fail.
675 */
676 if (strict && blockpfn < end_pfn)
677 total_isolated = 0;
678
679 cc->total_free_scanned += nr_scanned;
680 if (total_isolated)
681 count_compact_events(COMPACTISOLATED, total_isolated);
682 return total_isolated;
683 }
684
685 /**
686 * isolate_freepages_range() - isolate free pages.
687 * @cc: Compaction control structure.
688 * @start_pfn: The first PFN to start isolating.
689 * @end_pfn: The one-past-last PFN.
690 *
691 * Non-free pages, invalid PFNs, or zone boundaries within the
692 * [start_pfn, end_pfn) range are considered errors, cause function to
693 * undo its actions and return zero.
694 *
695 * Otherwise, function returns one-past-the-last PFN of isolated page
696 * (which may be greater then end_pfn if end fell in a middle of
697 * a free page).
698 */
699 unsigned long
isolate_freepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)700 isolate_freepages_range(struct compact_control *cc,
701 unsigned long start_pfn, unsigned long end_pfn)
702 {
703 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704 LIST_HEAD(freelist);
705
706 pfn = start_pfn;
707 block_start_pfn = pageblock_start_pfn(pfn);
708 if (block_start_pfn < cc->zone->zone_start_pfn)
709 block_start_pfn = cc->zone->zone_start_pfn;
710 block_end_pfn = pageblock_end_pfn(pfn);
711
712 for (; pfn < end_pfn; pfn += isolated,
713 block_start_pfn = block_end_pfn,
714 block_end_pfn += pageblock_nr_pages) {
715 /* Protect pfn from changing by isolate_freepages_block */
716 unsigned long isolate_start_pfn = pfn;
717
718 block_end_pfn = min(block_end_pfn, end_pfn);
719
720 /*
721 * pfn could pass the block_end_pfn if isolated freepage
722 * is more than pageblock order. In this case, we adjust
723 * scanning range to right one.
724 */
725 if (pfn >= block_end_pfn) {
726 block_start_pfn = pageblock_start_pfn(pfn);
727 block_end_pfn = pageblock_end_pfn(pfn);
728 block_end_pfn = min(block_end_pfn, end_pfn);
729 }
730
731 if (!pageblock_pfn_to_page(block_start_pfn,
732 block_end_pfn, cc->zone))
733 break;
734
735 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736 block_end_pfn, &freelist, 0, true);
737
738 /*
739 * In strict mode, isolate_freepages_block() returns 0 if
740 * there are any holes in the block (ie. invalid PFNs or
741 * non-free pages).
742 */
743 if (!isolated)
744 break;
745
746 /*
747 * If we managed to isolate pages, it is always (1 << n) *
748 * pageblock_nr_pages for some non-negative n. (Max order
749 * page may span two pageblocks).
750 */
751 }
752
753 /* __isolate_free_page() does not map the pages */
754 split_map_pages(&freelist);
755
756 if (pfn < end_pfn) {
757 /* Loop terminated early, cleanup. */
758 release_freepages(&freelist);
759 return 0;
760 }
761
762 /* We don't use freelists for anything. */
763 return pfn;
764 }
765
766 #ifdef CONFIG_COMPACTION
isolate_and_split_free_page(struct page * page,struct list_head * list)767 unsigned long isolate_and_split_free_page(struct page *page,
768 struct list_head *list)
769 {
770 unsigned long isolated;
771 unsigned int order;
772
773 if (!PageBuddy(page))
774 return 0;
775
776 order = buddy_order(page);
777 isolated = __isolate_free_page(page, order);
778 if (!isolated)
779 return 0;
780
781 set_page_private(page, order);
782 list_add(&page->lru, list);
783
784 split_map_pages(list);
785
786 return isolated;
787 }
788 EXPORT_SYMBOL_GPL(isolate_and_split_free_page);
789 #endif
790
791 /* Similar to reclaim, but different enough that they don't share logic */
too_many_isolated(pg_data_t * pgdat)792 static bool too_many_isolated(pg_data_t *pgdat)
793 {
794 unsigned long active, inactive, isolated;
795
796 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
797 node_page_state(pgdat, NR_INACTIVE_ANON);
798 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
799 node_page_state(pgdat, NR_ACTIVE_ANON);
800 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
801 node_page_state(pgdat, NR_ISOLATED_ANON);
802
803 return isolated > (inactive + active) / 2;
804 }
805
806 /**
807 * isolate_migratepages_block() - isolate all migrate-able pages within
808 * a single pageblock
809 * @cc: Compaction control structure.
810 * @low_pfn: The first PFN to isolate
811 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
812 * @isolate_mode: Isolation mode to be used.
813 *
814 * Isolate all pages that can be migrated from the range specified by
815 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
816 * Returns zero if there is a fatal signal pending, otherwise PFN of the
817 * first page that was not scanned (which may be both less, equal to or more
818 * than end_pfn).
819 *
820 * The pages are isolated on cc->migratepages list (not required to be empty),
821 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
822 * is neither read nor updated.
823 */
824 static unsigned long
isolate_migratepages_block(struct compact_control * cc,unsigned long low_pfn,unsigned long end_pfn,isolate_mode_t isolate_mode)825 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
826 unsigned long end_pfn, isolate_mode_t isolate_mode)
827 {
828 pg_data_t *pgdat = cc->zone->zone_pgdat;
829 unsigned long nr_scanned = 0, nr_isolated = 0;
830 struct lruvec *lruvec;
831 unsigned long flags = 0;
832 bool locked = false;
833 struct page *page = NULL, *valid_page = NULL;
834 unsigned long start_pfn = low_pfn;
835 bool skip_on_failure = false;
836 unsigned long next_skip_pfn = 0;
837 bool skip_updated = false;
838
839 /*
840 * Ensure that there are not too many pages isolated from the LRU
841 * list by either parallel reclaimers or compaction. If there are,
842 * delay for some time until fewer pages are isolated
843 */
844 while (unlikely(too_many_isolated(pgdat))) {
845 /* stop isolation if there are still pages not migrated */
846 if (cc->nr_migratepages)
847 return 0;
848
849 /* async migration should just abort */
850 if (cc->mode == MIGRATE_ASYNC)
851 return 0;
852
853 congestion_wait(BLK_RW_ASYNC, HZ/10);
854
855 if (fatal_signal_pending(current))
856 return 0;
857 }
858
859 cond_resched();
860
861 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
862 skip_on_failure = true;
863 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864 }
865
866 /* Time to isolate some pages for migration */
867 for (; low_pfn < end_pfn; low_pfn++) {
868
869 if (skip_on_failure && low_pfn >= next_skip_pfn) {
870 /*
871 * We have isolated all migration candidates in the
872 * previous order-aligned block, and did not skip it due
873 * to failure. We should migrate the pages now and
874 * hopefully succeed compaction.
875 */
876 if (nr_isolated)
877 break;
878
879 /*
880 * We failed to isolate in the previous order-aligned
881 * block. Set the new boundary to the end of the
882 * current block. Note we can't simply increase
883 * next_skip_pfn by 1 << order, as low_pfn might have
884 * been incremented by a higher number due to skipping
885 * a compound or a high-order buddy page in the
886 * previous loop iteration.
887 */
888 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
889 }
890
891 /*
892 * Periodically drop the lock (if held) regardless of its
893 * contention, to give chance to IRQs. Abort completely if
894 * a fatal signal is pending.
895 */
896 if (!(low_pfn % SWAP_CLUSTER_MAX)
897 && compact_unlock_should_abort(&pgdat->lru_lock,
898 flags, &locked, cc)) {
899 low_pfn = 0;
900 goto fatal_pending;
901 }
902
903 if (!pfn_valid_within(low_pfn))
904 goto isolate_fail;
905 nr_scanned++;
906
907 page = pfn_to_page(low_pfn);
908
909 /*
910 * Check if the pageblock has already been marked skipped.
911 * Only the aligned PFN is checked as the caller isolates
912 * COMPACT_CLUSTER_MAX at a time so the second call must
913 * not falsely conclude that the block should be skipped.
914 */
915 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
916 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
917 low_pfn = end_pfn;
918 goto isolate_abort;
919 }
920 valid_page = page;
921 }
922
923 /*
924 * Skip if free. We read page order here without zone lock
925 * which is generally unsafe, but the race window is small and
926 * the worst thing that can happen is that we skip some
927 * potential isolation targets.
928 */
929 if (PageBuddy(page)) {
930 unsigned long freepage_order = buddy_order_unsafe(page);
931
932 /*
933 * Without lock, we cannot be sure that what we got is
934 * a valid page order. Consider only values in the
935 * valid order range to prevent low_pfn overflow.
936 */
937 if (freepage_order > 0 && freepage_order < MAX_ORDER)
938 low_pfn += (1UL << freepage_order) - 1;
939 continue;
940 }
941
942 /*
943 * Regardless of being on LRU, compound pages such as THP and
944 * hugetlbfs are not to be compacted unless we are attempting
945 * an allocation much larger than the huge page size (eg CMA).
946 * We can potentially save a lot of iterations if we skip them
947 * at once. The check is racy, but we can consider only valid
948 * values and the only danger is skipping too much.
949 */
950 if (PageCompound(page) && !cc->alloc_contig) {
951 const unsigned int order = compound_order(page);
952
953 if (likely(order < MAX_ORDER))
954 low_pfn += (1UL << order) - 1;
955 goto isolate_fail;
956 }
957
958 /*
959 * Check may be lockless but that's ok as we recheck later.
960 * It's possible to migrate LRU and non-lru movable pages.
961 * Skip any other type of page
962 */
963 if (!PageLRU(page)) {
964 /*
965 * __PageMovable can return false positive so we need
966 * to verify it under page_lock.
967 */
968 if (unlikely(__PageMovable(page)) &&
969 !PageIsolated(page)) {
970 if (locked) {
971 spin_unlock_irqrestore(&pgdat->lru_lock,
972 flags);
973 locked = false;
974 }
975
976 if (!isolate_movable_page(page, isolate_mode))
977 goto isolate_success;
978 }
979
980 goto isolate_fail;
981 }
982
983 /*
984 * Migration will fail if an anonymous page is pinned in memory,
985 * so avoid taking lru_lock and isolating it unnecessarily in an
986 * admittedly racy check.
987 */
988 if (!page_mapping(page) &&
989 page_count(page) > page_mapcount(page))
990 goto isolate_fail;
991
992 /*
993 * Only allow to migrate anonymous pages in GFP_NOFS context
994 * because those do not depend on fs locks.
995 */
996 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
997 goto isolate_fail;
998
999 /* If we already hold the lock, we can skip some rechecking */
1000 if (!locked) {
1001 locked = compact_lock_irqsave(&pgdat->lru_lock,
1002 &flags, cc);
1003
1004 /* Try get exclusive access under lock */
1005 if (!skip_updated) {
1006 skip_updated = true;
1007 if (test_and_set_skip(cc, page, low_pfn))
1008 goto isolate_abort;
1009 }
1010
1011 /* Recheck PageLRU and PageCompound under lock */
1012 if (!PageLRU(page))
1013 goto isolate_fail;
1014
1015 /*
1016 * Page become compound since the non-locked check,
1017 * and it's on LRU. It can only be a THP so the order
1018 * is safe to read and it's 0 for tail pages.
1019 */
1020 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1021 low_pfn += compound_nr(page) - 1;
1022 goto isolate_fail;
1023 }
1024 }
1025
1026 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1027
1028 /* Try isolate the page */
1029 if (__isolate_lru_page(page, isolate_mode) != 0)
1030 goto isolate_fail;
1031
1032 /* The whole page is taken off the LRU; skip the tail pages. */
1033 if (PageCompound(page))
1034 low_pfn += compound_nr(page) - 1;
1035
1036 /* Successfully isolated */
1037 del_page_from_lru_list(page, lruvec, page_lru(page));
1038 mod_node_page_state(page_pgdat(page),
1039 NR_ISOLATED_ANON + page_is_file_lru(page),
1040 thp_nr_pages(page));
1041
1042 isolate_success:
1043 list_add(&page->lru, &cc->migratepages);
1044 cc->nr_migratepages += compound_nr(page);
1045 nr_isolated += compound_nr(page);
1046
1047 /*
1048 * Avoid isolating too much unless this block is being
1049 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1050 * or a lock is contended. For contention, isolate quickly to
1051 * potentially remove one source of contention.
1052 */
1053 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1054 !cc->rescan && !cc->contended) {
1055 ++low_pfn;
1056 break;
1057 }
1058
1059 continue;
1060 isolate_fail:
1061 if (!skip_on_failure)
1062 continue;
1063
1064 /*
1065 * We have isolated some pages, but then failed. Release them
1066 * instead of migrating, as we cannot form the cc->order buddy
1067 * page anyway.
1068 */
1069 if (nr_isolated) {
1070 if (locked) {
1071 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1072 locked = false;
1073 }
1074 putback_movable_pages(&cc->migratepages);
1075 cc->nr_migratepages = 0;
1076 nr_isolated = 0;
1077 }
1078
1079 if (low_pfn < next_skip_pfn) {
1080 low_pfn = next_skip_pfn - 1;
1081 /*
1082 * The check near the loop beginning would have updated
1083 * next_skip_pfn too, but this is a bit simpler.
1084 */
1085 next_skip_pfn += 1UL << cc->order;
1086 }
1087 }
1088
1089 /*
1090 * The PageBuddy() check could have potentially brought us outside
1091 * the range to be scanned.
1092 */
1093 if (unlikely(low_pfn > end_pfn))
1094 low_pfn = end_pfn;
1095
1096 isolate_abort:
1097 if (locked)
1098 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1099
1100 /*
1101 * Updated the cached scanner pfn once the pageblock has been scanned
1102 * Pages will either be migrated in which case there is no point
1103 * scanning in the near future or migration failed in which case the
1104 * failure reason may persist. The block is marked for skipping if
1105 * there were no pages isolated in the block or if the block is
1106 * rescanned twice in a row.
1107 */
1108 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1109 if (valid_page && !skip_updated)
1110 set_pageblock_skip(valid_page);
1111 update_cached_migrate(cc, low_pfn);
1112 }
1113
1114 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1115 nr_scanned, nr_isolated);
1116
1117 fatal_pending:
1118 cc->total_migrate_scanned += nr_scanned;
1119 if (nr_isolated)
1120 count_compact_events(COMPACTISOLATED, nr_isolated);
1121
1122 return low_pfn;
1123 }
1124
1125 /**
1126 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1127 * @cc: Compaction control structure.
1128 * @start_pfn: The first PFN to start isolating.
1129 * @end_pfn: The one-past-last PFN.
1130 *
1131 * Returns zero if isolation fails fatally due to e.g. pending signal.
1132 * Otherwise, function returns one-past-the-last PFN of isolated page
1133 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1134 */
1135 unsigned long
isolate_migratepages_range(struct compact_control * cc,unsigned long start_pfn,unsigned long end_pfn)1136 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1137 unsigned long end_pfn)
1138 {
1139 unsigned long pfn, block_start_pfn, block_end_pfn;
1140
1141 /* Scan block by block. First and last block may be incomplete */
1142 pfn = start_pfn;
1143 block_start_pfn = pageblock_start_pfn(pfn);
1144 if (block_start_pfn < cc->zone->zone_start_pfn)
1145 block_start_pfn = cc->zone->zone_start_pfn;
1146 block_end_pfn = pageblock_end_pfn(pfn);
1147
1148 for (; pfn < end_pfn; pfn = block_end_pfn,
1149 block_start_pfn = block_end_pfn,
1150 block_end_pfn += pageblock_nr_pages) {
1151
1152 block_end_pfn = min(block_end_pfn, end_pfn);
1153
1154 if (!pageblock_pfn_to_page(block_start_pfn,
1155 block_end_pfn, cc->zone))
1156 continue;
1157
1158 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1159 ISOLATE_UNEVICTABLE);
1160
1161 if (!pfn)
1162 break;
1163
1164 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1165 break;
1166 }
1167
1168 return pfn;
1169 }
1170
1171 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1172 #ifdef CONFIG_COMPACTION
1173
suitable_migration_source(struct compact_control * cc,struct page * page)1174 static bool suitable_migration_source(struct compact_control *cc,
1175 struct page *page)
1176 {
1177 int block_mt;
1178
1179 if (pageblock_skip_persistent(page))
1180 return false;
1181
1182 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1183 return true;
1184
1185 block_mt = get_pageblock_migratetype(page);
1186
1187 if (cc->migratetype == MIGRATE_MOVABLE)
1188 return is_migrate_movable(block_mt);
1189 else
1190 return block_mt == cc->migratetype;
1191 }
1192
1193 /* Returns true if the page is within a block suitable for migration to */
suitable_migration_target(struct compact_control * cc,struct page * page)1194 static bool suitable_migration_target(struct compact_control *cc,
1195 struct page *page)
1196 {
1197 /* If the page is a large free page, then disallow migration */
1198 if (PageBuddy(page)) {
1199 /*
1200 * We are checking page_order without zone->lock taken. But
1201 * the only small danger is that we skip a potentially suitable
1202 * pageblock, so it's not worth to check order for valid range.
1203 */
1204 if (buddy_order_unsafe(page) >= pageblock_order)
1205 return false;
1206 }
1207
1208 if (cc->ignore_block_suitable)
1209 return true;
1210
1211 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1212 if (is_migrate_movable(get_pageblock_migratetype(page)))
1213 return true;
1214
1215 /* Otherwise skip the block */
1216 return false;
1217 }
1218
1219 static inline unsigned int
freelist_scan_limit(struct compact_control * cc)1220 freelist_scan_limit(struct compact_control *cc)
1221 {
1222 unsigned short shift = BITS_PER_LONG - 1;
1223
1224 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1225 }
1226
1227 /*
1228 * Test whether the free scanner has reached the same or lower pageblock than
1229 * the migration scanner, and compaction should thus terminate.
1230 */
compact_scanners_met(struct compact_control * cc)1231 static inline bool compact_scanners_met(struct compact_control *cc)
1232 {
1233 return (cc->free_pfn >> pageblock_order)
1234 <= (cc->migrate_pfn >> pageblock_order);
1235 }
1236
1237 /*
1238 * Used when scanning for a suitable migration target which scans freelists
1239 * in reverse. Reorders the list such as the unscanned pages are scanned
1240 * first on the next iteration of the free scanner
1241 */
1242 static void
move_freelist_head(struct list_head * freelist,struct page * freepage)1243 move_freelist_head(struct list_head *freelist, struct page *freepage)
1244 {
1245 LIST_HEAD(sublist);
1246
1247 if (!list_is_last(freelist, &freepage->lru)) {
1248 list_cut_before(&sublist, freelist, &freepage->lru);
1249 if (!list_empty(&sublist))
1250 list_splice_tail(&sublist, freelist);
1251 }
1252 }
1253
1254 /*
1255 * Similar to move_freelist_head except used by the migration scanner
1256 * when scanning forward. It's possible for these list operations to
1257 * move against each other if they search the free list exactly in
1258 * lockstep.
1259 */
1260 static void
move_freelist_tail(struct list_head * freelist,struct page * freepage)1261 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1262 {
1263 LIST_HEAD(sublist);
1264
1265 if (!list_is_first(freelist, &freepage->lru)) {
1266 list_cut_position(&sublist, freelist, &freepage->lru);
1267 if (!list_empty(&sublist))
1268 list_splice_tail(&sublist, freelist);
1269 }
1270 }
1271
1272 static void
fast_isolate_around(struct compact_control * cc,unsigned long pfn,unsigned long nr_isolated)1273 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1274 {
1275 unsigned long start_pfn, end_pfn;
1276 struct page *page;
1277
1278 /* Do not search around if there are enough pages already */
1279 if (cc->nr_freepages >= cc->nr_migratepages)
1280 return;
1281
1282 /* Minimise scanning during async compaction */
1283 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1284 return;
1285
1286 /* Pageblock boundaries */
1287 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1288 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1289
1290 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1291 if (!page)
1292 return;
1293
1294 /* Scan before */
1295 if (start_pfn != pfn) {
1296 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1297 if (cc->nr_freepages >= cc->nr_migratepages)
1298 return;
1299 }
1300
1301 /* Scan after */
1302 start_pfn = pfn + nr_isolated;
1303 if (start_pfn < end_pfn)
1304 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1305
1306 /* Skip this pageblock in the future as it's full or nearly full */
1307 if (cc->nr_freepages < cc->nr_migratepages)
1308 set_pageblock_skip(page);
1309 }
1310
1311 /* Search orders in round-robin fashion */
next_search_order(struct compact_control * cc,int order)1312 static int next_search_order(struct compact_control *cc, int order)
1313 {
1314 order--;
1315 if (order < 0)
1316 order = cc->order - 1;
1317
1318 /* Search wrapped around? */
1319 if (order == cc->search_order) {
1320 cc->search_order--;
1321 if (cc->search_order < 0)
1322 cc->search_order = cc->order - 1;
1323 return -1;
1324 }
1325
1326 return order;
1327 }
1328
1329 static unsigned long
fast_isolate_freepages(struct compact_control * cc)1330 fast_isolate_freepages(struct compact_control *cc)
1331 {
1332 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1333 unsigned int nr_scanned = 0;
1334 unsigned long low_pfn, min_pfn, highest = 0;
1335 unsigned long nr_isolated = 0;
1336 unsigned long distance;
1337 struct page *page = NULL;
1338 bool scan_start = false;
1339 int order;
1340
1341 /* Full compaction passes in a negative order */
1342 if (cc->order <= 0)
1343 return cc->free_pfn;
1344
1345 /*
1346 * If starting the scan, use a deeper search and use the highest
1347 * PFN found if a suitable one is not found.
1348 */
1349 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1350 limit = pageblock_nr_pages >> 1;
1351 scan_start = true;
1352 }
1353
1354 /*
1355 * Preferred point is in the top quarter of the scan space but take
1356 * a pfn from the top half if the search is problematic.
1357 */
1358 distance = (cc->free_pfn - cc->migrate_pfn);
1359 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1360 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1361
1362 if (WARN_ON_ONCE(min_pfn > low_pfn))
1363 low_pfn = min_pfn;
1364
1365 /*
1366 * Search starts from the last successful isolation order or the next
1367 * order to search after a previous failure
1368 */
1369 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1370
1371 for (order = cc->search_order;
1372 !page && order >= 0;
1373 order = next_search_order(cc, order)) {
1374 struct free_area *area = &cc->zone->free_area[order];
1375 struct list_head *freelist;
1376 struct page *freepage;
1377 unsigned long flags;
1378 unsigned int order_scanned = 0;
1379 unsigned long high_pfn = 0;
1380
1381 if (!area->nr_free)
1382 continue;
1383
1384 spin_lock_irqsave(&cc->zone->lock, flags);
1385 freelist = &area->free_list[MIGRATE_MOVABLE];
1386 list_for_each_entry_reverse(freepage, freelist, lru) {
1387 unsigned long pfn;
1388
1389 order_scanned++;
1390 nr_scanned++;
1391 pfn = page_to_pfn(freepage);
1392
1393 if (pfn >= highest)
1394 highest = max(pageblock_start_pfn(pfn),
1395 cc->zone->zone_start_pfn);
1396
1397 if (pfn >= low_pfn) {
1398 cc->fast_search_fail = 0;
1399 cc->search_order = order;
1400 page = freepage;
1401 break;
1402 }
1403
1404 if (pfn >= min_pfn && pfn > high_pfn) {
1405 high_pfn = pfn;
1406
1407 /* Shorten the scan if a candidate is found */
1408 limit >>= 1;
1409 }
1410
1411 if (order_scanned >= limit)
1412 break;
1413 }
1414
1415 /* Use a minimum pfn if a preferred one was not found */
1416 if (!page && high_pfn) {
1417 page = pfn_to_page(high_pfn);
1418
1419 /* Update freepage for the list reorder below */
1420 freepage = page;
1421 }
1422
1423 /* Reorder to so a future search skips recent pages */
1424 move_freelist_head(freelist, freepage);
1425
1426 /* Isolate the page if available */
1427 if (page) {
1428 if (__isolate_free_page(page, order)) {
1429 set_page_private(page, order);
1430 nr_isolated = 1 << order;
1431 cc->nr_freepages += nr_isolated;
1432 list_add_tail(&page->lru, &cc->freepages);
1433 count_compact_events(COMPACTISOLATED, nr_isolated);
1434 } else {
1435 /* If isolation fails, abort the search */
1436 order = cc->search_order + 1;
1437 page = NULL;
1438 }
1439 }
1440
1441 spin_unlock_irqrestore(&cc->zone->lock, flags);
1442
1443 /*
1444 * Smaller scan on next order so the total scan ig related
1445 * to freelist_scan_limit.
1446 */
1447 if (order_scanned >= limit)
1448 limit = min(1U, limit >> 1);
1449 }
1450
1451 if (!page) {
1452 cc->fast_search_fail++;
1453 if (scan_start) {
1454 /*
1455 * Use the highest PFN found above min. If one was
1456 * not found, be pessimistic for direct compaction
1457 * and use the min mark.
1458 */
1459 if (highest) {
1460 page = pfn_to_page(highest);
1461 cc->free_pfn = highest;
1462 } else {
1463 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1464 page = pageblock_pfn_to_page(min_pfn,
1465 min(pageblock_end_pfn(min_pfn),
1466 zone_end_pfn(cc->zone)),
1467 cc->zone);
1468 cc->free_pfn = min_pfn;
1469 }
1470 }
1471 }
1472 }
1473
1474 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1475 highest -= pageblock_nr_pages;
1476 cc->zone->compact_cached_free_pfn = highest;
1477 }
1478
1479 cc->total_free_scanned += nr_scanned;
1480 if (!page)
1481 return cc->free_pfn;
1482
1483 low_pfn = page_to_pfn(page);
1484 fast_isolate_around(cc, low_pfn, nr_isolated);
1485 return low_pfn;
1486 }
1487
1488 /*
1489 * Based on information in the current compact_control, find blocks
1490 * suitable for isolating free pages from and then isolate them.
1491 */
isolate_freepages(struct compact_control * cc)1492 static void isolate_freepages(struct compact_control *cc)
1493 {
1494 struct zone *zone = cc->zone;
1495 struct page *page;
1496 unsigned long block_start_pfn; /* start of current pageblock */
1497 unsigned long isolate_start_pfn; /* exact pfn we start at */
1498 unsigned long block_end_pfn; /* end of current pageblock */
1499 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1500 struct list_head *freelist = &cc->freepages;
1501 unsigned int stride;
1502
1503 /* Try a small search of the free lists for a candidate */
1504 isolate_start_pfn = fast_isolate_freepages(cc);
1505 if (cc->nr_freepages)
1506 goto splitmap;
1507
1508 /*
1509 * Initialise the free scanner. The starting point is where we last
1510 * successfully isolated from, zone-cached value, or the end of the
1511 * zone when isolating for the first time. For looping we also need
1512 * this pfn aligned down to the pageblock boundary, because we do
1513 * block_start_pfn -= pageblock_nr_pages in the for loop.
1514 * For ending point, take care when isolating in last pageblock of a
1515 * zone which ends in the middle of a pageblock.
1516 * The low boundary is the end of the pageblock the migration scanner
1517 * is using.
1518 */
1519 isolate_start_pfn = cc->free_pfn;
1520 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1521 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1522 zone_end_pfn(zone));
1523 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1524 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1525
1526 /*
1527 * Isolate free pages until enough are available to migrate the
1528 * pages on cc->migratepages. We stop searching if the migrate
1529 * and free page scanners meet or enough free pages are isolated.
1530 */
1531 for (; block_start_pfn >= low_pfn;
1532 block_end_pfn = block_start_pfn,
1533 block_start_pfn -= pageblock_nr_pages,
1534 isolate_start_pfn = block_start_pfn) {
1535 unsigned long nr_isolated;
1536
1537 /*
1538 * This can iterate a massively long zone without finding any
1539 * suitable migration targets, so periodically check resched.
1540 */
1541 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1542 cond_resched();
1543
1544 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1545 zone);
1546 if (!page)
1547 continue;
1548
1549 /* Check the block is suitable for migration */
1550 if (!suitable_migration_target(cc, page))
1551 continue;
1552
1553 /* If isolation recently failed, do not retry */
1554 if (!isolation_suitable(cc, page))
1555 continue;
1556
1557 /* Found a block suitable for isolating free pages from. */
1558 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1559 block_end_pfn, freelist, stride, false);
1560
1561 /* Update the skip hint if the full pageblock was scanned */
1562 if (isolate_start_pfn == block_end_pfn)
1563 update_pageblock_skip(cc, page, block_start_pfn);
1564
1565 /* Are enough freepages isolated? */
1566 if (cc->nr_freepages >= cc->nr_migratepages) {
1567 if (isolate_start_pfn >= block_end_pfn) {
1568 /*
1569 * Restart at previous pageblock if more
1570 * freepages can be isolated next time.
1571 */
1572 isolate_start_pfn =
1573 block_start_pfn - pageblock_nr_pages;
1574 }
1575 break;
1576 } else if (isolate_start_pfn < block_end_pfn) {
1577 /*
1578 * If isolation failed early, do not continue
1579 * needlessly.
1580 */
1581 break;
1582 }
1583
1584 /* Adjust stride depending on isolation */
1585 if (nr_isolated) {
1586 stride = 1;
1587 continue;
1588 }
1589 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1590 }
1591
1592 /*
1593 * Record where the free scanner will restart next time. Either we
1594 * broke from the loop and set isolate_start_pfn based on the last
1595 * call to isolate_freepages_block(), or we met the migration scanner
1596 * and the loop terminated due to isolate_start_pfn < low_pfn
1597 */
1598 cc->free_pfn = isolate_start_pfn;
1599
1600 splitmap:
1601 /* __isolate_free_page() does not map the pages */
1602 split_map_pages(freelist);
1603 }
1604
1605 /*
1606 * This is a migrate-callback that "allocates" freepages by taking pages
1607 * from the isolated freelists in the block we are migrating to.
1608 */
compaction_alloc(struct page * migratepage,unsigned long data)1609 static struct page *compaction_alloc(struct page *migratepage,
1610 unsigned long data)
1611 {
1612 struct compact_control *cc = (struct compact_control *)data;
1613 struct page *freepage;
1614
1615 if (list_empty(&cc->freepages)) {
1616 isolate_freepages(cc);
1617
1618 if (list_empty(&cc->freepages))
1619 return NULL;
1620 }
1621
1622 freepage = list_entry(cc->freepages.next, struct page, lru);
1623 list_del(&freepage->lru);
1624 cc->nr_freepages--;
1625
1626 return freepage;
1627 }
1628
1629 /*
1630 * This is a migrate-callback that "frees" freepages back to the isolated
1631 * freelist. All pages on the freelist are from the same zone, so there is no
1632 * special handling needed for NUMA.
1633 */
compaction_free(struct page * page,unsigned long data)1634 static void compaction_free(struct page *page, unsigned long data)
1635 {
1636 struct compact_control *cc = (struct compact_control *)data;
1637
1638 list_add(&page->lru, &cc->freepages);
1639 cc->nr_freepages++;
1640 }
1641
1642 /* possible outcome of isolate_migratepages */
1643 typedef enum {
1644 ISOLATE_ABORT, /* Abort compaction now */
1645 ISOLATE_NONE, /* No pages isolated, continue scanning */
1646 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1647 } isolate_migrate_t;
1648
1649 /*
1650 * Allow userspace to control policy on scanning the unevictable LRU for
1651 * compactable pages.
1652 */
1653 #ifdef CONFIG_PREEMPT_RT
1654 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1655 #else
1656 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1657 #endif
1658
1659 static inline void
update_fast_start_pfn(struct compact_control * cc,unsigned long pfn)1660 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1661 {
1662 if (cc->fast_start_pfn == ULONG_MAX)
1663 return;
1664
1665 if (!cc->fast_start_pfn)
1666 cc->fast_start_pfn = pfn;
1667
1668 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1669 }
1670
1671 static inline unsigned long
reinit_migrate_pfn(struct compact_control * cc)1672 reinit_migrate_pfn(struct compact_control *cc)
1673 {
1674 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1675 return cc->migrate_pfn;
1676
1677 cc->migrate_pfn = cc->fast_start_pfn;
1678 cc->fast_start_pfn = ULONG_MAX;
1679
1680 return cc->migrate_pfn;
1681 }
1682
1683 /*
1684 * Briefly search the free lists for a migration source that already has
1685 * some free pages to reduce the number of pages that need migration
1686 * before a pageblock is free.
1687 */
fast_find_migrateblock(struct compact_control * cc)1688 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1689 {
1690 unsigned int limit = freelist_scan_limit(cc);
1691 unsigned int nr_scanned = 0;
1692 unsigned long distance;
1693 unsigned long pfn = cc->migrate_pfn;
1694 unsigned long high_pfn;
1695 int order;
1696 bool found_block = false;
1697
1698 /* Skip hints are relied on to avoid repeats on the fast search */
1699 if (cc->ignore_skip_hint)
1700 return pfn;
1701
1702 /*
1703 * If the migrate_pfn is not at the start of a zone or the start
1704 * of a pageblock then assume this is a continuation of a previous
1705 * scan restarted due to COMPACT_CLUSTER_MAX.
1706 */
1707 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1708 return pfn;
1709
1710 /*
1711 * For smaller orders, just linearly scan as the number of pages
1712 * to migrate should be relatively small and does not necessarily
1713 * justify freeing up a large block for a small allocation.
1714 */
1715 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1716 return pfn;
1717
1718 /*
1719 * Only allow kcompactd and direct requests for movable pages to
1720 * quickly clear out a MOVABLE pageblock for allocation. This
1721 * reduces the risk that a large movable pageblock is freed for
1722 * an unmovable/reclaimable small allocation.
1723 */
1724 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1725 return pfn;
1726
1727 /*
1728 * When starting the migration scanner, pick any pageblock within the
1729 * first half of the search space. Otherwise try and pick a pageblock
1730 * within the first eighth to reduce the chances that a migration
1731 * target later becomes a source.
1732 */
1733 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1734 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1735 distance >>= 2;
1736 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1737
1738 for (order = cc->order - 1;
1739 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1740 order--) {
1741 struct free_area *area = &cc->zone->free_area[order];
1742 struct list_head *freelist;
1743 unsigned long flags;
1744 struct page *freepage;
1745
1746 if (!area->nr_free)
1747 continue;
1748
1749 spin_lock_irqsave(&cc->zone->lock, flags);
1750 freelist = &area->free_list[MIGRATE_MOVABLE];
1751 list_for_each_entry(freepage, freelist, lru) {
1752 unsigned long free_pfn;
1753
1754 if (nr_scanned++ >= limit) {
1755 move_freelist_tail(freelist, freepage);
1756 break;
1757 }
1758
1759 free_pfn = page_to_pfn(freepage);
1760 if (free_pfn < high_pfn) {
1761 /*
1762 * Avoid if skipped recently. Ideally it would
1763 * move to the tail but even safe iteration of
1764 * the list assumes an entry is deleted, not
1765 * reordered.
1766 */
1767 if (get_pageblock_skip(freepage))
1768 continue;
1769
1770 /* Reorder to so a future search skips recent pages */
1771 move_freelist_tail(freelist, freepage);
1772
1773 update_fast_start_pfn(cc, free_pfn);
1774 pfn = pageblock_start_pfn(free_pfn);
1775 if (pfn < cc->zone->zone_start_pfn)
1776 pfn = cc->zone->zone_start_pfn;
1777 cc->fast_search_fail = 0;
1778 found_block = true;
1779 set_pageblock_skip(freepage);
1780 break;
1781 }
1782 }
1783 spin_unlock_irqrestore(&cc->zone->lock, flags);
1784 }
1785
1786 cc->total_migrate_scanned += nr_scanned;
1787
1788 /*
1789 * If fast scanning failed then use a cached entry for a page block
1790 * that had free pages as the basis for starting a linear scan.
1791 */
1792 if (!found_block) {
1793 cc->fast_search_fail++;
1794 pfn = reinit_migrate_pfn(cc);
1795 }
1796 return pfn;
1797 }
1798
1799 /*
1800 * Isolate all pages that can be migrated from the first suitable block,
1801 * starting at the block pointed to by the migrate scanner pfn within
1802 * compact_control.
1803 */
isolate_migratepages(struct compact_control * cc)1804 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1805 {
1806 unsigned long block_start_pfn;
1807 unsigned long block_end_pfn;
1808 unsigned long low_pfn;
1809 struct page *page;
1810 const isolate_mode_t isolate_mode =
1811 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1812 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1813 bool fast_find_block;
1814
1815 /*
1816 * Start at where we last stopped, or beginning of the zone as
1817 * initialized by compact_zone(). The first failure will use
1818 * the lowest PFN as the starting point for linear scanning.
1819 */
1820 low_pfn = fast_find_migrateblock(cc);
1821 block_start_pfn = pageblock_start_pfn(low_pfn);
1822 if (block_start_pfn < cc->zone->zone_start_pfn)
1823 block_start_pfn = cc->zone->zone_start_pfn;
1824
1825 /*
1826 * fast_find_migrateblock marks a pageblock skipped so to avoid
1827 * the isolation_suitable check below, check whether the fast
1828 * search was successful.
1829 */
1830 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1831
1832 /* Only scan within a pageblock boundary */
1833 block_end_pfn = pageblock_end_pfn(low_pfn);
1834
1835 /*
1836 * Iterate over whole pageblocks until we find the first suitable.
1837 * Do not cross the free scanner.
1838 */
1839 for (; block_end_pfn <= cc->free_pfn;
1840 fast_find_block = false,
1841 low_pfn = block_end_pfn,
1842 block_start_pfn = block_end_pfn,
1843 block_end_pfn += pageblock_nr_pages) {
1844
1845 /*
1846 * This can potentially iterate a massively long zone with
1847 * many pageblocks unsuitable, so periodically check if we
1848 * need to schedule.
1849 */
1850 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1851 cond_resched();
1852
1853 page = pageblock_pfn_to_page(block_start_pfn,
1854 block_end_pfn, cc->zone);
1855 if (!page)
1856 continue;
1857
1858 /*
1859 * If isolation recently failed, do not retry. Only check the
1860 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1861 * to be visited multiple times. Assume skip was checked
1862 * before making it "skip" so other compaction instances do
1863 * not scan the same block.
1864 */
1865 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1866 !fast_find_block && !isolation_suitable(cc, page))
1867 continue;
1868
1869 /*
1870 * For async compaction, also only scan in MOVABLE blocks
1871 * without huge pages. Async compaction is optimistic to see
1872 * if the minimum amount of work satisfies the allocation.
1873 * The cached PFN is updated as it's possible that all
1874 * remaining blocks between source and target are unsuitable
1875 * and the compaction scanners fail to meet.
1876 */
1877 if (!suitable_migration_source(cc, page)) {
1878 update_cached_migrate(cc, block_end_pfn);
1879 continue;
1880 }
1881
1882 /* Perform the isolation */
1883 low_pfn = isolate_migratepages_block(cc, low_pfn,
1884 block_end_pfn, isolate_mode);
1885
1886 if (!low_pfn)
1887 return ISOLATE_ABORT;
1888
1889 /*
1890 * Either we isolated something and proceed with migration. Or
1891 * we failed and compact_zone should decide if we should
1892 * continue or not.
1893 */
1894 break;
1895 }
1896
1897 /* Record where migration scanner will be restarted. */
1898 cc->migrate_pfn = low_pfn;
1899
1900 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1901 }
1902
1903 /*
1904 * order == -1 is expected when compacting via
1905 * /proc/sys/vm/compact_memory
1906 */
is_via_compact_memory(int order)1907 static inline bool is_via_compact_memory(int order)
1908 {
1909 return order == -1;
1910 }
1911
kswapd_is_running(pg_data_t * pgdat)1912 static bool kswapd_is_running(pg_data_t *pgdat)
1913 {
1914 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1915 }
1916
1917 /*
1918 * A zone's fragmentation score is the external fragmentation wrt to the
1919 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1920 */
fragmentation_score_zone(struct zone * zone)1921 static unsigned int fragmentation_score_zone(struct zone *zone)
1922 {
1923 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1924 }
1925
1926 /*
1927 * A weighted zone's fragmentation score is the external fragmentation
1928 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1929 * returns a value in the range [0, 100].
1930 *
1931 * The scaling factor ensures that proactive compaction focuses on larger
1932 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1933 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1934 * and thus never exceeds the high threshold for proactive compaction.
1935 */
fragmentation_score_zone_weighted(struct zone * zone)1936 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1937 {
1938 unsigned long score;
1939
1940 score = zone->present_pages * fragmentation_score_zone(zone);
1941 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1942 }
1943
1944 /*
1945 * The per-node proactive (background) compaction process is started by its
1946 * corresponding kcompactd thread when the node's fragmentation score
1947 * exceeds the high threshold. The compaction process remains active till
1948 * the node's score falls below the low threshold, or one of the back-off
1949 * conditions is met.
1950 */
fragmentation_score_node(pg_data_t * pgdat)1951 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1952 {
1953 unsigned int score = 0;
1954 int zoneid;
1955
1956 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1957 struct zone *zone;
1958
1959 zone = &pgdat->node_zones[zoneid];
1960 score += fragmentation_score_zone_weighted(zone);
1961 }
1962
1963 return score;
1964 }
1965
fragmentation_score_wmark(pg_data_t * pgdat,bool low)1966 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1967 {
1968 unsigned int wmark_low;
1969
1970 /*
1971 * Cap the low watermak to avoid excessive compaction
1972 * activity in case a user sets the proactivess tunable
1973 * close to 100 (maximum).
1974 */
1975 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1976 return low ? wmark_low : min(wmark_low + 10, 100U);
1977 }
1978
should_proactive_compact_node(pg_data_t * pgdat)1979 static bool should_proactive_compact_node(pg_data_t *pgdat)
1980 {
1981 int wmark_high;
1982
1983 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1984 return false;
1985
1986 wmark_high = fragmentation_score_wmark(pgdat, false);
1987 return fragmentation_score_node(pgdat) > wmark_high;
1988 }
1989
__compact_finished(struct compact_control * cc)1990 static enum compact_result __compact_finished(struct compact_control *cc)
1991 {
1992 unsigned int order;
1993 const int migratetype = cc->migratetype;
1994 int ret;
1995
1996 /* Compaction run completes if the migrate and free scanner meet */
1997 if (compact_scanners_met(cc)) {
1998 /* Let the next compaction start anew. */
1999 reset_cached_positions(cc->zone);
2000
2001 /*
2002 * Mark that the PG_migrate_skip information should be cleared
2003 * by kswapd when it goes to sleep. kcompactd does not set the
2004 * flag itself as the decision to be clear should be directly
2005 * based on an allocation request.
2006 */
2007 if (cc->direct_compaction)
2008 cc->zone->compact_blockskip_flush = true;
2009
2010 if (cc->whole_zone)
2011 return COMPACT_COMPLETE;
2012 else
2013 return COMPACT_PARTIAL_SKIPPED;
2014 }
2015
2016 if (cc->proactive_compaction) {
2017 int score, wmark_low;
2018 pg_data_t *pgdat;
2019
2020 pgdat = cc->zone->zone_pgdat;
2021 if (kswapd_is_running(pgdat))
2022 return COMPACT_PARTIAL_SKIPPED;
2023
2024 score = fragmentation_score_zone(cc->zone);
2025 wmark_low = fragmentation_score_wmark(pgdat, true);
2026
2027 if (score > wmark_low)
2028 ret = COMPACT_CONTINUE;
2029 else
2030 ret = COMPACT_SUCCESS;
2031
2032 goto out;
2033 }
2034
2035 if (is_via_compact_memory(cc->order))
2036 return COMPACT_CONTINUE;
2037
2038 /*
2039 * Always finish scanning a pageblock to reduce the possibility of
2040 * fallbacks in the future. This is particularly important when
2041 * migration source is unmovable/reclaimable but it's not worth
2042 * special casing.
2043 */
2044 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2045 return COMPACT_CONTINUE;
2046
2047 /* Direct compactor: Is a suitable page free? */
2048 ret = COMPACT_NO_SUITABLE_PAGE;
2049 for (order = cc->order; order < MAX_ORDER; order++) {
2050 struct free_area *area = &cc->zone->free_area[order];
2051 bool can_steal;
2052
2053 /* Job done if page is free of the right migratetype */
2054 if (!free_area_empty(area, migratetype))
2055 return COMPACT_SUCCESS;
2056
2057 #ifdef CONFIG_CMA
2058 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2059 if (migratetype == MIGRATE_MOVABLE &&
2060 !free_area_empty(area, MIGRATE_CMA))
2061 return COMPACT_SUCCESS;
2062 #endif
2063 /*
2064 * Job done if allocation would steal freepages from
2065 * other migratetype buddy lists.
2066 */
2067 if (find_suitable_fallback(area, order, migratetype,
2068 true, &can_steal) != -1) {
2069
2070 /* movable pages are OK in any pageblock */
2071 if (migratetype == MIGRATE_MOVABLE)
2072 return COMPACT_SUCCESS;
2073
2074 /*
2075 * We are stealing for a non-movable allocation. Make
2076 * sure we finish compacting the current pageblock
2077 * first so it is as free as possible and we won't
2078 * have to steal another one soon. This only applies
2079 * to sync compaction, as async compaction operates
2080 * on pageblocks of the same migratetype.
2081 */
2082 if (cc->mode == MIGRATE_ASYNC ||
2083 IS_ALIGNED(cc->migrate_pfn,
2084 pageblock_nr_pages)) {
2085 return COMPACT_SUCCESS;
2086 }
2087
2088 ret = COMPACT_CONTINUE;
2089 break;
2090 }
2091 }
2092
2093 out:
2094 if (cc->contended || fatal_signal_pending(current))
2095 ret = COMPACT_CONTENDED;
2096
2097 return ret;
2098 }
2099
compact_finished(struct compact_control * cc)2100 static enum compact_result compact_finished(struct compact_control *cc)
2101 {
2102 int ret;
2103
2104 ret = __compact_finished(cc);
2105 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2106 if (ret == COMPACT_NO_SUITABLE_PAGE)
2107 ret = COMPACT_CONTINUE;
2108
2109 return ret;
2110 }
2111
2112 /*
2113 * compaction_suitable: Is this suitable to run compaction on this zone now?
2114 * Returns
2115 * COMPACT_SKIPPED - If there are too few free pages for compaction
2116 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2117 * COMPACT_CONTINUE - If compaction should run now
2118 */
__compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx,unsigned long wmark_target)2119 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2120 unsigned int alloc_flags,
2121 int highest_zoneidx,
2122 unsigned long wmark_target)
2123 {
2124 unsigned long watermark;
2125
2126 if (is_via_compact_memory(order))
2127 return COMPACT_CONTINUE;
2128
2129 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2130 /*
2131 * If watermarks for high-order allocation are already met, there
2132 * should be no need for compaction at all.
2133 */
2134 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2135 alloc_flags))
2136 return COMPACT_SUCCESS;
2137
2138 /*
2139 * Watermarks for order-0 must be met for compaction to be able to
2140 * isolate free pages for migration targets. This means that the
2141 * watermark and alloc_flags have to match, or be more pessimistic than
2142 * the check in __isolate_free_page(). We don't use the direct
2143 * compactor's alloc_flags, as they are not relevant for freepage
2144 * isolation. We however do use the direct compactor's highest_zoneidx
2145 * to skip over zones where lowmem reserves would prevent allocation
2146 * even if compaction succeeds.
2147 * For costly orders, we require low watermark instead of min for
2148 * compaction to proceed to increase its chances.
2149 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2150 * suitable migration targets
2151 */
2152 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2153 low_wmark_pages(zone) : min_wmark_pages(zone);
2154 watermark += compact_gap(order);
2155 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2156 ALLOC_CMA, wmark_target))
2157 return COMPACT_SKIPPED;
2158
2159 return COMPACT_CONTINUE;
2160 }
2161
compaction_suitable(struct zone * zone,int order,unsigned int alloc_flags,int highest_zoneidx)2162 enum compact_result compaction_suitable(struct zone *zone, int order,
2163 unsigned int alloc_flags,
2164 int highest_zoneidx)
2165 {
2166 enum compact_result ret;
2167 int fragindex;
2168
2169 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2170 zone_page_state(zone, NR_FREE_PAGES));
2171 /*
2172 * fragmentation index determines if allocation failures are due to
2173 * low memory or external fragmentation
2174 *
2175 * index of -1000 would imply allocations might succeed depending on
2176 * watermarks, but we already failed the high-order watermark check
2177 * index towards 0 implies failure is due to lack of memory
2178 * index towards 1000 implies failure is due to fragmentation
2179 *
2180 * Only compact if a failure would be due to fragmentation. Also
2181 * ignore fragindex for non-costly orders where the alternative to
2182 * a successful reclaim/compaction is OOM. Fragindex and the
2183 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2184 * excessive compaction for costly orders, but it should not be at the
2185 * expense of system stability.
2186 */
2187 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2188 fragindex = fragmentation_index(zone, order);
2189 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2190 ret = COMPACT_NOT_SUITABLE_ZONE;
2191 }
2192
2193 trace_mm_compaction_suitable(zone, order, ret);
2194 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2195 ret = COMPACT_SKIPPED;
2196
2197 return ret;
2198 }
2199
compaction_zonelist_suitable(struct alloc_context * ac,int order,int alloc_flags)2200 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2201 int alloc_flags)
2202 {
2203 struct zone *zone;
2204 struct zoneref *z;
2205
2206 /*
2207 * Make sure at least one zone would pass __compaction_suitable if we continue
2208 * retrying the reclaim.
2209 */
2210 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2211 ac->highest_zoneidx, ac->nodemask) {
2212 unsigned long available;
2213 enum compact_result compact_result;
2214
2215 /*
2216 * Do not consider all the reclaimable memory because we do not
2217 * want to trash just for a single high order allocation which
2218 * is even not guaranteed to appear even if __compaction_suitable
2219 * is happy about the watermark check.
2220 */
2221 available = zone_reclaimable_pages(zone) / order;
2222 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2223 compact_result = __compaction_suitable(zone, order, alloc_flags,
2224 ac->highest_zoneidx, available);
2225 if (compact_result != COMPACT_SKIPPED)
2226 return true;
2227 }
2228
2229 return false;
2230 }
2231
2232 static enum compact_result
compact_zone(struct compact_control * cc,struct capture_control * capc)2233 compact_zone(struct compact_control *cc, struct capture_control *capc)
2234 {
2235 enum compact_result ret;
2236 unsigned long start_pfn = cc->zone->zone_start_pfn;
2237 unsigned long end_pfn = zone_end_pfn(cc->zone);
2238 unsigned long last_migrated_pfn;
2239 const bool sync = cc->mode != MIGRATE_ASYNC;
2240 bool update_cached;
2241
2242 /*
2243 * These counters track activities during zone compaction. Initialize
2244 * them before compacting a new zone.
2245 */
2246 cc->total_migrate_scanned = 0;
2247 cc->total_free_scanned = 0;
2248 cc->nr_migratepages = 0;
2249 cc->nr_freepages = 0;
2250 INIT_LIST_HEAD(&cc->freepages);
2251 INIT_LIST_HEAD(&cc->migratepages);
2252
2253 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2254 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2255 cc->highest_zoneidx);
2256 /* Compaction is likely to fail */
2257 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2258 return ret;
2259
2260 /* huh, compaction_suitable is returning something unexpected */
2261 VM_BUG_ON(ret != COMPACT_CONTINUE);
2262
2263 /*
2264 * Clear pageblock skip if there were failures recently and compaction
2265 * is about to be retried after being deferred.
2266 */
2267 if (compaction_restarting(cc->zone, cc->order))
2268 __reset_isolation_suitable(cc->zone);
2269
2270 /*
2271 * Setup to move all movable pages to the end of the zone. Used cached
2272 * information on where the scanners should start (unless we explicitly
2273 * want to compact the whole zone), but check that it is initialised
2274 * by ensuring the values are within zone boundaries.
2275 */
2276 cc->fast_start_pfn = 0;
2277 if (cc->whole_zone) {
2278 cc->migrate_pfn = start_pfn;
2279 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2280 } else {
2281 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2282 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2283 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2284 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2285 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2286 }
2287 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2288 cc->migrate_pfn = start_pfn;
2289 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2290 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2291 }
2292
2293 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2294 cc->whole_zone = true;
2295 }
2296
2297 last_migrated_pfn = 0;
2298
2299 /*
2300 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2301 * the basis that some migrations will fail in ASYNC mode. However,
2302 * if the cached PFNs match and pageblocks are skipped due to having
2303 * no isolation candidates, then the sync state does not matter.
2304 * Until a pageblock with isolation candidates is found, keep the
2305 * cached PFNs in sync to avoid revisiting the same blocks.
2306 */
2307 update_cached = !sync &&
2308 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2309
2310 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2311 cc->free_pfn, end_pfn, sync);
2312
2313 /* lru_add_drain_all could be expensive with involving other CPUs */
2314 lru_add_drain();
2315
2316 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2317 int err;
2318 unsigned long start_pfn = cc->migrate_pfn;
2319
2320 /*
2321 * Avoid multiple rescans which can happen if a page cannot be
2322 * isolated (dirty/writeback in async mode) or if the migrated
2323 * pages are being allocated before the pageblock is cleared.
2324 * The first rescan will capture the entire pageblock for
2325 * migration. If it fails, it'll be marked skip and scanning
2326 * will proceed as normal.
2327 */
2328 cc->rescan = false;
2329 if (pageblock_start_pfn(last_migrated_pfn) ==
2330 pageblock_start_pfn(start_pfn)) {
2331 cc->rescan = true;
2332 }
2333
2334 switch (isolate_migratepages(cc)) {
2335 case ISOLATE_ABORT:
2336 ret = COMPACT_CONTENDED;
2337 putback_movable_pages(&cc->migratepages);
2338 cc->nr_migratepages = 0;
2339 goto out;
2340 case ISOLATE_NONE:
2341 if (update_cached) {
2342 cc->zone->compact_cached_migrate_pfn[1] =
2343 cc->zone->compact_cached_migrate_pfn[0];
2344 }
2345
2346 /*
2347 * We haven't isolated and migrated anything, but
2348 * there might still be unflushed migrations from
2349 * previous cc->order aligned block.
2350 */
2351 goto check_drain;
2352 case ISOLATE_SUCCESS:
2353 update_cached = false;
2354 last_migrated_pfn = start_pfn;
2355 ;
2356 }
2357
2358 err = migrate_pages(&cc->migratepages, compaction_alloc,
2359 compaction_free, (unsigned long)cc, cc->mode,
2360 MR_COMPACTION);
2361
2362 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2363 &cc->migratepages);
2364
2365 /* All pages were either migrated or will be released */
2366 cc->nr_migratepages = 0;
2367 if (err) {
2368 putback_movable_pages(&cc->migratepages);
2369 /*
2370 * migrate_pages() may return -ENOMEM when scanners meet
2371 * and we want compact_finished() to detect it
2372 */
2373 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2374 ret = COMPACT_CONTENDED;
2375 goto out;
2376 }
2377 /*
2378 * We failed to migrate at least one page in the current
2379 * order-aligned block, so skip the rest of it.
2380 */
2381 if (cc->direct_compaction &&
2382 (cc->mode == MIGRATE_ASYNC)) {
2383 cc->migrate_pfn = block_end_pfn(
2384 cc->migrate_pfn - 1, cc->order);
2385 /* Draining pcplists is useless in this case */
2386 last_migrated_pfn = 0;
2387 }
2388 }
2389
2390 check_drain:
2391 /*
2392 * Has the migration scanner moved away from the previous
2393 * cc->order aligned block where we migrated from? If yes,
2394 * flush the pages that were freed, so that they can merge and
2395 * compact_finished() can detect immediately if allocation
2396 * would succeed.
2397 */
2398 if (cc->order > 0 && last_migrated_pfn) {
2399 unsigned long current_block_start =
2400 block_start_pfn(cc->migrate_pfn, cc->order);
2401
2402 if (last_migrated_pfn < current_block_start) {
2403 lru_add_drain_cpu_zone(cc->zone);
2404 /* No more flushing until we migrate again */
2405 last_migrated_pfn = 0;
2406 }
2407 }
2408
2409 /* Stop if a page has been captured */
2410 if (capc && capc->page) {
2411 ret = COMPACT_SUCCESS;
2412 break;
2413 }
2414 }
2415
2416 out:
2417 /*
2418 * Release free pages and update where the free scanner should restart,
2419 * so we don't leave any returned pages behind in the next attempt.
2420 */
2421 if (cc->nr_freepages > 0) {
2422 unsigned long free_pfn = release_freepages(&cc->freepages);
2423
2424 cc->nr_freepages = 0;
2425 VM_BUG_ON(free_pfn == 0);
2426 /* The cached pfn is always the first in a pageblock */
2427 free_pfn = pageblock_start_pfn(free_pfn);
2428 /*
2429 * Only go back, not forward. The cached pfn might have been
2430 * already reset to zone end in compact_finished()
2431 */
2432 if (free_pfn > cc->zone->compact_cached_free_pfn)
2433 cc->zone->compact_cached_free_pfn = free_pfn;
2434 }
2435
2436 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2437 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2438
2439 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2440 cc->free_pfn, end_pfn, sync, ret);
2441
2442 return ret;
2443 }
2444
compact_zone_order(struct zone * zone,int order,gfp_t gfp_mask,enum compact_priority prio,unsigned int alloc_flags,int highest_zoneidx,struct page ** capture)2445 static enum compact_result compact_zone_order(struct zone *zone, int order,
2446 gfp_t gfp_mask, enum compact_priority prio,
2447 unsigned int alloc_flags, int highest_zoneidx,
2448 struct page **capture)
2449 {
2450 enum compact_result ret;
2451 struct compact_control cc = {
2452 .order = order,
2453 .search_order = order,
2454 .gfp_mask = gfp_mask,
2455 .zone = zone,
2456 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2457 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2458 .alloc_flags = alloc_flags,
2459 .highest_zoneidx = highest_zoneidx,
2460 .direct_compaction = true,
2461 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2462 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2463 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2464 };
2465 struct capture_control capc = {
2466 .cc = &cc,
2467 .page = NULL,
2468 };
2469
2470 /*
2471 * Make sure the structs are really initialized before we expose the
2472 * capture control, in case we are interrupted and the interrupt handler
2473 * frees a page.
2474 */
2475 barrier();
2476 WRITE_ONCE(current->capture_control, &capc);
2477
2478 ret = compact_zone(&cc, &capc);
2479
2480 VM_BUG_ON(!list_empty(&cc.freepages));
2481 VM_BUG_ON(!list_empty(&cc.migratepages));
2482
2483 /*
2484 * Make sure we hide capture control first before we read the captured
2485 * page pointer, otherwise an interrupt could free and capture a page
2486 * and we would leak it.
2487 */
2488 WRITE_ONCE(current->capture_control, NULL);
2489 *capture = READ_ONCE(capc.page);
2490
2491 return ret;
2492 }
2493
2494 int sysctl_extfrag_threshold = 500;
2495
2496 /**
2497 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2498 * @gfp_mask: The GFP mask of the current allocation
2499 * @order: The order of the current allocation
2500 * @alloc_flags: The allocation flags of the current allocation
2501 * @ac: The context of current allocation
2502 * @prio: Determines how hard direct compaction should try to succeed
2503 * @capture: Pointer to free page created by compaction will be stored here
2504 *
2505 * This is the main entry point for direct page compaction.
2506 */
try_to_compact_pages(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,struct page ** capture)2507 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2508 unsigned int alloc_flags, const struct alloc_context *ac,
2509 enum compact_priority prio, struct page **capture)
2510 {
2511 int may_perform_io = gfp_mask & __GFP_IO;
2512 struct zoneref *z;
2513 struct zone *zone;
2514 enum compact_result rc = COMPACT_SKIPPED;
2515
2516 /*
2517 * Check if the GFP flags allow compaction - GFP_NOIO is really
2518 * tricky context because the migration might require IO
2519 */
2520 if (!may_perform_io)
2521 return COMPACT_SKIPPED;
2522
2523 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2524
2525 /* Compact each zone in the list */
2526 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2527 ac->highest_zoneidx, ac->nodemask) {
2528 enum compact_result status;
2529
2530 if (prio > MIN_COMPACT_PRIORITY
2531 && compaction_deferred(zone, order)) {
2532 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2533 continue;
2534 }
2535
2536 status = compact_zone_order(zone, order, gfp_mask, prio,
2537 alloc_flags, ac->highest_zoneidx, capture);
2538 rc = max(status, rc);
2539
2540 /* The allocation should succeed, stop compacting */
2541 if (status == COMPACT_SUCCESS) {
2542 /*
2543 * We think the allocation will succeed in this zone,
2544 * but it is not certain, hence the false. The caller
2545 * will repeat this with true if allocation indeed
2546 * succeeds in this zone.
2547 */
2548 compaction_defer_reset(zone, order, false);
2549
2550 break;
2551 }
2552
2553 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2554 status == COMPACT_PARTIAL_SKIPPED))
2555 /*
2556 * We think that allocation won't succeed in this zone
2557 * so we defer compaction there. If it ends up
2558 * succeeding after all, it will be reset.
2559 */
2560 defer_compaction(zone, order);
2561
2562 /*
2563 * We might have stopped compacting due to need_resched() in
2564 * async compaction, or due to a fatal signal detected. In that
2565 * case do not try further zones
2566 */
2567 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2568 || fatal_signal_pending(current))
2569 break;
2570 }
2571
2572 return rc;
2573 }
2574
2575 /*
2576 * Compact all zones within a node till each zone's fragmentation score
2577 * reaches within proactive compaction thresholds (as determined by the
2578 * proactiveness tunable).
2579 *
2580 * It is possible that the function returns before reaching score targets
2581 * due to various back-off conditions, such as, contention on per-node or
2582 * per-zone locks.
2583 */
proactive_compact_node(pg_data_t * pgdat)2584 static void proactive_compact_node(pg_data_t *pgdat)
2585 {
2586 int zoneid;
2587 struct zone *zone;
2588 struct compact_control cc = {
2589 .order = -1,
2590 .mode = MIGRATE_SYNC_LIGHT,
2591 .ignore_skip_hint = true,
2592 .whole_zone = true,
2593 .gfp_mask = GFP_KERNEL,
2594 .proactive_compaction = true,
2595 };
2596
2597 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2598 zone = &pgdat->node_zones[zoneid];
2599 if (!populated_zone(zone))
2600 continue;
2601
2602 cc.zone = zone;
2603
2604 compact_zone(&cc, NULL);
2605
2606 VM_BUG_ON(!list_empty(&cc.freepages));
2607 VM_BUG_ON(!list_empty(&cc.migratepages));
2608 }
2609 }
2610
2611 /* Compact all zones within a node */
compact_node(int nid)2612 static void compact_node(int nid)
2613 {
2614 pg_data_t *pgdat = NODE_DATA(nid);
2615 int zoneid;
2616 struct zone *zone;
2617 struct compact_control cc = {
2618 .order = -1,
2619 .mode = MIGRATE_SYNC,
2620 .ignore_skip_hint = true,
2621 .whole_zone = true,
2622 .gfp_mask = GFP_KERNEL,
2623 };
2624
2625
2626 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2627
2628 zone = &pgdat->node_zones[zoneid];
2629 if (!populated_zone(zone))
2630 continue;
2631
2632 cc.zone = zone;
2633
2634 compact_zone(&cc, NULL);
2635
2636 VM_BUG_ON(!list_empty(&cc.freepages));
2637 VM_BUG_ON(!list_empty(&cc.migratepages));
2638 }
2639 }
2640
2641 /* Compact all nodes in the system */
compact_nodes(void)2642 static void compact_nodes(void)
2643 {
2644 int nid;
2645
2646 /* Flush pending updates to the LRU lists */
2647 lru_add_drain_all();
2648
2649 for_each_online_node(nid)
2650 compact_node(nid);
2651 }
2652
2653 /* The written value is actually unused, all memory is compacted */
2654 int sysctl_compact_memory;
2655
2656 /*
2657 * Tunable for proactive compaction. It determines how
2658 * aggressively the kernel should compact memory in the
2659 * background. It takes values in the range [0, 100].
2660 */
2661 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2662
compaction_proactiveness_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2663 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2664 void *buffer, size_t *length, loff_t *ppos)
2665 {
2666 int rc, nid;
2667
2668 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2669 if (rc)
2670 return rc;
2671
2672 if (write && sysctl_compaction_proactiveness) {
2673 for_each_online_node(nid) {
2674 pg_data_t *pgdat = NODE_DATA(nid);
2675
2676 if (pgdat->proactive_compact_trigger)
2677 continue;
2678
2679 pgdat->proactive_compact_trigger = true;
2680 wake_up_interruptible(&pgdat->kcompactd_wait);
2681 }
2682 }
2683
2684 return 0;
2685 }
2686
2687 /*
2688 * This is the entry point for compacting all nodes via
2689 * /proc/sys/vm/compact_memory
2690 */
sysctl_compaction_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2691 int sysctl_compaction_handler(struct ctl_table *table, int write,
2692 void *buffer, size_t *length, loff_t *ppos)
2693 {
2694 if (write)
2695 compact_nodes();
2696
2697 return 0;
2698 }
2699
2700 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
sysfs_compact_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2701 static ssize_t sysfs_compact_node(struct device *dev,
2702 struct device_attribute *attr,
2703 const char *buf, size_t count)
2704 {
2705 int nid = dev->id;
2706
2707 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2708 /* Flush pending updates to the LRU lists */
2709 lru_add_drain_all();
2710
2711 compact_node(nid);
2712 }
2713
2714 return count;
2715 }
2716 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2717
compaction_register_node(struct node * node)2718 int compaction_register_node(struct node *node)
2719 {
2720 return device_create_file(&node->dev, &dev_attr_compact);
2721 }
2722
compaction_unregister_node(struct node * node)2723 void compaction_unregister_node(struct node *node)
2724 {
2725 return device_remove_file(&node->dev, &dev_attr_compact);
2726 }
2727 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2728
kcompactd_work_requested(pg_data_t * pgdat)2729 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2730 {
2731 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2732 pgdat->proactive_compact_trigger;
2733 }
2734
kcompactd_node_suitable(pg_data_t * pgdat)2735 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2736 {
2737 int zoneid;
2738 struct zone *zone;
2739 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2740
2741 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2742 zone = &pgdat->node_zones[zoneid];
2743
2744 if (!populated_zone(zone))
2745 continue;
2746
2747 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2748 highest_zoneidx) == COMPACT_CONTINUE)
2749 return true;
2750 }
2751
2752 return false;
2753 }
2754
kcompactd_do_work(pg_data_t * pgdat)2755 static void kcompactd_do_work(pg_data_t *pgdat)
2756 {
2757 /*
2758 * With no special task, compact all zones so that a page of requested
2759 * order is allocatable.
2760 */
2761 int zoneid;
2762 struct zone *zone;
2763 struct compact_control cc = {
2764 .order = pgdat->kcompactd_max_order,
2765 .search_order = pgdat->kcompactd_max_order,
2766 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2767 .mode = MIGRATE_SYNC_LIGHT,
2768 .ignore_skip_hint = false,
2769 .gfp_mask = GFP_KERNEL,
2770 };
2771 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2772 cc.highest_zoneidx);
2773 count_compact_event(KCOMPACTD_WAKE);
2774
2775 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2776 int status;
2777
2778 zone = &pgdat->node_zones[zoneid];
2779 if (!populated_zone(zone))
2780 continue;
2781
2782 if (compaction_deferred(zone, cc.order))
2783 continue;
2784
2785 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2786 COMPACT_CONTINUE)
2787 continue;
2788
2789 if (kthread_should_stop())
2790 return;
2791
2792 cc.zone = zone;
2793 status = compact_zone(&cc, NULL);
2794
2795 if (status == COMPACT_SUCCESS) {
2796 compaction_defer_reset(zone, cc.order, false);
2797 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2798 /*
2799 * Buddy pages may become stranded on pcps that could
2800 * otherwise coalesce on the zone's free area for
2801 * order >= cc.order. This is ratelimited by the
2802 * upcoming deferral.
2803 */
2804 drain_all_pages(zone);
2805
2806 /*
2807 * We use sync migration mode here, so we defer like
2808 * sync direct compaction does.
2809 */
2810 defer_compaction(zone, cc.order);
2811 }
2812
2813 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2814 cc.total_migrate_scanned);
2815 count_compact_events(KCOMPACTD_FREE_SCANNED,
2816 cc.total_free_scanned);
2817
2818 VM_BUG_ON(!list_empty(&cc.freepages));
2819 VM_BUG_ON(!list_empty(&cc.migratepages));
2820 }
2821
2822 /*
2823 * Regardless of success, we are done until woken up next. But remember
2824 * the requested order/highest_zoneidx in case it was higher/tighter
2825 * than our current ones
2826 */
2827 if (pgdat->kcompactd_max_order <= cc.order)
2828 pgdat->kcompactd_max_order = 0;
2829 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2830 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2831 }
2832
wakeup_kcompactd(pg_data_t * pgdat,int order,int highest_zoneidx)2833 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2834 {
2835 if (!order)
2836 return;
2837
2838 if (pgdat->kcompactd_max_order < order)
2839 pgdat->kcompactd_max_order = order;
2840
2841 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2842 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2843
2844 /*
2845 * Pairs with implicit barrier in wait_event_freezable()
2846 * such that wakeups are not missed.
2847 */
2848 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2849 return;
2850
2851 if (!kcompactd_node_suitable(pgdat))
2852 return;
2853
2854 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2855 highest_zoneidx);
2856 wake_up_interruptible(&pgdat->kcompactd_wait);
2857 }
2858
2859 /*
2860 * The background compaction daemon, started as a kernel thread
2861 * from the init process.
2862 */
kcompactd(void * p)2863 static int kcompactd(void *p)
2864 {
2865 pg_data_t *pgdat = (pg_data_t*)p;
2866 struct task_struct *tsk = current;
2867 unsigned int proactive_defer = 0;
2868
2869 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2870
2871 if (!cpumask_empty(cpumask))
2872 set_cpus_allowed_ptr(tsk, cpumask);
2873
2874 set_freezable();
2875
2876 pgdat->kcompactd_max_order = 0;
2877 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2878
2879 while (!kthread_should_stop()) {
2880 unsigned long pflags;
2881 long timeout;
2882
2883 timeout = sysctl_compaction_proactiveness ?
2884 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC) :
2885 MAX_SCHEDULE_TIMEOUT;
2886 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2887 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2888 kcompactd_work_requested(pgdat), timeout) &&
2889 !pgdat->proactive_compact_trigger) {
2890
2891 psi_memstall_enter(&pflags);
2892 kcompactd_do_work(pgdat);
2893 psi_memstall_leave(&pflags);
2894 continue;
2895 }
2896
2897 /* kcompactd wait timeout */
2898 if (should_proactive_compact_node(pgdat)) {
2899 unsigned int prev_score, score;
2900
2901 /*
2902 * On wakeup of proactive compaction by sysctl
2903 * write, ignore the accumulated defer score.
2904 * Anyway, if the proactive compaction didn't
2905 * make any progress for the new value, it will
2906 * be further deferred by 2^COMPACT_MAX_DEFER_SHIFT
2907 * times.
2908 */
2909 if (proactive_defer &&
2910 !pgdat->proactive_compact_trigger) {
2911 proactive_defer--;
2912 continue;
2913 }
2914
2915 prev_score = fragmentation_score_node(pgdat);
2916 proactive_compact_node(pgdat);
2917 score = fragmentation_score_node(pgdat);
2918 /*
2919 * Defer proactive compaction if the fragmentation
2920 * score did not go down i.e. no progress made.
2921 */
2922 proactive_defer = score < prev_score ?
2923 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2924 }
2925 if (pgdat->proactive_compact_trigger)
2926 pgdat->proactive_compact_trigger = false;
2927 }
2928
2929 return 0;
2930 }
2931
2932 /*
2933 * This kcompactd start function will be called by init and node-hot-add.
2934 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2935 */
kcompactd_run(int nid)2936 int kcompactd_run(int nid)
2937 {
2938 pg_data_t *pgdat = NODE_DATA(nid);
2939 int ret = 0;
2940
2941 if (pgdat->kcompactd)
2942 return 0;
2943
2944 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2945 if (IS_ERR(pgdat->kcompactd)) {
2946 pr_err("Failed to start kcompactd on node %d\n", nid);
2947 ret = PTR_ERR(pgdat->kcompactd);
2948 pgdat->kcompactd = NULL;
2949 }
2950 return ret;
2951 }
2952
2953 /*
2954 * Called by memory hotplug when all memory in a node is offlined. Caller must
2955 * hold mem_hotplug_begin/end().
2956 */
kcompactd_stop(int nid)2957 void kcompactd_stop(int nid)
2958 {
2959 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2960
2961 if (kcompactd) {
2962 kthread_stop(kcompactd);
2963 NODE_DATA(nid)->kcompactd = NULL;
2964 }
2965 }
2966
2967 /*
2968 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2969 * not required for correctness. So if the last cpu in a node goes
2970 * away, we get changed to run anywhere: as the first one comes back,
2971 * restore their cpu bindings.
2972 */
kcompactd_cpu_online(unsigned int cpu)2973 static int kcompactd_cpu_online(unsigned int cpu)
2974 {
2975 int nid;
2976
2977 for_each_node_state(nid, N_MEMORY) {
2978 pg_data_t *pgdat = NODE_DATA(nid);
2979 const struct cpumask *mask;
2980
2981 mask = cpumask_of_node(pgdat->node_id);
2982
2983 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2984 /* One of our CPUs online: restore mask */
2985 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2986 }
2987 return 0;
2988 }
2989
kcompactd_init(void)2990 static int __init kcompactd_init(void)
2991 {
2992 int nid;
2993 int ret;
2994
2995 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2996 "mm/compaction:online",
2997 kcompactd_cpu_online, NULL);
2998 if (ret < 0) {
2999 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3000 return ret;
3001 }
3002
3003 for_each_node_state(nid, N_MEMORY)
3004 kcompactd_run(nid);
3005 return 0;
3006 }
3007 subsys_initcall(kcompactd_init)
3008
3009 #endif /* CONFIG_COMPACTION */
3010