1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20 #include <trace/hooks/cgroup.h>
21
22 /*
23 * pidlists linger the following amount before being destroyed. The goal
24 * is avoiding frequent destruction in the middle of consecutive read calls
25 * Expiring in the middle is a performance problem not a correctness one.
26 * 1 sec should be enough.
27 */
28 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
29
30 /* Controllers blocked by the commandline in v1 */
31 static u16 cgroup_no_v1_mask;
32
33 /* disable named v1 mounts */
34 static bool cgroup_no_v1_named;
35
36 /*
37 * pidlist destructions need to be flushed on cgroup destruction. Use a
38 * separate workqueue as flush domain.
39 */
40 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
41
42 /* protects cgroup_subsys->release_agent_path */
43 static DEFINE_SPINLOCK(release_agent_path_lock);
44
cgroup1_ssid_disabled(int ssid)45 bool cgroup1_ssid_disabled(int ssid)
46 {
47 return cgroup_no_v1_mask & (1 << ssid);
48 }
49
50 /**
51 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
52 * @from: attach to all cgroups of a given task
53 * @tsk: the task to be attached
54 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)55 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
56 {
57 struct cgroup_root *root;
58 int retval = 0;
59
60 mutex_lock(&cgroup_mutex);
61 cpus_read_lock();
62 percpu_down_write(&cgroup_threadgroup_rwsem);
63 for_each_root(root) {
64 struct cgroup *from_cgrp;
65
66 if (root == &cgrp_dfl_root)
67 continue;
68
69 spin_lock_irq(&css_set_lock);
70 from_cgrp = task_cgroup_from_root(from, root);
71 spin_unlock_irq(&css_set_lock);
72
73 retval = cgroup_attach_task(from_cgrp, tsk, false);
74 if (retval)
75 break;
76 }
77 percpu_up_write(&cgroup_threadgroup_rwsem);
78 cpus_read_unlock();
79 mutex_unlock(&cgroup_mutex);
80
81 return retval;
82 }
83 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
84
85 /**
86 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
87 * @to: cgroup to which the tasks will be moved
88 * @from: cgroup in which the tasks currently reside
89 *
90 * Locking rules between cgroup_post_fork() and the migration path
91 * guarantee that, if a task is forking while being migrated, the new child
92 * is guaranteed to be either visible in the source cgroup after the
93 * parent's migration is complete or put into the target cgroup. No task
94 * can slip out of migration through forking.
95 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)96 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
97 {
98 DEFINE_CGROUP_MGCTX(mgctx);
99 struct cgrp_cset_link *link;
100 struct css_task_iter it;
101 struct task_struct *task;
102 int ret;
103
104 if (cgroup_on_dfl(to))
105 return -EINVAL;
106
107 ret = cgroup_migrate_vet_dst(to);
108 if (ret)
109 return ret;
110
111 mutex_lock(&cgroup_mutex);
112
113 percpu_down_write(&cgroup_threadgroup_rwsem);
114
115 /* all tasks in @from are being moved, all csets are source */
116 spin_lock_irq(&css_set_lock);
117 list_for_each_entry(link, &from->cset_links, cset_link)
118 cgroup_migrate_add_src(link->cset, to, &mgctx);
119 spin_unlock_irq(&css_set_lock);
120
121 ret = cgroup_migrate_prepare_dst(&mgctx);
122 if (ret)
123 goto out_err;
124
125 /*
126 * Migrate tasks one-by-one until @from is empty. This fails iff
127 * ->can_attach() fails.
128 */
129 do {
130 css_task_iter_start(&from->self, 0, &it);
131
132 do {
133 task = css_task_iter_next(&it);
134 } while (task && (task->flags & PF_EXITING));
135
136 if (task)
137 get_task_struct(task);
138 css_task_iter_end(&it);
139
140 if (task) {
141 ret = cgroup_migrate(task, false, &mgctx);
142 if (!ret)
143 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
144 put_task_struct(task);
145 }
146 } while (task && !ret);
147 out_err:
148 cgroup_migrate_finish(&mgctx);
149 percpu_up_write(&cgroup_threadgroup_rwsem);
150 mutex_unlock(&cgroup_mutex);
151 return ret;
152 }
153
154 /*
155 * Stuff for reading the 'tasks'/'procs' files.
156 *
157 * Reading this file can return large amounts of data if a cgroup has
158 * *lots* of attached tasks. So it may need several calls to read(),
159 * but we cannot guarantee that the information we produce is correct
160 * unless we produce it entirely atomically.
161 *
162 */
163
164 /* which pidlist file are we talking about? */
165 enum cgroup_filetype {
166 CGROUP_FILE_PROCS,
167 CGROUP_FILE_TASKS,
168 };
169
170 /*
171 * A pidlist is a list of pids that virtually represents the contents of one
172 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
173 * a pair (one each for procs, tasks) for each pid namespace that's relevant
174 * to the cgroup.
175 */
176 struct cgroup_pidlist {
177 /*
178 * used to find which pidlist is wanted. doesn't change as long as
179 * this particular list stays in the list.
180 */
181 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
182 /* array of xids */
183 pid_t *list;
184 /* how many elements the above list has */
185 int length;
186 /* each of these stored in a list by its cgroup */
187 struct list_head links;
188 /* pointer to the cgroup we belong to, for list removal purposes */
189 struct cgroup *owner;
190 /* for delayed destruction */
191 struct delayed_work destroy_dwork;
192 };
193
194 /*
195 * Used to destroy all pidlists lingering waiting for destroy timer. None
196 * should be left afterwards.
197 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)198 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
199 {
200 struct cgroup_pidlist *l, *tmp_l;
201
202 mutex_lock(&cgrp->pidlist_mutex);
203 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
204 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
205 mutex_unlock(&cgrp->pidlist_mutex);
206
207 flush_workqueue(cgroup_pidlist_destroy_wq);
208 BUG_ON(!list_empty(&cgrp->pidlists));
209 }
210
cgroup_pidlist_destroy_work_fn(struct work_struct * work)211 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
212 {
213 struct delayed_work *dwork = to_delayed_work(work);
214 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
215 destroy_dwork);
216 struct cgroup_pidlist *tofree = NULL;
217
218 mutex_lock(&l->owner->pidlist_mutex);
219
220 /*
221 * Destroy iff we didn't get queued again. The state won't change
222 * as destroy_dwork can only be queued while locked.
223 */
224 if (!delayed_work_pending(dwork)) {
225 list_del(&l->links);
226 kvfree(l->list);
227 put_pid_ns(l->key.ns);
228 tofree = l;
229 }
230
231 mutex_unlock(&l->owner->pidlist_mutex);
232 kfree(tofree);
233 }
234
235 /*
236 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
237 * Returns the number of unique elements.
238 */
pidlist_uniq(pid_t * list,int length)239 static int pidlist_uniq(pid_t *list, int length)
240 {
241 int src, dest = 1;
242
243 /*
244 * we presume the 0th element is unique, so i starts at 1. trivial
245 * edge cases first; no work needs to be done for either
246 */
247 if (length == 0 || length == 1)
248 return length;
249 /* src and dest walk down the list; dest counts unique elements */
250 for (src = 1; src < length; src++) {
251 /* find next unique element */
252 while (list[src] == list[src-1]) {
253 src++;
254 if (src == length)
255 goto after;
256 }
257 /* dest always points to where the next unique element goes */
258 list[dest] = list[src];
259 dest++;
260 }
261 after:
262 return dest;
263 }
264
265 /*
266 * The two pid files - task and cgroup.procs - guaranteed that the result
267 * is sorted, which forced this whole pidlist fiasco. As pid order is
268 * different per namespace, each namespace needs differently sorted list,
269 * making it impossible to use, for example, single rbtree of member tasks
270 * sorted by task pointer. As pidlists can be fairly large, allocating one
271 * per open file is dangerous, so cgroup had to implement shared pool of
272 * pidlists keyed by cgroup and namespace.
273 */
cmppid(const void * a,const void * b)274 static int cmppid(const void *a, const void *b)
275 {
276 return *(pid_t *)a - *(pid_t *)b;
277 }
278
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)279 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
280 enum cgroup_filetype type)
281 {
282 struct cgroup_pidlist *l;
283 /* don't need task_nsproxy() if we're looking at ourself */
284 struct pid_namespace *ns = task_active_pid_ns(current);
285
286 lockdep_assert_held(&cgrp->pidlist_mutex);
287
288 list_for_each_entry(l, &cgrp->pidlists, links)
289 if (l->key.type == type && l->key.ns == ns)
290 return l;
291 return NULL;
292 }
293
294 /*
295 * find the appropriate pidlist for our purpose (given procs vs tasks)
296 * returns with the lock on that pidlist already held, and takes care
297 * of the use count, or returns NULL with no locks held if we're out of
298 * memory.
299 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)300 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
301 enum cgroup_filetype type)
302 {
303 struct cgroup_pidlist *l;
304
305 lockdep_assert_held(&cgrp->pidlist_mutex);
306
307 l = cgroup_pidlist_find(cgrp, type);
308 if (l)
309 return l;
310
311 /* entry not found; create a new one */
312 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
313 if (!l)
314 return l;
315
316 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
317 l->key.type = type;
318 /* don't need task_nsproxy() if we're looking at ourself */
319 l->key.ns = get_pid_ns(task_active_pid_ns(current));
320 l->owner = cgrp;
321 list_add(&l->links, &cgrp->pidlists);
322 return l;
323 }
324
325 /*
326 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
327 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)328 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
329 struct cgroup_pidlist **lp)
330 {
331 pid_t *array;
332 int length;
333 int pid, n = 0; /* used for populating the array */
334 struct css_task_iter it;
335 struct task_struct *tsk;
336 struct cgroup_pidlist *l;
337
338 lockdep_assert_held(&cgrp->pidlist_mutex);
339
340 /*
341 * If cgroup gets more users after we read count, we won't have
342 * enough space - tough. This race is indistinguishable to the
343 * caller from the case that the additional cgroup users didn't
344 * show up until sometime later on.
345 */
346 length = cgroup_task_count(cgrp);
347 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
348 if (!array)
349 return -ENOMEM;
350 /* now, populate the array */
351 css_task_iter_start(&cgrp->self, 0, &it);
352 while ((tsk = css_task_iter_next(&it))) {
353 if (unlikely(n == length))
354 break;
355 /* get tgid or pid for procs or tasks file respectively */
356 if (type == CGROUP_FILE_PROCS)
357 pid = task_tgid_vnr(tsk);
358 else
359 pid = task_pid_vnr(tsk);
360 if (pid > 0) /* make sure to only use valid results */
361 array[n++] = pid;
362 }
363 css_task_iter_end(&it);
364 length = n;
365 /* now sort & (if procs) strip out duplicates */
366 sort(array, length, sizeof(pid_t), cmppid, NULL);
367 if (type == CGROUP_FILE_PROCS)
368 length = pidlist_uniq(array, length);
369
370 l = cgroup_pidlist_find_create(cgrp, type);
371 if (!l) {
372 kvfree(array);
373 return -ENOMEM;
374 }
375
376 /* store array, freeing old if necessary */
377 kvfree(l->list);
378 l->list = array;
379 l->length = length;
380 *lp = l;
381 return 0;
382 }
383
384 /*
385 * seq_file methods for the tasks/procs files. The seq_file position is the
386 * next pid to display; the seq_file iterator is a pointer to the pid
387 * in the cgroup->l->list array.
388 */
389
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
391 {
392 /*
393 * Initially we receive a position value that corresponds to
394 * one more than the last pid shown (or 0 on the first call or
395 * after a seek to the start). Use a binary-search to find the
396 * next pid to display, if any
397 */
398 struct kernfs_open_file *of = s->private;
399 struct cgroup_file_ctx *ctx = of->priv;
400 struct cgroup *cgrp = seq_css(s)->cgroup;
401 struct cgroup_pidlist *l;
402 enum cgroup_filetype type = seq_cft(s)->private;
403 int index = 0, pid = *pos;
404 int *iter, ret;
405
406 mutex_lock(&cgrp->pidlist_mutex);
407
408 /*
409 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
410 * start() after open. If the matching pidlist is around, we can use
411 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
412 * directly. It could already have been destroyed.
413 */
414 if (ctx->procs1.pidlist)
415 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
416
417 /*
418 * Either this is the first start() after open or the matching
419 * pidlist has been destroyed inbetween. Create a new one.
420 */
421 if (!ctx->procs1.pidlist) {
422 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
423 if (ret)
424 return ERR_PTR(ret);
425 }
426 l = ctx->procs1.pidlist;
427
428 if (pid) {
429 int end = l->length;
430
431 while (index < end) {
432 int mid = (index + end) / 2;
433 if (l->list[mid] == pid) {
434 index = mid;
435 break;
436 } else if (l->list[mid] <= pid)
437 index = mid + 1;
438 else
439 end = mid;
440 }
441 }
442 /* If we're off the end of the array, we're done */
443 if (index >= l->length)
444 return NULL;
445 /* Update the abstract position to be the actual pid that we found */
446 iter = l->list + index;
447 *pos = *iter;
448 return iter;
449 }
450
cgroup_pidlist_stop(struct seq_file * s,void * v)451 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
452 {
453 struct kernfs_open_file *of = s->private;
454 struct cgroup_file_ctx *ctx = of->priv;
455 struct cgroup_pidlist *l = ctx->procs1.pidlist;
456
457 if (l)
458 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
459 CGROUP_PIDLIST_DESTROY_DELAY);
460 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
461 }
462
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)463 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
464 {
465 struct kernfs_open_file *of = s->private;
466 struct cgroup_file_ctx *ctx = of->priv;
467 struct cgroup_pidlist *l = ctx->procs1.pidlist;
468 pid_t *p = v;
469 pid_t *end = l->list + l->length;
470 /*
471 * Advance to the next pid in the array. If this goes off the
472 * end, we're done
473 */
474 p++;
475 if (p >= end) {
476 (*pos)++;
477 return NULL;
478 } else {
479 *pos = *p;
480 return p;
481 }
482 }
483
cgroup_pidlist_show(struct seq_file * s,void * v)484 static int cgroup_pidlist_show(struct seq_file *s, void *v)
485 {
486 seq_printf(s, "%d\n", *(int *)v);
487
488 return 0;
489 }
490
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)491 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
492 char *buf, size_t nbytes, loff_t off,
493 bool threadgroup)
494 {
495 struct cgroup *cgrp;
496 struct task_struct *task;
497 const struct cred *cred, *tcred;
498 ssize_t ret;
499 bool locked;
500
501 cgrp = cgroup_kn_lock_live(of->kn, false);
502 if (!cgrp)
503 return -ENODEV;
504
505 task = cgroup_procs_write_start(buf, threadgroup, &locked, cgrp);
506 ret = PTR_ERR_OR_ZERO(task);
507 if (ret)
508 goto out_unlock;
509
510 /*
511 * Even if we're attaching all tasks in the thread group, we only need
512 * to check permissions on one of them. Check permissions using the
513 * credentials from file open to protect against inherited fd attacks.
514 */
515 cred = of->file->f_cred;
516 tcred = get_task_cred(task);
517 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
518 !uid_eq(cred->euid, tcred->uid) &&
519 !uid_eq(cred->euid, tcred->suid) &&
520 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
521 ret = -EACCES;
522 put_cred(tcred);
523 if (ret)
524 goto out_finish;
525
526 ret = cgroup_attach_task(cgrp, task, threadgroup);
527 trace_android_vh_cgroup_set_task(ret, task);
528
529 out_finish:
530 cgroup_procs_write_finish(task, locked);
531 out_unlock:
532 cgroup_kn_unlock(of->kn);
533
534 return ret ?: nbytes;
535 }
536
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)537 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
538 char *buf, size_t nbytes, loff_t off)
539 {
540 return __cgroup1_procs_write(of, buf, nbytes, off, true);
541 }
542
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)543 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
544 char *buf, size_t nbytes, loff_t off)
545 {
546 return __cgroup1_procs_write(of, buf, nbytes, off, false);
547 }
548
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)549 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
550 char *buf, size_t nbytes, loff_t off)
551 {
552 struct cgroup *cgrp;
553 struct cgroup_file_ctx *ctx;
554
555 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
556
557 /*
558 * Release agent gets called with all capabilities,
559 * require capabilities to set release agent.
560 */
561 ctx = of->priv;
562 if ((ctx->ns->user_ns != &init_user_ns) ||
563 !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
564 return -EPERM;
565
566 cgrp = cgroup_kn_lock_live(of->kn, false);
567 if (!cgrp)
568 return -ENODEV;
569 spin_lock(&release_agent_path_lock);
570 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
571 sizeof(cgrp->root->release_agent_path));
572 spin_unlock(&release_agent_path_lock);
573 cgroup_kn_unlock(of->kn);
574 return nbytes;
575 }
576
cgroup_release_agent_show(struct seq_file * seq,void * v)577 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
578 {
579 struct cgroup *cgrp = seq_css(seq)->cgroup;
580
581 spin_lock(&release_agent_path_lock);
582 seq_puts(seq, cgrp->root->release_agent_path);
583 spin_unlock(&release_agent_path_lock);
584 seq_putc(seq, '\n');
585 return 0;
586 }
587
cgroup_sane_behavior_show(struct seq_file * seq,void * v)588 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
589 {
590 seq_puts(seq, "0\n");
591 return 0;
592 }
593
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)594 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
595 struct cftype *cft)
596 {
597 return notify_on_release(css->cgroup);
598 }
599
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)600 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
601 struct cftype *cft, u64 val)
602 {
603 if (val)
604 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
605 else
606 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
607 return 0;
608 }
609
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)610 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
611 struct cftype *cft)
612 {
613 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
614 }
615
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)616 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
617 struct cftype *cft, u64 val)
618 {
619 if (val)
620 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
621 else
622 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
623 return 0;
624 }
625
626 /* cgroup core interface files for the legacy hierarchies */
627 struct cftype cgroup1_base_files[] = {
628 {
629 .name = "cgroup.procs",
630 .seq_start = cgroup_pidlist_start,
631 .seq_next = cgroup_pidlist_next,
632 .seq_stop = cgroup_pidlist_stop,
633 .seq_show = cgroup_pidlist_show,
634 .private = CGROUP_FILE_PROCS,
635 .write = cgroup1_procs_write,
636 },
637 {
638 .name = "cgroup.clone_children",
639 .read_u64 = cgroup_clone_children_read,
640 .write_u64 = cgroup_clone_children_write,
641 },
642 {
643 .name = "cgroup.sane_behavior",
644 .flags = CFTYPE_ONLY_ON_ROOT,
645 .seq_show = cgroup_sane_behavior_show,
646 },
647 {
648 .name = "tasks",
649 .seq_start = cgroup_pidlist_start,
650 .seq_next = cgroup_pidlist_next,
651 .seq_stop = cgroup_pidlist_stop,
652 .seq_show = cgroup_pidlist_show,
653 .private = CGROUP_FILE_TASKS,
654 .write = cgroup1_tasks_write,
655 },
656 {
657 .name = "notify_on_release",
658 .read_u64 = cgroup_read_notify_on_release,
659 .write_u64 = cgroup_write_notify_on_release,
660 },
661 {
662 .name = "release_agent",
663 .flags = CFTYPE_ONLY_ON_ROOT,
664 .seq_show = cgroup_release_agent_show,
665 .write = cgroup_release_agent_write,
666 .max_write_len = PATH_MAX - 1,
667 },
668 { } /* terminate */
669 };
670
671 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)672 int proc_cgroupstats_show(struct seq_file *m, void *v)
673 {
674 struct cgroup_subsys *ss;
675 int i;
676
677 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
678 /*
679 * ideally we don't want subsystems moving around while we do this.
680 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
681 * subsys/hierarchy state.
682 */
683 mutex_lock(&cgroup_mutex);
684
685 for_each_subsys(ss, i)
686 seq_printf(m, "%s\t%d\t%d\t%d\n",
687 ss->legacy_name, ss->root->hierarchy_id,
688 atomic_read(&ss->root->nr_cgrps),
689 cgroup_ssid_enabled(i));
690
691 mutex_unlock(&cgroup_mutex);
692 return 0;
693 }
694
695 /**
696 * cgroupstats_build - build and fill cgroupstats
697 * @stats: cgroupstats to fill information into
698 * @dentry: A dentry entry belonging to the cgroup for which stats have
699 * been requested.
700 *
701 * Build and fill cgroupstats so that taskstats can export it to user
702 * space.
703 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)704 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
705 {
706 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
707 struct cgroup *cgrp;
708 struct css_task_iter it;
709 struct task_struct *tsk;
710
711 /* it should be kernfs_node belonging to cgroupfs and is a directory */
712 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
713 kernfs_type(kn) != KERNFS_DIR)
714 return -EINVAL;
715
716 mutex_lock(&cgroup_mutex);
717
718 /*
719 * We aren't being called from kernfs and there's no guarantee on
720 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
721 * @kn->priv is RCU safe. Let's do the RCU dancing.
722 */
723 rcu_read_lock();
724 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
725 if (!cgrp || cgroup_is_dead(cgrp)) {
726 rcu_read_unlock();
727 mutex_unlock(&cgroup_mutex);
728 return -ENOENT;
729 }
730 rcu_read_unlock();
731
732 css_task_iter_start(&cgrp->self, 0, &it);
733 while ((tsk = css_task_iter_next(&it))) {
734 switch (tsk->state) {
735 case TASK_RUNNING:
736 stats->nr_running++;
737 break;
738 case TASK_INTERRUPTIBLE:
739 stats->nr_sleeping++;
740 break;
741 case TASK_UNINTERRUPTIBLE:
742 stats->nr_uninterruptible++;
743 break;
744 case TASK_STOPPED:
745 stats->nr_stopped++;
746 break;
747 default:
748 if (delayacct_is_task_waiting_on_io(tsk))
749 stats->nr_io_wait++;
750 break;
751 }
752 }
753 css_task_iter_end(&it);
754
755 mutex_unlock(&cgroup_mutex);
756 return 0;
757 }
758
cgroup1_check_for_release(struct cgroup * cgrp)759 void cgroup1_check_for_release(struct cgroup *cgrp)
760 {
761 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
762 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
763 schedule_work(&cgrp->release_agent_work);
764 }
765
766 /*
767 * Notify userspace when a cgroup is released, by running the
768 * configured release agent with the name of the cgroup (path
769 * relative to the root of cgroup file system) as the argument.
770 *
771 * Most likely, this user command will try to rmdir this cgroup.
772 *
773 * This races with the possibility that some other task will be
774 * attached to this cgroup before it is removed, or that some other
775 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
776 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
777 * unused, and this cgroup will be reprieved from its death sentence,
778 * to continue to serve a useful existence. Next time it's released,
779 * we will get notified again, if it still has 'notify_on_release' set.
780 *
781 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
782 * means only wait until the task is successfully execve()'d. The
783 * separate release agent task is forked by call_usermodehelper(),
784 * then control in this thread returns here, without waiting for the
785 * release agent task. We don't bother to wait because the caller of
786 * this routine has no use for the exit status of the release agent
787 * task, so no sense holding our caller up for that.
788 */
cgroup1_release_agent(struct work_struct * work)789 void cgroup1_release_agent(struct work_struct *work)
790 {
791 struct cgroup *cgrp =
792 container_of(work, struct cgroup, release_agent_work);
793 char *pathbuf, *agentbuf;
794 char *argv[3], *envp[3];
795 int ret;
796
797 /* snoop agent path and exit early if empty */
798 if (!cgrp->root->release_agent_path[0])
799 return;
800
801 /* prepare argument buffers */
802 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
803 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
804 if (!pathbuf || !agentbuf)
805 goto out_free;
806
807 spin_lock(&release_agent_path_lock);
808 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
809 spin_unlock(&release_agent_path_lock);
810 if (!agentbuf[0])
811 goto out_free;
812
813 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
814 if (ret < 0 || ret >= PATH_MAX)
815 goto out_free;
816
817 argv[0] = agentbuf;
818 argv[1] = pathbuf;
819 argv[2] = NULL;
820
821 /* minimal command environment */
822 envp[0] = "HOME=/";
823 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
824 envp[2] = NULL;
825
826 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
827 out_free:
828 kfree(agentbuf);
829 kfree(pathbuf);
830 }
831
832 /*
833 * cgroup_rename - Only allow simple rename of directories in place.
834 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)835 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
836 const char *new_name_str)
837 {
838 struct cgroup *cgrp = kn->priv;
839 int ret;
840
841 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
842 if (strchr(new_name_str, '\n'))
843 return -EINVAL;
844
845 if (kernfs_type(kn) != KERNFS_DIR)
846 return -ENOTDIR;
847 if (kn->parent != new_parent)
848 return -EIO;
849
850 /*
851 * We're gonna grab cgroup_mutex which nests outside kernfs
852 * active_ref. kernfs_rename() doesn't require active_ref
853 * protection. Break them before grabbing cgroup_mutex.
854 */
855 kernfs_break_active_protection(new_parent);
856 kernfs_break_active_protection(kn);
857
858 mutex_lock(&cgroup_mutex);
859
860 ret = kernfs_rename(kn, new_parent, new_name_str);
861 if (!ret)
862 TRACE_CGROUP_PATH(rename, cgrp);
863
864 mutex_unlock(&cgroup_mutex);
865
866 kernfs_unbreak_active_protection(kn);
867 kernfs_unbreak_active_protection(new_parent);
868 return ret;
869 }
870
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)871 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
872 {
873 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
874 struct cgroup_subsys *ss;
875 int ssid;
876
877 for_each_subsys(ss, ssid)
878 if (root->subsys_mask & (1 << ssid))
879 seq_show_option(seq, ss->legacy_name, NULL);
880 if (root->flags & CGRP_ROOT_NOPREFIX)
881 seq_puts(seq, ",noprefix");
882 if (root->flags & CGRP_ROOT_XATTR)
883 seq_puts(seq, ",xattr");
884 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
885 seq_puts(seq, ",cpuset_v2_mode");
886
887 spin_lock(&release_agent_path_lock);
888 if (strlen(root->release_agent_path))
889 seq_show_option(seq, "release_agent",
890 root->release_agent_path);
891 spin_unlock(&release_agent_path_lock);
892
893 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
894 seq_puts(seq, ",clone_children");
895 if (strlen(root->name))
896 seq_show_option(seq, "name", root->name);
897 return 0;
898 }
899
900 enum cgroup1_param {
901 Opt_all,
902 Opt_clone_children,
903 Opt_cpuset_v2_mode,
904 Opt_name,
905 Opt_none,
906 Opt_noprefix,
907 Opt_release_agent,
908 Opt_xattr,
909 };
910
911 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
912 fsparam_flag ("all", Opt_all),
913 fsparam_flag ("clone_children", Opt_clone_children),
914 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
915 fsparam_string("name", Opt_name),
916 fsparam_flag ("none", Opt_none),
917 fsparam_flag ("noprefix", Opt_noprefix),
918 fsparam_string("release_agent", Opt_release_agent),
919 fsparam_flag ("xattr", Opt_xattr),
920 {}
921 };
922
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)923 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
924 {
925 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
926 struct cgroup_subsys *ss;
927 struct fs_parse_result result;
928 int opt, i;
929
930 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
931 if (opt == -ENOPARAM) {
932 if (strcmp(param->key, "source") == 0) {
933 if (param->type != fs_value_is_string)
934 return invalf(fc, "Non-string source");
935 if (fc->source)
936 return invalf(fc, "Multiple sources not supported");
937 fc->source = param->string;
938 param->string = NULL;
939 return 0;
940 }
941 for_each_subsys(ss, i) {
942 if (strcmp(param->key, ss->legacy_name))
943 continue;
944 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
945 return invalfc(fc, "Disabled controller '%s'",
946 param->key);
947 ctx->subsys_mask |= (1 << i);
948 return 0;
949 }
950 return invalfc(fc, "Unknown subsys name '%s'", param->key);
951 }
952 if (opt < 0)
953 return opt;
954
955 switch (opt) {
956 case Opt_none:
957 /* Explicitly have no subsystems */
958 ctx->none = true;
959 break;
960 case Opt_all:
961 ctx->all_ss = true;
962 break;
963 case Opt_noprefix:
964 ctx->flags |= CGRP_ROOT_NOPREFIX;
965 break;
966 case Opt_clone_children:
967 ctx->cpuset_clone_children = true;
968 break;
969 case Opt_cpuset_v2_mode:
970 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
971 break;
972 case Opt_xattr:
973 ctx->flags |= CGRP_ROOT_XATTR;
974 break;
975 case Opt_release_agent:
976 /* Specifying two release agents is forbidden */
977 if (ctx->release_agent)
978 return invalfc(fc, "release_agent respecified");
979 /*
980 * Release agent gets called with all capabilities,
981 * require capabilities to set release agent.
982 */
983 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
984 return invalfc(fc, "Setting release_agent not allowed");
985 ctx->release_agent = param->string;
986 param->string = NULL;
987 break;
988 case Opt_name:
989 /* blocked by boot param? */
990 if (cgroup_no_v1_named)
991 return -ENOENT;
992 /* Can't specify an empty name */
993 if (!param->size)
994 return invalfc(fc, "Empty name");
995 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
996 return invalfc(fc, "Name too long");
997 /* Must match [\w.-]+ */
998 for (i = 0; i < param->size; i++) {
999 char c = param->string[i];
1000 if (isalnum(c))
1001 continue;
1002 if ((c == '.') || (c == '-') || (c == '_'))
1003 continue;
1004 return invalfc(fc, "Invalid name");
1005 }
1006 /* Specifying two names is forbidden */
1007 if (ctx->name)
1008 return invalfc(fc, "name respecified");
1009 ctx->name = param->string;
1010 param->string = NULL;
1011 break;
1012 }
1013 return 0;
1014 }
1015
check_cgroupfs_options(struct fs_context * fc)1016 static int check_cgroupfs_options(struct fs_context *fc)
1017 {
1018 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1019 u16 mask = U16_MAX;
1020 u16 enabled = 0;
1021 struct cgroup_subsys *ss;
1022 int i;
1023
1024 #ifdef CONFIG_CPUSETS
1025 mask = ~((u16)1 << cpuset_cgrp_id);
1026 #endif
1027 for_each_subsys(ss, i)
1028 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1029 enabled |= 1 << i;
1030
1031 ctx->subsys_mask &= enabled;
1032
1033 /*
1034 * In absense of 'none', 'name=' or subsystem name options,
1035 * let's default to 'all'.
1036 */
1037 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1038 ctx->all_ss = true;
1039
1040 if (ctx->all_ss) {
1041 /* Mutually exclusive option 'all' + subsystem name */
1042 if (ctx->subsys_mask)
1043 return invalfc(fc, "subsys name conflicts with all");
1044 /* 'all' => select all the subsystems */
1045 ctx->subsys_mask = enabled;
1046 }
1047
1048 /*
1049 * We either have to specify by name or by subsystems. (So all
1050 * empty hierarchies must have a name).
1051 */
1052 if (!ctx->subsys_mask && !ctx->name)
1053 return invalfc(fc, "Need name or subsystem set");
1054
1055 /*
1056 * Option noprefix was introduced just for backward compatibility
1057 * with the old cpuset, so we allow noprefix only if mounting just
1058 * the cpuset subsystem.
1059 */
1060 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1061 return invalfc(fc, "noprefix used incorrectly");
1062
1063 /* Can't specify "none" and some subsystems */
1064 if (ctx->subsys_mask && ctx->none)
1065 return invalfc(fc, "none used incorrectly");
1066
1067 return 0;
1068 }
1069
cgroup1_reconfigure(struct fs_context * fc)1070 int cgroup1_reconfigure(struct fs_context *fc)
1071 {
1072 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1073 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1074 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1075 int ret = 0;
1076 u16 added_mask, removed_mask;
1077
1078 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1079
1080 /* See what subsystems are wanted */
1081 ret = check_cgroupfs_options(fc);
1082 if (ret)
1083 goto out_unlock;
1084
1085 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1086 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1087 task_tgid_nr(current), current->comm);
1088
1089 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1090 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1091
1092 /* Don't allow flags or name to change at remount */
1093 if ((ctx->flags ^ root->flags) ||
1094 (ctx->name && strcmp(ctx->name, root->name))) {
1095 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1096 ctx->flags, ctx->name ?: "", root->flags, root->name);
1097 ret = -EINVAL;
1098 goto out_unlock;
1099 }
1100
1101 /* remounting is not allowed for populated hierarchies */
1102 if (!list_empty(&root->cgrp.self.children)) {
1103 ret = -EBUSY;
1104 goto out_unlock;
1105 }
1106
1107 ret = rebind_subsystems(root, added_mask);
1108 if (ret)
1109 goto out_unlock;
1110
1111 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1112
1113 if (ctx->release_agent) {
1114 spin_lock(&release_agent_path_lock);
1115 strcpy(root->release_agent_path, ctx->release_agent);
1116 spin_unlock(&release_agent_path_lock);
1117 }
1118
1119 trace_cgroup_remount(root);
1120
1121 out_unlock:
1122 mutex_unlock(&cgroup_mutex);
1123 return ret;
1124 }
1125
1126 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1127 .rename = cgroup1_rename,
1128 .show_options = cgroup1_show_options,
1129 .mkdir = cgroup_mkdir,
1130 .rmdir = cgroup_rmdir,
1131 .show_path = cgroup_show_path,
1132 };
1133
1134 /*
1135 * The guts of cgroup1 mount - find or create cgroup_root to use.
1136 * Called with cgroup_mutex held; returns 0 on success, -E... on
1137 * error and positive - in case when the candidate is busy dying.
1138 * On success it stashes a reference to cgroup_root into given
1139 * cgroup_fs_context; that reference is *NOT* counting towards the
1140 * cgroup_root refcount.
1141 */
cgroup1_root_to_use(struct fs_context * fc)1142 static int cgroup1_root_to_use(struct fs_context *fc)
1143 {
1144 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1145 struct cgroup_root *root;
1146 struct cgroup_subsys *ss;
1147 int i, ret;
1148
1149 /* First find the desired set of subsystems */
1150 ret = check_cgroupfs_options(fc);
1151 if (ret)
1152 return ret;
1153
1154 /*
1155 * Destruction of cgroup root is asynchronous, so subsystems may
1156 * still be dying after the previous unmount. Let's drain the
1157 * dying subsystems. We just need to ensure that the ones
1158 * unmounted previously finish dying and don't care about new ones
1159 * starting. Testing ref liveliness is good enough.
1160 */
1161 for_each_subsys(ss, i) {
1162 if (!(ctx->subsys_mask & (1 << i)) ||
1163 ss->root == &cgrp_dfl_root)
1164 continue;
1165
1166 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1167 return 1; /* restart */
1168 cgroup_put(&ss->root->cgrp);
1169 }
1170
1171 for_each_root(root) {
1172 bool name_match = false;
1173
1174 if (root == &cgrp_dfl_root)
1175 continue;
1176
1177 /*
1178 * If we asked for a name then it must match. Also, if
1179 * name matches but sybsys_mask doesn't, we should fail.
1180 * Remember whether name matched.
1181 */
1182 if (ctx->name) {
1183 if (strcmp(ctx->name, root->name))
1184 continue;
1185 name_match = true;
1186 }
1187
1188 /*
1189 * If we asked for subsystems (or explicitly for no
1190 * subsystems) then they must match.
1191 */
1192 if ((ctx->subsys_mask || ctx->none) &&
1193 (ctx->subsys_mask != root->subsys_mask)) {
1194 if (!name_match)
1195 continue;
1196 return -EBUSY;
1197 }
1198
1199 if (root->flags ^ ctx->flags)
1200 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1201
1202 ctx->root = root;
1203 return 0;
1204 }
1205
1206 /*
1207 * No such thing, create a new one. name= matching without subsys
1208 * specification is allowed for already existing hierarchies but we
1209 * can't create new one without subsys specification.
1210 */
1211 if (!ctx->subsys_mask && !ctx->none)
1212 return invalfc(fc, "No subsys list or none specified");
1213
1214 /* Hierarchies may only be created in the initial cgroup namespace. */
1215 if (ctx->ns != &init_cgroup_ns)
1216 return -EPERM;
1217
1218 root = kzalloc(sizeof(*root), GFP_KERNEL);
1219 if (!root)
1220 return -ENOMEM;
1221
1222 ctx->root = root;
1223 init_cgroup_root(ctx);
1224
1225 ret = cgroup_setup_root(root, ctx->subsys_mask);
1226 if (ret)
1227 cgroup_free_root(root);
1228 return ret;
1229 }
1230
cgroup1_get_tree(struct fs_context * fc)1231 int cgroup1_get_tree(struct fs_context *fc)
1232 {
1233 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1234 int ret;
1235
1236 /* Check if the caller has permission to mount. */
1237 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1238 return -EPERM;
1239
1240 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1241
1242 ret = cgroup1_root_to_use(fc);
1243 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1244 ret = 1; /* restart */
1245
1246 mutex_unlock(&cgroup_mutex);
1247
1248 if (!ret)
1249 ret = cgroup_do_get_tree(fc);
1250
1251 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1252 fc_drop_locked(fc);
1253 ret = 1;
1254 }
1255
1256 if (unlikely(ret > 0)) {
1257 msleep(10);
1258 return restart_syscall();
1259 }
1260 return ret;
1261 }
1262
cgroup1_wq_init(void)1263 static int __init cgroup1_wq_init(void)
1264 {
1265 /*
1266 * Used to destroy pidlists and separate to serve as flush domain.
1267 * Cap @max_active to 1 too.
1268 */
1269 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1270 0, 1);
1271 BUG_ON(!cgroup_pidlist_destroy_wq);
1272 return 0;
1273 }
1274 core_initcall(cgroup1_wq_init);
1275
cgroup_no_v1(char * str)1276 static int __init cgroup_no_v1(char *str)
1277 {
1278 struct cgroup_subsys *ss;
1279 char *token;
1280 int i;
1281
1282 while ((token = strsep(&str, ",")) != NULL) {
1283 if (!*token)
1284 continue;
1285
1286 if (!strcmp(token, "all")) {
1287 cgroup_no_v1_mask = U16_MAX;
1288 continue;
1289 }
1290
1291 if (!strcmp(token, "named")) {
1292 cgroup_no_v1_named = true;
1293 continue;
1294 }
1295
1296 for_each_subsys(ss, i) {
1297 if (strcmp(token, ss->name) &&
1298 strcmp(token, ss->legacy_name))
1299 continue;
1300
1301 cgroup_no_v1_mask |= 1 << i;
1302 }
1303 }
1304 return 1;
1305 }
1306 __setup("cgroup_no_v1=", cgroup_no_v1);
1307