xref: /rk3399_rockchip-uboot/common/edid.c (revision 9c170041dcf97ed3fe5bbd76e70cda2ed3fcbd92)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * (C) Copyright 2010
5  * Petr Stetiar <ynezz@true.cz>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Contains stolen code from ddcprobe project which is:
10  * Copyright (C) Nalin Dahyabhai <bigfun@pobox.com>
11  * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
12  */
13 
14 #include <common.h>
15 #include <compiler.h>
16 #include <div64.h>
17 #include <drm_modes.h>
18 #include <edid.h>
19 #include <errno.h>
20 #include <fdtdec.h>
21 #include <hexdump.h>
22 #include <malloc.h>
23 #include <linux/compat.h>
24 #include <linux/ctype.h>
25 #include <linux/fb.h>
26 #include <linux/hdmi.h>
27 #include <linux/string.h>
28 
29 #define EDID_EST_TIMINGS 16
30 #define EDID_STD_TIMINGS 8
31 #define EDID_DETAILED_TIMINGS 4
32 #define BIT_WORD(nr)             ((nr) / BITS_PER_LONG)
33 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
34 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
35 #define EDID_PRODUCT_ID(e) ((e)->prod_code[0] | ((e)->prod_code[1] << 8))
36 #define version_greater(edid, maj, min) \
37 	(((edid)->version > (maj)) || \
38 	 ((edid)->version == (maj) && (edid)->revision > (min)))
39 
40 /*
41  * EDID blocks out in the wild have a variety of bugs, try to collect
42  * them here (note that userspace may work around broken monitors first,
43  * but fixes should make their way here so that the kernel "just works"
44  * on as many displays as possible).
45  */
46 
47 /* First detailed mode wrong, use largest 60Hz mode */
48 #define EDID_QUIRK_PREFER_LARGE_60		BIT(0)
49 /* Reported 135MHz pixel clock is too high, needs adjustment */
50 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		BIT(1)
51 /* Prefer the largest mode at 75 Hz */
52 #define EDID_QUIRK_PREFER_LARGE_75		BIT(2)
53 /* Detail timing is in cm not mm */
54 #define EDID_QUIRK_DETAILED_IN_CM		BIT(3)
55 /* Detailed timing descriptors have bogus size values, so just take the
56  * maximum size and use that.
57  */
58 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	BIT(4)
59 /* Monitor forgot to set the first detailed is preferred bit. */
60 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	BIT(5)
61 /* use +hsync +vsync for detailed mode */
62 #define EDID_QUIRK_DETAILED_SYNC_PP		BIT(6)
63 /* Force reduced-blanking timings for detailed modes */
64 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	BIT(7)
65 /* Force 8bpc */
66 #define EDID_QUIRK_FORCE_8BPC			BIT(8)
67 /* Force 12bpc */
68 #define EDID_QUIRK_FORCE_12BPC			BIT(9)
69 /* Force 6bpc */
70 #define EDID_QUIRK_FORCE_6BPC			BIT(10)
71 /* Force 10bpc */
72 #define EDID_QUIRK_FORCE_10BPC			BIT(11)
73 
74 struct detailed_mode_closure {
75 	struct edid *edid;
76 	struct hdmi_edid_data *data;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
100 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
101 
102 	/* Belinea 10 15 55 */
103 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Envision Peripherals, Inc. EN-7100e */
107 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 	/* Envision EN2028 */
109 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110 
111 	/* Funai Electronics PM36B */
112 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 	  EDID_QUIRK_DETAILED_IN_CM },
114 
115 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
116 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
117 
118 	/* LG Philips LCD LP154W01-A5 */
119 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 
122 	/* Philips 107p5 CRT */
123 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124 
125 	/* Proview AY765C */
126 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127 
128 	/* Samsung SyncMaster 205BW.  Note: irony */
129 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 	/* Samsung SyncMaster 22[5-6]BW */
131 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133 
134 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136 
137 	/* ViewSonic VA2026w */
138 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139 
140 	/* Medion MD 30217 PG */
141 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142 
143 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 
146 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
147 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
148 };
149 
150 /*
151  * Probably taken from CEA-861 spec.
152  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
153  *
154  * Index using the VIC.
155  */
156 /*
157  * From CEA/CTA-861 spec.
158  * Do not access directly, instead always use cea_mode_for_vic().
159  */
160 static const struct drm_display_mode edid_cea_modes_1[] = {
161 	/* 1 - 640x480@60Hz */
162 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163 		   752, 800, 480, 490, 492, 525, 0,
164 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
165 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
166 	/* 2 - 720x480@60Hz */
167 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
168 		   798, 858, 480, 489, 495, 525, 0,
169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
170 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
171 	/* 3 - 720x480@60Hz */
172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
173 		   798, 858, 480, 489, 495, 525, 0,
174 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
175 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
176 	/* 4 - 1280x720@60Hz */
177 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
178 		   1430, 1650, 720, 725, 730, 750, 0,
179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
180 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
181 	/* 5 - 1920x1080i@60Hz */
182 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
183 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
185 			DRM_MODE_FLAG_INTERLACE),
186 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
187 	/* 6 - 720(1440)x480i@60Hz */
188 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
189 		   801, 858, 480, 488, 494, 525, 0,
190 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
191 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
192 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
193 	/* 7 - 720(1440)x480i@60Hz */
194 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
195 		   801, 858, 480, 488, 494, 525, 0,
196 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
197 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
198 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
199 	/* 8 - 720(1440)x240@60Hz */
200 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
201 		   801, 858, 240, 244, 247, 262, 0,
202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
203 			DRM_MODE_FLAG_DBLCLK),
204 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
205 	/* 9 - 720(1440)x240@60Hz */
206 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
207 		   801, 858, 240, 244, 247, 262, 0,
208 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
209 			DRM_MODE_FLAG_DBLCLK),
210 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
211 	/* 10 - 2880x480i@60Hz */
212 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
213 		   3204, 3432, 480, 488, 494, 525, 0,
214 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
215 			DRM_MODE_FLAG_INTERLACE),
216 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
217 	/* 11 - 2880x480i@60Hz */
218 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
219 		   3204, 3432, 480, 488, 494, 525, 0,
220 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
221 			DRM_MODE_FLAG_INTERLACE),
222 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
223 	/* 12 - 2880x240@60Hz */
224 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
225 		   3204, 3432, 240, 244, 247, 262, 0,
226 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
227 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
228 	/* 13 - 2880x240@60Hz */
229 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
230 		   3204, 3432, 240, 244, 247, 262, 0,
231 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
232 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
233 	/* 14 - 1440x480@60Hz */
234 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
235 		   1596, 1716, 480, 489, 495, 525, 0,
236 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
237 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
238 	/* 15 - 1440x480@60Hz */
239 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
240 		   1596, 1716, 480, 489, 495, 525, 0,
241 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
242 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
243 	/* 16 - 1920x1080@60Hz */
244 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
245 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
247 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
248 	/* 17 - 720x576@50Hz */
249 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
250 		   796, 864, 576, 581, 586, 625, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
252 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
253 	/* 18 - 720x576@50Hz */
254 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
255 		   796, 864, 576, 581, 586, 625, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
257 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
258 	/* 19 - 1280x720@50Hz */
259 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
260 		   1760, 1980, 720, 725, 730, 750, 0,
261 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
262 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
263 	/* 20 - 1920x1080i@50Hz */
264 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
265 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
267 			DRM_MODE_FLAG_INTERLACE),
268 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
269 	/* 21 - 720(1440)x576i@50Hz */
270 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
271 		   795, 864, 576, 580, 586, 625, 0,
272 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
273 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
274 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
275 	/* 22 - 720(1440)x576i@50Hz */
276 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
277 		   795, 864, 576, 580, 586, 625, 0,
278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
279 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
280 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
281 	/* 23 - 720(1440)x288@50Hz */
282 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
283 		   795, 864, 288, 290, 293, 312, 0,
284 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
285 			DRM_MODE_FLAG_DBLCLK),
286 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
287 	/* 24 - 720(1440)x288@50Hz */
288 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
289 		   795, 864, 288, 290, 293, 312, 0,
290 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
291 			DRM_MODE_FLAG_DBLCLK),
292 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
293 	/* 25 - 2880x576i@50Hz */
294 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
295 		   3180, 3456, 576, 580, 586, 625, 0,
296 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
297 			DRM_MODE_FLAG_INTERLACE),
298 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
299 	/* 26 - 2880x576i@50Hz */
300 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
301 		   3180, 3456, 576, 580, 586, 625, 0,
302 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
303 			DRM_MODE_FLAG_INTERLACE),
304 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
305 	/* 27 - 2880x288@50Hz */
306 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
307 		   3180, 3456, 288, 290, 293, 312, 0,
308 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
309 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
310 	/* 28 - 2880x288@50Hz */
311 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
312 		   3180, 3456, 288, 290, 293, 312, 0,
313 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
314 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
315 	/* 29 - 1440x576@50Hz */
316 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
317 		   1592, 1728, 576, 581, 586, 625, 0,
318 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
319 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
320 	/* 30 - 1440x576@50Hz */
321 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
322 		   1592, 1728, 576, 581, 586, 625, 0,
323 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
324 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
325 	/* 31 - 1920x1080@50Hz */
326 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
327 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
329 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
330 	/* 32 - 1920x1080@24Hz */
331 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
332 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
334 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
335 	/* 33 - 1920x1080@25Hz */
336 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
337 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
339 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
340 	/* 34 - 1920x1080@30Hz */
341 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
342 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
344 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
345 	/* 35 - 2880x480@60Hz */
346 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
347 		   3192, 3432, 480, 489, 495, 525, 0,
348 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
349 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
350 	/* 36 - 2880x480@60Hz */
351 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
352 		   3192, 3432, 480, 489, 495, 525, 0,
353 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
354 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
355 	/* 37 - 2880x576@50Hz */
356 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
357 		   3184, 3456, 576, 581, 586, 625, 0,
358 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
359 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
360 	/* 38 - 2880x576@50Hz */
361 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
362 		   3184, 3456, 576, 581, 586, 625, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
364 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
365 	/* 39 - 1920x1080i@50Hz */
366 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
367 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
369 			DRM_MODE_FLAG_INTERLACE),
370 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
371 	/* 40 - 1920x1080i@100Hz */
372 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
373 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
375 			DRM_MODE_FLAG_INTERLACE),
376 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
377 	/* 41 - 1280x720@100Hz */
378 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
379 		   1760, 1980, 720, 725, 730, 750, 0,
380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
381 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
382 	/* 42 - 720x576@100Hz */
383 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
384 		   796, 864, 576, 581, 586, 625, 0,
385 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
386 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
387 	/* 43 - 720x576@100Hz */
388 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
389 		   796, 864, 576, 581, 586, 625, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
391 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
392 	/* 44 - 720(1440)x576i@100Hz */
393 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
394 		   795, 864, 576, 580, 586, 625, 0,
395 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
396 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
397 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
398 	/* 45 - 720(1440)x576i@100Hz */
399 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
400 		   795, 864, 576, 580, 586, 625, 0,
401 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
402 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
403 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
404 	/* 46 - 1920x1080i@120Hz */
405 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
406 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
408 			DRM_MODE_FLAG_INTERLACE),
409 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
410 	/* 47 - 1280x720@120Hz */
411 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
412 		   1430, 1650, 720, 725, 730, 750, 0,
413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
414 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
415 	/* 48 - 720x480@120Hz */
416 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
417 		   798, 858, 480, 489, 495, 525, 0,
418 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
419 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
420 	/* 49 - 720x480@120Hz */
421 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
422 		   798, 858, 480, 489, 495, 525, 0,
423 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
424 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
425 	/* 50 - 720(1440)x480i@120Hz */
426 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
427 		   801, 858, 480, 488, 494, 525, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
429 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
430 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
431 	/* 51 - 720(1440)x480i@120Hz */
432 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
433 		   801, 858, 480, 488, 494, 525, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
435 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
436 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
437 	/* 52 - 720x576@200Hz */
438 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
439 		   796, 864, 576, 581, 586, 625, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
441 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
442 	/* 53 - 720x576@200Hz */
443 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
444 		   796, 864, 576, 581, 586, 625, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
446 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
447 	/* 54 - 720(1440)x576i@200Hz */
448 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
449 		   795, 864, 576, 580, 586, 625, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
451 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
452 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
453 	/* 55 - 720(1440)x576i@200Hz */
454 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
455 		   795, 864, 576, 580, 586, 625, 0,
456 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
457 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
458 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
459 	/* 56 - 720x480@240Hz */
460 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
461 		   798, 858, 480, 489, 495, 525, 0,
462 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
463 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
464 	/* 57 - 720x480@240Hz */
465 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
466 		   798, 858, 480, 489, 495, 525, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
468 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
469 	/* 58 - 720(1440)x480i@240 */
470 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
471 		   801, 858, 480, 488, 494, 525, 0,
472 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
473 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
474 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
475 	/* 59 - 720(1440)x480i@240 */
476 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
477 		   801, 858, 480, 488, 494, 525, 0,
478 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
479 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
480 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
481 	/* 60 - 1280x720@24Hz */
482 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
483 		   3080, 3300, 720, 725, 730, 750, 0,
484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
485 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
486 	/* 61 - 1280x720@25Hz */
487 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
488 		   3740, 3960, 720, 725, 730, 750, 0,
489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
490 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
491 	/* 62 - 1280x720@30Hz */
492 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
493 		   3080, 3300, 720, 725, 730, 750, 0,
494 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
495 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
496 	/* 63 - 1920x1080@120Hz */
497 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
498 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
499 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
500 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
501 	/* 64 - 1920x1080@100Hz */
502 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
503 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
504 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
505 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
506 	/* 65 - 1280x720@24Hz */
507 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
508 		   3080, 3300, 720, 725, 730, 750, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
510 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
511 	/* 66 - 1280x720@25Hz */
512 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
513 		   3740, 3960, 720, 725, 730, 750, 0,
514 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
515 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
516 	/* 67 - 1280x720@30Hz */
517 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
518 		   3080, 3300, 720, 725, 730, 750, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
520 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
521 	/* 68 - 1280x720@50Hz */
522 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
523 		   1760, 1980, 720, 725, 730, 750, 0,
524 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
525 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
526 	/* 69 - 1280x720@60Hz */
527 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
528 		   1430, 1650, 720, 725, 730, 750, 0,
529 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
530 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
531 	/* 70 - 1280x720@100Hz */
532 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
533 		   1760, 1980, 720, 725, 730, 750, 0,
534 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
535 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
536 	/* 71 - 1280x720@120Hz */
537 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
538 		   1430, 1650, 720, 725, 730, 750, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
540 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
541 	/* 72 - 1920x1080@24Hz */
542 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
543 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
544 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
545 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
546 	/* 73 - 1920x1080@25Hz */
547 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
548 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
549 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
550 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
551 	/* 74 - 1920x1080@30Hz */
552 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
553 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
554 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
555 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
556 	/* 75 - 1920x1080@50Hz */
557 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
558 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
559 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
560 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
561 	/* 76 - 1920x1080@60Hz */
562 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
563 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
565 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
566 	/* 77 - 1920x1080@100Hz */
567 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
568 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
569 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
570 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
571 	/* 78 - 1920x1080@120Hz */
572 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
573 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
574 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
575 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
576 	/* 79 - 1680x720@24Hz */
577 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
578 		   3080, 3300, 720, 725, 730, 750, 0,
579 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
580 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
581 	/* 80 - 1680x720@25Hz */
582 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
583 		   2948, 3168, 720, 725, 730, 750, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
585 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
586 	/* 81 - 1680x720@30Hz */
587 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
588 		   2420, 2640, 720, 725, 730, 750, 0,
589 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
590 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
591 	/* 82 - 1680x720@50Hz */
592 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
593 		   1980, 2200, 720, 725, 730, 750, 0,
594 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
595 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
596 	/* 83 - 1680x720@60Hz */
597 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
598 		   1980, 2200, 720, 725, 730, 750, 0,
599 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
600 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
601 	/* 84 - 1680x720@100Hz */
602 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
603 		   1780, 2000, 720, 725, 730, 825, 0,
604 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
605 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
606 	/* 85 - 1680x720@120Hz */
607 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
608 		   1780, 2000, 720, 725, 730, 825, 0,
609 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
610 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
611 	/* 86 - 2560x1080@24Hz */
612 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
613 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
615 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
616 	/* 87 - 2560x1080@25Hz */
617 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
618 		   3052, 3200, 1080, 1084, 1089, 1125, 0,
619 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
620 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
621 	/* 88 - 2560x1080@30Hz */
622 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
623 		   3372, 3520, 1080, 1084, 1089, 1125, 0,
624 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
625 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
626 	/* 89 - 2560x1080@50Hz */
627 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
628 		   3152, 3300, 1080, 1084, 1089, 1125, 0,
629 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
630 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
631 	/* 90 - 2560x1080@60Hz */
632 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
633 		   2852, 3000, 1080, 1084, 1089, 1100, 0,
634 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
635 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
636 	/* 91 - 2560x1080@100Hz */
637 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
638 		   2822, 2970, 1080, 1084, 1089, 1250, 0,
639 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
640 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
641 	/* 92 - 2560x1080@120Hz */
642 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
643 		   3152, 3300, 1080, 1084, 1089, 1250, 0,
644 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
645 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
646 	/* 93 - 3840x2160p@24Hz 16:9 */
647 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
648 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
649 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
650 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
651 	/* 94 - 3840x2160p@25Hz 16:9 */
652 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
653 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
654 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
655 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
656 	/* 95 - 3840x2160p@30Hz 16:9 */
657 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
658 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
660 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
661 	/* 96 - 3840x2160p@50Hz 16:9 */
662 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
663 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
664 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
665 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 	/* 97 - 3840x2160p@60Hz 16:9 */
667 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
668 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
669 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
670 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
671 	/* 98 - 4096x2160p@24Hz 256:135 */
672 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
673 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
674 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
675 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
676 	/* 99 - 4096x2160p@25Hz 256:135 */
677 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
678 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
679 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
680 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
681 	/* 100 - 4096x2160p@30Hz 256:135 */
682 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
683 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
684 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
685 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
686 	/* 101 - 4096x2160p@50Hz 256:135 */
687 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
688 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
689 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
691 	/* 102 - 4096x2160p@60Hz 256:135 */
692 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
693 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
694 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
695 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
696 	/* 103 - 3840x2160p@24Hz 64:27 */
697 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
698 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
699 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
700 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
701 	/* 104 - 3840x2160p@25Hz 64:27 */
702 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
703 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
704 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
706 	/* 105 - 3840x2160p@30Hz 64:27 */
707 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
708 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
709 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
710 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
711 	/* 106 - 3840x2160p@50Hz 64:27 */
712 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
713 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
714 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
715 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
716 	/* 107 - 3840x2160p@60Hz 64:27 */
717 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
718 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
719 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
720 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
721 	/* 108 - 1280x720@48Hz 16:9 */
722 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
723 		   2280, 2500, 720, 725, 730, 750, 0,
724 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
725 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
726 	/* 109 - 1280x720@48Hz 64:27 */
727 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
728 		   2280, 2500, 720, 725, 730, 750, 0,
729 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
730 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
731 	/* 110 - 1680x720@48Hz 64:27 */
732 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
733 		   2530, 2750, 720, 725, 730, 750, 0,
734 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
735 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
736 	/* 111 - 1920x1080@48Hz 16:9 */
737 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
738 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
739 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
740 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 	/* 112 - 1920x1080@48Hz 64:27 */
742 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
743 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
744 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
745 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
746 	/* 113 - 2560x1080@48Hz 64:27 */
747 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
748 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
749 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
750 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
751 	/* 114 - 3840x2160@48Hz 16:9 */
752 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
753 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
754 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
755 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 115 - 4096x2160@48Hz 256:135 */
757 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
758 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
761 	/* 116 - 3840x2160@48Hz 64:27 */
762 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
763 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
765 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
766 	/* 117 - 3840x2160@100Hz 16:9 */
767 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
768 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
769 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
770 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
771 	/* 118 - 3840x2160@120Hz 16:9 */
772 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
773 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
774 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
775 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 	/* 119 - 3840x2160@100Hz 64:27 */
777 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
778 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
779 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
780 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
781 	/* 120 - 3840x2160@120Hz 64:27 */
782 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
783 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
784 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
785 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
786 	/* 121 - 5120x2160@24Hz 64:27 */
787 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
788 		   7204, 7500, 2160, 2168, 2178, 2200, 0,
789 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
790 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
791 	/* 122 - 5120x2160@25Hz 64:27 */
792 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
793 		   6904, 7200, 2160, 2168, 2178, 2200, 0,
794 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
795 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
796 	/* 123 - 5120x2160@30Hz 64:27 */
797 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
798 		   5872, 6000, 2160, 2168, 2178, 2200, 0,
799 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
800 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
801 	/* 124 - 5120x2160@48Hz 64:27 */
802 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
803 		   5954, 6250, 2160, 2168, 2178, 2475, 0,
804 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
805 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
806 	/* 125 - 5120x2160@50Hz 64:27 */
807 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
808 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
809 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
811 	/* 126 - 5120x2160@60Hz 64:27 */
812 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
813 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
814 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
815 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
816 	/* 127 - 5120x2160@100Hz 64:27 */
817 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
818 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
819 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
821 };
822 
823 static const struct drm_display_mode edid_cea_modes_193[] = {
824 	/* 193 - 5120x2160@120Hz 64:27 */
825 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
826 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
827 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
829 	/* 194 - 7680x4320@24Hz 16:9 */
830 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
831 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
832 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
833 	 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 	/* 195 - 7680x4320@25Hz 16:9 */
835 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
836 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
837 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 	 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 	/* 196 - 7680x4320@30Hz 16:9 */
840 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
841 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
842 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 	 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 	/* 197 - 7680x4320@48Hz 16:9 */
845 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
846 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
847 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
848 	 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 198 - 7680x4320@50Hz 16:9 */
850 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
851 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
852 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
853 	 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 199 - 7680x4320@60Hz 16:9 */
855 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
856 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
857 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
858 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 200 - 7680x4320@100Hz 16:9 */
860 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
861 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
862 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
863 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 	/* 201 - 7680x4320@120Hz 16:9 */
865 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
866 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
867 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 	/* 202 - 7680x4320@24Hz 64:27 */
870 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
871 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
872 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 	.vrefresh = 24,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
874 	/* 203 - 7680x4320@25Hz 64:27 */
875 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
876 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
877 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
878 	.vrefresh = 25,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
879 	/* 204 - 7680x4320@30Hz 64:27 */
880 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
881 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
882 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
883 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
884 	/* 205 - 7680x4320@48Hz 64:27 */
885 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
886 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
887 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
888 	.vrefresh = 48,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
889 	/* 206 - 7680x4320@50Hz 64:27 */
890 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
891 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
892 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
893 	.vrefresh = 50,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
894 	/* 207 - 7680x4320@60Hz 64:27 */
895 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
896 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
897 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
898 	.vrefresh = 60,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
899 	/* 208 - 7680x4320@100Hz 64:27 */
900 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
901 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
902 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 	.vrefresh = 100,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
904 	/* 209 - 7680x4320@120Hz 64:27 */
905 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
906 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
907 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
909 	/* 210 - 10240x4320@24Hz 64:27 */
910 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
911 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
912 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
914 	/* 211 - 10240x4320@25Hz 64:27 */
915 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
916 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
917 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
919 	/* 212 - 10240x4320@30Hz 64:27 */
920 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
921 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
922 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
924 	/* 213 - 10240x4320@48Hz 64:27 */
925 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
926 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
927 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
929 	/* 214 - 10240x4320@50Hz 64:27 */
930 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
931 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
932 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
934 	/* 215 - 10240x4320@60Hz 64:27 */
935 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
936 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
937 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
939 	/* 216 - 10240x4320@100Hz 64:27 */
940 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
941 		   12608, 13200, 4320, 4336, 4356, 4500, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
944 	/* 217 - 10240x4320@120Hz 64:27 */
945 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
946 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
947 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
949 	/* 218 - 4096x2160@100Hz 256:135 */
950 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
951 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
952 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
953 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
954 	/* 219 - 4096x2160@120Hz 256:135 */
955 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
956 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
957 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
959 };
960 
961 /*
962  * HDMI 1.4 4k modes. Index using the VIC.
963  */
964 static const struct drm_display_mode edid_4k_modes[] = {
965 	/* 0 - dummy, VICs start at 1 */
966 	{ },
967 	/* 1 - 3840x2160@30Hz */
968 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
969 		   3840, 4016, 4104, 4400,
970 		   2160, 2168, 2178, 2250, 0,
971 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
973 	/* 2 - 3840x2160@25Hz */
974 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
975 		   3840, 4896, 4984, 5280,
976 		   2160, 2168, 2178, 2250, 0,
977 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
979 	/* 3 - 3840x2160@24Hz */
980 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
981 		   3840, 5116, 5204, 5500,
982 		   2160, 2168, 2178, 2250, 0,
983 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 	/* 4 - 4096x2160@24Hz (SMPTE) */
986 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
987 		   4096, 5116, 5204, 5500,
988 		   2160, 2168, 2178, 2250, 0,
989 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
990 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
991 };
992 
993 /*
994  * Autogenerated from the DMT spec.
995  * This table is copied from xfree86/modes/xf86EdidModes.c.
996  */
997 static const struct drm_display_mode drm_dmt_modes[] = {
998 	/* 0x01 - 640x350@85Hz */
999 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1000 		   736, 832, 350, 382, 385, 445, 0,
1001 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1002 	/* 0x02 - 640x400@85Hz */
1003 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1004 		   736, 832, 400, 401, 404, 445, 0,
1005 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1006 	/* 0x03 - 720x400@85Hz */
1007 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
1008 		   828, 936, 400, 401, 404, 446, 0,
1009 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1010 	/* 0x04 - 640x480@60Hz */
1011 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1012 		   752, 800, 480, 490, 492, 525, 0,
1013 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1014 	/* 0x05 - 640x480@72Hz */
1015 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1016 		   704, 832, 480, 489, 492, 520, 0,
1017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1018 	/* 0x06 - 640x480@75Hz */
1019 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1020 		   720, 840, 480, 481, 484, 500, 0,
1021 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1022 	/* 0x07 - 640x480@85Hz */
1023 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
1024 		   752, 832, 480, 481, 484, 509, 0,
1025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1026 	/* 0x08 - 800x600@56Hz */
1027 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1028 		   896, 1024, 600, 601, 603, 625, 0,
1029 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1030 	/* 0x09 - 800x600@60Hz */
1031 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1032 		   968, 1056, 600, 601, 605, 628, 0,
1033 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1034 	/* 0x0a - 800x600@72Hz */
1035 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1036 		   976, 1040, 600, 637, 643, 666, 0,
1037 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1038 	/* 0x0b - 800x600@75Hz */
1039 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1040 		   896, 1056, 600, 601, 604, 625, 0,
1041 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1042 	/* 0x0c - 800x600@85Hz */
1043 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
1044 		   896, 1048, 600, 601, 604, 631, 0,
1045 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1046 	/* 0x0d - 800x600@120Hz RB */
1047 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
1048 		   880, 960, 600, 603, 607, 636, 0,
1049 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1050 	/* 0x0e - 848x480@60Hz */
1051 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
1052 		   976, 1088, 480, 486, 494, 517, 0,
1053 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1054 	/* 0x0f - 1024x768@43Hz, interlace */
1055 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1056 		   1208, 1264, 768, 768, 772, 817, 0,
1057 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1058 		   DRM_MODE_FLAG_INTERLACE) },
1059 	/* 0x10 - 1024x768@60Hz */
1060 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1061 		   1184, 1344, 768, 771, 777, 806, 0,
1062 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1063 	/* 0x11 - 1024x768@70Hz */
1064 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1065 		   1184, 1328, 768, 771, 777, 806, 0,
1066 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1067 	/* 0x12 - 1024x768@75Hz */
1068 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1069 		   1136, 1312, 768, 769, 772, 800, 0,
1070 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1071 	/* 0x13 - 1024x768@85Hz */
1072 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1073 		   1168, 1376, 768, 769, 772, 808, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1075 	/* 0x14 - 1024x768@120Hz RB */
1076 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1077 		   1104, 1184, 768, 771, 775, 813, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1079 	/* 0x15 - 1152x864@75Hz */
1080 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1081 		   1344, 1600, 864, 865, 868, 900, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1083 	/* 0x55 - 1280x720@60Hz */
1084 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1085 		   1430, 1650, 720, 725, 730, 750, 0,
1086 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1087 	/* 0x16 - 1280x768@60Hz RB */
1088 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1089 		   1360, 1440, 768, 771, 778, 790, 0,
1090 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1091 	/* 0x17 - 1280x768@60Hz */
1092 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1093 		   1472, 1664, 768, 771, 778, 798, 0,
1094 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1095 	/* 0x18 - 1280x768@75Hz */
1096 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1097 		   1488, 1696, 768, 771, 778, 805, 0,
1098 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1099 	/* 0x19 - 1280x768@85Hz */
1100 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1101 		   1496, 1712, 768, 771, 778, 809, 0,
1102 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1103 	/* 0x1a - 1280x768@120Hz RB */
1104 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1105 		   1360, 1440, 768, 771, 778, 813, 0,
1106 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1107 	/* 0x1b - 1280x800@60Hz RB */
1108 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1109 		   1360, 1440, 800, 803, 809, 823, 0,
1110 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1111 	/* 0x1c - 1280x800@60Hz */
1112 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1113 		   1480, 1680, 800, 803, 809, 831, 0,
1114 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1115 	/* 0x1d - 1280x800@75Hz */
1116 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1117 		   1488, 1696, 800, 803, 809, 838, 0,
1118 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1119 	/* 0x1e - 1280x800@85Hz */
1120 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1121 		   1496, 1712, 800, 803, 809, 843, 0,
1122 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1123 	/* 0x1f - 1280x800@120Hz RB */
1124 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1125 		   1360, 1440, 800, 803, 809, 847, 0,
1126 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1127 	/* 0x20 - 1280x960@60Hz */
1128 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1129 		   1488, 1800, 960, 961, 964, 1000, 0,
1130 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1131 	/* 0x21 - 1280x960@85Hz */
1132 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1133 		   1504, 1728, 960, 961, 964, 1011, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1135 	/* 0x22 - 1280x960@120Hz RB */
1136 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1137 		   1360, 1440, 960, 963, 967, 1017, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1139 	/* 0x23 - 1280x1024@60Hz */
1140 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1141 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1143 	/* 0x24 - 1280x1024@75Hz */
1144 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1145 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1146 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1147 	/* 0x25 - 1280x1024@85Hz */
1148 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1149 		   1504, 1728, 1024, 1025, 1028, 1072, 0,
1150 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1151 	/* 0x26 - 1280x1024@120Hz RB */
1152 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1153 		   1360, 1440, 1024, 1027, 1034, 1084, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1155 	/* 0x27 - 1360x768@60Hz */
1156 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1157 		   1536, 1792, 768, 771, 777, 795, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1159 	/* 0x28 - 1360x768@120Hz RB */
1160 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1161 		   1440, 1520, 768, 771, 776, 813, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1163 	/* 0x51 - 1366x768@60Hz */
1164 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1165 		   1579, 1792, 768, 771, 774, 798, 0,
1166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1167 	/* 0x56 - 1366x768@60Hz */
1168 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1169 		   1436, 1500, 768, 769, 772, 800, 0,
1170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1171 	/* 0x29 - 1400x1050@60Hz RB */
1172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1173 		   1480, 1560, 1050, 1053, 1057, 1080, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1175 	/* 0x2a - 1400x1050@60Hz */
1176 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1177 		   1632, 1864, 1050, 1053, 1057, 1089, 0,
1178 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1179 	/* 0x2b - 1400x1050@75Hz */
1180 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1181 		   1648, 1896, 1050, 1053, 1057, 1099, 0,
1182 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1183 	/* 0x2c - 1400x1050@85Hz */
1184 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1185 		   1656, 1912, 1050, 1053, 1057, 1105, 0,
1186 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1187 	/* 0x2d - 1400x1050@120Hz RB */
1188 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1189 		   1480, 1560, 1050, 1053, 1057, 1112, 0,
1190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1191 	/* 0x2e - 1440x900@60Hz RB */
1192 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1193 		   1520, 1600, 900, 903, 909, 926, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1195 	/* 0x2f - 1440x900@60Hz */
1196 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1197 		   1672, 1904, 900, 903, 909, 934, 0,
1198 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1199 	/* 0x30 - 1440x900@75Hz */
1200 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1201 		   1688, 1936, 900, 903, 909, 942, 0,
1202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1203 	/* 0x31 - 1440x900@85Hz */
1204 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1205 		   1696, 1952, 900, 903, 909, 948, 0,
1206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1207 	/* 0x32 - 1440x900@120Hz RB */
1208 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1209 		   1520, 1600, 900, 903, 909, 953, 0,
1210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1211 	/* 0x53 - 1600x900@60Hz */
1212 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1213 		   1704, 1800, 900, 901, 904, 1000, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1215 	/* 0x33 - 1600x1200@60Hz */
1216 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1217 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1219 	/* 0x34 - 1600x1200@65Hz */
1220 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1221 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1223 	/* 0x35 - 1600x1200@70Hz */
1224 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1225 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1227 	/* 0x36 - 1600x1200@75Hz */
1228 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1229 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1230 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1231 	/* 0x37 - 1600x1200@85Hz */
1232 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1233 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1235 	/* 0x38 - 1600x1200@120Hz RB */
1236 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1237 		   1680, 1760, 1200, 1203, 1207, 1271, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1239 	/* 0x39 - 1680x1050@60Hz RB */
1240 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1241 		   1760, 1840, 1050, 1053, 1059, 1080, 0,
1242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1243 	/* 0x3a - 1680x1050@60Hz */
1244 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1245 		   1960, 2240, 1050, 1053, 1059, 1089, 0,
1246 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1247 	/* 0x3b - 1680x1050@75Hz */
1248 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1249 		   1976, 2272, 1050, 1053, 1059, 1099, 0,
1250 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1251 	/* 0x3c - 1680x1050@85Hz */
1252 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1253 		   1984, 2288, 1050, 1053, 1059, 1105, 0,
1254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1255 	/* 0x3d - 1680x1050@120Hz RB */
1256 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1257 		   1760, 1840, 1050, 1053, 1059, 1112, 0,
1258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1259 	/* 0x3e - 1792x1344@60Hz */
1260 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1261 		   2120, 2448, 1344, 1345, 1348, 1394, 0,
1262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1263 	/* 0x3f - 1792x1344@75Hz */
1264 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
1265 		   2104, 2456, 1344, 1345, 1348, 1417, 0,
1266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1267 	/* 0x40 - 1792x1344@120Hz RB */
1268 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1269 		   1872, 1952, 1344, 1347, 1351, 1423, 0,
1270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1271 	/* 0x41 - 1856x1392@60Hz */
1272 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
1273 		   2176, 2528, 1392, 1393, 1396, 1439, 0,
1274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1275 	/* 0x42 - 1856x1392@75Hz */
1276 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
1277 		   2208, 2560, 1392, 1393, 1396, 1500, 0,
1278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1279 	/* 0x43 - 1856x1392@120Hz RB */
1280 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1281 		   1936, 2016, 1392, 1395, 1399, 1474, 0,
1282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1283 	/* 0x52 - 1920x1080@60Hz */
1284 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1285 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1286 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1287 	/* 0x44 - 1920x1200@60Hz RB */
1288 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
1289 		   2000, 2080, 1200, 1203, 1209, 1235, 0,
1290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1291 	/* 0x45 - 1920x1200@60Hz */
1292 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
1293 		   2256, 2592, 1200, 1203, 1209, 1245, 0,
1294 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1295 	/* 0x46 - 1920x1200@75Hz */
1296 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
1297 		   2264, 2608, 1200, 1203, 1209, 1255, 0,
1298 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1299 	/* 0x47 - 1920x1200@85Hz */
1300 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
1301 		   2272, 2624, 1200, 1203, 1209, 1262, 0,
1302 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1303 	/* 0x48 - 1920x1200@120Hz RB */
1304 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
1305 		   2000, 2080, 1200, 1203, 1209, 1271, 0,
1306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1307 	/* 0x49 - 1920x1440@60Hz */
1308 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
1309 		   2256, 2600, 1440, 1441, 1444, 1500, 0,
1310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1311 	/* 0x4a - 1920x1440@75Hz */
1312 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
1313 		   2288, 2640, 1440, 1441, 1444, 1500, 0,
1314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1315 	/* 0x4b - 1920x1440@120Hz RB */
1316 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
1317 		   2000, 2080, 1440, 1443, 1447, 1525, 0,
1318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1319 	/* 0x54 - 2048x1152@60Hz */
1320 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
1321 		   2154, 2250, 1152, 1153, 1156, 1200, 0,
1322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1323 	/* 0x4c - 2560x1600@60Hz RB */
1324 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
1325 		   2640, 2720, 1600, 1603, 1609, 1646, 0,
1326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1327 	/* 0x4d - 2560x1600@60Hz */
1328 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
1329 		   3032, 3504, 1600, 1603, 1609, 1658, 0,
1330 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1331 	/* 0x4e - 2560x1600@75Hz */
1332 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
1333 		   3048, 3536, 1600, 1603, 1609, 1672, 0,
1334 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1335 	/* 0x4f - 2560x1600@85Hz */
1336 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
1337 		   3048, 3536, 1600, 1603, 1609, 1682, 0,
1338 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1339 	/* 0x50 - 2560x1600@120Hz RB */
1340 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
1341 		   2640, 2720, 1600, 1603, 1609, 1694, 0,
1342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1343 	/* 0x57 - 4096x2160@60Hz RB */
1344 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
1345 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1347 	/* 0x58 - 4096x2160@59.94Hz RB */
1348 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
1349 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1351 };
1352 
1353 /*
1354  * These more or less come from the DMT spec.  The 720x400 modes are
1355  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
1356  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
1357  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
1358  * mode.
1359  *
1360  * The DMT modes have been fact-checked; the rest are mild guesses.
1361  */
1362 static const struct drm_display_mode edid_est_modes[] = {
1363 	/* 800x600@60Hz */
1364 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1365 		   968, 1056, 600, 601, 605, 628, 0,
1366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1367 	/* 800x600@56Hz */
1368 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1369 		   896, 1024, 600, 601, 603,  625, 0,
1370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1371 	/* 640x480@75Hz */
1372 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1373 		   720, 840, 480, 481, 484, 500, 0,
1374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1375 	/* 640x480@72Hz */
1376 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1377 		   704,  832, 480, 489, 492, 520, 0,
1378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1379 	/* 640x480@67Hz */
1380 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
1381 		   768,  864, 480, 483, 486, 525, 0,
1382 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1383 	/* 640x480@60Hz */
1384 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1385 		   752, 800, 480, 490, 492, 525, 0,
1386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1387 	/* 720x400@88Hz */
1388 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
1389 		   846, 900, 400, 421, 423,  449, 0,
1390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1391 	/* 720x400@70Hz */
1392 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
1393 		   846,  900, 400, 412, 414, 449, 0,
1394 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1395 	/* 1280x1024@75Hz */
1396 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1397 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1398 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1399 	/* 1024x768@75Hz */
1400 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1401 		   1136, 1312,  768, 769, 772, 800, 0,
1402 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1403 	/* 1024x768@70Hz */
1404 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1405 		   1184, 1328, 768, 771, 777, 806, 0,
1406 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1407 	/* 1024x768@60Hz */
1408 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1409 		   1184, 1344, 768, 771, 777, 806, 0,
1410 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1411 	/* 1024x768@43Hz */
1412 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1413 		   1208, 1264, 768, 768, 776, 817, 0,
1414 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1415 		   DRM_MODE_FLAG_INTERLACE) },
1416 	/* 832x624@75Hz */
1417 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
1418 		   928, 1152, 624, 625, 628, 667, 0,
1419 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1420 	/* 800x600@75Hz */
1421 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1422 		   896, 1056, 600, 601, 604,  625, 0,
1423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1424 	/* 800x600@72Hz */
1425 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1426 		   976, 1040, 600, 637, 643, 666, 0,
1427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1428 	/* 1152x864@75Hz */
1429 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1430 		   1344, 1600, 864, 865, 868, 900, 0,
1431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1432 };
1433 
1434 static const struct drm_display_mode resolution_white[] = {
1435 	/* 0. vic:2 - 720x480@60Hz */
1436 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
1437 		   798, 858, 480, 489, 495, 525, 0,
1438 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1439 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1440 	/* 1. vic:3 - 720x480@60Hz */
1441 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
1442 		   798, 858, 480, 489, 495, 525, 0,
1443 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1444 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1445 	/* 1024x768@60Hz */
1446 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1447 		   1184, 1344, 768, 771, 777, 806, 0,
1448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1449 	/* 2. vic:4 - 1280x720@60Hz */
1450 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1451 		   1430, 1650, 720, 725, 730, 750, 0,
1452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 3. vic:5 - 1920x1080i@60Hz */
1455 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1456 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
1457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1458 		   DRM_MODE_FLAG_INTERLACE),
1459 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1460 	/* 4. vic:6 - 720(1440)x480i@60Hz */
1461 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
1462 		   801, 858, 480, 488, 494, 525, 0,
1463 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1464 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1465 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1466 	/* 5. vic:16 - 1920x1080@60Hz */
1467 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1468 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1469 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1470 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1471 	/* 6. vic:17 - 720x576@50Hz */
1472 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1473 		   796, 864, 576, 581, 586, 625, 0,
1474 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1475 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1476 	/* 7. vic:18 - 720x576@50Hz */
1477 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1478 		   796, 864, 576, 581, 586, 625, 0,
1479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1480 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1481 	/* 8. vic:19 - 1280x720@50Hz */
1482 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1483 		   1760, 1980, 720, 725, 730, 750, 0,
1484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1485 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1486 	/* 9. vic:20 - 1920x1080i@50Hz */
1487 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1488 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
1489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1490 		   DRM_MODE_FLAG_INTERLACE),
1491 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1492 	/* 10. vic:21 - 720(1440)x576i@50Hz */
1493 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
1494 		   795, 864, 576, 580, 586, 625, 0,
1495 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1496 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1497 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1498 	/* 11. vic:31 - 1920x1080@50Hz */
1499 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1500 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
1501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1503 	/* 12. vic:32 - 1920x1080@24Hz */
1504 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1505 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
1506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1508 	/* 13. vic:33 - 1920x1080@25Hz */
1509 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1510 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
1511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1513 	/* 14. vic:34 - 1920x1080@30Hz */
1514 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1515 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1518 	/* 15. vic:39 - 1920x1080i@50Hz */
1519 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
1520 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
1521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
1522 		   DRM_MODE_FLAG_INTERLACE),
1523 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1524 	/* 16. vic:60 - 1280x720@24Hz */
1525 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1526 		   3080, 3300, 720, 725, 730, 750, 0,
1527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1529 	/* 17. vic:61 - 1280x720@25Hz */
1530 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1531 		   3740, 3960, 720, 725, 730, 750, 0,
1532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1534 	/* 18. vic:62 - 1280x720@30Hz */
1535 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1536 		   3080, 3300, 720, 725, 730, 750, 0,
1537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1539 	/* 19. vic:93 - 3840x2160p@24Hz 16:9 */
1540 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1541 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1544 	/* 20. vic:94 - 3840x2160p@25Hz 16:9 */
1545 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1546 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
1547 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1548 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1549 	/* 21. vic:95 - 3840x2160p@30Hz 16:9 */
1550 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1551 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
1552 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1553 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1554 	/* 22. vic:96 - 3840x2160p@50Hz 16:9 */
1555 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1556 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
1557 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1558 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1559 	/* 23. vic:97 - 3840x2160p@60Hz 16:9 */
1560 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1561 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 	/* 24. vic:98 - 4096x2160p@24Hz 256:135 */
1565 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1566 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
1567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1568 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1569 	/* 25. vic:99 - 4096x2160p@25Hz 256:135 */
1570 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1571 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
1572 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1573 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1574 	/* 26. vic:100 - 4096x2160p@30Hz 256:135 */
1575 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1576 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
1577 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1579 	/* 27. vic:101 - 4096x2160p@50Hz 256:135 */
1580 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1581 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
1582 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1583 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1584 	/* 28. vic:102 - 4096x2160p@60Hz 256:135 */
1585 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1586 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
1587 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1588 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1589 	/* 29. vic:118 - 3840x2160@120Hz 16:9 */
1590 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1591 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
1592 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1593 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1594 	/* 30. vic:196 - 7680x4320@30Hz 16:9 */
1595 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1596 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
1597 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1598 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1599 	/* 31. vic:198 - 7680x4320@50Hz 16:9 */
1600 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1601 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
1602 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1603 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1604 	/* 32. vic:199 - 7680x4320@60Hz 16:9 */
1605 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1606 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
1607 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1608 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1609 };
1610 
1611 struct minimode {
1612 	short w;
1613 	short h;
1614 	short r;
1615 	short rb;
1616 };
1617 
1618 static const struct minimode est3_modes[] = {
1619 	/* byte 6 */
1620 	{ 640, 350, 85, 0 },
1621 	{ 640, 400, 85, 0 },
1622 	{ 720, 400, 85, 0 },
1623 	{ 640, 480, 85, 0 },
1624 	{ 848, 480, 60, 0 },
1625 	{ 800, 600, 85, 0 },
1626 	{ 1024, 768, 85, 0 },
1627 	{ 1152, 864, 75, 0 },
1628 	/* byte 7 */
1629 	{ 1280, 768, 60, 1 },
1630 	{ 1280, 768, 60, 0 },
1631 	{ 1280, 768, 75, 0 },
1632 	{ 1280, 768, 85, 0 },
1633 	{ 1280, 960, 60, 0 },
1634 	{ 1280, 960, 85, 0 },
1635 	{ 1280, 1024, 60, 0 },
1636 	{ 1280, 1024, 85, 0 },
1637 	/* byte 8 */
1638 	{ 1360, 768, 60, 0 },
1639 	{ 1440, 900, 60, 1 },
1640 	{ 1440, 900, 60, 0 },
1641 	{ 1440, 900, 75, 0 },
1642 	{ 1440, 900, 85, 0 },
1643 	{ 1400, 1050, 60, 1 },
1644 	{ 1400, 1050, 60, 0 },
1645 	{ 1400, 1050, 75, 0 },
1646 	/* byte 9 */
1647 	{ 1400, 1050, 85, 0 },
1648 	{ 1680, 1050, 60, 1 },
1649 	{ 1680, 1050, 60, 0 },
1650 	{ 1680, 1050, 75, 0 },
1651 	{ 1680, 1050, 85, 0 },
1652 	{ 1600, 1200, 60, 0 },
1653 	{ 1600, 1200, 65, 0 },
1654 	{ 1600, 1200, 70, 0 },
1655 	/* byte 10 */
1656 	{ 1600, 1200, 75, 0 },
1657 	{ 1600, 1200, 85, 0 },
1658 	{ 1792, 1344, 60, 0 },
1659 	{ 1792, 1344, 75, 0 },
1660 	{ 1856, 1392, 60, 0 },
1661 	{ 1856, 1392, 75, 0 },
1662 	{ 1920, 1200, 60, 1 },
1663 	{ 1920, 1200, 60, 0 },
1664 	/* byte 11 */
1665 	{ 1920, 1200, 75, 0 },
1666 	{ 1920, 1200, 85, 0 },
1667 	{ 1920, 1440, 60, 0 },
1668 	{ 1920, 1440, 75, 0 },
1669 };
1670 
1671 static const struct minimode extra_modes[] = {
1672 	{ 1024, 576,  60, 0 },
1673 	{ 1366, 768,  60, 0 },
1674 	{ 1600, 900,  60, 0 },
1675 	{ 1680, 945,  60, 0 },
1676 	{ 1920, 1080, 60, 0 },
1677 	{ 2048, 1152, 60, 0 },
1678 	{ 2048, 1536, 60, 0 },
1679 };
1680 
cea_mode_for_vic(u8 vic)1681 static const struct drm_display_mode *cea_mode_for_vic(u8 vic)
1682 {
1683 	if (!vic)
1684 		return NULL;
1685 	else if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
1686 		return &edid_cea_modes_1[vic - 1];
1687 	else if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
1688 		return &edid_cea_modes_193[vic - 193];
1689 
1690 	return NULL;
1691 }
1692 
cea_num_vics(void)1693 static u8 cea_num_vics(void)
1694 {
1695 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
1696 }
1697 
cea_next_vic(u8 vic)1698 static u8 cea_next_vic(u8 vic)
1699 {
1700 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
1701 		vic = 193;
1702 
1703 	return vic;
1704 }
1705 
edid_check_info(struct edid1_info * edid_info)1706 int edid_check_info(struct edid1_info *edid_info)
1707 {
1708 	if ((edid_info == NULL) || (edid_info->version == 0))
1709 		return -1;
1710 
1711 	if (memcmp(edid_info->header, "\x0\xff\xff\xff\xff\xff\xff\x0", 8))
1712 		return -1;
1713 
1714 	if (edid_info->version == 0xff && edid_info->revision == 0xff)
1715 		return -1;
1716 
1717 	return 0;
1718 }
1719 
edid_check_checksum(u8 * edid_block)1720 int edid_check_checksum(u8 *edid_block)
1721 {
1722 	u8 checksum = 0;
1723 	int i;
1724 
1725 	for (i = 0; i < 128; i++)
1726 		checksum += edid_block[i];
1727 
1728 	return (checksum == 0) ? 0 : -EINVAL;
1729 }
1730 
edid_get_ranges(struct edid1_info * edid,unsigned int * hmin,unsigned int * hmax,unsigned int * vmin,unsigned int * vmax)1731 int edid_get_ranges(struct edid1_info *edid, unsigned int *hmin,
1732 		    unsigned int *hmax, unsigned int *vmin,
1733 		    unsigned int *vmax)
1734 {
1735 	int i;
1736 	struct edid_monitor_descriptor *monitor;
1737 
1738 	*hmin = *hmax = *vmin = *vmax = 0;
1739 	if (edid_check_info(edid))
1740 		return -1;
1741 
1742 	for (i = 0; i < ARRAY_SIZE(edid->monitor_details.descriptor); i++) {
1743 		monitor = &edid->monitor_details.descriptor[i];
1744 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE) {
1745 			*hmin = monitor->data.range_data.horizontal_min;
1746 			*hmax = monitor->data.range_data.horizontal_max;
1747 			*vmin = monitor->data.range_data.vertical_min;
1748 			*vmax = monitor->data.range_data.vertical_max;
1749 			return 0;
1750 		}
1751 	}
1752 	return -1;
1753 }
1754 
1755 /* Set all parts of a timing entry to the same value */
set_entry(struct timing_entry * entry,u32 value)1756 static void set_entry(struct timing_entry *entry, u32 value)
1757 {
1758 	entry->min = value;
1759 	entry->typ = value;
1760 	entry->max = value;
1761 }
1762 
1763 /**
1764  * decode_timing() - Decoding an 18-byte detailed timing record
1765  *
1766  * @buf:	Pointer to EDID detailed timing record
1767  * @timing:	Place to put timing
1768  */
decode_timing(u8 * buf,struct display_timing * timing)1769 static void decode_timing(u8 *buf, struct display_timing *timing)
1770 {
1771 	uint x_mm, y_mm;
1772 	unsigned int ha, hbl, hso, hspw, hborder;
1773 	unsigned int va, vbl, vso, vspw, vborder;
1774 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1775 
1776 	/* Edid contains pixel clock in terms of 10KHz */
1777 	set_entry(&timing->pixelclock, (buf[0] + (buf[1] << 8)) * 10000);
1778 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1779 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1780 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1781 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1782 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1783 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1784 	hborder = buf[15];
1785 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1786 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1787 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1788 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1789 	vborder = buf[16];
1790 
1791 	set_entry(&timing->hactive, ha);
1792 	set_entry(&timing->hfront_porch, hso);
1793 	set_entry(&timing->hback_porch, hbl - hso - hspw);
1794 	set_entry(&timing->hsync_len, hspw);
1795 
1796 	set_entry(&timing->vactive, va);
1797 	set_entry(&timing->vfront_porch, vso);
1798 	set_entry(&timing->vback_porch, vbl - vso - vspw);
1799 	set_entry(&timing->vsync_len, vspw);
1800 
1801 	timing->flags = 0;
1802 	if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1803 		timing->flags |= DISPLAY_FLAGS_HSYNC_HIGH;
1804 	else
1805 		timing->flags |= DISPLAY_FLAGS_HSYNC_LOW;
1806 	if (EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t))
1807 		timing->flags |= DISPLAY_FLAGS_VSYNC_HIGH;
1808 	else
1809 		timing->flags |= DISPLAY_FLAGS_VSYNC_LOW;
1810 
1811 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1812 		timing->flags = DISPLAY_FLAGS_INTERLACED;
1813 
1814 	debug("Detailed mode clock %u Hz, %d mm x %d mm\n"
1815 	      "               %04x %04x %04x %04x hborder %x\n"
1816 	      "               %04x %04x %04x %04x vborder %x\n",
1817 	      timing->pixelclock.typ,
1818 	      x_mm, y_mm,
1819 	      ha, ha + hso, ha + hso + hspw,
1820 	      ha + hbl, hborder,
1821 	      va, va + vso, va + vso + vspw,
1822 	      va + vbl, vborder);
1823 }
1824 
1825 /**
1826  * decode_mode() - Decoding an 18-byte detailed timing record
1827  *
1828  * @buf:	Pointer to EDID detailed timing record
1829  * @timing:	Place to put timing
1830  */
decode_mode(u8 * buf,struct drm_display_mode * mode)1831 static void decode_mode(u8 *buf, struct drm_display_mode *mode)
1832 {
1833 	uint x_mm, y_mm;
1834 	unsigned int ha, hbl, hso, hspw, hborder;
1835 	unsigned int va, vbl, vso, vspw, vborder;
1836 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1837 
1838 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1839 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1840 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1841 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1842 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1843 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1844 	hborder = buf[15];
1845 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1846 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1847 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1848 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1849 	vborder = buf[16];
1850 
1851 	/* Edid contains pixel clock in terms of 10KHz */
1852 	mode->clock = (buf[0] + (buf[1] << 8)) * 10;
1853 	mode->hdisplay = ha;
1854 	mode->hsync_start = ha + hso;
1855 	mode->hsync_end = ha + hso + hspw;
1856 	mode->htotal = ha + hbl;
1857 	mode->vdisplay = va;
1858 	mode->vsync_start = va + vso;
1859 	mode->vsync_end = va + vso + vspw;
1860 	mode->vtotal = va + vbl;
1861 
1862 	mode->flags = EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t) ?
1863 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1864 	mode->flags |= EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t) ?
1865 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1866 
1867 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1868 		mode->flags |= DRM_MODE_FLAG_INTERLACE;
1869 
1870 	debug("Detailed mode clock %u kHz, %d mm x %d mm, flags[%x]\n"
1871 	      "     %04d %04d %04d %04d hborder %d\n"
1872 	      "     %04d %04d %04d %04d vborder %d\n",
1873 	      mode->clock,
1874 	      x_mm, y_mm, mode->flags,
1875 	      mode->hdisplay, mode->hsync_start, mode->hsync_end,
1876 	      mode->htotal, hborder,
1877 	      mode->vdisplay, mode->vsync_start, mode->vsync_end,
1878 	      mode->vtotal, vborder);
1879 }
1880 
1881 /**
1882  * edid_vendor - match a string against EDID's obfuscated vendor field
1883  * @edid: EDID to match
1884  * @vendor: vendor string
1885  *
1886  * Returns true if @vendor is in @edid, false otherwise
1887  */
edid_vendor(struct edid * edid,char * vendor)1888 static bool edid_vendor(struct edid *edid, char *vendor)
1889 {
1890 	char edid_vendor[3];
1891 
1892 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1893 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1894 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1895 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1896 
1897 	return !strncmp(edid_vendor, vendor, 3);
1898 }
1899 
1900 /**
1901  * Check if HDMI vendor specific data block is present in CEA block
1902  * @param info	CEA extension block
1903  * @return true if block is found
1904  */
cea_is_hdmi_vsdb_present(struct edid_cea861_info * info)1905 static bool cea_is_hdmi_vsdb_present(struct edid_cea861_info *info)
1906 {
1907 	u8 end, i = 0;
1908 
1909 	/* check for end of data block */
1910 	end = info->dtd_offset;
1911 	if (end == 0)
1912 		end = sizeof(info->data);
1913 	if (end < 4 || end > sizeof(info->data))
1914 		return false;
1915 	end -= 4;
1916 
1917 	while (i < end) {
1918 		/* Look for vendor specific data block of appropriate size */
1919 		if ((EDID_CEA861_DB_TYPE(*info, i) == EDID_CEA861_DB_VENDOR) &&
1920 		    (EDID_CEA861_DB_LEN(*info, i) >= 5)) {
1921 			u8 *db = &info->data[i + 1];
1922 			u32 oui = db[0] | (db[1] << 8) | (db[2] << 16);
1923 
1924 			if (oui == HDMI_IEEE_OUI)
1925 				return true;
1926 		}
1927 		i += EDID_CEA861_DB_LEN(*info, i) + 1;
1928 	}
1929 
1930 	return false;
1931 }
1932 
drm_get_vrefresh(const struct drm_display_mode * mode)1933 static int drm_get_vrefresh(const struct drm_display_mode *mode)
1934 {
1935 	int refresh = 0;
1936 	unsigned int calc_val;
1937 
1938 	if (mode->vrefresh > 0) {
1939 		refresh = mode->vrefresh;
1940 	} else if (mode->htotal > 0 && mode->vtotal > 0) {
1941 		int vtotal;
1942 
1943 		vtotal = mode->vtotal;
1944 		/* work out vrefresh the value will be x1000 */
1945 		calc_val = (mode->clock * 1000);
1946 		calc_val /= mode->htotal;
1947 		refresh = (calc_val + vtotal / 2) / vtotal;
1948 
1949 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1950 			refresh *= 2;
1951 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1952 			refresh /= 2;
1953 		if (mode->vscan > 1)
1954 			refresh /= mode->vscan;
1955 	}
1956 	return refresh;
1957 }
1958 
edid_get_drm_mode(u8 * buf,int buf_size,struct drm_display_mode * mode,int * panel_bits_per_colourp)1959 int edid_get_drm_mode(u8 *buf, int buf_size, struct drm_display_mode *mode,
1960 		      int *panel_bits_per_colourp)
1961 {
1962 	struct edid1_info *edid = (struct edid1_info *)buf;
1963 	bool timing_done;
1964 	int i;
1965 
1966 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1967 		debug("%s: Invalid buffer\n", __func__);
1968 		return -EINVAL;
1969 	}
1970 
1971 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1972 		debug("%s: No preferred timing\n", __func__);
1973 		return -ENOENT;
1974 	}
1975 
1976 	/* Look for detailed timing */
1977 	timing_done = false;
1978 	for (i = 0; i < 4; i++) {
1979 		struct edid_monitor_descriptor *desc;
1980 
1981 		desc = &edid->monitor_details.descriptor[i];
1982 		if (desc->zero_flag_1 != 0) {
1983 			decode_mode((u8 *)desc, mode);
1984 			timing_done = true;
1985 			break;
1986 		}
1987 	}
1988 	if (!timing_done)
1989 		return -EINVAL;
1990 
1991 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
1992 		debug("%s: Not a digital display\n", __func__);
1993 		return -ENOSYS;
1994 	}
1995 	if (edid->version != 1 || edid->revision < 4) {
1996 		debug("%s: EDID version %d.%d does not have required info\n",
1997 		      __func__, edid->version, edid->revision);
1998 		*panel_bits_per_colourp = -1;
1999 	} else  {
2000 		*panel_bits_per_colourp =
2001 			((edid->video_input_definition & 0x70) >> 3) + 4;
2002 	}
2003 
2004 	return 0;
2005 }
2006 
edid_get_timing(u8 * buf,int buf_size,struct display_timing * timing,int * panel_bits_per_colourp)2007 int edid_get_timing(u8 *buf, int buf_size, struct display_timing *timing,
2008 		    int *panel_bits_per_colourp)
2009 {
2010 	struct edid1_info *edid = (struct edid1_info *)buf;
2011 	bool timing_done;
2012 	int i;
2013 
2014 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
2015 		debug("%s: Invalid buffer\n", __func__);
2016 		return -EINVAL;
2017 	}
2018 
2019 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
2020 		debug("%s: No preferred timing\n", __func__);
2021 		return -ENOENT;
2022 	}
2023 
2024 	/* Look for detailed timing */
2025 	timing_done = false;
2026 	for (i = 0; i < 4; i++) {
2027 		struct edid_monitor_descriptor *desc;
2028 
2029 		desc = &edid->monitor_details.descriptor[i];
2030 		if (desc->zero_flag_1 != 0) {
2031 			decode_timing((u8 *)desc, timing);
2032 			timing_done = true;
2033 			break;
2034 		}
2035 	}
2036 	if (!timing_done)
2037 		return -EINVAL;
2038 
2039 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
2040 		debug("%s: Not a digital display\n", __func__);
2041 		return -ENOSYS;
2042 	}
2043 	if (edid->version != 1 || edid->revision < 4) {
2044 		debug("%s: EDID version %d.%d does not have required info\n",
2045 		      __func__, edid->version, edid->revision);
2046 		*panel_bits_per_colourp = -1;
2047 	} else  {
2048 		*panel_bits_per_colourp =
2049 			((edid->video_input_definition & 0x70) >> 3) + 4;
2050 	}
2051 
2052 	timing->hdmi_monitor = false;
2053 	if (edid->extension_flag && (buf_size >= EDID_EXT_SIZE)) {
2054 		struct edid_cea861_info *info =
2055 			(struct edid_cea861_info *)(buf + sizeof(*edid));
2056 
2057 		if (info->extension_tag == EDID_CEA861_EXTENSION_TAG)
2058 			timing->hdmi_monitor = cea_is_hdmi_vsdb_present(info);
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 /**
2065  * Snip the tailing whitespace/return of a string.
2066  *
2067  * @param string	The string to be snipped
2068  * @return the snipped string
2069  */
snip(char * string)2070 static char *snip(char *string)
2071 {
2072 	char *s;
2073 
2074 	/*
2075 	 * This is always a 13 character buffer
2076 	 * and it's not always terminated.
2077 	 */
2078 	string[12] = '\0';
2079 	s = &string[strlen(string) - 1];
2080 
2081 	while (s >= string && (isspace(*s) || *s == '\n' || *s == '\r' ||
2082 	       *s == '\0'))
2083 		*(s--) = '\0';
2084 
2085 	return string;
2086 }
2087 
2088 /**
2089  * Print an EDID monitor descriptor block
2090  *
2091  * @param monitor	The EDID monitor descriptor block
2092  * @have_timing		Modifies to 1 if the desciptor contains timing info
2093  */
edid_print_dtd(struct edid_monitor_descriptor * monitor,unsigned int * have_timing)2094 static void edid_print_dtd(struct edid_monitor_descriptor *monitor,
2095 			   unsigned int *have_timing)
2096 {
2097 	unsigned char *bytes = (unsigned char *)monitor;
2098 	struct edid_detailed_timing *timing =
2099 			(struct edid_detailed_timing *)monitor;
2100 
2101 	if (bytes[0] == 0 && bytes[1] == 0) {
2102 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_SERIAL)
2103 			printf("Monitor serial number: %s\n",
2104 			       snip(monitor->data.string));
2105 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_ASCII)
2106 			printf("Monitor ID: %s\n",
2107 			       snip(monitor->data.string));
2108 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_NAME)
2109 			printf("Monitor name: %s\n",
2110 			       snip(monitor->data.string));
2111 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE)
2112 			printf("Monitor range limits, horizontal sync: "
2113 			       "%d-%d kHz, vertical refresh: "
2114 			       "%d-%d Hz, max pixel clock: "
2115 			       "%d MHz\n",
2116 			       monitor->data.range_data.horizontal_min,
2117 			       monitor->data.range_data.horizontal_max,
2118 			       monitor->data.range_data.vertical_min,
2119 			       monitor->data.range_data.vertical_max,
2120 			       monitor->data.range_data.pixel_clock_max * 10);
2121 	} else {
2122 		u32 pixclock, h_active, h_blanking, v_active, v_blanking;
2123 		u32 h_total, v_total, vfreq;
2124 
2125 		pixclock = EDID_DETAILED_TIMING_PIXEL_CLOCK(*timing);
2126 		h_active = EDID_DETAILED_TIMING_HORIZONTAL_ACTIVE(*timing);
2127 		h_blanking = EDID_DETAILED_TIMING_HORIZONTAL_BLANKING(*timing);
2128 		v_active = EDID_DETAILED_TIMING_VERTICAL_ACTIVE(*timing);
2129 		v_blanking = EDID_DETAILED_TIMING_VERTICAL_BLANKING(*timing);
2130 
2131 		h_total = h_active + h_blanking;
2132 		v_total = v_active + v_blanking;
2133 		if (v_total > 0 && h_total > 0)
2134 			vfreq = pixclock / (v_total * h_total);
2135 		else
2136 			vfreq = 1; /* Error case */
2137 		printf("\t%dx%d\%c\t%d Hz (detailed)\n", h_active,
2138 		       v_active, h_active > 1000 ? ' ' : '\t', vfreq);
2139 		*have_timing = 1;
2140 	}
2141 }
2142 
2143 /**
2144  * Get the manufacturer name from an EDID info.
2145  *
2146  * @param edid_info     The EDID info to be printed
2147  * @param name		Returns the string of the manufacturer name
2148  */
edid_get_manufacturer_name(struct edid1_info * edid,char * name)2149 static void edid_get_manufacturer_name(struct edid1_info *edid, char *name)
2150 {
2151 	name[0] = EDID1_INFO_MANUFACTURER_NAME_CHAR1(*edid) + 'A' - 1;
2152 	name[1] = EDID1_INFO_MANUFACTURER_NAME_CHAR2(*edid) + 'A' - 1;
2153 	name[2] = EDID1_INFO_MANUFACTURER_NAME_CHAR3(*edid) + 'A' - 1;
2154 	name[3] = '\0';
2155 }
2156 
edid_print_info(struct edid1_info * edid_info)2157 void edid_print_info(struct edid1_info *edid_info)
2158 {
2159 	int i;
2160 	char manufacturer[4];
2161 	unsigned int have_timing = 0;
2162 	u32 serial_number;
2163 
2164 	if (edid_check_info(edid_info)) {
2165 		printf("Not a valid EDID\n");
2166 		return;
2167 	}
2168 
2169 	printf("EDID version: %d.%d\n",
2170 	       edid_info->version, edid_info->revision);
2171 
2172 	printf("Product ID code: %04x\n", EDID1_INFO_PRODUCT_CODE(*edid_info));
2173 
2174 	edid_get_manufacturer_name(edid_info, manufacturer);
2175 	printf("Manufacturer: %s\n", manufacturer);
2176 
2177 	serial_number = EDID1_INFO_SERIAL_NUMBER(*edid_info);
2178 	if (serial_number != 0xffffffff) {
2179 		if (strcmp(manufacturer, "MAG") == 0)
2180 			serial_number -= 0x7000000;
2181 		if (strcmp(manufacturer, "OQI") == 0)
2182 			serial_number -= 456150000;
2183 		if (strcmp(manufacturer, "VSC") == 0)
2184 			serial_number -= 640000000;
2185 	}
2186 	printf("Serial number: %08x\n", serial_number);
2187 	printf("Manufactured in week: %d year: %d\n",
2188 	       edid_info->week, edid_info->year + 1990);
2189 
2190 	printf("Video input definition: %svoltage level %d%s%s%s%s%s\n",
2191 	       EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid_info) ?
2192 	       "digital signal, " : "analog signal, ",
2193 	       EDID1_INFO_VIDEO_INPUT_VOLTAGE_LEVEL(*edid_info),
2194 	       EDID1_INFO_VIDEO_INPUT_BLANK_TO_BLACK(*edid_info) ?
2195 	       ", blank to black" : "",
2196 	       EDID1_INFO_VIDEO_INPUT_SEPARATE_SYNC(*edid_info) ?
2197 	       ", separate sync" : "",
2198 	       EDID1_INFO_VIDEO_INPUT_COMPOSITE_SYNC(*edid_info) ?
2199 	       ", composite sync" : "",
2200 	       EDID1_INFO_VIDEO_INPUT_SYNC_ON_GREEN(*edid_info) ?
2201 	       ", sync on green" : "",
2202 	       EDID1_INFO_VIDEO_INPUT_SERRATION_V(*edid_info) ?
2203 	       ", serration v" : "");
2204 
2205 	printf("Monitor is %s\n",
2206 	       EDID1_INFO_FEATURE_RGB(*edid_info) ? "RGB" : "non-RGB");
2207 
2208 	printf("Maximum visible display size: %d cm x %d cm\n",
2209 	       edid_info->max_size_horizontal,
2210 	       edid_info->max_size_vertical);
2211 
2212 	printf("Power management features: %s%s, %s%s, %s%s\n",
2213 	       EDID1_INFO_FEATURE_ACTIVE_OFF(*edid_info) ?
2214 	       "" : "no ", "active off",
2215 	       EDID1_INFO_FEATURE_SUSPEND(*edid_info) ? "" : "no ", "suspend",
2216 	       EDID1_INFO_FEATURE_STANDBY(*edid_info) ? "" : "no ", "standby");
2217 
2218 	printf("Estabilished timings:\n");
2219 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_70(*edid_info))
2220 		printf("\t720x400\t\t70 Hz (VGA 640x400, IBM)\n");
2221 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_88(*edid_info))
2222 		printf("\t720x400\t\t88 Hz (XGA2)\n");
2223 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_60(*edid_info))
2224 		printf("\t640x480\t\t60 Hz (VGA)\n");
2225 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_67(*edid_info))
2226 		printf("\t640x480\t\t67 Hz (Mac II, Apple)\n");
2227 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_72(*edid_info))
2228 		printf("\t640x480\t\t72 Hz (VESA)\n");
2229 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_75(*edid_info))
2230 		printf("\t640x480\t\t75 Hz (VESA)\n");
2231 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_56(*edid_info))
2232 		printf("\t800x600\t\t56 Hz (VESA)\n");
2233 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_60(*edid_info))
2234 		printf("\t800x600\t\t60 Hz (VESA)\n");
2235 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_72(*edid_info))
2236 		printf("\t800x600\t\t72 Hz (VESA)\n");
2237 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_75(*edid_info))
2238 		printf("\t800x600\t\t75 Hz (VESA)\n");
2239 	if (EDID1_INFO_ESTABLISHED_TIMING_832X624_75(*edid_info))
2240 		printf("\t832x624\t\t75 Hz (Mac II)\n");
2241 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_87I(*edid_info))
2242 		printf("\t1024x768\t87 Hz Interlaced (8514A)\n");
2243 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_60(*edid_info))
2244 		printf("\t1024x768\t60 Hz (VESA)\n");
2245 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_70(*edid_info))
2246 		printf("\t1024x768\t70 Hz (VESA)\n");
2247 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_75(*edid_info))
2248 		printf("\t1024x768\t75 Hz (VESA)\n");
2249 	if (EDID1_INFO_ESTABLISHED_TIMING_1280X1024_75(*edid_info))
2250 		printf("\t1280x1024\t75 (VESA)\n");
2251 	if (EDID1_INFO_ESTABLISHED_TIMING_1152X870_75(*edid_info))
2252 		printf("\t1152x870\t75 (Mac II)\n");
2253 
2254 	/* Standard timings. */
2255 	printf("Standard timings:\n");
2256 	for (i = 0; i < ARRAY_SIZE(edid_info->standard_timings); i++) {
2257 		unsigned int aspect = 10000;
2258 		unsigned int x, y;
2259 		unsigned char xres, vfreq;
2260 
2261 		xres = EDID1_INFO_STANDARD_TIMING_XRESOLUTION(*edid_info, i);
2262 		vfreq = EDID1_INFO_STANDARD_TIMING_VFREQ(*edid_info, i);
2263 		if ((xres != vfreq) ||
2264 		    ((xres != 0) && (xres != 1)) ||
2265 		    ((vfreq != 0) && (vfreq != 1))) {
2266 			switch (EDID1_INFO_STANDARD_TIMING_ASPECT(*edid_info,
2267 				i)) {
2268 			case ASPECT_625:
2269 				aspect = 6250;
2270 				break;
2271 			case ASPECT_75:
2272 				aspect = 7500;
2273 				break;
2274 			case ASPECT_8:
2275 				aspect = 8000;
2276 				break;
2277 			case ASPECT_5625:
2278 				aspect = 5625;
2279 				break;
2280 			}
2281 			x = (xres + 31) * 8;
2282 			y = x * aspect / 10000;
2283 			printf("\t%dx%d%c\t%d Hz\n", x, y,
2284 			       x > 1000 ? ' ' : '\t', (vfreq & 0x3f) + 60);
2285 			have_timing = 1;
2286 		}
2287 	}
2288 
2289 	/* Detailed timing information. */
2290 	for (i = 0; i < ARRAY_SIZE(edid_info->monitor_details.descriptor);
2291 			i++) {
2292 		edid_print_dtd(&edid_info->monitor_details.descriptor[i],
2293 			       &have_timing);
2294 	}
2295 
2296 	if (!have_timing)
2297 		printf("\tNone\n");
2298 }
2299 
2300 /**
2301  * drm_cvt_mode -create a modeline based on the CVT algorithm
2302  * @hdisplay: hdisplay size
2303  * @vdisplay: vdisplay size
2304  * @vrefresh: vrefresh rate
2305  * @reduced: whether to use reduced blanking
2306  * @interlaced: whether to compute an interlaced mode
2307  * @margins: whether to add margins (borders)
2308  *
2309  * This function is called to generate the modeline based on CVT algorithm
2310  * according to the hdisplay, vdisplay, vrefresh.
2311  * It is based from the VESA(TM) Coordinated Video Timing Generator by
2312  * Graham Loveridge April 9, 2003 available at
2313  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
2314  *
2315  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
2316  * What I have done is to translate it by using integer calculation.
2317  *
2318  * Returns:
2319  * The modeline based on the CVT algorithm stored in a drm_display_mode object.
2320  * The display mode object is allocated with drm_mode_create(). Returns NULL
2321  * when no mode could be allocated.
2322  */
2323 static
drm_cvt_mode(int hdisplay,int vdisplay,int vrefresh,bool reduced,bool interlaced,bool margins)2324 struct drm_display_mode *drm_cvt_mode(int hdisplay, int vdisplay, int vrefresh,
2325 				      bool reduced, bool interlaced,
2326 				      bool margins)
2327 {
2328 #define HV_FACTOR			1000
2329 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
2330 #define	CVT_MARGIN_PERCENTAGE		18
2331 	/* 2) character cell horizontal granularity (pixels) - default 8 */
2332 #define	CVT_H_GRANULARITY		8
2333 	/* 3) Minimum vertical porch (lines) - default 3 */
2334 #define	CVT_MIN_V_PORCH			3
2335 	/* 4) Minimum number of vertical back porch lines - default 6 */
2336 #define	CVT_MIN_V_BPORCH		6
2337 	/* Pixel Clock step (kHz) */
2338 #define CVT_CLOCK_STEP			250
2339 	struct drm_display_mode *drm_mode;
2340 	unsigned int vfieldrate, hperiod;
2341 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
2342 	int interlace;
2343 
2344 	/* allocate the drm_display_mode structure. If failure, we will
2345 	 * return directly
2346 	 */
2347 	drm_mode = drm_mode_create();
2348 	if (!drm_mode)
2349 		return NULL;
2350 
2351 	/* the CVT default refresh rate is 60Hz */
2352 	if (!vrefresh)
2353 		vrefresh = 60;
2354 
2355 	/* the required field fresh rate */
2356 	if (interlaced)
2357 		vfieldrate = vrefresh * 2;
2358 	else
2359 		vfieldrate = vrefresh;
2360 
2361 	/* horizontal pixels */
2362 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
2363 
2364 	/* determine the left&right borders */
2365 	hmargin = 0;
2366 	if (margins) {
2367 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2368 		hmargin -= hmargin % CVT_H_GRANULARITY;
2369 	}
2370 	/* find the total active pixels */
2371 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
2372 
2373 	/* find the number of lines per field */
2374 	if (interlaced)
2375 		vdisplay_rnd = vdisplay / 2;
2376 	else
2377 		vdisplay_rnd = vdisplay;
2378 
2379 	/* find the top & bottom borders */
2380 	vmargin = 0;
2381 	if (margins)
2382 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2383 
2384 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
2385 
2386 	/* Interlaced */
2387 	if (interlaced)
2388 		interlace = 1;
2389 	else
2390 		interlace = 0;
2391 
2392 	/* Determine VSync Width from aspect ratio */
2393 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
2394 		vsync = 4;
2395 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
2396 		vsync = 5;
2397 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
2398 		vsync = 6;
2399 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
2400 		vsync = 7;
2401 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
2402 		vsync = 7;
2403 	else /* custom */
2404 		vsync = 10;
2405 
2406 	if (!reduced) {
2407 		/* simplify the GTF calculation */
2408 		/* 4) Minimum time of vertical sync + back porch interval
2409 		 * default 550.0
2410 		 */
2411 		int tmp1, tmp2;
2412 #define CVT_MIN_VSYNC_BP	550
2413 		/* 3) Nominal HSync width (% of line period) - default 8 */
2414 #define CVT_HSYNC_PERCENTAGE	8
2415 		unsigned int hblank_percentage;
2416 		int vsyncandback_porch, hblank;
2417 
2418 		/* estimated the horizontal period */
2419 		tmp1 = HV_FACTOR * 1000000  -
2420 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
2421 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
2422 				interlace;
2423 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
2424 
2425 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
2426 		/* 9. Find number of lines in sync + backporch */
2427 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
2428 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
2429 		else
2430 			vsyncandback_porch = tmp1;
2431 		/* 10. Find number of lines in back porch
2432 		 *		vback_porch = vsyncandback_porch - vsync;
2433 		 */
2434 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
2435 				vsyncandback_porch + CVT_MIN_V_PORCH;
2436 		/* 5) Definition of Horizontal blanking time limitation */
2437 		/* Gradient (%/kHz) - default 600 */
2438 #define CVT_M_FACTOR	600
2439 		/* Offset (%) - default 40 */
2440 #define CVT_C_FACTOR	40
2441 		/* Blanking time scaling factor - default 128 */
2442 #define CVT_K_FACTOR	128
2443 		/* Scaling factor weighting - default 20 */
2444 #define CVT_J_FACTOR	20
2445 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
2446 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
2447 			 CVT_J_FACTOR)
2448 		/* 12. Find ideal blanking duty cycle from formula */
2449 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
2450 					hperiod / 1000;
2451 		/* 13. Blanking time */
2452 		if (hblank_percentage < 20 * HV_FACTOR)
2453 			hblank_percentage = 20 * HV_FACTOR;
2454 		hblank = drm_mode->hdisplay * hblank_percentage /
2455 			 (100 * HV_FACTOR - hblank_percentage);
2456 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
2457 		/* 14. find the total pixels per line */
2458 		drm_mode->htotal = drm_mode->hdisplay + hblank;
2459 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
2460 		drm_mode->hsync_start = drm_mode->hsync_end -
2461 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
2462 		drm_mode->hsync_start += CVT_H_GRANULARITY -
2463 			drm_mode->hsync_start % CVT_H_GRANULARITY;
2464 		/* fill the Vsync values */
2465 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
2466 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2467 	} else {
2468 		/* Reduced blanking */
2469 		/* Minimum vertical blanking interval time - default 460 */
2470 #define CVT_RB_MIN_VBLANK	460
2471 		/* Fixed number of clocks for horizontal sync */
2472 #define CVT_RB_H_SYNC		32
2473 		/* Fixed number of clocks for horizontal blanking */
2474 #define CVT_RB_H_BLANK		160
2475 		/* Fixed number of lines for vertical front porch - default 3*/
2476 #define CVT_RB_VFPORCH		3
2477 		int vbilines;
2478 		int tmp1, tmp2;
2479 		/* 8. Estimate Horizontal period. */
2480 		tmp1 = HV_FACTOR * 1000000 -
2481 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
2482 		tmp2 = vdisplay_rnd + 2 * vmargin;
2483 		hperiod = tmp1 / (tmp2 * vfieldrate);
2484 		/* 9. Find number of lines in vertical blanking */
2485 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
2486 		/* 10. Check if vertical blanking is sufficient */
2487 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
2488 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
2489 		/* 11. Find total number of lines in vertical field */
2490 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
2491 		/* 12. Find total number of pixels in a line */
2492 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
2493 		/* Fill in HSync values */
2494 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
2495 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
2496 		/* Fill in VSync values */
2497 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
2498 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2499 	}
2500 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
2501 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
2502 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
2503 	/* 18/16. Find actual vertical frame frequency */
2504 	/* ignore - just set the mode flag for interlaced */
2505 	if (interlaced) {
2506 		drm_mode->vtotal *= 2;
2507 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
2508 	}
2509 
2510 	if (reduced)
2511 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
2512 					DRM_MODE_FLAG_NVSYNC);
2513 	else
2514 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
2515 					DRM_MODE_FLAG_NHSYNC);
2516 
2517 	return drm_mode;
2518 }
2519 
2520 static int
cea_db_payload_len(const u8 * db)2521 cea_db_payload_len(const u8 *db)
2522 {
2523 	return db[0] & 0x1f;
2524 }
2525 
2526 static int
cea_db_extended_tag(const u8 * db)2527 cea_db_extended_tag(const u8 *db)
2528 {
2529 	return db[1];
2530 }
2531 
2532 static int
cea_db_tag(const u8 * db)2533 cea_db_tag(const u8 *db)
2534 {
2535 	return db[0] >> 5;
2536 }
2537 
2538 #define for_each_cea_db(cea, i, start, end) \
2539 	for ((i) = (start); (i) < (end) && (i) + \
2540 	cea_db_payload_len(&(cea)[(i)]) < \
2541 	(end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2542 
2543 static int
cea_revision(const u8 * cea)2544 cea_revision(const u8 *cea)
2545 {
2546 	return cea[1];
2547 }
2548 
2549 static int
cea_db_offsets(const u8 * cea,int * start,int * end)2550 cea_db_offsets(const u8 *cea, int *start, int *end)
2551 {
2552 	/* Data block offset in CEA extension block */
2553 	*start = 4;
2554 	*end = cea[2];
2555 	if (*end == 0)
2556 		*end = 127;
2557 	if (*end < 4 || *end > 127)
2558 		return -ERANGE;
2559 
2560 	/*
2561 	 * XXX: cea[2] is equal to the real value minus one in some sink edid.
2562 	 */
2563 	if (*end != 4) {
2564 		int i;
2565 
2566 		i = *start;
2567 		while (i < (*end) &&
2568 		       i + cea_db_payload_len(&(cea)[i]) < (*end))
2569 			i += cea_db_payload_len(&(cea)[i]) + 1;
2570 
2571 		if (cea_db_payload_len(&(cea)[i]) &&
2572 		    i + cea_db_payload_len(&(cea)[i]) == (*end))
2573 			(*end)++;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
cea_db_is_hdmi_vsdb(const u8 * db)2579 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2580 {
2581 	int hdmi_id;
2582 
2583 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2584 		return false;
2585 
2586 	if (cea_db_payload_len(db) < 5)
2587 		return false;
2588 
2589 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2590 
2591 	return hdmi_id == HDMI_IEEE_OUI;
2592 }
2593 
cea_db_is_hdmi_forum_vsdb(const u8 * db)2594 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
2595 {
2596 	unsigned int oui;
2597 
2598 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2599 		return false;
2600 
2601 	if (cea_db_payload_len(db) < 7)
2602 		return false;
2603 
2604 	oui = db[3] << 16 | db[2] << 8 | db[1];
2605 
2606 	return oui == HDMI_FORUM_IEEE_OUI;
2607 }
2608 
cea_db_is_y420cmdb(const u8 * db)2609 static bool cea_db_is_y420cmdb(const u8 *db)
2610 {
2611 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2612 		return false;
2613 
2614 	if (!cea_db_payload_len(db))
2615 		return false;
2616 
2617 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
2618 		return false;
2619 
2620 	return true;
2621 }
2622 
cea_db_is_y420vdb(const u8 * db)2623 static bool cea_db_is_y420vdb(const u8 *db)
2624 {
2625 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2626 		return false;
2627 
2628 	if (!cea_db_payload_len(db))
2629 		return false;
2630 
2631 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
2632 		return false;
2633 
2634 	return true;
2635 }
2636 
drm_valid_hdmi_vic(u8 vic)2637 static bool drm_valid_hdmi_vic(u8 vic)
2638 {
2639 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2640 }
2641 
drm_add_hdmi_modes(struct hdmi_edid_data * data,const struct drm_display_mode * mode)2642 void drm_add_hdmi_modes(struct hdmi_edid_data *data,
2643 			const struct drm_display_mode *mode)
2644 {
2645 	struct drm_display_mode *mode_buf = data->mode_buf;
2646 
2647 	if (data->modes >= MODE_LEN)
2648 		return;
2649 	mode_buf[(data->modes)++] = *mode;
2650 }
2651 
drm_valid_cea_vic(u8 vic)2652 static bool drm_valid_cea_vic(u8 vic)
2653 {
2654 	return cea_mode_for_vic(vic) ? true : false;
2655 }
2656 
svd_to_vic(u8 svd)2657 static u8 svd_to_vic(u8 svd)
2658 {
2659 	/* 0-6 bit vic, 7th bit native mode indicator */
2660 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
2661 		return svd & 127;
2662 
2663 	return svd;
2664 }
2665 
2666 static struct drm_display_mode *
drm_display_mode_from_vic_index(const u8 * video_db,u8 video_len,u8 video_index)2667 drm_display_mode_from_vic_index(const u8 *video_db, u8 video_len,
2668 				u8 video_index)
2669 {
2670 	struct drm_display_mode *newmode;
2671 	u8 vic;
2672 
2673 	if (!video_db || video_index >= video_len)
2674 		return NULL;
2675 
2676 	/* CEA modes are numbered 1..127 */
2677 	vic = svd_to_vic(video_db[video_index]);
2678 	if (!drm_valid_cea_vic(vic))
2679 		return NULL;
2680 
2681 	newmode = drm_mode_create();
2682 	if (!newmode)
2683 		return NULL;
2684 
2685 	*newmode = *cea_mode_for_vic(vic);
2686 	newmode->vrefresh = 0;
2687 
2688 	return newmode;
2689 }
2690 
bitmap_set(unsigned long * map,unsigned int start,int len)2691 static void bitmap_set(unsigned long *map, unsigned int start, int len)
2692 {
2693 	unsigned long *p = map + BIT_WORD(start);
2694 	const unsigned int size = start + len;
2695 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
2696 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
2697 
2698 	while (len - bits_to_set >= 0) {
2699 		*p |= mask_to_set;
2700 		len -= bits_to_set;
2701 		bits_to_set = BITS_PER_LONG;
2702 		mask_to_set = ~0UL;
2703 		p++;
2704 	}
2705 	if (len) {
2706 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
2707 		*p |= mask_to_set;
2708 	}
2709 }
2710 
2711 static void
drm_add_cmdb_modes(u8 svd,struct drm_hdmi_info * hdmi)2712 drm_add_cmdb_modes(u8 svd, struct drm_hdmi_info *hdmi)
2713 {
2714 	u8 vic = svd_to_vic(svd);
2715 
2716 	if (!drm_valid_cea_vic(vic))
2717 		return;
2718 
2719 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
2720 }
2721 
do_cea_modes(struct hdmi_edid_data * data,const u8 * db,u8 len)2722 int do_cea_modes(struct hdmi_edid_data *data, const u8 *db, u8 len)
2723 {
2724 	int i, modes = 0;
2725 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2726 
2727 	for (i = 0; i < len; i++) {
2728 		struct drm_display_mode *mode;
2729 
2730 		mode = drm_display_mode_from_vic_index(db, len, i);
2731 		if (mode) {
2732 			/*
2733 			 * YCBCR420 capability block contains a bitmap which
2734 			 * gives the index of CEA modes from CEA VDB, which
2735 			 * can support YCBCR 420 sampling output also (apart
2736 			 * from RGB/YCBCR444 etc).
2737 			 * For example, if the bit 0 in bitmap is set,
2738 			 * first mode in VDB can support YCBCR420 output too.
2739 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
2740 			 */
2741 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
2742 				drm_add_cmdb_modes(db[i], hdmi);
2743 			drm_add_hdmi_modes(data, mode);
2744 			drm_mode_destroy(mode);
2745 			modes++;
2746 		}
2747 	}
2748 
2749 	return modes;
2750 }
2751 
2752 /*
2753  * do_y420vdb_modes - Parse YCBCR 420 only modes
2754  * @data: the structure that save parsed hdmi edid data
2755  * @svds: start of the data block of CEA YCBCR 420 VDB
2756  * @svds_len: length of the CEA YCBCR 420 VDB
2757  * @hdmi: runtime information about the connected HDMI sink
2758  *
2759  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
2760  * which contains modes which can be supported in YCBCR 420
2761  * output format only.
2762  */
2763 static int
do_y420vdb_modes(struct hdmi_edid_data * data,const u8 * svds,u8 svds_len)2764 do_y420vdb_modes(struct hdmi_edid_data *data, const u8 *svds, u8 svds_len)
2765 {
2766 	int modes = 0, i;
2767 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2768 
2769 	for (i = 0; i < svds_len; i++) {
2770 		u8 vic = svd_to_vic(svds[i]);
2771 
2772 		if (!drm_valid_cea_vic(vic))
2773 			continue;
2774 
2775 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
2776 		drm_add_hdmi_modes(data, cea_mode_for_vic(vic));
2777 		modes++;
2778 	}
2779 
2780 	return modes;
2781 }
2782 
2783 struct stereo_mandatory_mode {
2784 	int width, height, vrefresh;
2785 	unsigned int flags;
2786 };
2787 
2788 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2789 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2790 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2791 	{ 1920, 1080, 50,
2792 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2793 	{ 1920, 1080, 60,
2794 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2795 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2796 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2797 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2798 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2799 };
2800 
2801 static bool
stereo_match_mandatory(const struct drm_display_mode * mode,const struct stereo_mandatory_mode * stereo_mode)2802 stereo_match_mandatory(const struct drm_display_mode *mode,
2803 		       const struct stereo_mandatory_mode *stereo_mode)
2804 {
2805 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2806 
2807 	return mode->hdisplay == stereo_mode->width &&
2808 	       mode->vdisplay == stereo_mode->height &&
2809 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2810 	       drm_get_vrefresh(mode) == stereo_mode->vrefresh;
2811 }
2812 
add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data * data)2813 static int add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data *data)
2814 {
2815 	const struct drm_display_mode *mode;
2816 	int num = data->modes, modes = 0, i, k;
2817 
2818 	for (k = 0; k < num; k++) {
2819 		mode = &data->mode_buf[k];
2820 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2821 			const struct stereo_mandatory_mode *mandatory;
2822 			struct drm_display_mode *new_mode;
2823 
2824 			if (!stereo_match_mandatory(mode,
2825 						    &stereo_mandatory_modes[i]))
2826 				continue;
2827 
2828 			mandatory = &stereo_mandatory_modes[i];
2829 			new_mode = drm_mode_create();
2830 			if (!new_mode)
2831 				continue;
2832 
2833 			*new_mode = *mode;
2834 			new_mode->flags |= mandatory->flags;
2835 			drm_add_hdmi_modes(data, new_mode);
2836 			drm_mode_destroy(new_mode);
2837 			modes++;
2838 		}
2839 	}
2840 
2841 	return modes;
2842 }
2843 
add_3d_struct_modes(struct hdmi_edid_data * data,u16 structure,const u8 * video_db,u8 video_len,u8 video_index)2844 static int add_3d_struct_modes(struct hdmi_edid_data *data, u16 structure,
2845 			       const u8 *video_db, u8 video_len, u8 video_index)
2846 {
2847 	struct drm_display_mode *newmode;
2848 	int modes = 0;
2849 
2850 	if (structure & (1 << 0)) {
2851 		newmode = drm_display_mode_from_vic_index(video_db,
2852 							  video_len,
2853 							  video_index);
2854 		if (newmode) {
2855 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2856 			drm_add_hdmi_modes(data, newmode);
2857 			modes++;
2858 			drm_mode_destroy(newmode);
2859 		}
2860 	}
2861 	if (structure & (1 << 6)) {
2862 		newmode = drm_display_mode_from_vic_index(video_db,
2863 							  video_len,
2864 							  video_index);
2865 		if (newmode) {
2866 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2867 			drm_add_hdmi_modes(data, newmode);
2868 			modes++;
2869 			drm_mode_destroy(newmode);
2870 		}
2871 	}
2872 	if (structure & (1 << 8)) {
2873 		newmode = drm_display_mode_from_vic_index(video_db,
2874 							  video_len,
2875 							  video_index);
2876 		if (newmode) {
2877 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2878 			drm_add_hdmi_modes(data, newmode);
2879 			modes++;
2880 			drm_mode_destroy(newmode);
2881 		}
2882 	}
2883 
2884 	return modes;
2885 }
2886 
add_hdmi_mode(struct hdmi_edid_data * data,u8 vic)2887 static int add_hdmi_mode(struct hdmi_edid_data *data, u8 vic)
2888 {
2889 	if (!drm_valid_hdmi_vic(vic)) {
2890 		debug("Unknown HDMI VIC: %d\n", vic);
2891 		return 0;
2892 	}
2893 
2894 	drm_add_hdmi_modes(data, &edid_4k_modes[vic]);
2895 
2896 	return 1;
2897 }
2898 
2899 /*
2900  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2901  * @db: start of the CEA vendor specific block
2902  * @len: length of the CEA block payload, ie. one can access up to db[len]
2903  *
2904  * Parses the HDMI VSDB looking for modes to add to @data. This function
2905  * also adds the stereo 3d modes when applicable.
2906  */
2907 static int
do_hdmi_vsdb_modes(const u8 * db,u8 len,const u8 * video_db,u8 video_len,struct hdmi_edid_data * data)2908 do_hdmi_vsdb_modes(const u8 *db, u8 len, const u8 *video_db, u8 video_len,
2909 		   struct hdmi_edid_data *data)
2910 {
2911 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2912 	u8 vic_len, hdmi_3d_len = 0;
2913 	u16 mask;
2914 	u16 structure_all;
2915 
2916 	if (len < 8)
2917 		goto out;
2918 
2919 	/* no HDMI_Video_Present */
2920 	if (!(db[8] & (1 << 5)))
2921 		goto out;
2922 
2923 	/* Latency_Fields_Present */
2924 	if (db[8] & (1 << 7))
2925 		offset += 2;
2926 
2927 	/* I_Latency_Fields_Present */
2928 	if (db[8] & (1 << 6))
2929 		offset += 2;
2930 
2931 	/* the declared length is not long enough for the 2 first bytes
2932 	 * of additional video format capabilities
2933 	 */
2934 	if (len < (8 + offset + 2))
2935 		goto out;
2936 
2937 	/* 3D_Present */
2938 	offset++;
2939 	if (db[8 + offset] & (1 << 7)) {
2940 		modes += add_hdmi_mandatory_stereo_modes(data);
2941 
2942 		/* 3D_Multi_present */
2943 		multi_present = (db[8 + offset] & 0x60) >> 5;
2944 	}
2945 
2946 	offset++;
2947 	vic_len = db[8 + offset] >> 5;
2948 	hdmi_3d_len = db[8 + offset] & 0x1f;
2949 
2950 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2951 		u8 vic;
2952 
2953 		vic = db[9 + offset + i];
2954 		modes += add_hdmi_mode(data, vic);
2955 	}
2956 
2957 	offset += 1 + vic_len;
2958 
2959 	if (multi_present == 1)
2960 		multi_len = 2;
2961 	else if (multi_present == 2)
2962 		multi_len = 4;
2963 	else
2964 		multi_len = 0;
2965 
2966 	if (len < (8 + offset + hdmi_3d_len - 1))
2967 		goto out;
2968 
2969 	if (hdmi_3d_len < multi_len)
2970 		goto out;
2971 
2972 	if (multi_present == 1 || multi_present == 2) {
2973 		/* 3D_Structure_ALL */
2974 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2975 
2976 		/* check if 3D_MASK is present */
2977 		if (multi_present == 2)
2978 			mask = (db[10 + offset] << 8) | db[11 + offset];
2979 		else
2980 			mask = 0xffff;
2981 
2982 		for (i = 0; i < 16; i++) {
2983 			if (mask & (1 << i))
2984 				modes += add_3d_struct_modes(data,
2985 						structure_all,
2986 						video_db,
2987 						video_len, i);
2988 		}
2989 	}
2990 
2991 	offset += multi_len;
2992 
2993 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2994 		int vic_index;
2995 		struct drm_display_mode *newmode = NULL;
2996 		unsigned int newflag = 0;
2997 		bool detail_present;
2998 
2999 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3000 
3001 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3002 			break;
3003 
3004 		/* 2D_VIC_order_X */
3005 		vic_index = db[8 + offset + i] >> 4;
3006 
3007 		/* 3D_Structure_X */
3008 		switch (db[8 + offset + i] & 0x0f) {
3009 		case 0:
3010 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3011 			break;
3012 		case 6:
3013 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3014 			break;
3015 		case 8:
3016 			/* 3D_Detail_X */
3017 			if ((db[9 + offset + i] >> 4) == 1)
3018 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3019 			break;
3020 		}
3021 
3022 		if (newflag != 0) {
3023 			newmode = drm_display_mode_from_vic_index(
3024 								  video_db,
3025 								  video_len,
3026 								  vic_index);
3027 
3028 			if (newmode) {
3029 				newmode->flags |= newflag;
3030 				drm_add_hdmi_modes(data, newmode);
3031 				modes++;
3032 				drm_mode_destroy(newmode);
3033 			}
3034 		}
3035 
3036 		if (detail_present)
3037 			i++;
3038 	}
3039 
3040 out:
3041 	return modes;
3042 }
3043 
3044 /**
3045  * edid_get_quirks - return quirk flags for a given EDID
3046  * @edid: EDID to process
3047  *
3048  * This tells subsequent routines what fixes they need to apply.
3049  */
edid_get_quirks(struct edid * edid)3050 static u32 edid_get_quirks(struct edid *edid)
3051 {
3052 	struct edid_quirk *quirk;
3053 	int i;
3054 
3055 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
3056 		quirk = &edid_quirk_list[i];
3057 
3058 		if (edid_vendor(edid, quirk->vendor) &&
3059 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
3060 			return quirk->quirks;
3061 	}
3062 
3063 	return 0;
3064 }
3065 
drm_parse_y420cmdb_bitmap(struct hdmi_edid_data * data,const u8 * db)3066 static void drm_parse_y420cmdb_bitmap(struct hdmi_edid_data *data,
3067 				      const u8 *db)
3068 {
3069 	struct drm_display_info *info = &data->display_info;
3070 	struct drm_hdmi_info *hdmi = &info->hdmi;
3071 	u8 map_len = cea_db_payload_len(db) - 1;
3072 	u8 count;
3073 	u64 map = 0;
3074 
3075 	if (map_len == 0) {
3076 		/* All CEA modes support ycbcr420 sampling also.*/
3077 		hdmi->y420_cmdb_map = U64_MAX;
3078 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3079 		return;
3080 	}
3081 
3082 	/*
3083 	 * This map indicates which of the existing CEA block modes
3084 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3085 	 * set, first mode from VDB can support YCBCR420 output too.
3086 	 * We will parse and keep this map, before parsing VDB itself
3087 	 * to avoid going through the same block again and again.
3088 	 *
3089 	 * Spec is not clear about max possible size of this block.
3090 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3091 	 * address 8 CEA modes, in this way this map can address
3092 	 * 8*8 = first 64 SVDs.
3093 	 */
3094 	if (map_len > 8)
3095 		map_len = 8;
3096 
3097 	for (count = 0; count < map_len; count++)
3098 		map |= (u64)db[2 + count] << (8 * count);
3099 
3100 	if (map)
3101 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3102 
3103 	hdmi->y420_cmdb_map = map;
3104 }
3105 
3106 static
drm_get_max_frl_rate(int max_frl_rate,u8 * max_lanes,u8 * max_rate_per_lane)3107 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
3108 {
3109 	switch (max_frl_rate) {
3110 	case 1:
3111 		*max_lanes = 3;
3112 		*max_rate_per_lane = 3;
3113 		break;
3114 	case 2:
3115 		*max_lanes = 3;
3116 		*max_rate_per_lane = 6;
3117 		break;
3118 	case 3:
3119 		*max_lanes = 4;
3120 		*max_rate_per_lane = 6;
3121 		break;
3122 	case 4:
3123 		*max_lanes = 4;
3124 		*max_rate_per_lane = 8;
3125 		break;
3126 	case 5:
3127 		*max_lanes = 4;
3128 		*max_rate_per_lane = 10;
3129 		break;
3130 	case 6:
3131 		*max_lanes = 4;
3132 		*max_rate_per_lane = 12;
3133 		break;
3134 	case 0:
3135 	default:
3136 		*max_lanes = 0;
3137 		*max_rate_per_lane = 0;
3138 	}
3139 }
3140 
drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data * data,const u8 * db)3141 static void drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data *data,
3142 					       const u8 *db)
3143 {
3144 	u8 dc_mask;
3145 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
3146 
3147 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
3148 	hdmi->y420_dc_modes |= dc_mask;
3149 }
3150 
drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data * data,const u8 * hf_vsdb)3151 static void drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data *data,
3152 				      const u8 *hf_vsdb)
3153 {
3154 	struct drm_display_info *display = &data->display_info;
3155 	struct drm_hdmi_info *hdmi = &display->hdmi;
3156 
3157 	if (hf_vsdb[6] & 0x80) {
3158 		hdmi->scdc.supported = true;
3159 		if (hf_vsdb[6] & 0x40)
3160 			hdmi->scdc.read_request = true;
3161 	}
3162 
3163 	/*
3164 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
3165 	 * And as per the spec, three factors confirm this:
3166 	 * * Availability of a HF-VSDB block in EDID (check)
3167 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
3168 	 * * SCDC support available (let's check)
3169 	 * Lets check it out.
3170 	 */
3171 
3172 	if (hf_vsdb[5]) {
3173 		/* max clock is 5000 KHz times block value */
3174 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
3175 		struct drm_scdc *scdc = &hdmi->scdc;
3176 
3177 		if (max_tmds_clock > 340000) {
3178 			display->max_tmds_clock = max_tmds_clock;
3179 			debug("HF-VSDB: max TMDS clock %d kHz\n",
3180 			      display->max_tmds_clock);
3181 		}
3182 
3183 		if (scdc->supported) {
3184 			scdc->scrambling.supported = true;
3185 
3186 			/* Few sinks support scrambling for cloks < 340M */
3187 			if ((hf_vsdb[6] & 0x8))
3188 				scdc->scrambling.low_rates = true;
3189 		}
3190 	}
3191 
3192 	if (hf_vsdb[7]) {
3193 		u8 max_frl_rate;
3194 		u8 dsc_max_frl_rate;
3195 		u8 dsc_max_slices;
3196 		struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
3197 
3198 		debug("hdmi_21 sink detected. parsing edid\n");
3199 		max_frl_rate = (hf_vsdb[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
3200 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
3201 				     &hdmi->max_frl_rate_per_lane);
3202 		hdmi->add_func = hf_vsdb[8];
3203 		hdmi_dsc->v_1p2 = hf_vsdb[11] & DRM_EDID_DSC_1P2;
3204 
3205 		if (hdmi_dsc->v_1p2) {
3206 			hdmi_dsc->native_420 = hf_vsdb[11] & DRM_EDID_DSC_NATIVE_420;
3207 			hdmi_dsc->all_bpp = hf_vsdb[11] & DRM_EDID_DSC_ALL_BPP;
3208 
3209 			if (hf_vsdb[11] & DRM_EDID_DSC_16BPC)
3210 				hdmi_dsc->bpc_supported = 16;
3211 			else if (hf_vsdb[11] & DRM_EDID_DSC_12BPC)
3212 				hdmi_dsc->bpc_supported = 12;
3213 			else if (hf_vsdb[11] & DRM_EDID_DSC_10BPC)
3214 				hdmi_dsc->bpc_supported = 10;
3215 			else
3216 				hdmi_dsc->bpc_supported = 0;
3217 
3218 			dsc_max_frl_rate = (hf_vsdb[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
3219 			drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
3220 					     &hdmi_dsc->max_frl_rate_per_lane);
3221 			hdmi_dsc->total_chunk_kbytes =
3222 				hf_vsdb[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
3223 
3224 			dsc_max_slices = hf_vsdb[12] & DRM_EDID_DSC_MAX_SLICES;
3225 			switch (dsc_max_slices) {
3226 			case 1:
3227 				hdmi_dsc->max_slices = 1;
3228 				hdmi_dsc->clk_per_slice = 340;
3229 				break;
3230 			case 2:
3231 				hdmi_dsc->max_slices = 2;
3232 				hdmi_dsc->clk_per_slice = 340;
3233 				break;
3234 			case 3:
3235 				hdmi_dsc->max_slices = 4;
3236 				hdmi_dsc->clk_per_slice = 340;
3237 				break;
3238 			case 4:
3239 				hdmi_dsc->max_slices = 8;
3240 				hdmi_dsc->clk_per_slice = 340;
3241 				break;
3242 			case 5:
3243 				hdmi_dsc->max_slices = 8;
3244 				hdmi_dsc->clk_per_slice = 400;
3245 				break;
3246 			case 6:
3247 				hdmi_dsc->max_slices = 12;
3248 				hdmi_dsc->clk_per_slice = 400;
3249 				break;
3250 			case 7:
3251 				hdmi_dsc->max_slices = 16;
3252 				hdmi_dsc->clk_per_slice = 400;
3253 				break;
3254 			case 0:
3255 			default:
3256 				hdmi_dsc->max_slices = 0;
3257 				hdmi_dsc->clk_per_slice = 0;
3258 			}
3259 		}
3260 	}
3261 
3262 	drm_parse_ycbcr420_deep_color_info(data, hf_vsdb);
3263 }
3264 
3265 /**
3266  * drm_default_rgb_quant_range - default RGB quantization range
3267  * @mode: display mode
3268  *
3269  * Determine the default RGB quantization range for the mode,
3270  * as specified in CEA-861.
3271  *
3272  * Return: The default RGB quantization range for the mode
3273  */
3274 enum hdmi_quantization_range
drm_default_rgb_quant_range(struct drm_display_mode * mode)3275 drm_default_rgb_quant_range(struct drm_display_mode *mode)
3276 {
3277 	/* All CEA modes other than VIC 1 use limited quantization range. */
3278 	return drm_match_cea_mode(mode) > 1 ?
3279 		HDMI_QUANTIZATION_RANGE_LIMITED :
3280 		HDMI_QUANTIZATION_RANGE_FULL;
3281 }
3282 
drm_parse_hdmi_deep_color_info(struct hdmi_edid_data * data,const u8 * hdmi)3283 static void drm_parse_hdmi_deep_color_info(struct hdmi_edid_data *data,
3284 					   const u8 *hdmi)
3285 {
3286 	struct drm_display_info *info = &data->display_info;
3287 	unsigned int dc_bpc = 0;
3288 
3289 	/* HDMI supports at least 8 bpc */
3290 	info->bpc = 8;
3291 
3292 	if (cea_db_payload_len(hdmi) < 6)
3293 		return;
3294 
3295 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3296 		dc_bpc = 10;
3297 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3298 		debug("HDMI sink does deep color 30.\n");
3299 	}
3300 
3301 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3302 		dc_bpc = 12;
3303 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3304 		debug("HDMI sink does deep color 36.\n");
3305 	}
3306 
3307 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3308 		dc_bpc = 16;
3309 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3310 		debug("HDMI sink does deep color 48.\n");
3311 	}
3312 
3313 	if (dc_bpc == 0) {
3314 		debug("No deep color support on this HDMI sink.\n");
3315 		return;
3316 	}
3317 
3318 	debug("Assigning HDMI sink color depth as %d bpc.\n", dc_bpc);
3319 	info->bpc = dc_bpc;
3320 
3321 	/* YCRCB444 is optional according to spec. */
3322 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3323 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_Y444;
3324 		debug("HDMI sink does YCRCB444 in deep color.\n");
3325 	}
3326 
3327 	/*
3328 	 * Spec says that if any deep color mode is supported at all,
3329 	 * then deep color 36 bit must be supported.
3330 	 */
3331 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36))
3332 		debug("HDMI sink should do DC_36, but does not!\n");
3333 }
3334 
3335 /*
3336  * References:
3337  * - CTA-861-H section 7.3.3 CTA Extension Version 3
3338  */
cea_db_collection_size(const u8 * cta)3339 static int cea_db_collection_size(const u8 *cta)
3340 {
3341 	u8 d = cta[2];
3342 
3343 	if (d < 4 || d > 127)
3344 		return 0;
3345 
3346 	return d - 4;
3347 }
3348 
3349 #define CTA_EXT_DB_HF_EEODB		0x78
3350 #define CTA_DB_EXTENDED_TAG		7
3351 
3352 static int cea_db_tag(const u8 *db);
3353 static int cea_db_payload_len(const u8 *db);
3354 static int cea_db_extended_tag(const u8 *db);
3355 
cea_db_is_extended_tag(const void * db,int tag)3356 static bool cea_db_is_extended_tag(const void *db, int tag)
3357 {
3358 	return cea_db_tag(db) == CTA_DB_EXTENDED_TAG &&
3359 		cea_db_payload_len(db) >= 1 &&
3360 		cea_db_extended_tag(db) == tag;
3361 }
3362 
cea_db_is_hdmi_forum_eeodb(const void * db)3363 static bool cea_db_is_hdmi_forum_eeodb(const void *db)
3364 {
3365 	return cea_db_is_extended_tag(db, CTA_EXT_DB_HF_EEODB) &&
3366 		cea_db_payload_len(db) >= 2;
3367 }
3368 
edid_hfeeodb_extension_block_count(const struct edid * edid)3369 static int edid_hfeeodb_extension_block_count(const struct edid *edid)
3370 {
3371 	const u8 *cta;
3372 
3373 	/* No extensions according to base block, no HF-EEODB. */
3374 	if (!edid->extensions)
3375 		return 0;
3376 
3377 	/* HF-EEODB is always in the first EDID extension block only */
3378 	cta = (u8 *)edid + HDMI_EDID_BLOCK_SIZE * 1;
3379 	if (cta[0] != CEA_EXT || cta[1] < 3)
3380 		return 0;
3381 
3382 	/* Need to have the data block collection, and at least 3 bytes. */
3383 	if (cea_db_collection_size(cta) < 3)
3384 		return 0;
3385 
3386 	/*
3387 	 * Sinks that include the HF-EEODB in their E-EDID shall include one and
3388 	 * only one instance of the HF-EEODB in the E-EDID, occupying bytes 4
3389 	 * through 6 of Block 1 of the E-EDID.
3390 	 */
3391 	if (!cea_db_is_hdmi_forum_eeodb(&cta[4]))
3392 		return 0;
3393 
3394 	return cta[4 + 2];
3395 }
3396 
edid_hfeeodb_block_count(const struct edid * edid)3397 static int edid_hfeeodb_block_count(const struct edid *edid)
3398 {
3399 	int eeodb = edid_hfeeodb_extension_block_count(edid);
3400 
3401 	return eeodb ? eeodb + 1 : 0;
3402 }
3403 
3404 /*
3405  * Search EDID for CEA extension block.
3406  */
drm_find_edid_extension(const struct edid * edid,int ext_id)3407 static u8 *drm_find_edid_extension(const struct edid *edid,
3408 				   int ext_id)
3409 {
3410 	u8 *edid_ext = NULL;
3411 	int i;
3412 	int len;
3413 
3414 	/* No EDID or EDID extensions */
3415 	if (edid == NULL || edid->extensions == 0)
3416 		return NULL;
3417 
3418 	if (edid_hfeeodb_extension_block_count(edid))
3419 		len = edid_hfeeodb_extension_block_count(edid);
3420 	else
3421 		len = edid->extensions;
3422 
3423 	/* Find CEA extension */
3424 	for (i = 0; i < len; i++) {
3425 		edid_ext = (u8 *)edid + HDMI_EDID_BLOCK_SIZE * (i + 1);
3426 		if (edid_ext[0] == ext_id)
3427 			break;
3428 	}
3429 
3430 	if (i >= len)
3431 		return NULL;
3432 
3433 	return edid_ext;
3434 }
3435 
drm_find_cea_extension(struct edid * edid)3436 static u8 *drm_find_cea_extension(struct edid *edid)
3437 {
3438 	return drm_find_edid_extension(edid, 0x02);
3439 }
3440 
3441 #define AUDIO_BLOCK	0x01
3442 #define VIDEO_BLOCK     0x02
3443 #define VENDOR_BLOCK    0x03
3444 #define SPEAKER_BLOCK	0x04
3445 #define EDID_BASIC_AUDIO BIT(6)
3446 
3447 /**
3448  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3449  * @edid: monitor EDID information
3450  *
3451  * Parse the CEA extension according to CEA-861-B.
3452  *
3453  * Return: True if the monitor is HDMI, false if not or unknown.
3454  */
drm_detect_hdmi_monitor(struct edid * edid)3455 bool drm_detect_hdmi_monitor(struct edid *edid)
3456 {
3457 	u8 *edid_ext;
3458 	int i;
3459 	int start_offset, end_offset;
3460 
3461 	edid_ext = drm_find_cea_extension(edid);
3462 	if (!edid_ext)
3463 		return false;
3464 
3465 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3466 		return false;
3467 
3468 	/*
3469 	 * Because HDMI identifier is in Vendor Specific Block,
3470 	 * search it from all data blocks of CEA extension.
3471 	 */
3472 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3473 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3474 			return true;
3475 	}
3476 
3477 	return false;
3478 }
3479 
3480 /**
3481  * drm_detect_monitor_audio - check monitor audio capability
3482  * @edid: EDID block to scan
3483  *
3484  * Monitor should have CEA extension block.
3485  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3486  * audio' only. If there is any audio extension block and supported
3487  * audio format, assume at least 'basic audio' support, even if 'basic
3488  * audio' is not defined in EDID.
3489  *
3490  * Return: True if the monitor supports audio, false otherwise.
3491  */
drm_detect_monitor_audio(struct edid * edid)3492 bool drm_detect_monitor_audio(struct edid *edid)
3493 {
3494 	u8 *edid_ext;
3495 	int i, j;
3496 	bool has_audio = false;
3497 	int start_offset, end_offset;
3498 
3499 	edid_ext = drm_find_cea_extension(edid);
3500 	if (!edid_ext)
3501 		goto end;
3502 
3503 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3504 
3505 	if (has_audio) {
3506 		printf("Monitor has basic audio support\n");
3507 		goto end;
3508 	}
3509 
3510 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3511 		goto end;
3512 
3513 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3514 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3515 			has_audio = true;
3516 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1;
3517 			     j += 3)
3518 				debug("CEA audio format %d\n",
3519 				      (edid_ext[i + j] >> 3) & 0xf);
3520 			goto end;
3521 		}
3522 	}
3523 end:
3524 	return has_audio;
3525 }
3526 
3527 static void
drm_parse_hdmi_vsdb_video(struct hdmi_edid_data * data,const u8 * db)3528 drm_parse_hdmi_vsdb_video(struct hdmi_edid_data *data, const u8 *db)
3529 {
3530 	struct drm_display_info *info = &data->display_info;
3531 	u8 len = cea_db_payload_len(db);
3532 
3533 	if (len >= 6)
3534 		info->dvi_dual = db[6] & 1;
3535 	if (len >= 7)
3536 		info->max_tmds_clock = db[7] * 5000;
3537 
3538 	drm_parse_hdmi_deep_color_info(data, db);
3539 }
3540 
3541 #define USE_EXTENDED_TAG 0x07
3542 #define CTA_EXT_DB_HF_SCDB 0x000079
3543 
cea_db_is_scdb(const u8 * db)3544 static bool cea_db_is_scdb(const u8 *db)
3545 {
3546 	unsigned int oui;
3547 
3548 	if (cea_db_tag(db) != USE_EXTENDED_TAG)
3549 		return false;
3550 
3551 	if (cea_db_payload_len(db) < 7)
3552 		return false;
3553 
3554 	oui = db[3] << 16 | db[2] << 8 | db[1];
3555 
3556 	return oui == CTA_EXT_DB_HF_SCDB;
3557 }
3558 
drm_parse_cea_ext(struct hdmi_edid_data * data,struct edid * edid)3559 static void drm_parse_cea_ext(struct hdmi_edid_data *data,
3560 			      struct edid *edid)
3561 {
3562 	struct drm_display_info *info = &data->display_info;
3563 	const u8 *edid_ext;
3564 	int i, start, end;
3565 
3566 	edid_ext = drm_find_cea_extension(edid);
3567 	if (!edid_ext)
3568 		return;
3569 
3570 	info->cea_rev = edid_ext[1];
3571 
3572 	/* The existence of a CEA block should imply RGB support */
3573 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
3574 	if (edid_ext[3] & EDID_CEA_YCRCB444)
3575 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3576 	if (edid_ext[3] & EDID_CEA_YCRCB422)
3577 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3578 
3579 	if (cea_db_offsets(edid_ext, &start, &end))
3580 		return;
3581 
3582 	for_each_cea_db(edid_ext, i, start, end) {
3583 		const u8 *db = &edid_ext[i];
3584 
3585 		if (cea_db_is_hdmi_vsdb(db))
3586 			drm_parse_hdmi_vsdb_video(data, db);
3587 		if (cea_db_is_hdmi_forum_vsdb(db) || cea_db_is_scdb(db))
3588 			drm_parse_hdmi_forum_vsdb(data, db);
3589 		if (cea_db_is_y420cmdb(db))
3590 			drm_parse_y420cmdb_bitmap(data, db);
3591 	}
3592 }
3593 
drm_add_display_info(struct hdmi_edid_data * data,struct edid * edid)3594 static void drm_add_display_info(struct hdmi_edid_data *data, struct edid *edid)
3595 {
3596 	struct drm_display_info *info = &data->display_info;
3597 
3598 	info->width_mm = edid->width_cm * 10;
3599 	info->height_mm = edid->height_cm * 10;
3600 
3601 	/* driver figures it out in this case */
3602 	info->bpc = 0;
3603 	info->color_formats = 0;
3604 	info->cea_rev = 0;
3605 	info->max_tmds_clock = 0;
3606 	info->dvi_dual = false;
3607 	info->edid_hdmi_dc_modes = 0;
3608 
3609 	memset(&info->hdmi, 0, sizeof(info->hdmi));
3610 
3611 	if (edid->revision < 3)
3612 		return;
3613 
3614 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3615 		return;
3616 
3617 	drm_parse_cea_ext(data, edid);
3618 
3619 	/*
3620 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3621 	 *
3622 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3623 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
3624 	 * extensions which tell otherwise.
3625 	 */
3626 	if ((info->bpc == 0) && (edid->revision < 4) &&
3627 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3628 		info->bpc = 8;
3629 		debug("Assigning DFP sink color depth as %d bpc.\n", info->bpc);
3630 	}
3631 
3632 	/* Only defined for 1.4 with digital displays */
3633 	if (edid->revision < 4)
3634 		return;
3635 
3636 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3637 	case DRM_EDID_DIGITAL_DEPTH_6:
3638 		info->bpc = 6;
3639 		break;
3640 	case DRM_EDID_DIGITAL_DEPTH_8:
3641 		info->bpc = 8;
3642 		break;
3643 	case DRM_EDID_DIGITAL_DEPTH_10:
3644 		info->bpc = 10;
3645 		break;
3646 	case DRM_EDID_DIGITAL_DEPTH_12:
3647 		info->bpc = 12;
3648 		break;
3649 	case DRM_EDID_DIGITAL_DEPTH_14:
3650 		info->bpc = 14;
3651 		break;
3652 	case DRM_EDID_DIGITAL_DEPTH_16:
3653 		info->bpc = 16;
3654 		break;
3655 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3656 	default:
3657 		info->bpc = 0;
3658 		break;
3659 	}
3660 
3661 	debug("Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3662 	      info->bpc);
3663 
3664 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3665 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3666 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3667 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3668 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3669 }
3670 
3671 /*
3672  * Search EDID for CEA extension block.
3673  */
drm_find_edid_extension_from_index(const struct edid * edid,int ext_id,int * ext_index)3674 static u8 *drm_find_edid_extension_from_index(const struct edid *edid,
3675 					      int ext_id, int *ext_index)
3676 {
3677 	u8 *edid_ext = NULL;
3678 	int i;
3679 	int len;
3680 
3681 	/* No EDID or EDID extensions */
3682 	if (edid == NULL || edid->extensions == 0)
3683 		return NULL;
3684 
3685 	if (edid_hfeeodb_extension_block_count(edid))
3686 		len = edid_hfeeodb_extension_block_count(edid);
3687 	else
3688 		len = edid->extensions;
3689 
3690 	/* Find CEA extension */
3691 	for (i = *ext_index; i < len; i++) {
3692 		edid_ext = (u8 *)edid + HDMI_EDID_BLOCK_SIZE * (i + 1);
3693 		if (edid_ext[0] == ext_id)
3694 			break;
3695 	}
3696 
3697 	if (i >= len)
3698 		return NULL;
3699 
3700 	*ext_index = i + 1;
3701 
3702 	return edid_ext;
3703 }
3704 
3705 static
add_cea_modes(struct hdmi_edid_data * data,struct edid * edid)3706 int add_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
3707 {
3708 	const u8 *cea;
3709 	const u8 *db, *hdmi = NULL, *video = NULL;
3710 	u8 dbl, hdmi_len, video_len = 0;
3711 	int i, count = 0, modes = 0;
3712 	int ext_index = 0;
3713 
3714 	if (edid_hfeeodb_extension_block_count(edid))
3715 		count = edid_hfeeodb_extension_block_count(edid);
3716 	else
3717 		count = edid->extensions;
3718 
3719 	for (i = 0; i < count; i++) {
3720 		ext_index = i;
3721 		cea = drm_find_edid_extension_from_index(edid, CEA_EXT, &ext_index);
3722 		if (cea && cea_revision(cea) >= 3) {
3723 			int i, start, end;
3724 
3725 			if (cea_db_offsets(cea, &start, &end))
3726 				return 0;
3727 
3728 			for_each_cea_db(cea, i, start, end) {
3729 				db = &cea[i];
3730 				dbl = cea_db_payload_len(db);
3731 
3732 				if (cea_db_tag(db) == EDID_CEA861_DB_VIDEO) {
3733 					video = db + 1;
3734 					video_len = dbl;
3735 					modes += do_cea_modes(data, video, dbl);
3736 				} else if (cea_db_is_hdmi_vsdb(db)) {
3737 					hdmi = db;
3738 					hdmi_len = dbl;
3739 				} else if (cea_db_is_y420vdb(db)) {
3740 					const u8 *vdb420 = &db[2];
3741 
3742 					/* Add 4:2:0(only) modes present in EDID */
3743 					modes += do_y420vdb_modes(data, vdb420,
3744 								dbl - 1);
3745 				}
3746 			}
3747 		}
3748 
3749 		/*
3750 		* We parse the HDMI VSDB after having added the cea modes as we will
3751 		* be patching their flags when the sink supports stereo 3D.
3752 		*/
3753 		if (hdmi)
3754 			modes += do_hdmi_vsdb_modes(hdmi, hdmi_len, video,
3755 						video_len, data);
3756 	}
3757 	return modes;
3758 }
3759 
3760 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
3761 
3762 static void
cea_for_each_detailed_block(u8 * ext,detailed_cb * cb,void * closure)3763 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3764 {
3765 	int i, n = 0;
3766 	u8 d = ext[0x02];
3767 	u8 *det_base = ext + d;
3768 
3769 	if (d < 4 || d > 127)
3770 		return;
3771 
3772 	n = (127 - d) / 18;
3773 	for (i = 0; i < n; i++)
3774 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3775 }
3776 
3777 static void
vtb_for_each_detailed_block(u8 * ext,detailed_cb * cb,void * closure)3778 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3779 {
3780 	unsigned int i, n = min((int)ext[0x02], 6);
3781 	u8 *det_base = ext + 5;
3782 
3783 	if (ext[0x01] != 1)
3784 		return; /* unknown version */
3785 
3786 	for (i = 0; i < n; i++)
3787 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3788 }
3789 
3790 static void
drm_for_each_detailed_block(u8 * raw_edid,detailed_cb * cb,void * closure)3791 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
3792 {
3793 	int i;
3794 	struct edid *edid = (struct edid *)raw_edid;
3795 
3796 	if (!edid)
3797 		return;
3798 
3799 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3800 		cb(&edid->detailed_timings[i], closure);
3801 
3802 	for (i = 1; i <= raw_edid[0x7e]; i++) {
3803 		u8 *ext = raw_edid + (i * EDID_SIZE);
3804 
3805 		switch (*ext) {
3806 		case CEA_EXT:
3807 			cea_for_each_detailed_block(ext, cb, closure);
3808 			break;
3809 		case VTB_EXT:
3810 			vtb_for_each_detailed_block(ext, cb, closure);
3811 			break;
3812 		default:
3813 			break;
3814 		}
3815 	}
3816 }
3817 
3818 /*
3819  * EDID is delightfully ambiguous about how interlaced modes are to be
3820  * encoded.  Our internal representation is of frame height, but some
3821  * HDTV detailed timings are encoded as field height.
3822  *
3823  * The format list here is from CEA, in frame size.  Technically we
3824  * should be checking refresh rate too.  Whatever.
3825  */
3826 static void
drm_mode_do_interlace_quirk(struct drm_display_mode * mode,struct detailed_pixel_timing * pt)3827 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3828 			    struct detailed_pixel_timing *pt)
3829 {
3830 	int i;
3831 
3832 	static const struct {
3833 		int w, h;
3834 	} cea_interlaced[] = {
3835 		{ 1920, 1080 },
3836 		{  720,  480 },
3837 		{ 1440,  480 },
3838 		{ 2880,  480 },
3839 		{  720,  576 },
3840 		{ 1440,  576 },
3841 		{ 2880,  576 },
3842 	};
3843 
3844 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3845 		return;
3846 
3847 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3848 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3849 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3850 			mode->vdisplay *= 2;
3851 			mode->vsync_start *= 2;
3852 			mode->vsync_end *= 2;
3853 			mode->vtotal *= 2;
3854 			mode->vtotal |= 1;
3855 		}
3856 	}
3857 
3858 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3859 }
3860 
3861 /**
3862  * drm_mode_detailed - create a new mode from an EDID detailed timing section
3863  * @edid: EDID block
3864  * @timing: EDID detailed timing info
3865  * @quirks: quirks to apply
3866  *
3867  * An EDID detailed timing block contains enough info for us to create and
3868  * return a new struct drm_display_mode.
3869  */
3870 static
drm_mode_detailed(struct edid * edid,struct detailed_timing * timing,u32 quirks)3871 struct drm_display_mode *drm_mode_detailed(struct edid *edid,
3872 					   struct detailed_timing *timing,
3873 					   u32 quirks)
3874 {
3875 	struct drm_display_mode *mode;
3876 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3877 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3878 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3879 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3880 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3881 	unsigned hsync_offset =
3882 		(pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 |
3883 		pt->hsync_offset_lo;
3884 	unsigned hsync_pulse_width =
3885 		(pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 |
3886 		pt->hsync_pulse_width_lo;
3887 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) <<
3888 		2 | pt->vsync_offset_pulse_width_lo >> 4;
3889 	unsigned vsync_pulse_width =
3890 		(pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 |
3891 		(pt->vsync_offset_pulse_width_lo & 0xf);
3892 
3893 	/* ignore tiny modes */
3894 	if (hactive < 64 || vactive < 64)
3895 		return NULL;
3896 
3897 	if (pt->misc & DRM_EDID_PT_STEREO) {
3898 		debug("stereo mode not supported\n");
3899 		return NULL;
3900 	}
3901 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC))
3902 		debug("composite sync not supported\n");
3903 
3904 	/* it is incorrect if hsync/vsync width is zero */
3905 	if (!hsync_pulse_width || !vsync_pulse_width) {
3906 		debug("Incorrect Detailed timing. ");
3907 		debug("Wrong Hsync/Vsync pulse width\n");
3908 		return NULL;
3909 	}
3910 
3911 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3912 		mode = drm_cvt_mode(hactive, vactive, 60, true, false, false);
3913 		if (!mode)
3914 			return NULL;
3915 
3916 		goto set_refresh;
3917 	}
3918 
3919 	mode = drm_mode_create();
3920 	if (!mode)
3921 		return NULL;
3922 
3923 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3924 		timing->pixel_clock = cpu_to_le16(1088);
3925 
3926 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3927 
3928 	mode->hdisplay = hactive;
3929 	mode->hsync_start = mode->hdisplay + hsync_offset;
3930 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3931 	mode->htotal = mode->hdisplay + hblank;
3932 
3933 	mode->vdisplay = vactive;
3934 	mode->vsync_start = mode->vdisplay + vsync_offset;
3935 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3936 	mode->vtotal = mode->vdisplay + vblank;
3937 
3938 	/* Some EDIDs have bogus h/vtotal values */
3939 	if (mode->hsync_end > mode->htotal)
3940 		mode->htotal = mode->hsync_end + 1;
3941 	if (mode->vsync_end > mode->vtotal)
3942 		mode->vtotal = mode->vsync_end + 1;
3943 
3944 	drm_mode_do_interlace_quirk(mode, pt);
3945 
3946 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP)
3947 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE |
3948 			DRM_EDID_PT_VSYNC_POSITIVE;
3949 
3950 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3951 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3952 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3953 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3954 
3955 set_refresh:
3956 
3957 	mode->type = DRM_MODE_TYPE_DRIVER;
3958 	mode->vrefresh = drm_get_vrefresh(mode);
3959 
3960 	return mode;
3961 }
3962 
3963 /*
3964  * Calculate the alternate clock for the CEA mode
3965  * (60Hz vs. 59.94Hz etc.)
3966  */
3967 static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode * cea_mode)3968 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3969 {
3970 	unsigned int clock = cea_mode->clock;
3971 
3972 	if (cea_mode->vrefresh % 6 != 0)
3973 		return clock;
3974 
3975 	/*
3976 	 * edid_cea_modes contains the 59.94Hz
3977 	 * variant for 240 and 480 line modes,
3978 	 * and the 60Hz variant otherwise.
3979 	 */
3980 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3981 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3982 	else
3983 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3984 
3985 	return clock;
3986 }
3987 
3988 /**
3989  * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3990  * @mode1: first mode
3991  * @mode2: second mode
3992  *
3993  * Check to see if @mode1 and @mode2 are equivalent, but
3994  * don't check the pixel clocks nor the stereo layout.
3995  *
3996  * Returns:
3997  * True if the modes are equal, false otherwise.
3998  */
3999 
4000 static
drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode * mode1,const struct drm_display_mode * mode2)4001 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
4002 					const struct drm_display_mode *mode2)
4003 {
4004 	unsigned int flags_mask =
4005 		~(DRM_MODE_FLAG_3D_MASK | DRM_MODE_FLAG_420_MASK);
4006 
4007 	if (mode1->hdisplay == mode2->hdisplay &&
4008 	    mode1->hsync_start == mode2->hsync_start &&
4009 	    mode1->hsync_end == mode2->hsync_end &&
4010 	    mode1->htotal == mode2->htotal &&
4011 	    mode1->vdisplay == mode2->vdisplay &&
4012 	    mode1->vsync_start == mode2->vsync_start &&
4013 	    mode1->vsync_end == mode2->vsync_end &&
4014 	    mode1->vtotal == mode2->vtotal &&
4015 	    mode1->vscan == mode2->vscan &&
4016 	    (mode1->flags & flags_mask) == (mode2->flags & flags_mask))
4017 		return true;
4018 
4019 	return false;
4020 }
4021 
4022 /**
4023  * drm_mode_equal_no_clocks - test modes for equality
4024  * @mode1: first mode
4025  * @mode2: second mode
4026  *
4027  * Check to see if @mode1 and @mode2 are equivalent, but
4028  * don't check the pixel clocks.
4029  *
4030  * Returns:
4031  * True if the modes are equal, false otherwise.
4032  */
drm_mode_equal_no_clocks(const struct drm_display_mode * mode1,const struct drm_display_mode * mode2)4033 static bool drm_mode_equal_no_clocks(const struct drm_display_mode *mode1,
4034 				     const struct drm_display_mode *mode2)
4035 {
4036 	if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
4037 	    (mode2->flags & DRM_MODE_FLAG_3D_MASK))
4038 		return false;
4039 
4040 	return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
4041 }
4042 
4043 static
drm_match_cea_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)4044 u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
4045 				      unsigned int clock_tolerance)
4046 {
4047 	u8 vic;
4048 
4049 	if (!to_match->clock)
4050 		return 0;
4051 
4052 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
4053 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
4054 		unsigned int clock1, clock2;
4055 
4056 		/* Check both 60Hz and 59.94Hz */
4057 		clock1 = cea_mode->clock;
4058 		clock2 = cea_mode_alternate_clock(cea_mode);
4059 
4060 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4061 		    abs(to_match->clock - clock2) > clock_tolerance)
4062 			continue;
4063 
4064 		if (drm_mode_equal_no_clocks(to_match, cea_mode))
4065 			return vic;
4066 	}
4067 
4068 	return 0;
4069 }
4070 
4071 static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode * hdmi_mode)4072 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
4073 {
4074 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
4075 		return hdmi_mode->clock;
4076 
4077 	return cea_mode_alternate_clock(hdmi_mode);
4078 }
4079 
4080 static
drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)4081 u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
4082 				       unsigned int clock_tolerance)
4083 {
4084 	u8 vic;
4085 
4086 	if (!to_match->clock)
4087 		return 0;
4088 
4089 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4090 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4091 		unsigned int clock1, clock2;
4092 
4093 		/* Make sure to also match alternate clocks */
4094 		clock1 = hdmi_mode->clock;
4095 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4096 
4097 		if (abs(to_match->clock - clock1) > clock_tolerance &&
4098 		    abs(to_match->clock - clock2) > clock_tolerance)
4099 			continue;
4100 
4101 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
4102 			return vic;
4103 	}
4104 
4105 	return 0;
4106 }
4107 
fixup_detailed_cea_mode_clock(struct drm_display_mode * mode)4108 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
4109 {
4110 	const struct drm_display_mode *cea_mode;
4111 	int clock1, clock2, clock;
4112 	u8 vic;
4113 	const char *type;
4114 
4115 	/*
4116 	 * allow 5kHz clock difference either way to account for
4117 	 * the 10kHz clock resolution limit of detailed timings.
4118 	 */
4119 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
4120 	if (drm_valid_cea_vic(vic)) {
4121 		type = "CEA";
4122 		cea_mode = cea_mode_for_vic(vic);
4123 		clock1 = cea_mode->clock;
4124 		clock2 = cea_mode_alternate_clock(cea_mode);
4125 	} else {
4126 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
4127 		if (drm_valid_hdmi_vic(vic)) {
4128 			type = "HDMI";
4129 			cea_mode = &edid_4k_modes[vic];
4130 			clock1 = cea_mode->clock;
4131 			clock2 = hdmi_mode_alternate_clock(cea_mode);
4132 		} else {
4133 			return;
4134 		}
4135 	}
4136 
4137 	/* pick whichever is closest */
4138 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4139 		clock = clock1;
4140 	else
4141 		clock = clock2;
4142 
4143 	if (mode->clock == clock)
4144 		return;
4145 
4146 	debug("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4147 	      type, vic, mode->clock, clock);
4148 	mode->clock = clock;
4149 }
4150 
4151 static void
do_detailed_mode(struct detailed_timing * timing,void * c)4152 do_detailed_mode(struct detailed_timing *timing, void *c)
4153 {
4154 	struct detailed_mode_closure *closure = c;
4155 	struct drm_display_mode *newmode;
4156 
4157 	if (timing->pixel_clock) {
4158 		newmode = drm_mode_detailed(
4159 					    closure->edid, timing,
4160 					    closure->quirks);
4161 		if (!newmode)
4162 			return;
4163 
4164 		if (closure->preferred)
4165 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
4166 
4167 		/*
4168 		 * Detailed modes are limited to 10kHz pixel clock resolution,
4169 		 * so fix up anything that looks like CEA/HDMI mode,
4170 		 * but the clock is just slightly off.
4171 		 */
4172 		fixup_detailed_cea_mode_clock(newmode);
4173 		drm_add_hdmi_modes(closure->data, newmode);
4174 		drm_mode_destroy(newmode);
4175 		closure->modes++;
4176 		closure->preferred = 0;
4177 	}
4178 }
4179 
4180 /*
4181  * add_detailed_modes - Add modes from detailed timings
4182  * @data: attached data
4183  * @edid: EDID block to scan
4184  * @quirks: quirks to apply
4185  */
4186 static int
add_detailed_modes(struct hdmi_edid_data * data,struct edid * edid,u32 quirks)4187 add_detailed_modes(struct hdmi_edid_data *data, struct edid *edid,
4188 		   u32 quirks)
4189 {
4190 	struct detailed_mode_closure closure = {
4191 		.data = data,
4192 		.edid = edid,
4193 		.preferred = 1,
4194 		.quirks = quirks,
4195 	};
4196 
4197 	if (closure.preferred && !version_greater(edid, 1, 3))
4198 		closure.preferred =
4199 			(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
4200 
4201 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
4202 
4203 	return closure.modes;
4204 }
4205 
drm_cvt_modes(struct hdmi_edid_data * data,struct detailed_timing * timing)4206 static int drm_cvt_modes(struct hdmi_edid_data *data,
4207 			 struct detailed_timing *timing)
4208 {
4209 	int i, j, modes = 0;
4210 	struct drm_display_mode *newmode;
4211 	struct cvt_timing *cvt;
4212 	const int rates[] = { 60, 85, 75, 60, 50 };
4213 	const u8 empty[3] = { 0, 0, 0 };
4214 
4215 	for (i = 0; i < 4; i++) {
4216 		int uninitialized_var(width), height;
4217 
4218 		cvt = &timing->data.other_data.data.cvt[i];
4219 
4220 		if (!memcmp(cvt->code, empty, 3))
4221 			continue;
4222 
4223 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4224 		switch (cvt->code[1] & 0x0c) {
4225 		case 0x00:
4226 			width = height * 4 / 3;
4227 			break;
4228 		case 0x04:
4229 			width = height * 16 / 9;
4230 			break;
4231 		case 0x08:
4232 			width = height * 16 / 10;
4233 			break;
4234 		case 0x0c:
4235 			width = height * 15 / 9;
4236 			break;
4237 		}
4238 
4239 		for (j = 1; j < 5; j++) {
4240 			if (cvt->code[2] & (1 << j)) {
4241 				newmode = drm_cvt_mode(width, height,
4242 						       rates[j], j == 0,
4243 						       false, false);
4244 				if (newmode) {
4245 					drm_add_hdmi_modes(data, newmode);
4246 					modes++;
4247 					drm_mode_destroy(newmode);
4248 				}
4249 			}
4250 		}
4251 	}
4252 
4253 	return modes;
4254 }
4255 
4256 static void
do_cvt_mode(struct detailed_timing * timing,void * c)4257 do_cvt_mode(struct detailed_timing *timing, void *c)
4258 {
4259 	struct detailed_mode_closure *closure = c;
4260 	struct detailed_non_pixel *data = &timing->data.other_data;
4261 
4262 	if (data->type == EDID_DETAIL_CVT_3BYTE)
4263 		closure->modes += drm_cvt_modes(closure->data, timing);
4264 }
4265 
4266 static int
add_cvt_modes(struct hdmi_edid_data * data,struct edid * edid)4267 add_cvt_modes(struct hdmi_edid_data *data, struct edid *edid)
4268 {
4269 	struct detailed_mode_closure closure = {
4270 		.data = data,
4271 		.edid = edid,
4272 	};
4273 
4274 	if (version_greater(edid, 1, 2))
4275 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
4276 
4277 	/* XXX should also look for CVT codes in VTB blocks */
4278 
4279 	return closure.modes;
4280 }
4281 
4282 static void
find_gtf2(struct detailed_timing * t,void * data)4283 find_gtf2(struct detailed_timing *t, void *data)
4284 {
4285 	u8 *r = (u8 *)t;
4286 
4287 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
4288 		*(u8 **)data = r;
4289 }
4290 
4291 /* Secondary GTF curve kicks in above some break frequency */
4292 static int
drm_gtf2_hbreak(struct edid * edid)4293 drm_gtf2_hbreak(struct edid *edid)
4294 {
4295 	u8 *r = NULL;
4296 
4297 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4298 	return r ? (r[12] * 2) : 0;
4299 }
4300 
4301 static int
drm_gtf2_2c(struct edid * edid)4302 drm_gtf2_2c(struct edid *edid)
4303 {
4304 	u8 *r = NULL;
4305 
4306 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4307 	return r ? r[13] : 0;
4308 }
4309 
4310 static int
drm_gtf2_m(struct edid * edid)4311 drm_gtf2_m(struct edid *edid)
4312 {
4313 	u8 *r = NULL;
4314 
4315 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4316 	return r ? (r[15] << 8) + r[14] : 0;
4317 }
4318 
4319 static int
drm_gtf2_k(struct edid * edid)4320 drm_gtf2_k(struct edid *edid)
4321 {
4322 	u8 *r = NULL;
4323 
4324 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4325 	return r ? r[16] : 0;
4326 }
4327 
4328 static int
drm_gtf2_2j(struct edid * edid)4329 drm_gtf2_2j(struct edid *edid)
4330 {
4331 	u8 *r = NULL;
4332 
4333 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4334 	return r ? r[17] : 0;
4335 }
4336 
4337 /**
4338  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
4339  * @edid: EDID block to scan
4340  */
standard_timing_level(struct edid * edid)4341 static int standard_timing_level(struct edid *edid)
4342 {
4343 	if (edid->revision >= 2) {
4344 		if (edid->revision >= 4 &&
4345 		    (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
4346 			return LEVEL_CVT;
4347 		if (drm_gtf2_hbreak(edid))
4348 			return LEVEL_GTF2;
4349 		return LEVEL_GTF;
4350 	}
4351 	return LEVEL_DMT;
4352 }
4353 
4354 /*
4355  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
4356  * monitors fill with ascii space (0x20) instead.
4357  */
4358 static int
bad_std_timing(u8 a,u8 b)4359 bad_std_timing(u8 a, u8 b)
4360 {
4361 	return (a == 0x00 && b == 0x00) ||
4362 	       (a == 0x01 && b == 0x01) ||
4363 	       (a == 0x20 && b == 0x20);
4364 }
4365 
4366 static void
is_rb(struct detailed_timing * t,void * data)4367 is_rb(struct detailed_timing *t, void *data)
4368 {
4369 	u8 *r = (u8 *)t;
4370 
4371 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
4372 		if (r[15] & 0x10)
4373 			*(bool *)data = true;
4374 }
4375 
4376 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
4377 static bool
drm_monitor_supports_rb(struct edid * edid)4378 drm_monitor_supports_rb(struct edid *edid)
4379 {
4380 	if (edid->revision >= 4) {
4381 		bool ret = false;
4382 
4383 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
4384 		return ret;
4385 	}
4386 
4387 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
4388 }
4389 
4390 static bool
mode_is_rb(const struct drm_display_mode * mode)4391 mode_is_rb(const struct drm_display_mode *mode)
4392 {
4393 	return (mode->htotal - mode->hdisplay == 160) &&
4394 	       (mode->hsync_end - mode->hdisplay == 80) &&
4395 	       (mode->hsync_end - mode->hsync_start == 32) &&
4396 	       (mode->vsync_start - mode->vdisplay == 3);
4397 }
4398 
4399 /*
4400  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
4401  * @hsize: Mode width
4402  * @vsize: Mode height
4403  * @fresh: Mode refresh rate
4404  * @rb: Mode reduced-blanking-ness
4405  *
4406  * Walk the DMT mode list looking for a match for the given parameters.
4407  *
4408  * Return: A newly allocated copy of the mode, or NULL if not found.
4409  */
drm_mode_find_dmt(int hsize,int vsize,int fresh,bool rb)4410 static struct drm_display_mode *drm_mode_find_dmt(
4411 					   int hsize, int vsize, int fresh,
4412 					   bool rb)
4413 {
4414 	int i;
4415 	struct drm_display_mode *newmode;
4416 
4417 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
4418 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4419 
4420 		if (hsize != ptr->hdisplay)
4421 			continue;
4422 		if (vsize != ptr->vdisplay)
4423 			continue;
4424 		if (fresh != drm_get_vrefresh(ptr))
4425 			continue;
4426 		if (rb != mode_is_rb(ptr))
4427 			continue;
4428 
4429 		newmode = drm_mode_create();
4430 		*newmode = *ptr;
4431 		return newmode;
4432 	}
4433 
4434 	return NULL;
4435 }
4436 
4437 static struct drm_display_mode *
drm_gtf_mode_complex(int hdisplay,int vdisplay,int vrefresh,bool interlaced,int margins,int GTF_M,int GTF_2C,int GTF_K,int GTF_2J)4438 drm_gtf_mode_complex(int hdisplay, int vdisplay,
4439 		     int vrefresh, bool interlaced, int margins,
4440 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
4441 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
4442 #define	GTF_MARGIN_PERCENTAGE		18
4443 	/* 2) character cell horizontal granularity (pixels) - default 8 */
4444 #define	GTF_CELL_GRAN			8
4445 	/* 3) Minimum vertical porch (lines) - default 3 */
4446 #define	GTF_MIN_V_PORCH			1
4447 	/* width of vsync in lines */
4448 #define V_SYNC_RQD			3
4449 	/* width of hsync as % of total line */
4450 #define H_SYNC_PERCENT			8
4451 	/* min time of vsync + back porch (microsec) */
4452 #define MIN_VSYNC_PLUS_BP		550
4453 	/* C' and M' are part of the Blanking Duty Cycle computation */
4454 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
4455 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
4456 	struct drm_display_mode *drm_mode;
4457 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
4458 	int top_margin, bottom_margin;
4459 	int interlace;
4460 	unsigned int hfreq_est;
4461 	int vsync_plus_bp;
4462 	unsigned int vtotal_lines;
4463 	int left_margin, right_margin;
4464 	unsigned int total_active_pixels, ideal_duty_cycle;
4465 	unsigned int hblank, total_pixels, pixel_freq;
4466 	int hsync, hfront_porch, vodd_front_porch_lines;
4467 	unsigned int tmp1, tmp2;
4468 
4469 	drm_mode = drm_mode_create();
4470 	if (!drm_mode)
4471 		return NULL;
4472 
4473 	/* 1. In order to give correct results, the number of horizontal
4474 	 * pixels requested is first processed to ensure that it is divisible
4475 	 * by the character size, by rounding it to the nearest character
4476 	 * cell boundary:
4477 	 */
4478 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4479 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
4480 
4481 	/* 2. If interlace is requested, the number of vertical lines assumed
4482 	 * by the calculation must be halved, as the computation calculates
4483 	 * the number of vertical lines per field.
4484 	 */
4485 	if (interlaced)
4486 		vdisplay_rnd = vdisplay / 2;
4487 	else
4488 		vdisplay_rnd = vdisplay;
4489 
4490 	/* 3. Find the frame rate required: */
4491 	if (interlaced)
4492 		vfieldrate_rqd = vrefresh * 2;
4493 	else
4494 		vfieldrate_rqd = vrefresh;
4495 
4496 	/* 4. Find number of lines in Top margin: */
4497 	top_margin = 0;
4498 	if (margins)
4499 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4500 				1000;
4501 	/* 5. Find number of lines in bottom margin: */
4502 	bottom_margin = top_margin;
4503 
4504 	/* 6. If interlace is required, then set variable interlace: */
4505 	if (interlaced)
4506 		interlace = 1;
4507 	else
4508 		interlace = 0;
4509 
4510 	/* 7. Estimate the Horizontal frequency */
4511 	{
4512 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
4513 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
4514 				2 + interlace;
4515 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
4516 	}
4517 
4518 	/* 8. Find the number of lines in V sync + back porch */
4519 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
4520 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
4521 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
4522 	/*  9. Find the number of lines in V back porch alone:
4523 	 *	vback_porch = vsync_plus_bp - V_SYNC_RQD;
4524 	 */
4525 	/*  10. Find the total number of lines in Vertical field period: */
4526 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
4527 			vsync_plus_bp + GTF_MIN_V_PORCH;
4528 	/*  11. Estimate the Vertical field frequency:
4529 	 *  vfieldrate_est = hfreq_est / vtotal_lines;
4530 	 */
4531 
4532 	/*  12. Find the actual horizontal period:
4533 	 *	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
4534 	 */
4535 	/*  13. Find the actual Vertical field frequency:
4536 	 *	vfield_rate = hfreq_est / vtotal_lines;
4537 	 */
4538 	/*  14. Find the Vertical frame frequency:
4539 	 *	if (interlaced)
4540 	 *		vframe_rate = vfield_rate / 2;
4541 	 *	else
4542 	 *		vframe_rate = vfield_rate;
4543 	 */
4544 	/*  15. Find number of pixels in left margin: */
4545 	if (margins)
4546 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4547 				1000;
4548 	else
4549 		left_margin = 0;
4550 
4551 	/* 16.Find number of pixels in right margin: */
4552 	right_margin = left_margin;
4553 	/* 17.Find total number of active pixels in image and left and right */
4554 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
4555 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
4556 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
4557 				(GTF_M_PRIME * 1000000 / hfreq_est);
4558 	/* 19.Find the number of pixels in the blanking time to the nearest
4559 	 * double character cell:
4560 	 */
4561 	hblank = total_active_pixels * ideal_duty_cycle /
4562 			(100000 - ideal_duty_cycle);
4563 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
4564 	hblank = hblank * 2 * GTF_CELL_GRAN;
4565 	/* 20.Find total number of pixels: */
4566 	total_pixels = total_active_pixels + hblank;
4567 	/* 21.Find pixel clock frequency: */
4568 	pixel_freq = total_pixels * hfreq_est / 1000;
4569 	/* Stage 1 computations are now complete; I should really pass
4570 	 * the results to another function and do the Stage 2 computations,
4571 	 * but I only need a few more values so I'll just append the
4572 	 * computations here for now
4573 	 */
4574 
4575 	/* 17. Find the number of pixels in the horizontal sync period: */
4576 	hsync = H_SYNC_PERCENT * total_pixels / 100;
4577 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4578 	hsync = hsync * GTF_CELL_GRAN;
4579 	/* 18. Find the number of pixels in horizontal front porch period */
4580 	hfront_porch = hblank / 2 - hsync;
4581 	/*  36. Find the number of lines in the odd front porch period: */
4582 	vodd_front_porch_lines = GTF_MIN_V_PORCH;
4583 
4584 	/* finally, pack the results in the mode struct */
4585 	drm_mode->hdisplay = hdisplay_rnd;
4586 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
4587 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
4588 	drm_mode->htotal = total_pixels;
4589 	drm_mode->vdisplay = vdisplay_rnd;
4590 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
4591 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
4592 	drm_mode->vtotal = vtotal_lines;
4593 
4594 	drm_mode->clock = pixel_freq;
4595 
4596 	if (interlaced) {
4597 		drm_mode->vtotal *= 2;
4598 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
4599 	}
4600 
4601 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
4602 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
4603 	else
4604 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
4605 
4606 	return drm_mode;
4607 }
4608 
4609 /**
4610  * drm_gtf_mode - create the mode based on the GTF algorithm
4611  * @hdisplay: hdisplay size
4612  * @vdisplay: vdisplay size
4613  * @vrefresh: vrefresh rate.
4614  * @interlaced: whether to compute an interlaced mode
4615  * @margins: desired margin (borders) size
4616  *
4617  * return the mode based on GTF algorithm
4618  *
4619  * This function is to create the mode based on the GTF algorithm.
4620  * Generalized Timing Formula is derived from:
4621  *	GTF Spreadsheet by Andy Morrish (1/5/97)
4622  *	available at http://www.vesa.org
4623  *
4624  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
4625  * What I have done is to translate it by using integer calculation.
4626  * I also refer to the function of fb_get_mode in the file of
4627  * drivers/video/fbmon.c
4628  *
4629  * Standard GTF parameters:
4630  * M = 600
4631  * C = 40
4632  * K = 128
4633  * J = 20
4634  *
4635  * Returns:
4636  * The modeline based on the GTF algorithm stored in a drm_display_mode object.
4637  * The display mode object is allocated with drm_mode_create(). Returns NULL
4638  * when no mode could be allocated.
4639  */
4640 static struct drm_display_mode *
drm_gtf_mode(int hdisplay,int vdisplay,int vrefresh,bool interlaced,int margins)4641 drm_gtf_mode(int hdisplay, int vdisplay, int vrefresh,
4642 	     bool interlaced, int margins)
4643 {
4644 	return drm_gtf_mode_complex(hdisplay, vdisplay, vrefresh,
4645 				    interlaced, margins,
4646 				    600, 40 * 2, 128, 20 * 2);
4647 }
4648 
4649 /** drm_mode_hsync - get the hsync of a mode
4650  * @mode: mode
4651  *
4652  * Returns:
4653  * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
4654  * value first if it is not yet set.
4655  */
drm_mode_hsync(const struct drm_display_mode * mode)4656 static int drm_mode_hsync(const struct drm_display_mode *mode)
4657 {
4658 	unsigned int calc_val;
4659 
4660 	if (mode->htotal < 0)
4661 		return 0;
4662 
4663 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
4664 	calc_val += 500;				/* round to 1000Hz */
4665 	calc_val /= 1000;				/* truncate to kHz */
4666 
4667 	return calc_val;
4668 }
4669 
4670 /**
4671  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
4672  * @data: the structure that save parsed hdmi edid data
4673  * @edid: EDID block to scan
4674  * @t: standard timing params
4675  *
4676  * Take the standard timing params (in this case width, aspect, and refresh)
4677  * and convert them into a real mode using CVT/GTF/DMT.
4678  */
4679 static struct drm_display_mode *
drm_mode_std(struct hdmi_edid_data * data,struct edid * edid,struct std_timing * t)4680 drm_mode_std(struct hdmi_edid_data *data, struct edid *edid,
4681 	     struct std_timing *t)
4682 {
4683 	struct drm_display_mode *mode = NULL;
4684 	int i, hsize, vsize;
4685 	int vrefresh_rate;
4686 	int num = data->modes;
4687 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
4688 		>> EDID_TIMING_ASPECT_SHIFT;
4689 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
4690 		>> EDID_TIMING_VFREQ_SHIFT;
4691 	int timing_level = standard_timing_level(edid);
4692 
4693 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
4694 		return NULL;
4695 
4696 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
4697 	hsize = t->hsize * 8 + 248;
4698 	/* vrefresh_rate = vfreq + 60 */
4699 	vrefresh_rate = vfreq + 60;
4700 	/* the vdisplay is calculated based on the aspect ratio */
4701 	if (aspect_ratio == 0) {
4702 		if (edid->revision < 3)
4703 			vsize = hsize;
4704 		else
4705 			vsize = (hsize * 10) / 16;
4706 	} else if (aspect_ratio == 1) {
4707 		vsize = (hsize * 3) / 4;
4708 	} else if (aspect_ratio == 2) {
4709 		vsize = (hsize * 4) / 5;
4710 	} else {
4711 		vsize = (hsize * 9) / 16;
4712 	}
4713 
4714 	/* HDTV hack, part 1 */
4715 	if (vrefresh_rate == 60 &&
4716 	    ((hsize == 1360 && vsize == 765) ||
4717 	     (hsize == 1368 && vsize == 769))) {
4718 		hsize = 1366;
4719 		vsize = 768;
4720 	}
4721 
4722 	/*
4723 	 * If we already has a mode for this size and refresh
4724 	 * rate (because it came from detailed or CVT info), use that
4725 	 * instead.  This way we don't have to guess at interlace or
4726 	 * reduced blanking.
4727 	 */
4728 	for (i = 0; i < num; i++)
4729 		if (data->mode_buf[i].hdisplay == hsize &&
4730 		    data->mode_buf[i].vdisplay == vsize &&
4731 		    drm_get_vrefresh(&data->mode_buf[i]) == vrefresh_rate)
4732 			return NULL;
4733 
4734 	/* HDTV hack, part 2 */
4735 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
4736 		mode = drm_cvt_mode(1366, 768, vrefresh_rate, 0, 0,
4737 				    false);
4738 		mode->hdisplay = 1366;
4739 		mode->hsync_start = mode->hsync_start - 1;
4740 		mode->hsync_end = mode->hsync_end - 1;
4741 		return mode;
4742 	}
4743 
4744 	/* check whether it can be found in default mode table */
4745 	if (drm_monitor_supports_rb(edid)) {
4746 		mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate,
4747 					 true);
4748 		if (mode)
4749 			return mode;
4750 	}
4751 
4752 	mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate, false);
4753 	if (mode)
4754 		return mode;
4755 
4756 	/* okay, generate it */
4757 	switch (timing_level) {
4758 	case LEVEL_DMT:
4759 		break;
4760 	case LEVEL_GTF:
4761 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4762 		break;
4763 	case LEVEL_GTF2:
4764 		/*
4765 		 * This is potentially wrong if there's ever a monitor with
4766 		 * more than one ranges section, each claiming a different
4767 		 * secondary GTF curve.  Please don't do that.
4768 		 */
4769 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4770 		if (!mode)
4771 			return NULL;
4772 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
4773 			drm_mode_destroy(mode);
4774 			mode = drm_gtf_mode_complex(hsize, vsize,
4775 						    vrefresh_rate, 0, 0,
4776 						    drm_gtf2_m(edid),
4777 						    drm_gtf2_2c(edid),
4778 						    drm_gtf2_k(edid),
4779 						    drm_gtf2_2j(edid));
4780 		}
4781 		break;
4782 	case LEVEL_CVT:
4783 		mode = drm_cvt_mode(hsize, vsize, vrefresh_rate, 0, 0,
4784 				    false);
4785 		break;
4786 	}
4787 
4788 	return mode;
4789 }
4790 
4791 static void
do_standard_modes(struct detailed_timing * timing,void * c)4792 do_standard_modes(struct detailed_timing *timing, void *c)
4793 {
4794 	struct detailed_mode_closure *closure = c;
4795 	struct detailed_non_pixel *data = &timing->data.other_data;
4796 	struct edid *edid = closure->edid;
4797 
4798 	if (data->type == EDID_DETAIL_STD_MODES) {
4799 		int i;
4800 
4801 		for (i = 0; i < 6; i++) {
4802 			struct std_timing *std;
4803 			struct drm_display_mode *newmode;
4804 
4805 			std = &data->data.timings[i];
4806 			newmode = drm_mode_std(closure->data, edid, std);
4807 			if (newmode) {
4808 				drm_add_hdmi_modes(closure->data, newmode);
4809 				closure->modes++;
4810 				drm_mode_destroy(newmode);
4811 			}
4812 		}
4813 	}
4814 }
4815 
4816 /**
4817  * add_standard_modes - get std. modes from EDID and add them
4818  * @data: data to add mode(s) to
4819  * @edid: EDID block to scan
4820  *
4821  * Standard modes can be calculated using the appropriate standard (DMT,
4822  * GTF or CVT. Grab them from @edid and add them to the list.
4823  */
4824 static int
add_standard_modes(struct hdmi_edid_data * data,struct edid * edid)4825 add_standard_modes(struct hdmi_edid_data *data, struct edid *edid)
4826 {
4827 	int i, modes = 0;
4828 	struct detailed_mode_closure closure = {
4829 		.data = data,
4830 		.edid = edid,
4831 	};
4832 
4833 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
4834 		struct drm_display_mode *newmode;
4835 
4836 		newmode = drm_mode_std(data, edid,
4837 				       &edid->standard_timings[i]);
4838 		if (newmode) {
4839 			drm_add_hdmi_modes(data, newmode);
4840 			modes++;
4841 			drm_mode_destroy(newmode);
4842 		}
4843 	}
4844 
4845 	if (version_greater(edid, 1, 0))
4846 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
4847 					    &closure);
4848 
4849 	/* XXX should also look for standard codes in VTB blocks */
4850 
4851 	return modes + closure.modes;
4852 }
4853 
4854 static int
drm_est3_modes(struct hdmi_edid_data * data,struct detailed_timing * timing)4855 drm_est3_modes(struct hdmi_edid_data *data, struct detailed_timing *timing)
4856 {
4857 	int i, j, m, modes = 0;
4858 	struct drm_display_mode *mode;
4859 	u8 *est = ((u8 *)timing) + 6;
4860 
4861 	for (i = 0; i < 6; i++) {
4862 		for (j = 7; j >= 0; j--) {
4863 			m = (i * 8) + (7 - j);
4864 			if (m >= ARRAY_SIZE(est3_modes))
4865 				break;
4866 			if (est[i] & (1 << j)) {
4867 				mode = drm_mode_find_dmt(
4868 							 est3_modes[m].w,
4869 							 est3_modes[m].h,
4870 							 est3_modes[m].r,
4871 							 est3_modes[m].rb);
4872 				if (mode) {
4873 					drm_add_hdmi_modes(data, mode);
4874 					modes++;
4875 					drm_mode_destroy(mode);
4876 				}
4877 			}
4878 		}
4879 	}
4880 
4881 	return modes;
4882 }
4883 
4884 static void
do_established_modes(struct detailed_timing * timing,void * c)4885 do_established_modes(struct detailed_timing *timing, void *c)
4886 {
4887 	struct detailed_mode_closure *closure = c;
4888 	struct detailed_non_pixel *data = &timing->data.other_data;
4889 
4890 	if (data->type == EDID_DETAIL_EST_TIMINGS)
4891 		closure->modes += drm_est3_modes(closure->data, timing);
4892 }
4893 
4894 /**
4895  * add_established_modes - get est. modes from EDID and add them
4896  * @data: data to add mode(s) to
4897  * @edid: EDID block to scan
4898  *
4899  * Each EDID block contains a bitmap of the supported "established modes" list
4900  * (defined above).  Tease them out and add them to the modes list.
4901  */
4902 static int
add_established_modes(struct hdmi_edid_data * data,struct edid * edid)4903 add_established_modes(struct hdmi_edid_data *data, struct edid *edid)
4904 {
4905 	unsigned long est_bits = edid->established_timings.t1 |
4906 		(edid->established_timings.t2 << 8) |
4907 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
4908 	int i, modes = 0;
4909 	struct detailed_mode_closure closure = {
4910 		.data = data,
4911 		.edid = edid,
4912 	};
4913 
4914 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
4915 		if (est_bits & (1 << i)) {
4916 			struct drm_display_mode *newmode = drm_mode_create();
4917 			*newmode = edid_est_modes[i];
4918 			if (newmode) {
4919 				drm_add_hdmi_modes(data, newmode);
4920 				modes++;
4921 				drm_mode_destroy(newmode);
4922 			}
4923 		}
4924 	}
4925 
4926 	if (version_greater(edid, 1, 0))
4927 		drm_for_each_detailed_block((u8 *)edid,
4928 					    do_established_modes, &closure);
4929 
4930 	return modes + closure.modes;
4931 }
4932 
drm_match_hdmi_mode(const struct drm_display_mode * to_match)4933 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4934 {
4935 	u8 vic;
4936 
4937 	if (!to_match->clock)
4938 		return 0;
4939 
4940 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4941 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4942 		unsigned int clock1, clock2;
4943 
4944 		/* Make sure to also match alternate clocks */
4945 		clock1 = hdmi_mode->clock;
4946 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4947 
4948 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4949 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4950 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
4951 			return vic;
4952 	}
4953 	return 0;
4954 }
4955 
4956 static int
add_alternate_cea_modes(struct hdmi_edid_data * data,struct edid * edid)4957 add_alternate_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
4958 {
4959 	struct drm_display_mode *mode;
4960 	int i, num, modes = 0;
4961 
4962 	/* Don't add CEA modes if the CEA extension block is missing */
4963 	if (!drm_find_cea_extension(edid))
4964 		return 0;
4965 
4966 	/*
4967 	 * Go through all probed modes and create a new mode
4968 	 * with the alternate clock for certain CEA modes.
4969 	 */
4970 	num = data->modes;
4971 
4972 	for (i = 0; i < num; i++) {
4973 		const struct drm_display_mode *cea_mode = NULL;
4974 		struct drm_display_mode *newmode;
4975 		u8 vic;
4976 		unsigned int clock1, clock2;
4977 
4978 		mode = &data->mode_buf[i];
4979 		vic = drm_match_cea_mode(mode);
4980 
4981 		if (drm_valid_cea_vic(vic)) {
4982 			cea_mode = cea_mode_for_vic(vic);
4983 			clock2 = cea_mode_alternate_clock(cea_mode);
4984 		} else {
4985 			vic = drm_match_hdmi_mode(mode);
4986 			if (drm_valid_hdmi_vic(vic)) {
4987 				cea_mode = &edid_4k_modes[vic];
4988 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4989 			}
4990 		}
4991 
4992 		if (!cea_mode)
4993 			continue;
4994 
4995 		clock1 = cea_mode->clock;
4996 
4997 		if (clock1 == clock2)
4998 			continue;
4999 
5000 		if (mode->clock != clock1 && mode->clock != clock2)
5001 			continue;
5002 
5003 		newmode = drm_mode_create();
5004 		*newmode = *cea_mode;
5005 		if (!newmode)
5006 			continue;
5007 
5008 		/* Carry over the stereo flags */
5009 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
5010 
5011 		/*
5012 		 * The current mode could be either variant. Make
5013 		 * sure to pick the "other" clock for the new mode.
5014 		 */
5015 		if (mode->clock != clock1)
5016 			newmode->clock = clock1;
5017 		else
5018 			newmode->clock = clock2;
5019 
5020 		drm_add_hdmi_modes(data, newmode);
5021 		modes++;
5022 		drm_mode_destroy(newmode);
5023 	}
5024 
5025 	return modes;
5026 }
5027 
drm_find_displayid_extension(struct edid * edid)5028 static u8 *drm_find_displayid_extension(struct edid *edid)
5029 {
5030 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
5031 }
5032 
validate_displayid(u8 * displayid,int length,int idx)5033 static int validate_displayid(u8 *displayid, int length, int idx)
5034 {
5035 	int i;
5036 	u8 csum = 0;
5037 	struct displayid_hdr *base;
5038 
5039 	base = (struct displayid_hdr *)&displayid[idx];
5040 
5041 	debug("base revision 0x%x, length %d, %d %d\n",
5042 	      base->rev, base->bytes, base->prod_id, base->ext_count);
5043 
5044 	if (base->bytes + 5 > length - idx)
5045 		return -EINVAL;
5046 	for (i = idx; i <= base->bytes + 5; i++)
5047 		csum += displayid[i];
5048 	if (csum) {
5049 		debug("DisplayID checksum invalid, remainder is %d\n", csum);
5050 		return -EINVAL;
5051 	}
5052 	return 0;
5053 }
5054 
5055 static struct
drm_displayid_detailed(struct displayid_detailed_timings_1 * timings)5056 drm_display_mode *drm_displayid_detailed(struct displayid_detailed_timings_1
5057 					      *timings)
5058 {
5059 	struct drm_display_mode *mode;
5060 	unsigned pixel_clock = (timings->pixel_clock[0] |
5061 				(timings->pixel_clock[1] << 8) |
5062 				(timings->pixel_clock[2] << 16));
5063 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
5064 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
5065 	unsigned hsync = (timings->hsync[0] |
5066 		(timings->hsync[1] & 0x7f) << 8) + 1;
5067 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
5068 	unsigned vactive = (timings->vactive[0] |
5069 		timings->vactive[1] << 8) + 1;
5070 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
5071 	unsigned vsync = (timings->vsync[0] |
5072 		(timings->vsync[1] & 0x7f) << 8) + 1;
5073 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
5074 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
5075 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
5076 
5077 	mode = drm_mode_create();
5078 	if (!mode)
5079 		return NULL;
5080 
5081 	mode->clock = pixel_clock * 10;
5082 	mode->hdisplay = hactive;
5083 	mode->hsync_start = mode->hdisplay + hsync;
5084 	mode->hsync_end = mode->hsync_start + hsync_width;
5085 	mode->htotal = mode->hdisplay + hblank;
5086 
5087 	mode->vdisplay = vactive;
5088 	mode->vsync_start = mode->vdisplay + vsync;
5089 	mode->vsync_end = mode->vsync_start + vsync_width;
5090 	mode->vtotal = mode->vdisplay + vblank;
5091 
5092 	mode->flags = 0;
5093 	mode->flags |=
5094 		hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
5095 	mode->flags |=
5096 		vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
5097 	mode->type = DRM_MODE_TYPE_DRIVER;
5098 
5099 	if (timings->flags & 0x80)
5100 		mode->type |= DRM_MODE_TYPE_PREFERRED;
5101 	mode->vrefresh = drm_get_vrefresh(mode);
5102 
5103 	return mode;
5104 }
5105 
add_displayid_detailed_1_modes(struct hdmi_edid_data * data,struct displayid_block * block)5106 static int add_displayid_detailed_1_modes(struct hdmi_edid_data *data,
5107 					  struct displayid_block *block)
5108 {
5109 	struct displayid_detailed_timing_block *det;
5110 	int i;
5111 	int num_timings;
5112 	struct drm_display_mode *newmode;
5113 	int num_modes = 0;
5114 
5115 	det = (struct displayid_detailed_timing_block *)block;
5116 	/* blocks must be multiple of 20 bytes length */
5117 	if (block->num_bytes % 20)
5118 		return 0;
5119 
5120 	num_timings = block->num_bytes / 20;
5121 	for (i = 0; i < num_timings; i++) {
5122 		struct displayid_detailed_timings_1 *timings =
5123 			&det->timings[i];
5124 
5125 		newmode = drm_displayid_detailed(timings);
5126 		if (!newmode)
5127 			continue;
5128 
5129 		drm_add_hdmi_modes(data, newmode);
5130 		num_modes++;
5131 		drm_mode_destroy(newmode);
5132 	}
5133 	return num_modes;
5134 }
5135 
add_displayid_detailed_modes(struct hdmi_edid_data * data,struct edid * edid)5136 static int add_displayid_detailed_modes(struct hdmi_edid_data *data,
5137 					struct edid *edid)
5138 {
5139 	u8 *displayid;
5140 	int ret;
5141 	int idx = 1;
5142 	int length = EDID_SIZE;
5143 	struct displayid_block *block;
5144 	int num_modes = 0;
5145 
5146 	displayid = drm_find_displayid_extension(edid);
5147 	if (!displayid)
5148 		return 0;
5149 
5150 	ret = validate_displayid(displayid, length, idx);
5151 	if (ret)
5152 		return 0;
5153 
5154 	idx += sizeof(struct displayid_hdr);
5155 	while (block = (struct displayid_block *)&displayid[idx],
5156 	       idx + sizeof(struct displayid_block) <= length &&
5157 	       idx + sizeof(struct displayid_block) + block->num_bytes <=
5158 	       length && block->num_bytes > 0) {
5159 		idx += block->num_bytes + sizeof(struct displayid_block);
5160 		switch (block->tag) {
5161 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5162 			num_modes +=
5163 				add_displayid_detailed_1_modes(data, block);
5164 			break;
5165 		}
5166 	}
5167 	return num_modes;
5168 }
5169 
5170 static bool
mode_in_hsync_range(const struct drm_display_mode * mode,struct edid * edid,u8 * t)5171 mode_in_hsync_range(const struct drm_display_mode *mode,
5172 		    struct edid *edid, u8 *t)
5173 {
5174 	int hsync, hmin, hmax;
5175 
5176 	hmin = t[7];
5177 	if (edid->revision >= 4)
5178 		hmin += ((t[4] & 0x04) ? 255 : 0);
5179 	hmax = t[8];
5180 	if (edid->revision >= 4)
5181 		hmax += ((t[4] & 0x08) ? 255 : 0);
5182 	hsync = drm_mode_hsync(mode);
5183 
5184 	return (hsync <= hmax && hsync >= hmin);
5185 }
5186 
5187 static bool
mode_in_vsync_range(const struct drm_display_mode * mode,struct edid * edid,u8 * t)5188 mode_in_vsync_range(const struct drm_display_mode *mode,
5189 		    struct edid *edid, u8 *t)
5190 {
5191 	int vsync, vmin, vmax;
5192 
5193 	vmin = t[5];
5194 	if (edid->revision >= 4)
5195 		vmin += ((t[4] & 0x01) ? 255 : 0);
5196 	vmax = t[6];
5197 	if (edid->revision >= 4)
5198 		vmax += ((t[4] & 0x02) ? 255 : 0);
5199 	vsync = drm_get_vrefresh(mode);
5200 
5201 	return (vsync <= vmax && vsync >= vmin);
5202 }
5203 
5204 static u32
range_pixel_clock(struct edid * edid,u8 * t)5205 range_pixel_clock(struct edid *edid, u8 *t)
5206 {
5207 	/* unspecified */
5208 	if (t[9] == 0 || t[9] == 255)
5209 		return 0;
5210 
5211 	/* 1.4 with CVT support gives us real precision, yay */
5212 	if (edid->revision >= 4 && t[10] == 0x04)
5213 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
5214 
5215 	/* 1.3 is pathetic, so fuzz up a bit */
5216 	return t[9] * 10000 + 5001;
5217 }
5218 
5219 static bool
mode_in_range(const struct drm_display_mode * mode,struct edid * edid,struct detailed_timing * timing)5220 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
5221 	      struct detailed_timing *timing)
5222 {
5223 	u32 max_clock;
5224 	u8 *t = (u8 *)timing;
5225 
5226 	if (!mode_in_hsync_range(mode, edid, t))
5227 		return false;
5228 
5229 	if (!mode_in_vsync_range(mode, edid, t))
5230 		return false;
5231 
5232 	max_clock = range_pixel_clock(edid, t);
5233 	if (max_clock)
5234 		if (mode->clock > max_clock)
5235 			return false;
5236 
5237 	/* 1.4 max horizontal check */
5238 	if (edid->revision >= 4 && t[10] == 0x04)
5239 		if (t[13] && mode->hdisplay > 8 *
5240 		    (t[13] + (256 * (t[12] & 0x3))))
5241 			return false;
5242 
5243 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
5244 		return false;
5245 
5246 	return true;
5247 }
5248 
valid_inferred_mode(struct hdmi_edid_data * data,const struct drm_display_mode * mode)5249 static bool valid_inferred_mode(struct hdmi_edid_data *data,
5250 				const struct drm_display_mode *mode)
5251 {
5252 	const struct drm_display_mode *m;
5253 	bool ok = false;
5254 	int i;
5255 
5256 	for (i = 0; i < data->modes; i++) {
5257 		m = &data->mode_buf[i];
5258 		if (mode->hdisplay == m->hdisplay &&
5259 		    mode->vdisplay == m->vdisplay &&
5260 		    drm_get_vrefresh(mode) == drm_get_vrefresh(m))
5261 			return false; /* duplicated */
5262 		if (mode->hdisplay <= m->hdisplay &&
5263 		    mode->vdisplay <= m->vdisplay)
5264 			ok = true;
5265 	}
5266 	return ok;
5267 }
5268 
5269 static int
drm_dmt_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5270 drm_dmt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5271 			struct detailed_timing *timing)
5272 {
5273 	int i, modes = 0;
5274 
5275 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
5276 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
5277 		    valid_inferred_mode(data, drm_dmt_modes + i)) {
5278 			drm_add_hdmi_modes(data, &drm_dmt_modes[i]);
5279 			modes++;
5280 		}
5281 	}
5282 
5283 	return modes;
5284 }
5285 
5286 /* fix up 1366x768 mode from 1368x768;
5287  * GFT/CVT can't express 1366 width which isn't dividable by 8
5288  */
fixup_mode_1366x768(struct drm_display_mode * mode)5289 static void fixup_mode_1366x768(struct drm_display_mode *mode)
5290 {
5291 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
5292 		mode->hdisplay = 1366;
5293 		mode->hsync_start--;
5294 		mode->hsync_end--;
5295 	}
5296 }
5297 
5298 static int
drm_gtf_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5299 drm_gtf_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5300 			struct detailed_timing *timing)
5301 {
5302 	int i, modes = 0;
5303 	struct drm_display_mode *newmode;
5304 
5305 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5306 		const struct minimode *m = &extra_modes[i];
5307 
5308 		newmode = drm_gtf_mode(m->w, m->h, m->r, 0, 0);
5309 		if (!newmode)
5310 			return modes;
5311 
5312 		fixup_mode_1366x768(newmode);
5313 		if (!mode_in_range(newmode, edid, timing) ||
5314 		    !valid_inferred_mode(data, newmode)) {
5315 			drm_mode_destroy(newmode);
5316 			continue;
5317 		}
5318 
5319 		drm_add_hdmi_modes(data, newmode);
5320 		modes++;
5321 		drm_mode_destroy(newmode);
5322 	}
5323 
5324 	return modes;
5325 }
5326 
5327 static int
drm_cvt_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5328 drm_cvt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5329 			struct detailed_timing *timing)
5330 {
5331 	int i, modes = 0;
5332 	struct drm_display_mode *newmode;
5333 	bool rb = drm_monitor_supports_rb(edid);
5334 
5335 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5336 		const struct minimode *m = &extra_modes[i];
5337 
5338 		newmode = drm_cvt_mode(m->w, m->h, m->r, rb, 0, 0);
5339 		if (!newmode)
5340 			return modes;
5341 
5342 		fixup_mode_1366x768(newmode);
5343 		if (!mode_in_range(newmode, edid, timing) ||
5344 		    !valid_inferred_mode(data, newmode)) {
5345 			drm_mode_destroy(newmode);
5346 			continue;
5347 		}
5348 
5349 		drm_add_hdmi_modes(data, newmode);
5350 		modes++;
5351 		drm_mode_destroy(newmode);
5352 	}
5353 
5354 	return modes;
5355 }
5356 
5357 static void
do_inferred_modes(struct detailed_timing * timing,void * c)5358 do_inferred_modes(struct detailed_timing *timing, void *c)
5359 {
5360 	struct detailed_mode_closure *closure = c;
5361 	struct detailed_non_pixel *data = &timing->data.other_data;
5362 	struct detailed_data_monitor_range *range = &data->data.range;
5363 
5364 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
5365 		return;
5366 
5367 	closure->modes += drm_dmt_modes_for_range(closure->data,
5368 						  closure->edid,
5369 						  timing);
5370 
5371 	if (!version_greater(closure->edid, 1, 1))
5372 		return; /* GTF not defined yet */
5373 
5374 	switch (range->flags) {
5375 	case 0x02: /* secondary gtf, XXX could do more */
5376 	case 0x00: /* default gtf */
5377 		closure->modes += drm_gtf_modes_for_range(closure->data,
5378 							  closure->edid,
5379 							  timing);
5380 		break;
5381 	case 0x04: /* cvt, only in 1.4+ */
5382 		if (!version_greater(closure->edid, 1, 3))
5383 			break;
5384 
5385 		closure->modes += drm_cvt_modes_for_range(closure->data,
5386 							  closure->edid,
5387 							  timing);
5388 		break;
5389 	case 0x01: /* just the ranges, no formula */
5390 	default:
5391 		break;
5392 	}
5393 }
5394 
5395 static int
add_inferred_modes(struct hdmi_edid_data * data,struct edid * edid)5396 add_inferred_modes(struct hdmi_edid_data *data, struct edid *edid)
5397 {
5398 	struct detailed_mode_closure closure = {
5399 		.data = data,
5400 		.edid = edid,
5401 	};
5402 
5403 	if (version_greater(edid, 1, 0))
5404 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
5405 					    &closure);
5406 
5407 	return closure.modes;
5408 }
5409 
5410 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
5411 #define MODE_REFRESH_DIFF(c, t) (abs((c) - (t)))
5412 
5413 /**
5414  * edid_fixup_preferred - set preferred modes based on quirk list
5415  * @data: the structure that save parsed hdmi edid data
5416  * @quirks: quirks list
5417  *
5418  * Walk the mode list, clearing the preferred status
5419  * on existing modes and setting it anew for the right mode ala @quirks.
5420  */
edid_fixup_preferred(struct hdmi_edid_data * data,u32 quirks)5421 static void edid_fixup_preferred(struct hdmi_edid_data *data,
5422 				 u32 quirks)
5423 {
5424 	struct drm_display_mode *cur_mode, *preferred_mode;
5425 	int i, target_refresh = 0;
5426 	int num = data->modes;
5427 	int cur_vrefresh, preferred_vrefresh;
5428 
5429 	if (!num)
5430 		return;
5431 
5432 	preferred_mode = data->preferred_mode;
5433 
5434 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
5435 		target_refresh = 60;
5436 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
5437 		target_refresh = 75;
5438 
5439 	for (i = 0; i < num; i++) {
5440 		cur_mode = &data->mode_buf[i];
5441 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
5442 
5443 		if (cur_mode == preferred_mode)
5444 			continue;
5445 
5446 		/* Largest mode is preferred */
5447 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
5448 			preferred_mode = cur_mode;
5449 
5450 		cur_vrefresh = cur_mode->vrefresh ?
5451 		cur_mode->vrefresh : drm_get_vrefresh(cur_mode);
5452 		preferred_vrefresh = preferred_mode->vrefresh ?
5453 		preferred_mode->vrefresh : drm_get_vrefresh(preferred_mode);
5454 		/* At a given size, try to get closest to target refresh */
5455 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
5456 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
5457 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
5458 			preferred_mode = cur_mode;
5459 		}
5460 	}
5461 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
5462 	data->preferred_mode = preferred_mode;
5463 }
5464 
5465 static const u8 edid_header[] = {
5466 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
5467 };
5468 
5469 /**
5470  * drm_edid_header_is_valid - sanity check the header of the base EDID block
5471  * @raw_edid: pointer to raw base EDID block
5472  *
5473  * Sanity check the header of the base EDID block.
5474  *
5475  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
5476  */
drm_edid_header_is_valid(const u8 * raw_edid)5477 static int drm_edid_header_is_valid(const u8 *raw_edid)
5478 {
5479 	int i, score = 0;
5480 
5481 	for (i = 0; i < sizeof(edid_header); i++)
5482 		if (raw_edid[i] == edid_header[i])
5483 			score++;
5484 
5485 	return score;
5486 }
5487 
drm_edid_block_checksum(const u8 * raw_edid)5488 static int drm_edid_block_checksum(const u8 *raw_edid)
5489 {
5490 	int i;
5491 	u8 csum = 0;
5492 
5493 	for (i = 0; i < EDID_SIZE; i++)
5494 		csum += raw_edid[i];
5495 
5496 	return csum;
5497 }
5498 
drm_edid_is_zero(const u8 * in_edid,int length)5499 static bool drm_edid_is_zero(const u8 *in_edid, int length)
5500 {
5501 	if (memchr_inv(in_edid, 0, length))
5502 		return false;
5503 
5504 	return true;
5505 }
5506 
5507 /**
5508  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
5509  * @raw_edid: pointer to raw EDID block
5510  * @block: type of block to validate (0 for base, extension otherwise)
5511  * @print_bad_edid: if true, dump bad EDID blocks to the console
5512  * @edid_corrupt: if true, the header or checksum is invalid
5513  *
5514  * Validate a base or extension EDID block and optionally dump bad blocks to
5515  * the console.
5516  *
5517  * Return: True if the block is valid, false otherwise.
5518  */
5519 static
drm_edid_block_valid(u8 * raw_edid,int block,bool print_bad_edid,bool * edid_corrupt)5520 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
5521 			  bool *edid_corrupt)
5522 {
5523 	u8 csum;
5524 	int edid_fixup = 6;
5525 	struct edid *edid = (struct edid *)raw_edid;
5526 
5527 	if ((!raw_edid))
5528 		return false;
5529 
5530 	if (block == 0) {
5531 		int score = drm_edid_header_is_valid(raw_edid);
5532 
5533 		if (score == 8) {
5534 			if (edid_corrupt)
5535 				*edid_corrupt = false;
5536 		} else if (score >= edid_fixup) {
5537 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
5538 			 * The corrupt flag needs to be set here otherwise, the
5539 			 * fix-up code here will correct the problem, the
5540 			 * checksum is correct and the test fails
5541 			 */
5542 			if (edid_corrupt)
5543 				*edid_corrupt = true;
5544 			debug("Fixing header, your hardware may be failing\n");
5545 			memcpy(raw_edid, edid_header, sizeof(edid_header));
5546 		} else {
5547 			if (edid_corrupt)
5548 				*edid_corrupt = true;
5549 			goto bad;
5550 		}
5551 	}
5552 
5553 	csum = drm_edid_block_checksum(raw_edid);
5554 	if (csum) {
5555 		if (print_bad_edid) {
5556 			debug("EDID checksum is invalid, remainder is %d\n",
5557 			      csum);
5558 		}
5559 
5560 		if (edid_corrupt)
5561 			*edid_corrupt = true;
5562 
5563 		/* allow CEA to slide through, switches mangle this */
5564 		if (raw_edid[0] != 0x02)
5565 			goto bad;
5566 	}
5567 
5568 	/* per-block-type checks */
5569 	switch (raw_edid[0]) {
5570 	case 0: /* base */
5571 		if (edid->version != 1) {
5572 			debug("EDID has major version %d, instead of 1\n",
5573 			      edid->version);
5574 			goto bad;
5575 		}
5576 
5577 		if (edid->revision > 4)
5578 			debug("minor > 4, assuming backward compatibility\n");
5579 		break;
5580 
5581 	default:
5582 		break;
5583 	}
5584 
5585 	return true;
5586 
5587 bad:
5588 	if (print_bad_edid) {
5589 		if (drm_edid_is_zero(raw_edid, EDID_SIZE)) {
5590 			debug("EDID block is all zeroes\n");
5591 		} else {
5592 			debug("Raw EDID:\n");
5593 			print_hex_dump("", DUMP_PREFIX_NONE, 16, 1,
5594 				       raw_edid, EDID_SIZE, false);
5595 		}
5596 	}
5597 	return false;
5598 }
5599 
5600 /**
5601  * drm_edid_is_valid - sanity check EDID data
5602  * @edid: EDID data
5603  *
5604  * Sanity-check an entire EDID record (including extensions)
5605  *
5606  * Return: True if the EDID data is valid, false otherwise.
5607  */
drm_edid_is_valid(struct edid * edid)5608 static bool drm_edid_is_valid(struct edid *edid)
5609 {
5610 	int i;
5611 	u8 *raw = (u8 *)edid;
5612 
5613 	if (!edid)
5614 		return false;
5615 
5616 	for (i = 0; i <= edid->extensions; i++)
5617 		if (!drm_edid_block_valid(raw + i * EDID_SIZE, i, true, NULL))
5618 			return false;
5619 
5620 	return true;
5621 }
5622 
5623 /**
5624  * drm_add_edid_modes - add modes from EDID data, if available
5625  * @data: data we're probing
5626  * @edid: EDID data
5627  *
5628  * Add the specified modes to the data's mode list.
5629  *
5630  * Return: The number of modes added or 0 if we couldn't find any.
5631  */
drm_add_edid_modes(struct hdmi_edid_data * data,u8 * raw_edid)5632 int drm_add_edid_modes(struct hdmi_edid_data *data, u8 *raw_edid)
5633 {
5634 	int num_modes = 0;
5635 	u32 quirks;
5636 	struct edid *edid = (struct edid *)raw_edid;
5637 
5638 	if (!edid) {
5639 		debug("no edid\n");
5640 		return 0;
5641 	}
5642 
5643 	if (!drm_edid_is_valid(edid)) {
5644 		debug("EDID invalid\n");
5645 		return 0;
5646 	}
5647 
5648 	if (!data->mode_buf) {
5649 		debug("mode buff is null\n");
5650 		return 0;
5651 	}
5652 
5653 	quirks = edid_get_quirks(edid);
5654 	/*
5655 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5656 	 * To avoid multiple parsing of same block, lets parse that map
5657 	 * from sink info, before parsing CEA modes.
5658 	 */
5659 	drm_add_display_info(data, edid);
5660 
5661 	/*
5662 	 * EDID spec says modes should be preferred in this order:
5663 	 * - preferred detailed mode
5664 	 * - other detailed modes from base block
5665 	 * - detailed modes from extension blocks
5666 	 * - CVT 3-byte code modes
5667 	 * - standard timing codes
5668 	 * - established timing codes
5669 	 * - modes inferred from GTF or CVT range information
5670 	 *
5671 	 * We get this pretty much right.
5672 	 *
5673 	 * XXX order for additional mode types in extension blocks?
5674 	 */
5675 	num_modes += add_detailed_modes(data, edid, quirks);
5676 	num_modes += add_cvt_modes(data, edid);
5677 	num_modes += add_standard_modes(data, edid);
5678 	num_modes += add_established_modes(data, edid);
5679 	num_modes += add_cea_modes(data, edid);
5680 	num_modes += add_alternate_cea_modes(data, edid);
5681 	num_modes += add_displayid_detailed_modes(data, edid);
5682 
5683 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5684 		num_modes += add_inferred_modes(data, edid);
5685 
5686 	if (num_modes > 0)
5687 		data->preferred_mode = &data->mode_buf[0];
5688 
5689 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5690 		edid_fixup_preferred(data, quirks);
5691 
5692 	if (quirks & EDID_QUIRK_FORCE_6BPC)
5693 		data->display_info.bpc = 6;
5694 
5695 	if (quirks & EDID_QUIRK_FORCE_8BPC)
5696 		data->display_info.bpc = 8;
5697 
5698 	if (quirks & EDID_QUIRK_FORCE_10BPC)
5699 		data->display_info.bpc = 10;
5700 
5701 	if (quirks & EDID_QUIRK_FORCE_12BPC)
5702 		data->display_info.bpc = 12;
5703 
5704 	return num_modes;
5705 }
5706 
drm_match_cea_mode(struct drm_display_mode * to_match)5707 u8 drm_match_cea_mode(struct drm_display_mode *to_match)
5708 {
5709 	u8 vic;
5710 
5711 	if (!to_match->clock) {
5712 		printf("can't find to match\n");
5713 		return 0;
5714 	}
5715 
5716 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
5717 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
5718 		unsigned int clock1, clock2;
5719 
5720 		/* Check both 60Hz and 59.94Hz */
5721 		clock1 = cea_mode->clock;
5722 		clock2 = cea_mode_alternate_clock(cea_mode);
5723 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
5724 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
5725 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
5726 			return vic;
5727 	}
5728 
5729 	return 0;
5730 }
5731 
drm_get_cea_aspect_ratio(const u8 video_code)5732 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
5733 {
5734 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
5735 
5736 	if (mode)
5737 		return mode->picture_aspect_ratio;
5738 
5739 	return HDMI_PICTURE_ASPECT_NONE;
5740 }
5741 
5742 int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe * frame,struct drm_display_mode * mode,bool is_hdmi2_sink)5743 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5744 					 struct drm_display_mode *mode,
5745 					 bool is_hdmi2_sink)
5746 {
5747 	int err;
5748 
5749 	if (!frame || !mode)
5750 		return -EINVAL;
5751 
5752 	err = hdmi_avi_infoframe_init(frame);
5753 	if (err < 0)
5754 		return err;
5755 
5756 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5757 		frame->pixel_repeat = 1;
5758 
5759 	frame->video_code = drm_match_cea_mode(mode);
5760 
5761 	/*
5762 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5763 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5764 	 * have to make sure we dont break HDMI 1.4 sinks.
5765 	 */
5766 	if (!is_hdmi2_sink && frame->video_code > 64)
5767 		frame->video_code = 0;
5768 
5769 	/*
5770 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5771 	 * we should send its VIC in vendor infoframes, else send the
5772 	 * VIC in AVI infoframes. Lets check if this mode is present in
5773 	 * HDMI 1.4b 4K modes
5774 	 */
5775 	if (frame->video_code) {
5776 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5777 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5778 
5779 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5780 			frame->video_code = 0;
5781 	}
5782 
5783 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5784 
5785 	/*
5786 	 * Populate picture aspect ratio from either
5787 	 * user input (if specified) or from the CEA mode list.
5788 	 */
5789 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
5790 	    mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
5791 		frame->picture_aspect = mode->picture_aspect_ratio;
5792 	else if (frame->video_code > 0)
5793 		frame->picture_aspect = drm_get_cea_aspect_ratio(
5794 						frame->video_code);
5795 
5796 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5797 		frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5798 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5799 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5800 
5801 	return 0;
5802 }
5803 
5804 /**
5805  * hdmi_vendor_infoframe_init() - initialize an HDMI vendor infoframe
5806  * @frame: HDMI vendor infoframe
5807  *
5808  * Returns 0 on success or a negative error code on failure.
5809  */
hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe * frame)5810 int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe *frame)
5811 {
5812 	memset(frame, 0, sizeof(*frame));
5813 
5814 	frame->type = HDMI_INFOFRAME_TYPE_VENDOR;
5815 	frame->version = 1;
5816 
5817 	frame->oui = HDMI_IEEE_OUI;
5818 
5819 	/*
5820 	 * 0 is a valid value for s3d_struct, so we use a special "not set"
5821 	 * value
5822 	 */
5823 	frame->s3d_struct = HDMI_3D_STRUCTURE_INVALID;
5824 
5825 	return 0;
5826 }
5827 
5828 /**
5829  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5830  *                                        quantization range information
5831  * @frame: HDMI AVI infoframe
5832  * @rgb_quant_range: RGB quantization range (Q)
5833  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
5834  */
5835 void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe * frame,struct drm_display_mode * mode,enum hdmi_quantization_range rgb_quant_range,bool rgb_quant_range_selectable,bool is_hdmi2_sink)5836 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5837 				   struct drm_display_mode *mode,
5838 				   enum hdmi_quantization_range rgb_quant_range,
5839 				   bool rgb_quant_range_selectable, bool is_hdmi2_sink)
5840 {
5841 	/*
5842 	 * CEA-861:
5843 	 * "A Source shall not send a non-zero Q value that does not correspond
5844 	 *  to the default RGB Quantization Range for the transmitted Picture
5845 	 *  unless the Sink indicates support for the Q bit in a Video
5846 	 *  Capabilities Data Block."
5847 	 *
5848 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5849 	 * default RGB quantization range for the mode, even when QS=0.
5850 	 */
5851 	if (rgb_quant_range_selectable ||
5852 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5853 		frame->quantization_range = rgb_quant_range;
5854 	else
5855 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5856 
5857 	/*
5858 	 * CEA-861-F:
5859 	 * "When transmitting any RGB colorimetry, the Source should set the
5860 	 *  YQ-field to match the RGB Quantization Range being transmitted
5861 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5862 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5863 	 */
5864 	if (!is_hdmi2_sink || rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5865 		frame->ycc_quantization_range =
5866 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5867 	else
5868 		frame->ycc_quantization_range =
5869 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5870 }
5871 
5872 static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode * mode)5873 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5874 {
5875 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5876 
5877 	switch (layout) {
5878 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5879 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5880 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5881 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5882 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5883 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5884 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5885 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5886 	case DRM_MODE_FLAG_3D_L_DEPTH:
5887 		return HDMI_3D_STRUCTURE_L_DEPTH;
5888 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5889 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5890 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5891 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5892 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5893 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5894 	default:
5895 		return HDMI_3D_STRUCTURE_INVALID;
5896 	}
5897 }
5898 
5899 int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe * frame,struct drm_display_mode * mode)5900 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5901 					    struct drm_display_mode *mode)
5902 {
5903 	int err;
5904 	u32 s3d_flags;
5905 	u8 vic;
5906 
5907 	if (!frame || !mode)
5908 		return -EINVAL;
5909 
5910 	vic = drm_match_hdmi_mode(mode);
5911 
5912 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5913 
5914 	if (!vic && !s3d_flags)
5915 		return -EINVAL;
5916 
5917 	if (vic && s3d_flags)
5918 		return -EINVAL;
5919 
5920 	err = hdmi_vendor_infoframe_init(frame);
5921 	if (err < 0)
5922 		return err;
5923 
5924 	if (vic)
5925 		frame->vic = vic;
5926 	else
5927 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
5928 
5929 	return 0;
5930 }
5931 
hdmi_infoframe_checksum(u8 * ptr,size_t size)5932 static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size)
5933 {
5934 	u8 csum = 0;
5935 	size_t i;
5936 
5937 	/* compute checksum */
5938 	for (i = 0; i < size; i++)
5939 		csum += ptr[i];
5940 
5941 	return 256 - csum;
5942 }
5943 
hdmi_infoframe_set_checksum(void * buffer,size_t size)5944 static void hdmi_infoframe_set_checksum(void *buffer, size_t size)
5945 {
5946 	u8 *ptr = buffer;
5947 
5948 	ptr[3] = hdmi_infoframe_checksum(buffer, size);
5949 }
5950 
5951 /**
5952  * hdmi_avi_infoframe_init() - initialize an HDMI AVI infoframe
5953  * @frame: HDMI AVI infoframe
5954  *
5955  * Returns 0 on success or a negative error code on failure.
5956  */
hdmi_avi_infoframe_init(struct hdmi_avi_infoframe * frame)5957 int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe *frame)
5958 {
5959 	memset(frame, 0, sizeof(*frame));
5960 
5961 	frame->type = HDMI_INFOFRAME_TYPE_AVI;
5962 	frame->version = 2;
5963 	frame->length = HDMI_AVI_INFOFRAME_SIZE;
5964 
5965 	return 0;
5966 }
5967 EXPORT_SYMBOL(hdmi_avi_infoframe_init);
5968 
5969 /**
5970  * hdmi_avi_infoframe_pack() - write HDMI AVI infoframe to binary buffer
5971  * @frame: HDMI AVI infoframe
5972  * @buffer: destination buffer
5973  * @size: size of buffer
5974  *
5975  * Packs the information contained in the @frame structure into a binary
5976  * representation that can be written into the corresponding controller
5977  * registers. Also computes the checksum as required by section 5.3.5 of
5978  * the HDMI 1.4 specification.
5979  *
5980  * Returns the number of bytes packed into the binary buffer or a negative
5981  * error code on failure.
5982  */
hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe * frame,void * buffer,size_t size)5983 ssize_t hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe *frame, void *buffer,
5984 				size_t size)
5985 {
5986 	u8 *ptr = buffer;
5987 	size_t length;
5988 
5989 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5990 
5991 	if (size < length)
5992 		return -ENOSPC;
5993 
5994 	memset(buffer, 0, size);
5995 
5996 	ptr[0] = frame->type;
5997 	ptr[1] = frame->version;
5998 	ptr[2] = frame->length;
5999 	ptr[3] = 0; /* checksum */
6000 
6001 	/* start infoframe payload */
6002 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6003 
6004 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
6005 
6006 	/*
6007 	 * Data byte 1, bit 4 has to be set if we provide the active format
6008 	 * aspect ratio
6009 	 */
6010 	if (frame->active_aspect & 0xf)
6011 		ptr[0] |= BIT(4);
6012 
6013 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
6014 	if (frame->top_bar || frame->bottom_bar)
6015 		ptr[0] |= BIT(3);
6016 
6017 	if (frame->left_bar || frame->right_bar)
6018 		ptr[0] |= BIT(2);
6019 
6020 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
6021 		 ((frame->picture_aspect & 0x3) << 4) |
6022 		 (frame->active_aspect & 0xf);
6023 
6024 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
6025 		 ((frame->quantization_range & 0x3) << 2) |
6026 		 (frame->nups & 0x3);
6027 
6028 	if (frame->itc)
6029 		ptr[2] |= BIT(7);
6030 
6031 	ptr[3] = frame->video_code & 0x7f;
6032 
6033 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
6034 		 ((frame->content_type & 0x3) << 4) |
6035 		 (frame->pixel_repeat & 0xf);
6036 
6037 	ptr[5] = frame->top_bar & 0xff;
6038 	ptr[6] = (frame->top_bar >> 8) & 0xff;
6039 	ptr[7] = frame->bottom_bar & 0xff;
6040 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
6041 	ptr[9] = frame->left_bar & 0xff;
6042 	ptr[10] = (frame->left_bar >> 8) & 0xff;
6043 	ptr[11] = frame->right_bar & 0xff;
6044 	ptr[12] = (frame->right_bar >> 8) & 0xff;
6045 
6046 	hdmi_infoframe_set_checksum(buffer, length);
6047 
6048 	return length;
6049 }
6050 EXPORT_SYMBOL(hdmi_avi_infoframe_pack);
6051 
hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe * frame)6052 static int hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe *frame)
6053 {
6054 	if (frame->type != HDMI_INFOFRAME_TYPE_AVI ||
6055 	    frame->version != 2 ||
6056 	    frame->length != HDMI_AVI_INFOFRAME_SIZE)
6057 		return -EINVAL;
6058 
6059 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
6060 		return -EINVAL;
6061 
6062 	return 0;
6063 }
6064 
6065 /**
6066  * hdmi_avi_infoframe_check() - check a HDMI AVI infoframe
6067  * @frame: HDMI AVI infoframe
6068  *
6069  * Validates that the infoframe is consistent and updates derived fields
6070  * (eg. length) based on other fields.
6071  *
6072  * Returns 0 on success or a negative error code on failure.
6073  */
hdmi_avi_infoframe_check(struct hdmi_avi_infoframe * frame)6074 int hdmi_avi_infoframe_check(struct hdmi_avi_infoframe *frame)
6075 {
6076 	return hdmi_avi_infoframe_check_only(frame);
6077 }
6078 EXPORT_SYMBOL(hdmi_avi_infoframe_check);
6079 
6080 /**
6081  * hdmi_avi_infoframe_pack_only() - write HDMI AVI infoframe to binary buffer
6082  * @frame: HDMI AVI infoframe
6083  * @buffer: destination buffer
6084  * @size: size of buffer
6085  *
6086  * Packs the information contained in the @frame structure into a binary
6087  * representation that can be written into the corresponding controller
6088  * registers. Also computes the checksum as required by section 5.3.5 of
6089  * the HDMI 1.4 specification.
6090  *
6091  * Returns the number of bytes packed into the binary buffer or a negative
6092  * error code on failure.
6093  */
hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe * frame,void * buffer,size_t size)6094 ssize_t hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe *frame,
6095 				     void *buffer, size_t size)
6096 {
6097 	u8 *ptr = buffer;
6098 	size_t length;
6099 	int ret;
6100 
6101 	ret = hdmi_avi_infoframe_check_only(frame);
6102 	if (ret)
6103 		return ret;
6104 
6105 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6106 
6107 	if (size < length)
6108 		return -ENOSPC;
6109 
6110 	memset(buffer, 0, size);
6111 
6112 	ptr[0] = frame->type;
6113 	ptr[1] = frame->version;
6114 	ptr[2] = frame->length;
6115 	ptr[3] = 0; /* checksum */
6116 
6117 	/* start infoframe payload */
6118 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6119 
6120 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
6121 
6122 	/*
6123 	 * Data byte 1, bit 4 has to be set if we provide the active format
6124 	 * aspect ratio
6125 	 */
6126 	if (frame->active_aspect & 0xf)
6127 		ptr[0] |= BIT(4);
6128 
6129 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
6130 	if (frame->top_bar || frame->bottom_bar)
6131 		ptr[0] |= BIT(3);
6132 
6133 	if (frame->left_bar || frame->right_bar)
6134 		ptr[0] |= BIT(2);
6135 
6136 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
6137 		 ((frame->picture_aspect & 0x3) << 4) |
6138 		 (frame->active_aspect & 0xf);
6139 
6140 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
6141 		 ((frame->quantization_range & 0x3) << 2) |
6142 		 (frame->nups & 0x3);
6143 
6144 	if (frame->itc)
6145 		ptr[2] |= BIT(7);
6146 
6147 	ptr[3] = frame->video_code & 0xff;
6148 
6149 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
6150 		 ((frame->content_type & 0x3) << 4) |
6151 		 (frame->pixel_repeat & 0xf);
6152 
6153 	ptr[5] = frame->top_bar & 0xff;
6154 	ptr[6] = (frame->top_bar >> 8) & 0xff;
6155 	ptr[7] = frame->bottom_bar & 0xff;
6156 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
6157 	ptr[9] = frame->left_bar & 0xff;
6158 	ptr[10] = (frame->left_bar >> 8) & 0xff;
6159 	ptr[11] = frame->right_bar & 0xff;
6160 	ptr[12] = (frame->right_bar >> 8) & 0xff;
6161 
6162 	hdmi_infoframe_set_checksum(buffer, length);
6163 
6164 	return length;
6165 }
6166 EXPORT_SYMBOL(hdmi_avi_infoframe_pack_only);
6167 
6168 /**
6169  * hdmi_spd_infoframe_init() - initialize an HDMI SPD infoframe
6170  * @frame: HDMI SPD infoframe
6171  * @vendor: vendor string
6172  * @product: product string
6173  *
6174  * Returns 0 on success or a negative error code on failure.
6175  */
hdmi_spd_infoframe_init(struct hdmi_spd_infoframe * frame,const char * vendor,const char * product)6176 int hdmi_spd_infoframe_init(struct hdmi_spd_infoframe *frame,
6177 			    const char *vendor, const char *product)
6178 {
6179 	memset(frame, 0, sizeof(*frame));
6180 
6181 	frame->type = HDMI_INFOFRAME_TYPE_SPD;
6182 	frame->version = 1;
6183 	frame->length = HDMI_SPD_INFOFRAME_SIZE;
6184 
6185 	strncpy(frame->vendor, vendor, sizeof(frame->vendor));
6186 	strncpy(frame->product, product, sizeof(frame->product));
6187 
6188 	return 0;
6189 }
6190 EXPORT_SYMBOL(hdmi_spd_infoframe_init);
6191 
6192 /**
6193  * hdmi_spd_infoframe_pack() - write HDMI SPD infoframe to binary buffer
6194  * @frame: HDMI SPD infoframe
6195  * @buffer: destination buffer
6196  * @size: size of buffer
6197  *
6198  * Packs the information contained in the @frame structure into a binary
6199  * representation that can be written into the corresponding controller
6200  * registers. Also computes the checksum as required by section 5.3.5 of
6201  * the HDMI 1.4 specification.
6202  *
6203  * Returns the number of bytes packed into the binary buffer or a negative
6204  * error code on failure.
6205  */
hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe * frame,void * buffer,size_t size)6206 ssize_t hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe *frame, void *buffer,
6207 				size_t size)
6208 {
6209 	u8 *ptr = buffer;
6210 	size_t length;
6211 
6212 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6213 
6214 	if (size < length)
6215 		return -ENOSPC;
6216 
6217 	memset(buffer, 0, size);
6218 
6219 	ptr[0] = frame->type;
6220 	ptr[1] = frame->version;
6221 	ptr[2] = frame->length;
6222 	ptr[3] = 0; /* checksum */
6223 
6224 	/* start infoframe payload */
6225 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6226 
6227 	memcpy(ptr, frame->vendor, sizeof(frame->vendor));
6228 	memcpy(ptr + 8, frame->product, sizeof(frame->product));
6229 
6230 	ptr[24] = frame->sdi;
6231 
6232 	hdmi_infoframe_set_checksum(buffer, length);
6233 
6234 	return length;
6235 }
6236 EXPORT_SYMBOL(hdmi_spd_infoframe_pack);
6237 
6238 /**
6239  * hdmi_audio_infoframe_init() - initialize an HDMI audio infoframe
6240  * @frame: HDMI audio infoframe
6241  *
6242  * Returns 0 on success or a negative error code on failure.
6243  */
hdmi_audio_infoframe_init(struct hdmi_audio_infoframe * frame)6244 int hdmi_audio_infoframe_init(struct hdmi_audio_infoframe *frame)
6245 {
6246 	memset(frame, 0, sizeof(*frame));
6247 
6248 	frame->type = HDMI_INFOFRAME_TYPE_AUDIO;
6249 	frame->version = 1;
6250 	frame->length = HDMI_AUDIO_INFOFRAME_SIZE;
6251 
6252 	return 0;
6253 }
6254 
6255 /**
6256  * hdmi_audio_infoframe_pack() - write HDMI audio infoframe to binary buffer
6257  * @frame: HDMI audio infoframe
6258  * @buffer: destination buffer
6259  * @size: size of buffer
6260  *
6261  * Packs the information contained in the @frame structure into a binary
6262  * representation that can be written into the corresponding controller
6263  * registers. Also computes the checksum as required by section 5.3.5 of
6264  * the HDMI 1.4 specification.
6265  *
6266  * Returns the number of bytes packed into the binary buffer or a negative
6267  * error code on failure.
6268  */
hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe * frame,void * buffer,size_t size)6269 ssize_t hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe *frame,
6270 				  void *buffer, size_t size)
6271 {
6272 	unsigned char channels;
6273 	char *ptr = buffer;
6274 	size_t length;
6275 
6276 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6277 
6278 	if (size < length)
6279 		return -ENOSPC;
6280 
6281 	memset(buffer, 0, size);
6282 
6283 	if (frame->channels >= 2)
6284 		channels = frame->channels - 1;
6285 	else
6286 		channels = 0;
6287 
6288 	ptr[0] = frame->type;
6289 	ptr[1] = frame->version;
6290 	ptr[2] = frame->length;
6291 	ptr[3] = 0; /* checksum */
6292 
6293 	/* start infoframe payload */
6294 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6295 
6296 	ptr[0] = ((frame->coding_type & 0xf) << 4) | (channels & 0x7);
6297 	ptr[1] = ((frame->sample_frequency & 0x7) << 2) |
6298 		 (frame->sample_size & 0x3);
6299 	ptr[2] = frame->coding_type_ext & 0x1f;
6300 	ptr[3] = frame->channel_allocation;
6301 	ptr[4] = (frame->level_shift_value & 0xf) << 3;
6302 
6303 	if (frame->downmix_inhibit)
6304 		ptr[4] |= BIT(7);
6305 
6306 	hdmi_infoframe_set_checksum(buffer, length);
6307 
6308 	return length;
6309 }
6310 
6311 /**
6312  * hdmi_vendor_infoframe_pack() - write a HDMI vendor infoframe to binary buffer
6313  * @frame: HDMI infoframe
6314  * @buffer: destination buffer
6315  * @size: size of buffer
6316  *
6317  * Packs the information contained in the @frame structure into a binary
6318  * representation that can be written into the corresponding controller
6319  * registers. Also computes the checksum as required by section 5.3.5 of
6320  * the HDMI 1.4 specification.
6321  *
6322  * Returns the number of bytes packed into the binary buffer or a negative
6323  * error code on failure.
6324  */
hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe * frame,void * buffer,size_t size)6325 ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe *frame,
6326 				   void *buffer, size_t size)
6327 {
6328 	char *ptr = buffer;
6329 	size_t length;
6330 
6331 	/* empty info frame */
6332 	if (frame->vic == 0 && frame->s3d_struct == HDMI_3D_STRUCTURE_INVALID)
6333 		return -EINVAL;
6334 
6335 	/* only one of those can be supplied */
6336 	if (frame->vic != 0 && frame->s3d_struct != HDMI_3D_STRUCTURE_INVALID)
6337 		return -EINVAL;
6338 
6339 	/* for side by side (half) we also need to provide 3D_Ext_Data */
6340 	if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6341 		frame->length = 6;
6342 	else
6343 		frame->length = 5;
6344 
6345 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6346 
6347 	if (size < length)
6348 		return -ENOSPC;
6349 
6350 	memset(buffer, 0, size);
6351 
6352 	ptr[0] = frame->type;
6353 	ptr[1] = frame->version;
6354 	ptr[2] = frame->length;
6355 	ptr[3] = 0; /* checksum */
6356 
6357 	/* HDMI OUI */
6358 	ptr[4] = 0x03;
6359 	ptr[5] = 0x0c;
6360 	ptr[6] = 0x00;
6361 
6362 	if (frame->vic) {
6363 		ptr[7] = 0x1 << 5;	/* video format */
6364 		ptr[8] = frame->vic;
6365 	} else {
6366 		ptr[7] = 0x2 << 5;	/* video format */
6367 		ptr[8] = (frame->s3d_struct & 0xf) << 4;
6368 		if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6369 			ptr[9] = (frame->s3d_ext_data & 0xf) << 4;
6370 	}
6371 
6372 	hdmi_infoframe_set_checksum(buffer, length);
6373 
6374 	return length;
6375 }
6376 
6377 /**
6378  * hdmi_drm_infoframe_init() - initialize an HDMI Dynaminc Range and
6379  * mastering infoframe
6380  * @frame: HDMI DRM infoframe
6381  *
6382  * Returns 0 on success or a negative error code on failure.
6383  */
hdmi_drm_infoframe_init(struct hdmi_drm_infoframe * frame)6384 int hdmi_drm_infoframe_init(struct hdmi_drm_infoframe *frame)
6385 {
6386 	memset(frame, 0, sizeof(*frame));
6387 
6388 	frame->type = HDMI_INFOFRAME_TYPE_DRM;
6389 	frame->version = 1;
6390 
6391 	return 0;
6392 }
6393 
6394 /**
6395  * hdmi_drm_infoframe_pack() - write HDMI DRM infoframe to binary buffer
6396  * @frame: HDMI DRM infoframe
6397  * @buffer: destination buffer
6398  * @size: size of buffer
6399  *
6400  * Packs the information contained in the @frame structure into a binary
6401  * representation that can be written into the corresponding controller
6402  * registers. Also computes the checksum as required by section 5.3.5 of
6403  * the HDMI 1.4 specification.
6404  *
6405  * Returns the number of bytes packed into the binary buffer or a negative
6406  * error code on failure.
6407  */
hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe * frame,void * buffer,size_t size)6408 ssize_t hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe *frame, void *buffer,
6409 				size_t size)
6410 {
6411 	u8 *ptr = buffer;
6412 	size_t length;
6413 
6414 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6415 
6416 	if (size < length)
6417 		return -ENOSPC;
6418 
6419 	memset(buffer, 0, size);
6420 
6421 	ptr[0] = frame->type;
6422 	ptr[1] = frame->version;
6423 	ptr[2] = frame->length;
6424 	ptr[3] = 0; /* checksum */
6425 
6426 	/* start infoframe payload */
6427 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6428 
6429 	ptr[0] = frame->eotf;
6430 	ptr[1] = frame->metadata_type;
6431 
6432 	ptr[2] = frame->display_primaries_x[0] & 0xff;
6433 	ptr[3] = frame->display_primaries_x[0] >> 8;
6434 
6435 	ptr[4] = frame->display_primaries_x[1] & 0xff;
6436 	ptr[5] = frame->display_primaries_x[1] >> 8;
6437 
6438 	ptr[6] = frame->display_primaries_x[2] & 0xff;
6439 	ptr[7] = frame->display_primaries_x[2] >> 8;
6440 
6441 	ptr[9] = frame->display_primaries_y[0] & 0xff;
6442 	ptr[10] = frame->display_primaries_y[0] >> 8;
6443 
6444 	ptr[11] = frame->display_primaries_y[1] & 0xff;
6445 	ptr[12] = frame->display_primaries_y[1] >> 8;
6446 
6447 	ptr[13] = frame->display_primaries_y[2] & 0xff;
6448 	ptr[14] = frame->display_primaries_y[2] >> 8;
6449 
6450 	ptr[15] = frame->white_point_x & 0xff;
6451 	ptr[16] = frame->white_point_x >> 8;
6452 
6453 	ptr[17] = frame->white_point_y & 0xff;
6454 	ptr[18] = frame->white_point_y >> 8;
6455 
6456 	ptr[19] = frame->max_mastering_display_luminance & 0xff;
6457 	ptr[20] = frame->max_mastering_display_luminance >> 8;
6458 
6459 	ptr[21] = frame->min_mastering_display_luminance & 0xff;
6460 	ptr[22] = frame->min_mastering_display_luminance >> 8;
6461 
6462 	ptr[23] = frame->max_cll & 0xff;
6463 	ptr[24] = frame->max_cll >> 8;
6464 
6465 	ptr[25] = frame->max_fall & 0xff;
6466 	ptr[26] = frame->max_fall >> 8;
6467 
6468 	hdmi_infoframe_set_checksum(buffer, length);
6469 
6470 	return length;
6471 }
6472 
6473 /*
6474  * hdmi_vendor_any_infoframe_pack() - write a vendor infoframe to binary buffer
6475  */
6476 static ssize_t
hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe * frame,void * buffer,size_t size)6477 hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe *frame,
6478 			       void *buffer, size_t size)
6479 {
6480 	/* we only know about HDMI vendor infoframes */
6481 	if (frame->any.oui != HDMI_IEEE_OUI)
6482 		return -EINVAL;
6483 
6484 	return hdmi_vendor_infoframe_pack(&frame->hdmi, buffer, size);
6485 }
6486 
6487 /**
6488  * hdmi_infoframe_pack() - write a HDMI infoframe to binary buffer
6489  * @frame: HDMI infoframe
6490  * @buffer: destination buffer
6491  * @size: size of buffer
6492  *
6493  * Packs the information contained in the @frame structure into a binary
6494  * representation that can be written into the corresponding controller
6495  * registers. Also computes the checksum as required by section 5.3.5 of
6496  * the HDMI 1.4 specification.
6497  *
6498  * Returns the number of bytes packed into the binary buffer or a negative
6499  * error code on failure.
6500  */
6501 ssize_t
hdmi_infoframe_pack(union hdmi_infoframe * frame,void * buffer,size_t size)6502 hdmi_infoframe_pack(union hdmi_infoframe *frame, void *buffer, size_t size)
6503 {
6504 	ssize_t length;
6505 
6506 	switch (frame->any.type) {
6507 	case HDMI_INFOFRAME_TYPE_AVI:
6508 		length = hdmi_avi_infoframe_pack(&frame->avi, buffer, size);
6509 		break;
6510 	case HDMI_INFOFRAME_TYPE_DRM:
6511 		length = hdmi_drm_infoframe_pack(&frame->drm, buffer, size);
6512 		break;
6513 	case HDMI_INFOFRAME_TYPE_SPD:
6514 		length = hdmi_spd_infoframe_pack(&frame->spd, buffer, size);
6515 		break;
6516 	case HDMI_INFOFRAME_TYPE_AUDIO:
6517 		length = hdmi_audio_infoframe_pack(&frame->audio, buffer, size);
6518 		break;
6519 	case HDMI_INFOFRAME_TYPE_VENDOR:
6520 		length = hdmi_vendor_any_infoframe_pack(&frame->vendor,
6521 							buffer, size);
6522 		break;
6523 	default:
6524 		printf("Bad infoframe type %d\n", frame->any.type);
6525 		length = -EINVAL;
6526 	}
6527 
6528 	return length;
6529 }
6530 
6531 /**
6532  * hdmi_avi_infoframe_unpack() - unpack binary buffer to a HDMI AVI infoframe
6533  * @buffer: source buffer
6534  * @frame: HDMI AVI infoframe
6535  *
6536  * Unpacks the information contained in binary @buffer into a structured
6537  * @frame of the HDMI Auxiliary Video (AVI) information frame.
6538  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6539  * specification.
6540  *
6541  * Returns 0 on success or a negative error code on failure.
6542  */
hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe * frame,void * buffer)6543 static int hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe *frame,
6544 				     void *buffer)
6545 {
6546 	u8 *ptr = buffer;
6547 	int ret;
6548 
6549 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AVI ||
6550 	    ptr[1] != 2 ||
6551 	    ptr[2] != HDMI_AVI_INFOFRAME_SIZE)
6552 		return -EINVAL;
6553 
6554 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AVI)) != 0)
6555 		return -EINVAL;
6556 
6557 	ret = hdmi_avi_infoframe_init(frame);
6558 	if (ret)
6559 		return ret;
6560 
6561 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6562 
6563 	frame->colorspace = (ptr[0] >> 5) & 0x3;
6564 	if (ptr[0] & 0x10)
6565 		frame->active_aspect = ptr[1] & 0xf;
6566 	if (ptr[0] & 0x8) {
6567 		frame->top_bar = (ptr[5] << 8) + ptr[6];
6568 		frame->bottom_bar = (ptr[7] << 8) + ptr[8];
6569 	}
6570 	if (ptr[0] & 0x4) {
6571 		frame->left_bar = (ptr[9] << 8) + ptr[10];
6572 		frame->right_bar = (ptr[11] << 8) + ptr[12];
6573 	}
6574 	frame->scan_mode = ptr[0] & 0x3;
6575 
6576 	frame->colorimetry = (ptr[1] >> 6) & 0x3;
6577 	frame->picture_aspect = (ptr[1] >> 4) & 0x3;
6578 	frame->active_aspect = ptr[1] & 0xf;
6579 
6580 	frame->itc = ptr[2] & 0x80 ? true : false;
6581 	frame->extended_colorimetry = (ptr[2] >> 4) & 0x7;
6582 	frame->quantization_range = (ptr[2] >> 2) & 0x3;
6583 	frame->nups = ptr[2] & 0x3;
6584 
6585 	frame->video_code = ptr[3] & 0x7f;
6586 	frame->ycc_quantization_range = (ptr[4] >> 6) & 0x3;
6587 	frame->content_type = (ptr[4] >> 4) & 0x3;
6588 
6589 	frame->pixel_repeat = ptr[4] & 0xf;
6590 
6591 	return 0;
6592 }
6593 
6594 /**
6595  * hdmi_spd_infoframe_unpack() - unpack binary buffer to a HDMI SPD infoframe
6596  * @buffer: source buffer
6597  * @frame: HDMI SPD infoframe
6598  *
6599  * Unpacks the information contained in binary @buffer into a structured
6600  * @frame of the HDMI Source Product Description (SPD) information frame.
6601  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6602  * specification.
6603  *
6604  * Returns 0 on success or a negative error code on failure.
6605  */
hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe * frame,void * buffer)6606 static int hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe *frame,
6607 				     void *buffer)
6608 {
6609 	char *ptr = buffer;
6610 	int ret;
6611 
6612 	if (ptr[0] != HDMI_INFOFRAME_TYPE_SPD ||
6613 	    ptr[1] != 1 ||
6614 	    ptr[2] != HDMI_SPD_INFOFRAME_SIZE) {
6615 		return -EINVAL;
6616 	}
6617 
6618 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(SPD)) != 0)
6619 		return -EINVAL;
6620 
6621 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6622 
6623 	ret = hdmi_spd_infoframe_init(frame, ptr, ptr + 8);
6624 	if (ret)
6625 		return ret;
6626 
6627 	frame->sdi = ptr[24];
6628 
6629 	return 0;
6630 }
6631 
6632 /**
6633  * hdmi_audio_infoframe_unpack() - unpack binary buffer to a HDMI AUDIO infoframe
6634  * @buffer: source buffer
6635  * @frame: HDMI Audio infoframe
6636  *
6637  * Unpacks the information contained in binary @buffer into a structured
6638  * @frame of the HDMI Audio information frame.
6639  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6640  * specification.
6641  *
6642  * Returns 0 on success or a negative error code on failure.
6643  */
hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe * frame,void * buffer)6644 static int hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe *frame,
6645 				       void *buffer)
6646 {
6647 	u8 *ptr = buffer;
6648 	int ret;
6649 
6650 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AUDIO ||
6651 	    ptr[1] != 1 ||
6652 	    ptr[2] != HDMI_AUDIO_INFOFRAME_SIZE) {
6653 		return -EINVAL;
6654 	}
6655 
6656 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AUDIO)) != 0)
6657 		return -EINVAL;
6658 
6659 	ret = hdmi_audio_infoframe_init(frame);
6660 	if (ret)
6661 		return ret;
6662 
6663 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6664 
6665 	frame->channels = ptr[0] & 0x7;
6666 	frame->coding_type = (ptr[0] >> 4) & 0xf;
6667 	frame->sample_size = ptr[1] & 0x3;
6668 	frame->sample_frequency = (ptr[1] >> 2) & 0x7;
6669 	frame->coding_type_ext = ptr[2] & 0x1f;
6670 	frame->channel_allocation = ptr[3];
6671 	frame->level_shift_value = (ptr[4] >> 3) & 0xf;
6672 	frame->downmix_inhibit = ptr[4] & 0x80 ? true : false;
6673 
6674 	return 0;
6675 }
6676 
6677 /**
6678  * hdmi_vendor_infoframe_unpack() - unpack binary buffer to a HDMI vendor infoframe
6679  * @buffer: source buffer
6680  * @frame: HDMI Vendor infoframe
6681  *
6682  * Unpacks the information contained in binary @buffer into a structured
6683  * @frame of the HDMI Vendor information frame.
6684  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6685  * specification.
6686  *
6687  * Returns 0 on success or a negative error code on failure.
6688  */
6689 static int
hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe * frame,void * buffer)6690 hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe *frame,
6691 				 void *buffer)
6692 {
6693 	u8 *ptr = buffer;
6694 	size_t length;
6695 	int ret;
6696 	u8 hdmi_video_format;
6697 	struct hdmi_vendor_infoframe *hvf = &frame->hdmi;
6698 
6699 	if (ptr[0] != HDMI_INFOFRAME_TYPE_VENDOR ||
6700 	    ptr[1] != 1 ||
6701 	    (ptr[2] != 4 && ptr[2] != 5 && ptr[2] != 6))
6702 		return -EINVAL;
6703 
6704 	length = ptr[2];
6705 
6706 	if (hdmi_infoframe_checksum(buffer,
6707 				    HDMI_INFOFRAME_HEADER_SIZE + length) != 0)
6708 		return -EINVAL;
6709 
6710 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6711 
6712 	/* HDMI OUI */
6713 	if (ptr[0] != 0x03 ||
6714 	    ptr[1] != 0x0c ||
6715 	    ptr[2] != 0x00)
6716 		return -EINVAL;
6717 
6718 	hdmi_video_format = ptr[3] >> 5;
6719 
6720 	if (hdmi_video_format > 0x2)
6721 		return -EINVAL;
6722 
6723 	ret = hdmi_vendor_infoframe_init(hvf);
6724 	if (ret)
6725 		return ret;
6726 
6727 	hvf->length = length;
6728 
6729 	if (hdmi_video_format == 0x2) {
6730 		if (length != 5 && length != 6)
6731 			return -EINVAL;
6732 		hvf->s3d_struct = ptr[4] >> 4;
6733 		if (hvf->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) {
6734 			if (length != 6)
6735 				return -EINVAL;
6736 			hvf->s3d_ext_data = ptr[5] >> 4;
6737 		}
6738 	} else if (hdmi_video_format == 0x1) {
6739 		if (length != 5)
6740 			return -EINVAL;
6741 		hvf->vic = ptr[4];
6742 	} else {
6743 		if (length != 4)
6744 			return -EINVAL;
6745 	}
6746 
6747 	return 0;
6748 }
6749 
6750 /**
6751  * hdmi_infoframe_unpack() - unpack binary buffer to a HDMI infoframe
6752  * @buffer: source buffer
6753  * @frame: HDMI infoframe
6754  *
6755  * Unpacks the information contained in binary buffer @buffer into a structured
6756  * @frame of a HDMI infoframe.
6757  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6758  * specification.
6759  *
6760  * Returns 0 on success or a negative error code on failure.
6761  */
hdmi_infoframe_unpack(union hdmi_infoframe * frame,void * buffer)6762 int hdmi_infoframe_unpack(union hdmi_infoframe *frame, void *buffer)
6763 {
6764 	int ret;
6765 	u8 *ptr = buffer;
6766 
6767 	switch (ptr[0]) {
6768 	case HDMI_INFOFRAME_TYPE_AVI:
6769 		ret = hdmi_avi_infoframe_unpack(&frame->avi, buffer);
6770 		break;
6771 	case HDMI_INFOFRAME_TYPE_SPD:
6772 		ret = hdmi_spd_infoframe_unpack(&frame->spd, buffer);
6773 		break;
6774 	case HDMI_INFOFRAME_TYPE_AUDIO:
6775 		ret = hdmi_audio_infoframe_unpack(&frame->audio, buffer);
6776 		break;
6777 	case HDMI_INFOFRAME_TYPE_VENDOR:
6778 		ret = hdmi_vendor_any_infoframe_unpack(&frame->vendor, buffer);
6779 		break;
6780 	default:
6781 		ret = -EINVAL;
6782 		break;
6783 	}
6784 
6785 	return ret;
6786 }
6787 
6788 /**
6789  * drm_mode_sort - sort mode list
6790  * @edid_data: modes structures to sort
6791  *
6792  * Sort @edid_data by favorability, moving good modes to the head of the list.
6793  */
drm_mode_sort(struct hdmi_edid_data * edid_data)6794 void drm_mode_sort(struct hdmi_edid_data *edid_data)
6795 {
6796 	struct drm_display_mode *a, *b;
6797 	struct drm_display_mode c;
6798 	int diff, i, j;
6799 
6800 	for (i = 0; i < (edid_data->modes - 1); i++) {
6801 		a = &edid_data->mode_buf[i];
6802 		for (j = i + 1; j < edid_data->modes; j++) {
6803 			b = &edid_data->mode_buf[j];
6804 			diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
6805 				((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
6806 			if (diff) {
6807 				if (diff > 0) {
6808 					c = *a;
6809 					*a = *b;
6810 					*b = c;
6811 				}
6812 				continue;
6813 			}
6814 
6815 			diff = b->hdisplay * b->vdisplay
6816 				- a->hdisplay * a->vdisplay;
6817 			if (diff) {
6818 				if (diff > 0) {
6819 					c = *a;
6820 					*a = *b;
6821 					*b = c;
6822 				}
6823 				continue;
6824 			}
6825 
6826 			diff = b->vrefresh - a->vrefresh;
6827 			if (diff) {
6828 				if (diff > 0) {
6829 					c = *a;
6830 					*a = *b;
6831 					*b = c;
6832 				}
6833 				continue;
6834 			}
6835 
6836 			diff = b->clock - a->clock;
6837 			if (diff > 0) {
6838 				c = *a;
6839 				*a = *b;
6840 				*b = c;
6841 			}
6842 		}
6843 	}
6844 	edid_data->preferred_mode = &edid_data->mode_buf[0];
6845 }
6846 
6847 /**
6848  * drm_mode_prune_invalid - remove invalid modes from mode list
6849  * @edid_data: structure store mode list
6850  * Returns:
6851  * Number of valid modes.
6852  */
drm_mode_prune_invalid(struct hdmi_edid_data * edid_data)6853 int drm_mode_prune_invalid(struct hdmi_edid_data *edid_data)
6854 {
6855 	int i, j;
6856 	int num = edid_data->modes;
6857 	int len = sizeof(struct drm_display_mode);
6858 	struct drm_display_mode *mode_buf = edid_data->mode_buf;
6859 
6860 	for (i = 0; i < num; i++) {
6861 		if (mode_buf[i].invalid) {
6862 			/* If mode is invalid, delete it. */
6863 			for (j = i; j < num - 1; j++)
6864 				memcpy(&mode_buf[j], &mode_buf[j + 1], len);
6865 
6866 			num--;
6867 			i--;
6868 		}
6869 	}
6870 	/* Clear redundant modes of mode_buf. */
6871 	memset(&mode_buf[num], 0, len * (edid_data->modes - num));
6872 
6873 	edid_data->modes = num;
6874 	return num;
6875 }
6876 
6877 /**
6878  * drm_rk_filter_whitelist - mark modes out of white list from mode list
6879  * @edid_data: structure store mode list
6880  */
drm_rk_filter_whitelist(struct hdmi_edid_data * edid_data)6881 void drm_rk_filter_whitelist(struct hdmi_edid_data *edid_data)
6882 {
6883 	int i, j, white_len;
6884 
6885 	if (sizeof(resolution_white)) {
6886 		white_len = sizeof(resolution_white) /
6887 			sizeof(resolution_white[0]);
6888 		for (i = 0; i < edid_data->modes; i++) {
6889 			for (j = 0; j < white_len; j++) {
6890 				if (drm_mode_match(&resolution_white[j],
6891 						   &edid_data->mode_buf[i],
6892 						   DRM_MODE_MATCH_TIMINGS |
6893 						   DRM_MODE_MATCH_CLOCK |
6894 						   DRM_MODE_MATCH_FLAGS))
6895 					break;
6896 			}
6897 
6898 			if (j == white_len)
6899 				edid_data->mode_buf[i].invalid = true;
6900 		}
6901 	}
6902 }
6903 
drm_display_mode_convert(struct drm_display_mode * mode,struct base_drm_display_mode * base_mode)6904 static void drm_display_mode_convert(struct drm_display_mode *mode,
6905 				     struct base_drm_display_mode *base_mode)
6906 {
6907 	mode->clock = base_mode->clock;
6908 	mode->hdisplay = base_mode->hdisplay;
6909 	mode->hsync_start = base_mode->hsync_start;
6910 	mode->hsync_end = base_mode->hsync_end;
6911 	mode->htotal = base_mode->htotal;
6912 	mode->vdisplay = base_mode->vdisplay;
6913 	mode->vsync_start = base_mode->vsync_start;
6914 	mode->vsync_end = base_mode->vsync_end;
6915 	mode->vtotal = base_mode->vtotal;
6916 	mode->vrefresh = base_mode->vrefresh;
6917 	mode->vscan = base_mode->vscan;
6918 	mode->flags = base_mode->flags;
6919 	mode->picture_aspect_ratio = base_mode->picture_aspect_ratio;
6920 }
6921 
drm_rk_select_mode(struct hdmi_edid_data * edid_data,struct base_screen_info * screen_info)6922 void drm_rk_select_mode(struct hdmi_edid_data *edid_data,
6923 			struct base_screen_info *screen_info)
6924 {
6925 	int i;
6926 	struct drm_display_mode mode;
6927 
6928 	if (!screen_info) {
6929 		/* define init resolution here */
6930 	} else {
6931 		memset(&mode, 0, sizeof(struct drm_display_mode));
6932 
6933 		drm_display_mode_convert(&mode, &screen_info->mode);
6934 		for (i = 0; i < edid_data->modes; i++) {
6935 			if (drm_mode_match(&mode,
6936 					   &edid_data->mode_buf[i],
6937 					   DRM_MODE_MATCH_TIMINGS |
6938 					   DRM_MODE_MATCH_CLOCK |
6939 					   DRM_MODE_MATCH_FLAGS)) {
6940 				edid_data->preferred_mode =
6941 					&edid_data->mode_buf[i];
6942 
6943 				if (edid_data->mode_buf[i].picture_aspect_ratio)
6944 					break;
6945 			}
6946 		}
6947 	}
6948 }
6949 
6950 /**
6951  * drm_do_probe_ddc_edid() - get EDID information via I2C
6952  * @adap: ddc adapter
6953  * @buf: EDID data buffer to be filled
6954  * @block: 128 byte EDID block to start fetching from
6955  * @len: EDID data buffer length to fetch
6956  *
6957  * Try to fetch EDID information by calling I2C driver functions.
6958  *
6959  * Return: 0 on success or -1 on failure.
6960  */
6961 static int
drm_do_probe_ddc_edid(struct ddc_adapter * adap,u8 * buf,unsigned int block,size_t len)6962 drm_do_probe_ddc_edid(struct ddc_adapter *adap, u8 *buf, unsigned int block,
6963 		      size_t len)
6964 {
6965 	unsigned char start = block * HDMI_EDID_BLOCK_SIZE;
6966 	unsigned char segment = block >> 1;
6967 	unsigned char xfers = segment ? 3 : 2;
6968 	int ret, retries = 5;
6969 
6970 	do {
6971 		struct i2c_msg msgs[] = {
6972 			{
6973 				.addr	= DDC_SEGMENT_ADDR,
6974 				.flags	= 0,
6975 				.len	= 1,
6976 				.buf	= &segment,
6977 			}, {
6978 				.addr	= DDC_ADDR,
6979 				.flags	= 0,
6980 				.len	= 1,
6981 				.buf	= &start,
6982 			}, {
6983 				.addr	= DDC_ADDR,
6984 				.flags	= I2C_M_RD,
6985 				.len	= len,
6986 				.buf	= buf,
6987 			}
6988 		};
6989 
6990 		if (adap->ops) {
6991 			ret = adap->ops->xfer(adap->i2c_bus, &msgs[3 - xfers],
6992 					      xfers);
6993 			if (!ret)
6994 				ret = xfers;
6995 		} else {
6996 			ret = adap->ddc_xfer(adap, &msgs[3 - xfers], xfers);
6997 		}
6998 	} while (ret != xfers && --retries);
6999 
7000 	/* All msg transfer successfully. */
7001 	return ret == xfers ? 0 : -1;
7002 }
7003 
drm_do_get_edid(struct ddc_adapter * adap)7004 u8 *drm_do_get_edid(struct ddc_adapter *adap)
7005 {
7006 	int i, j, block_num, valid_extensions = 0, invalid_blocks = 0, block = 0;
7007 	bool edid_corrupt;
7008 	u8 *new, *edid;
7009 #ifdef DEBUG
7010 	u8 *buff;
7011 #endif
7012 
7013 	edid = malloc(HDMI_EDID_BLOCK_SIZE);
7014 	if (!edid)
7015 		goto err;
7016 
7017 	/* base block fetch */
7018 	for (i = 0; i < 4; i++) {
7019 		if (drm_do_probe_ddc_edid(adap, edid, 0, HDMI_EDID_BLOCK_SIZE))
7020 			goto err;
7021 		if (drm_edid_block_valid(edid, 0, true,
7022 					 &edid_corrupt))
7023 			break;
7024 		if (i == 0 && drm_edid_is_zero(edid, HDMI_EDID_BLOCK_SIZE)) {
7025 			printf("edid base block is 0, get edid failed\n");
7026 			goto err;
7027 		}
7028 	}
7029 
7030 	if (i == 4)
7031 		goto err;
7032 
7033 	/* if there's no extensions, we're done */
7034 	valid_extensions = edid[0x7e];
7035 	if (valid_extensions == 0)
7036 		return 0;
7037 
7038 	new = realloc(edid, (valid_extensions + 1) * HDMI_EDID_BLOCK_SIZE);
7039 	if (!new)
7040 		goto err;
7041 	edid = new;
7042 
7043 	/* get the number of extensions */
7044 	block_num = edid[0x7e] + 1;
7045 
7046 	for (j = 1; j < block_num; j++) {
7047 		u8 *block = edid + j * HDMI_EDID_BLOCK_SIZE;
7048 
7049 		for (i = 0; i < 4; i++) {
7050 			if (drm_do_probe_ddc_edid(adap, block, j,
7051 						  HDMI_EDID_BLOCK_SIZE))
7052 				goto err;
7053 			if (drm_edid_block_valid(block, j,
7054 						 true, NULL))
7055 				break;
7056 		}
7057 
7058 		if (i == 4)
7059 			invalid_blocks++;
7060 
7061 		if (j == 1) {
7062 			/*
7063 			 * If the first EDID extension is a CTA extension, and
7064 			 * the first Data Block is HF-EEODB, override the
7065 			 * extension block count.
7066 			 *
7067 			 * Note: HF-EEODB could specify a smaller extension
7068 			 * count too, but we can't risk allocating a smaller
7069 			 * amount.
7070 			 */
7071 			int eeodb = edid_hfeeodb_block_count((const struct edid *)edid);
7072 
7073 			if (eeodb > block_num) {
7074 				block_num = eeodb;
7075 				new = realloc(edid, block_num * HDMI_EDID_BLOCK_SIZE);
7076 				if (!new)
7077 					goto err;
7078 				edid = new;
7079 			}
7080 		}
7081 	}
7082 
7083 	if (invalid_blocks) {
7084 		u8 *base;
7085 
7086 		new = kcalloc(valid_extensions + 1, HDMI_EDID_BLOCK_SIZE, GFP_KERNEL);
7087 		if (!new)
7088 			goto err;
7089 
7090 		base = new;
7091 		for (i = 0; i <= edid[0x7e]; i++) {
7092 			u8 *block = edid + i * HDMI_EDID_BLOCK_SIZE;
7093 
7094 			if (!drm_edid_block_valid(block, i, false, NULL))
7095 				continue;
7096 
7097 			memcpy(base, block, HDMI_EDID_BLOCK_SIZE);
7098 			base += HDMI_EDID_BLOCK_SIZE;
7099 		}
7100 
7101 		new[HDMI_EDID_BLOCK_SIZE - 1] += new[0x7e] - valid_extensions;
7102 		new[0x7e] = valid_extensions;
7103 
7104 		kfree(edid);
7105 		edid = new;
7106 	}
7107 
7108 #ifdef DEBUG
7109 	printf("RAW EDID:\n");
7110 	for (i = 0; i < block_num; i++) {
7111 		buff = &edid[0x80 * i];
7112 		for (j = 0; j < HDMI_EDID_BLOCK_SIZE; j++) {
7113 			if (j % 16 == 0)
7114 				printf("\n");
7115 			printf("0x%02x, ", buff[j]);
7116 		}
7117 		printf("\n");
7118 	}
7119 #endif
7120 
7121 	return edid;
7122 
7123 err:
7124 	printf("can't get edid block:%d\n", block);
7125 
7126 	return NULL;
7127 }
7128 
hdmi_ddc_read(struct ddc_adapter * adap,u16 addr,u8 offset,void * buffer,size_t size)7129 static ssize_t hdmi_ddc_read(struct ddc_adapter *adap, u16 addr, u8 offset,
7130 			     void *buffer, size_t size)
7131 {
7132 	struct i2c_msg msgs[2] = {
7133 		{
7134 			.addr = addr,
7135 			.flags = 0,
7136 			.len = 1,
7137 			.buf = &offset,
7138 		}, {
7139 			.addr = addr,
7140 			.flags = I2C_M_RD,
7141 			.len = size,
7142 			.buf = buffer,
7143 		}
7144 	};
7145 
7146 	return adap->ddc_xfer(adap, msgs, ARRAY_SIZE(msgs));
7147 }
7148 
hdmi_ddc_write(struct ddc_adapter * adap,u16 addr,u8 offset,const void * buffer,size_t size)7149 static ssize_t hdmi_ddc_write(struct ddc_adapter *adap, u16 addr, u8 offset,
7150 			      const void *buffer, size_t size)
7151 {
7152 	struct i2c_msg msg = {
7153 		.addr = addr,
7154 		.flags = 0,
7155 		.len = 1 + size,
7156 		.buf = NULL,
7157 	};
7158 	void *data;
7159 	int err;
7160 
7161 	data = malloc(1 + size);
7162 	if (!data)
7163 		return -ENOMEM;
7164 
7165 	msg.buf = data;
7166 
7167 	memcpy(data, &offset, sizeof(offset));
7168 	memcpy(data + 1, buffer, size);
7169 
7170 	err = adap->ddc_xfer(adap, &msg, 1);
7171 
7172 	free(data);
7173 
7174 	return err;
7175 }
7176 
7177 /**
7178  * drm_scdc_readb - read a single byte from SCDC
7179  * @adap: ddc adapter
7180  * @offset: offset of register to read
7181  * @value: return location for the register value
7182  *
7183  * Reads a single byte from SCDC. This is a convenience wrapper around the
7184  * drm_scdc_read() function.
7185  *
7186  * Returns:
7187  * 0 on success or a negative error code on failure.
7188  */
drm_scdc_readb(struct ddc_adapter * adap,u8 offset,u8 * value)7189 u8 drm_scdc_readb(struct ddc_adapter *adap, u8 offset,
7190 		  u8 *value)
7191 {
7192 	return hdmi_ddc_read(adap, SCDC_I2C_SLAVE_ADDRESS, offset, value,
7193 			     sizeof(*value));
7194 }
7195 
7196 /**
7197  * drm_scdc_writeb - write a single byte to SCDC
7198  * @adap: ddc adapter
7199  * @offset: offset of register to read
7200  * @value: return location for the register value
7201  *
7202  * Writes a single byte to SCDC. This is a convenience wrapper around the
7203  * drm_scdc_write() function.
7204  *
7205  * Returns:
7206  * 0 on success or a negative error code on failure.
7207  */
drm_scdc_writeb(struct ddc_adapter * adap,u8 offset,u8 value)7208 u8 drm_scdc_writeb(struct ddc_adapter *adap, u8 offset,
7209 		   u8 value)
7210 {
7211 	return hdmi_ddc_write(adap, SCDC_I2C_SLAVE_ADDRESS, offset, &value,
7212 			      sizeof(value));
7213 }
7214 
7215