1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59
60 #include <asm/acpi.h>
61 #include <asm/desc.h>
62 #include <asm/nmi.h>
63 #include <asm/irq.h>
64 #include <asm/realmode.h>
65 #include <asm/cpu.h>
66 #include <asm/numa.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 #include <asm/stackprotector.h>
84
85 /* representing HT siblings of each logical CPU */
86 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
87 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
88
89 /* representing HT and core siblings of each logical CPU */
90 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92
93 /* representing HT, core, and die siblings of each logical CPU */
94 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
95 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
96
97 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
98
99 /* Per CPU bogomips and other parameters */
100 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
101 EXPORT_PER_CPU_SYMBOL(cpu_info);
102
103 /* Logical package management. We might want to allocate that dynamically */
104 unsigned int __max_logical_packages __read_mostly;
105 EXPORT_SYMBOL(__max_logical_packages);
106 static unsigned int logical_packages __read_mostly;
107 static unsigned int logical_die __read_mostly;
108
109 /* Maximum number of SMT threads on any online core */
110 int __read_mostly __max_smt_threads = 1;
111
112 /* Flag to indicate if a complete sched domain rebuild is required */
113 bool x86_topology_update;
114
arch_update_cpu_topology(void)115 int arch_update_cpu_topology(void)
116 {
117 int retval = x86_topology_update;
118
119 x86_topology_update = false;
120 return retval;
121 }
122
smpboot_setup_warm_reset_vector(unsigned long start_eip)123 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
124 {
125 unsigned long flags;
126
127 spin_lock_irqsave(&rtc_lock, flags);
128 CMOS_WRITE(0xa, 0xf);
129 spin_unlock_irqrestore(&rtc_lock, flags);
130 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
131 start_eip >> 4;
132 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
133 start_eip & 0xf;
134 }
135
smpboot_restore_warm_reset_vector(void)136 static inline void smpboot_restore_warm_reset_vector(void)
137 {
138 unsigned long flags;
139
140 /*
141 * Paranoid: Set warm reset code and vector here back
142 * to default values.
143 */
144 spin_lock_irqsave(&rtc_lock, flags);
145 CMOS_WRITE(0, 0xf);
146 spin_unlock_irqrestore(&rtc_lock, flags);
147
148 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
149 }
150
151 static void init_freq_invariance(bool secondary);
152
153 /*
154 * Report back to the Boot Processor during boot time or to the caller processor
155 * during CPU online.
156 */
smp_callin(void)157 static void smp_callin(void)
158 {
159 int cpuid;
160
161 /*
162 * If waken up by an INIT in an 82489DX configuration
163 * cpu_callout_mask guarantees we don't get here before
164 * an INIT_deassert IPI reaches our local APIC, so it is
165 * now safe to touch our local APIC.
166 */
167 cpuid = smp_processor_id();
168
169 /*
170 * the boot CPU has finished the init stage and is spinning
171 * on callin_map until we finish. We are free to set up this
172 * CPU, first the APIC. (this is probably redundant on most
173 * boards)
174 */
175 apic_ap_setup();
176
177 /*
178 * Save our processor parameters. Note: this information
179 * is needed for clock calibration.
180 */
181 smp_store_cpu_info(cpuid);
182
183 /*
184 * The topology information must be up to date before
185 * calibrate_delay() and notify_cpu_starting().
186 */
187 set_cpu_sibling_map(raw_smp_processor_id());
188
189 init_freq_invariance(true);
190
191 /*
192 * Get our bogomips.
193 * Update loops_per_jiffy in cpu_data. Previous call to
194 * smp_store_cpu_info() stored a value that is close but not as
195 * accurate as the value just calculated.
196 */
197 calibrate_delay();
198 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
199 pr_debug("Stack at about %p\n", &cpuid);
200
201 wmb();
202
203 notify_cpu_starting(cpuid);
204
205 /*
206 * Allow the master to continue.
207 */
208 cpumask_set_cpu(cpuid, cpu_callin_mask);
209 }
210
211 static int cpu0_logical_apicid;
212 static int enable_start_cpu0;
213 /*
214 * Activate a secondary processor.
215 */
start_secondary(void * unused)216 static void notrace start_secondary(void *unused)
217 {
218 /*
219 * Don't put *anything* except direct CPU state initialization
220 * before cpu_init(), SMP booting is too fragile that we want to
221 * limit the things done here to the most necessary things.
222 */
223 cr4_init();
224
225 #ifdef CONFIG_X86_32
226 /* switch away from the initial page table */
227 load_cr3(swapper_pg_dir);
228 __flush_tlb_all();
229 #endif
230 cpu_init_exception_handling();
231 cpu_init();
232 rcu_cpu_starting(raw_smp_processor_id());
233 x86_cpuinit.early_percpu_clock_init();
234 smp_callin();
235
236 enable_start_cpu0 = 0;
237
238 /* otherwise gcc will move up smp_processor_id before the cpu_init */
239 barrier();
240 /*
241 * Check TSC synchronization with the boot CPU:
242 */
243 check_tsc_sync_target();
244
245 speculative_store_bypass_ht_init();
246
247 /*
248 * Lock vector_lock, set CPU online and bring the vector
249 * allocator online. Online must be set with vector_lock held
250 * to prevent a concurrent irq setup/teardown from seeing a
251 * half valid vector space.
252 */
253 lock_vector_lock();
254 set_cpu_online(smp_processor_id(), true);
255 lapic_online();
256 unlock_vector_lock();
257 cpu_set_state_online(smp_processor_id());
258 x86_platform.nmi_init();
259
260 /* enable local interrupts */
261 local_irq_enable();
262
263 x86_cpuinit.setup_percpu_clockev();
264
265 wmb();
266 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
267 }
268
269 /**
270 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
271 * @cpu: CPU to check
272 */
topology_is_primary_thread(unsigned int cpu)273 bool topology_is_primary_thread(unsigned int cpu)
274 {
275 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
276 }
277
278 /**
279 * topology_smt_supported - Check whether SMT is supported by the CPUs
280 */
topology_smt_supported(void)281 bool topology_smt_supported(void)
282 {
283 return smp_num_siblings > 1;
284 }
285
286 /**
287 * topology_phys_to_logical_pkg - Map a physical package id to a logical
288 *
289 * Returns logical package id or -1 if not found
290 */
topology_phys_to_logical_pkg(unsigned int phys_pkg)291 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
292 {
293 int cpu;
294
295 for_each_possible_cpu(cpu) {
296 struct cpuinfo_x86 *c = &cpu_data(cpu);
297
298 if (c->initialized && c->phys_proc_id == phys_pkg)
299 return c->logical_proc_id;
300 }
301 return -1;
302 }
303 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
304 /**
305 * topology_phys_to_logical_die - Map a physical die id to logical
306 *
307 * Returns logical die id or -1 if not found
308 */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)309 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
310 {
311 int cpu;
312 int proc_id = cpu_data(cur_cpu).phys_proc_id;
313
314 for_each_possible_cpu(cpu) {
315 struct cpuinfo_x86 *c = &cpu_data(cpu);
316
317 if (c->initialized && c->cpu_die_id == die_id &&
318 c->phys_proc_id == proc_id)
319 return c->logical_die_id;
320 }
321 return -1;
322 }
323 EXPORT_SYMBOL(topology_phys_to_logical_die);
324
325 /**
326 * topology_update_package_map - Update the physical to logical package map
327 * @pkg: The physical package id as retrieved via CPUID
328 * @cpu: The cpu for which this is updated
329 */
topology_update_package_map(unsigned int pkg,unsigned int cpu)330 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
331 {
332 int new;
333
334 /* Already available somewhere? */
335 new = topology_phys_to_logical_pkg(pkg);
336 if (new >= 0)
337 goto found;
338
339 new = logical_packages++;
340 if (new != pkg) {
341 pr_info("CPU %u Converting physical %u to logical package %u\n",
342 cpu, pkg, new);
343 }
344 found:
345 cpu_data(cpu).logical_proc_id = new;
346 return 0;
347 }
348 /**
349 * topology_update_die_map - Update the physical to logical die map
350 * @die: The die id as retrieved via CPUID
351 * @cpu: The cpu for which this is updated
352 */
topology_update_die_map(unsigned int die,unsigned int cpu)353 int topology_update_die_map(unsigned int die, unsigned int cpu)
354 {
355 int new;
356
357 /* Already available somewhere? */
358 new = topology_phys_to_logical_die(die, cpu);
359 if (new >= 0)
360 goto found;
361
362 new = logical_die++;
363 if (new != die) {
364 pr_info("CPU %u Converting physical %u to logical die %u\n",
365 cpu, die, new);
366 }
367 found:
368 cpu_data(cpu).logical_die_id = new;
369 return 0;
370 }
371
smp_store_boot_cpu_info(void)372 void __init smp_store_boot_cpu_info(void)
373 {
374 int id = 0; /* CPU 0 */
375 struct cpuinfo_x86 *c = &cpu_data(id);
376
377 *c = boot_cpu_data;
378 c->cpu_index = id;
379 topology_update_package_map(c->phys_proc_id, id);
380 topology_update_die_map(c->cpu_die_id, id);
381 c->initialized = true;
382 }
383
384 /*
385 * The bootstrap kernel entry code has set these up. Save them for
386 * a given CPU
387 */
smp_store_cpu_info(int id)388 void smp_store_cpu_info(int id)
389 {
390 struct cpuinfo_x86 *c = &cpu_data(id);
391
392 /* Copy boot_cpu_data only on the first bringup */
393 if (!c->initialized)
394 *c = boot_cpu_data;
395 c->cpu_index = id;
396 /*
397 * During boot time, CPU0 has this setup already. Save the info when
398 * bringing up AP or offlined CPU0.
399 */
400 identify_secondary_cpu(c);
401 c->initialized = true;
402 }
403
404 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)405 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
406 {
407 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
408
409 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
410 }
411
412 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)413 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
414 {
415 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
416
417 return !WARN_ONCE(!topology_same_node(c, o),
418 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
419 "[node: %d != %d]. Ignoring dependency.\n",
420 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
421 }
422
423 #define link_mask(mfunc, c1, c2) \
424 do { \
425 cpumask_set_cpu((c1), mfunc(c2)); \
426 cpumask_set_cpu((c2), mfunc(c1)); \
427 } while (0)
428
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)429 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
430 {
431 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
432 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
433
434 if (c->phys_proc_id == o->phys_proc_id &&
435 c->cpu_die_id == o->cpu_die_id &&
436 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
437 if (c->cpu_core_id == o->cpu_core_id)
438 return topology_sane(c, o, "smt");
439
440 if ((c->cu_id != 0xff) &&
441 (o->cu_id != 0xff) &&
442 (c->cu_id == o->cu_id))
443 return topology_sane(c, o, "smt");
444 }
445
446 } else if (c->phys_proc_id == o->phys_proc_id &&
447 c->cpu_die_id == o->cpu_die_id &&
448 c->cpu_core_id == o->cpu_core_id) {
449 return topology_sane(c, o, "smt");
450 }
451
452 return false;
453 }
454
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)455 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
456 {
457 if (c->phys_proc_id == o->phys_proc_id &&
458 c->cpu_die_id == o->cpu_die_id)
459 return true;
460 return false;
461 }
462
463 /*
464 * Unlike the other levels, we do not enforce keeping a
465 * multicore group inside a NUMA node. If this happens, we will
466 * discard the MC level of the topology later.
467 */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)468 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
469 {
470 if (c->phys_proc_id == o->phys_proc_id)
471 return true;
472 return false;
473 }
474
475 /*
476 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
477 *
478 * Any Intel CPU that has multiple nodes per package and does not
479 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
480 *
481 * When in SNC mode, these CPUs enumerate an LLC that is shared
482 * by multiple NUMA nodes. The LLC is shared for off-package data
483 * access but private to the NUMA node (half of the package) for
484 * on-package access. CPUID (the source of the information about
485 * the LLC) can only enumerate the cache as shared or unshared,
486 * but not this particular configuration.
487 */
488
489 static const struct x86_cpu_id intel_cod_cpu[] = {
490 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
491 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
492 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
493 {}
494 };
495
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)496 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
497 {
498 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
499 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
500 bool intel_snc = id && id->driver_data;
501
502 /* Do not match if we do not have a valid APICID for cpu: */
503 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
504 return false;
505
506 /* Do not match if LLC id does not match: */
507 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
508 return false;
509
510 /*
511 * Allow the SNC topology without warning. Return of false
512 * means 'c' does not share the LLC of 'o'. This will be
513 * reflected to userspace.
514 */
515 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
516 return false;
517
518 return topology_sane(c, o, "llc");
519 }
520
521
522 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
x86_sched_itmt_flags(void)523 static inline int x86_sched_itmt_flags(void)
524 {
525 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
526 }
527
528 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)529 static int x86_core_flags(void)
530 {
531 return cpu_core_flags() | x86_sched_itmt_flags();
532 }
533 #endif
534 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)535 static int x86_smt_flags(void)
536 {
537 return cpu_smt_flags() | x86_sched_itmt_flags();
538 }
539 #endif
540 #endif
541
542 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
543 #ifdef CONFIG_SCHED_SMT
544 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
545 #endif
546 #ifdef CONFIG_SCHED_MC
547 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
548 #endif
549 { NULL, },
550 };
551
552 static struct sched_domain_topology_level x86_topology[] = {
553 #ifdef CONFIG_SCHED_SMT
554 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
555 #endif
556 #ifdef CONFIG_SCHED_MC
557 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
558 #endif
559 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
560 { NULL, },
561 };
562
563 /*
564 * Set if a package/die has multiple NUMA nodes inside.
565 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
566 * Sub-NUMA Clustering have this.
567 */
568 static bool x86_has_numa_in_package;
569
set_cpu_sibling_map(int cpu)570 void set_cpu_sibling_map(int cpu)
571 {
572 bool has_smt = smp_num_siblings > 1;
573 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
574 struct cpuinfo_x86 *c = &cpu_data(cpu);
575 struct cpuinfo_x86 *o;
576 int i, threads;
577
578 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
579
580 if (!has_mp) {
581 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
582 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
583 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
584 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
585 c->booted_cores = 1;
586 return;
587 }
588
589 for_each_cpu(i, cpu_sibling_setup_mask) {
590 o = &cpu_data(i);
591
592 if (match_pkg(c, o) && !topology_same_node(c, o))
593 x86_has_numa_in_package = true;
594
595 if ((i == cpu) || (has_smt && match_smt(c, o)))
596 link_mask(topology_sibling_cpumask, cpu, i);
597
598 if ((i == cpu) || (has_mp && match_llc(c, o)))
599 link_mask(cpu_llc_shared_mask, cpu, i);
600
601 if ((i == cpu) || (has_mp && match_die(c, o)))
602 link_mask(topology_die_cpumask, cpu, i);
603 }
604
605 threads = cpumask_weight(topology_sibling_cpumask(cpu));
606 if (threads > __max_smt_threads)
607 __max_smt_threads = threads;
608
609 /*
610 * This needs a separate iteration over the cpus because we rely on all
611 * topology_sibling_cpumask links to be set-up.
612 */
613 for_each_cpu(i, cpu_sibling_setup_mask) {
614 o = &cpu_data(i);
615
616 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
617 link_mask(topology_core_cpumask, cpu, i);
618
619 /*
620 * Does this new cpu bringup a new core?
621 */
622 if (threads == 1) {
623 /*
624 * for each core in package, increment
625 * the booted_cores for this new cpu
626 */
627 if (cpumask_first(
628 topology_sibling_cpumask(i)) == i)
629 c->booted_cores++;
630 /*
631 * increment the core count for all
632 * the other cpus in this package
633 */
634 if (i != cpu)
635 cpu_data(i).booted_cores++;
636 } else if (i != cpu && !c->booted_cores)
637 c->booted_cores = cpu_data(i).booted_cores;
638 }
639 }
640 }
641
642 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)643 const struct cpumask *cpu_coregroup_mask(int cpu)
644 {
645 return cpu_llc_shared_mask(cpu);
646 }
647
impress_friends(void)648 static void impress_friends(void)
649 {
650 int cpu;
651 unsigned long bogosum = 0;
652 /*
653 * Allow the user to impress friends.
654 */
655 pr_debug("Before bogomips\n");
656 for_each_possible_cpu(cpu)
657 if (cpumask_test_cpu(cpu, cpu_callout_mask))
658 bogosum += cpu_data(cpu).loops_per_jiffy;
659 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
660 num_online_cpus(),
661 bogosum/(500000/HZ),
662 (bogosum/(5000/HZ))%100);
663
664 pr_debug("Before bogocount - setting activated=1\n");
665 }
666
__inquire_remote_apic(int apicid)667 void __inquire_remote_apic(int apicid)
668 {
669 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
670 const char * const names[] = { "ID", "VERSION", "SPIV" };
671 int timeout;
672 u32 status;
673
674 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
675
676 for (i = 0; i < ARRAY_SIZE(regs); i++) {
677 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
678
679 /*
680 * Wait for idle.
681 */
682 status = safe_apic_wait_icr_idle();
683 if (status)
684 pr_cont("a previous APIC delivery may have failed\n");
685
686 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
687
688 timeout = 0;
689 do {
690 udelay(100);
691 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
692 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
693
694 switch (status) {
695 case APIC_ICR_RR_VALID:
696 status = apic_read(APIC_RRR);
697 pr_cont("%08x\n", status);
698 break;
699 default:
700 pr_cont("failed\n");
701 }
702 }
703 }
704
705 /*
706 * The Multiprocessor Specification 1.4 (1997) example code suggests
707 * that there should be a 10ms delay between the BSP asserting INIT
708 * and de-asserting INIT, when starting a remote processor.
709 * But that slows boot and resume on modern processors, which include
710 * many cores and don't require that delay.
711 *
712 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
713 * Modern processor families are quirked to remove the delay entirely.
714 */
715 #define UDELAY_10MS_DEFAULT 10000
716
717 static unsigned int init_udelay = UINT_MAX;
718
cpu_init_udelay(char * str)719 static int __init cpu_init_udelay(char *str)
720 {
721 get_option(&str, &init_udelay);
722
723 return 0;
724 }
725 early_param("cpu_init_udelay", cpu_init_udelay);
726
smp_quirk_init_udelay(void)727 static void __init smp_quirk_init_udelay(void)
728 {
729 /* if cmdline changed it from default, leave it alone */
730 if (init_udelay != UINT_MAX)
731 return;
732
733 /* if modern processor, use no delay */
734 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
735 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
736 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
737 init_udelay = 0;
738 return;
739 }
740 /* else, use legacy delay */
741 init_udelay = UDELAY_10MS_DEFAULT;
742 }
743
744 /*
745 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
746 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
747 * won't ... remember to clear down the APIC, etc later.
748 */
749 int
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)750 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
751 {
752 unsigned long send_status, accept_status = 0;
753 int maxlvt;
754
755 /* Target chip */
756 /* Boot on the stack */
757 /* Kick the second */
758 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
759
760 pr_debug("Waiting for send to finish...\n");
761 send_status = safe_apic_wait_icr_idle();
762
763 /*
764 * Give the other CPU some time to accept the IPI.
765 */
766 udelay(200);
767 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
768 maxlvt = lapic_get_maxlvt();
769 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
770 apic_write(APIC_ESR, 0);
771 accept_status = (apic_read(APIC_ESR) & 0xEF);
772 }
773 pr_debug("NMI sent\n");
774
775 if (send_status)
776 pr_err("APIC never delivered???\n");
777 if (accept_status)
778 pr_err("APIC delivery error (%lx)\n", accept_status);
779
780 return (send_status | accept_status);
781 }
782
783 static int
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)784 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
785 {
786 unsigned long send_status = 0, accept_status = 0;
787 int maxlvt, num_starts, j;
788
789 maxlvt = lapic_get_maxlvt();
790
791 /*
792 * Be paranoid about clearing APIC errors.
793 */
794 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
795 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
796 apic_write(APIC_ESR, 0);
797 apic_read(APIC_ESR);
798 }
799
800 pr_debug("Asserting INIT\n");
801
802 /*
803 * Turn INIT on target chip
804 */
805 /*
806 * Send IPI
807 */
808 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
809 phys_apicid);
810
811 pr_debug("Waiting for send to finish...\n");
812 send_status = safe_apic_wait_icr_idle();
813
814 udelay(init_udelay);
815
816 pr_debug("Deasserting INIT\n");
817
818 /* Target chip */
819 /* Send IPI */
820 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
821
822 pr_debug("Waiting for send to finish...\n");
823 send_status = safe_apic_wait_icr_idle();
824
825 mb();
826
827 /*
828 * Should we send STARTUP IPIs ?
829 *
830 * Determine this based on the APIC version.
831 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
832 */
833 if (APIC_INTEGRATED(boot_cpu_apic_version))
834 num_starts = 2;
835 else
836 num_starts = 0;
837
838 /*
839 * Run STARTUP IPI loop.
840 */
841 pr_debug("#startup loops: %d\n", num_starts);
842
843 for (j = 1; j <= num_starts; j++) {
844 pr_debug("Sending STARTUP #%d\n", j);
845 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
846 apic_write(APIC_ESR, 0);
847 apic_read(APIC_ESR);
848 pr_debug("After apic_write\n");
849
850 /*
851 * STARTUP IPI
852 */
853
854 /* Target chip */
855 /* Boot on the stack */
856 /* Kick the second */
857 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
858 phys_apicid);
859
860 /*
861 * Give the other CPU some time to accept the IPI.
862 */
863 if (init_udelay == 0)
864 udelay(10);
865 else
866 udelay(300);
867
868 pr_debug("Startup point 1\n");
869
870 pr_debug("Waiting for send to finish...\n");
871 send_status = safe_apic_wait_icr_idle();
872
873 /*
874 * Give the other CPU some time to accept the IPI.
875 */
876 if (init_udelay == 0)
877 udelay(10);
878 else
879 udelay(200);
880
881 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
882 apic_write(APIC_ESR, 0);
883 accept_status = (apic_read(APIC_ESR) & 0xEF);
884 if (send_status || accept_status)
885 break;
886 }
887 pr_debug("After Startup\n");
888
889 if (send_status)
890 pr_err("APIC never delivered???\n");
891 if (accept_status)
892 pr_err("APIC delivery error (%lx)\n", accept_status);
893
894 return (send_status | accept_status);
895 }
896
897 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)898 static void announce_cpu(int cpu, int apicid)
899 {
900 static int current_node = NUMA_NO_NODE;
901 int node = early_cpu_to_node(cpu);
902 static int width, node_width;
903
904 if (!width)
905 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
906
907 if (!node_width)
908 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
909
910 if (cpu == 1)
911 printk(KERN_INFO "x86: Booting SMP configuration:\n");
912
913 if (system_state < SYSTEM_RUNNING) {
914 if (node != current_node) {
915 if (current_node > (-1))
916 pr_cont("\n");
917 current_node = node;
918
919 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
920 node_width - num_digits(node), " ", node);
921 }
922
923 /* Add padding for the BSP */
924 if (cpu == 1)
925 pr_cont("%*s", width + 1, " ");
926
927 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
928
929 } else
930 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
931 node, cpu, apicid);
932 }
933
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)934 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
935 {
936 int cpu;
937
938 cpu = smp_processor_id();
939 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
940 return NMI_HANDLED;
941
942 return NMI_DONE;
943 }
944
945 /*
946 * Wake up AP by INIT, INIT, STARTUP sequence.
947 *
948 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
949 * boot-strap code which is not a desired behavior for waking up BSP. To
950 * void the boot-strap code, wake up CPU0 by NMI instead.
951 *
952 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
953 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
954 * We'll change this code in the future to wake up hard offlined CPU0 if
955 * real platform and request are available.
956 */
957 static int
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)958 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
959 int *cpu0_nmi_registered)
960 {
961 int id;
962 int boot_error;
963
964 preempt_disable();
965
966 /*
967 * Wake up AP by INIT, INIT, STARTUP sequence.
968 */
969 if (cpu) {
970 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
971 goto out;
972 }
973
974 /*
975 * Wake up BSP by nmi.
976 *
977 * Register a NMI handler to help wake up CPU0.
978 */
979 boot_error = register_nmi_handler(NMI_LOCAL,
980 wakeup_cpu0_nmi, 0, "wake_cpu0");
981
982 if (!boot_error) {
983 enable_start_cpu0 = 1;
984 *cpu0_nmi_registered = 1;
985 if (apic->dest_logical == APIC_DEST_LOGICAL)
986 id = cpu0_logical_apicid;
987 else
988 id = apicid;
989 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
990 }
991
992 out:
993 preempt_enable();
994
995 return boot_error;
996 }
997
common_cpu_up(unsigned int cpu,struct task_struct * idle)998 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
999 {
1000 int ret;
1001
1002 /* Just in case we booted with a single CPU. */
1003 alternatives_enable_smp();
1004
1005 per_cpu(current_task, cpu) = idle;
1006 cpu_init_stack_canary(cpu, idle);
1007
1008 /* Initialize the interrupt stack(s) */
1009 ret = irq_init_percpu_irqstack(cpu);
1010 if (ret)
1011 return ret;
1012
1013 #ifdef CONFIG_X86_32
1014 /* Stack for startup_32 can be just as for start_secondary onwards */
1015 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1016 #else
1017 initial_gs = per_cpu_offset(cpu);
1018 #endif
1019 return 0;
1020 }
1021
1022 /*
1023 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1024 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1025 * Returns zero if CPU booted OK, else error code from
1026 * ->wakeup_secondary_cpu.
1027 */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle,int * cpu0_nmi_registered)1028 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1029 int *cpu0_nmi_registered)
1030 {
1031 /* start_ip had better be page-aligned! */
1032 unsigned long start_ip = real_mode_header->trampoline_start;
1033
1034 unsigned long boot_error = 0;
1035 unsigned long timeout;
1036
1037 idle->thread.sp = (unsigned long)task_pt_regs(idle);
1038 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1039 initial_code = (unsigned long)start_secondary;
1040 initial_stack = idle->thread.sp;
1041
1042 /* Enable the espfix hack for this CPU */
1043 init_espfix_ap(cpu);
1044
1045 /* So we see what's up */
1046 announce_cpu(cpu, apicid);
1047
1048 /*
1049 * This grunge runs the startup process for
1050 * the targeted processor.
1051 */
1052
1053 if (x86_platform.legacy.warm_reset) {
1054
1055 pr_debug("Setting warm reset code and vector.\n");
1056
1057 smpboot_setup_warm_reset_vector(start_ip);
1058 /*
1059 * Be paranoid about clearing APIC errors.
1060 */
1061 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1062 apic_write(APIC_ESR, 0);
1063 apic_read(APIC_ESR);
1064 }
1065 }
1066
1067 /*
1068 * AP might wait on cpu_callout_mask in cpu_init() with
1069 * cpu_initialized_mask set if previous attempt to online
1070 * it timed-out. Clear cpu_initialized_mask so that after
1071 * INIT/SIPI it could start with a clean state.
1072 */
1073 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1074 smp_mb();
1075
1076 /*
1077 * Wake up a CPU in difference cases:
1078 * - Use the method in the APIC driver if it's defined
1079 * Otherwise,
1080 * - Use an INIT boot APIC message for APs or NMI for BSP.
1081 */
1082 if (apic->wakeup_secondary_cpu)
1083 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1084 else
1085 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1086 cpu0_nmi_registered);
1087
1088 if (!boot_error) {
1089 /*
1090 * Wait 10s total for first sign of life from AP
1091 */
1092 boot_error = -1;
1093 timeout = jiffies + 10*HZ;
1094 while (time_before(jiffies, timeout)) {
1095 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1096 /*
1097 * Tell AP to proceed with initialization
1098 */
1099 cpumask_set_cpu(cpu, cpu_callout_mask);
1100 boot_error = 0;
1101 break;
1102 }
1103 schedule();
1104 }
1105 }
1106
1107 if (!boot_error) {
1108 /*
1109 * Wait till AP completes initial initialization
1110 */
1111 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1112 /*
1113 * Allow other tasks to run while we wait for the
1114 * AP to come online. This also gives a chance
1115 * for the MTRR work(triggered by the AP coming online)
1116 * to be completed in the stop machine context.
1117 */
1118 schedule();
1119 }
1120 }
1121
1122 if (x86_platform.legacy.warm_reset) {
1123 /*
1124 * Cleanup possible dangling ends...
1125 */
1126 smpboot_restore_warm_reset_vector();
1127 }
1128
1129 return boot_error;
1130 }
1131
native_cpu_up(unsigned int cpu,struct task_struct * tidle)1132 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1133 {
1134 int apicid = apic->cpu_present_to_apicid(cpu);
1135 int cpu0_nmi_registered = 0;
1136 unsigned long flags;
1137 int err, ret = 0;
1138
1139 lockdep_assert_irqs_enabled();
1140
1141 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1142
1143 if (apicid == BAD_APICID ||
1144 !physid_isset(apicid, phys_cpu_present_map) ||
1145 !apic->apic_id_valid(apicid)) {
1146 pr_err("%s: bad cpu %d\n", __func__, cpu);
1147 return -EINVAL;
1148 }
1149
1150 /*
1151 * Already booted CPU?
1152 */
1153 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1154 pr_debug("do_boot_cpu %d Already started\n", cpu);
1155 return -ENOSYS;
1156 }
1157
1158 /*
1159 * Save current MTRR state in case it was changed since early boot
1160 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1161 */
1162 mtrr_save_state();
1163
1164 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1165 err = cpu_check_up_prepare(cpu);
1166 if (err && err != -EBUSY)
1167 return err;
1168
1169 /* the FPU context is blank, nobody can own it */
1170 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1171
1172 err = common_cpu_up(cpu, tidle);
1173 if (err)
1174 return err;
1175
1176 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1177 if (err) {
1178 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1179 ret = -EIO;
1180 goto unreg_nmi;
1181 }
1182
1183 /*
1184 * Check TSC synchronization with the AP (keep irqs disabled
1185 * while doing so):
1186 */
1187 local_irq_save(flags);
1188 check_tsc_sync_source(cpu);
1189 local_irq_restore(flags);
1190
1191 while (!cpu_online(cpu)) {
1192 cpu_relax();
1193 touch_nmi_watchdog();
1194 }
1195
1196 unreg_nmi:
1197 /*
1198 * Clean up the nmi handler. Do this after the callin and callout sync
1199 * to avoid impact of possible long unregister time.
1200 */
1201 if (cpu0_nmi_registered)
1202 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1203
1204 return ret;
1205 }
1206
1207 /**
1208 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1209 */
arch_disable_smp_support(void)1210 void arch_disable_smp_support(void)
1211 {
1212 disable_ioapic_support();
1213 }
1214
1215 /*
1216 * Fall back to non SMP mode after errors.
1217 *
1218 * RED-PEN audit/test this more. I bet there is more state messed up here.
1219 */
disable_smp(void)1220 static __init void disable_smp(void)
1221 {
1222 pr_info("SMP disabled\n");
1223
1224 disable_ioapic_support();
1225
1226 init_cpu_present(cpumask_of(0));
1227 init_cpu_possible(cpumask_of(0));
1228
1229 if (smp_found_config)
1230 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1231 else
1232 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1233 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1234 cpumask_set_cpu(0, topology_core_cpumask(0));
1235 cpumask_set_cpu(0, topology_die_cpumask(0));
1236 }
1237
1238 /*
1239 * Various sanity checks.
1240 */
smp_sanity_check(void)1241 static void __init smp_sanity_check(void)
1242 {
1243 preempt_disable();
1244
1245 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1246 if (def_to_bigsmp && nr_cpu_ids > 8) {
1247 unsigned int cpu;
1248 unsigned nr;
1249
1250 pr_warn("More than 8 CPUs detected - skipping them\n"
1251 "Use CONFIG_X86_BIGSMP\n");
1252
1253 nr = 0;
1254 for_each_present_cpu(cpu) {
1255 if (nr >= 8)
1256 set_cpu_present(cpu, false);
1257 nr++;
1258 }
1259
1260 nr = 0;
1261 for_each_possible_cpu(cpu) {
1262 if (nr >= 8)
1263 set_cpu_possible(cpu, false);
1264 nr++;
1265 }
1266
1267 nr_cpu_ids = 8;
1268 }
1269 #endif
1270
1271 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1272 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1273 hard_smp_processor_id());
1274
1275 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1276 }
1277
1278 /*
1279 * Should not be necessary because the MP table should list the boot
1280 * CPU too, but we do it for the sake of robustness anyway.
1281 */
1282 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1283 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1284 boot_cpu_physical_apicid);
1285 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1286 }
1287 preempt_enable();
1288 }
1289
smp_cpu_index_default(void)1290 static void __init smp_cpu_index_default(void)
1291 {
1292 int i;
1293 struct cpuinfo_x86 *c;
1294
1295 for_each_possible_cpu(i) {
1296 c = &cpu_data(i);
1297 /* mark all to hotplug */
1298 c->cpu_index = nr_cpu_ids;
1299 }
1300 }
1301
smp_get_logical_apicid(void)1302 static void __init smp_get_logical_apicid(void)
1303 {
1304 if (x2apic_mode)
1305 cpu0_logical_apicid = apic_read(APIC_LDR);
1306 else
1307 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1308 }
1309
1310 /*
1311 * Prepare for SMP bootup.
1312 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1313 * for common interface support.
1314 */
native_smp_prepare_cpus(unsigned int max_cpus)1315 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1316 {
1317 unsigned int i;
1318
1319 smp_cpu_index_default();
1320
1321 /*
1322 * Setup boot CPU information
1323 */
1324 smp_store_boot_cpu_info(); /* Final full version of the data */
1325 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1326 mb();
1327
1328 for_each_possible_cpu(i) {
1329 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1330 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1331 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1332 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1333 }
1334
1335 /*
1336 * Set 'default' x86 topology, this matches default_topology() in that
1337 * it has NUMA nodes as a topology level. See also
1338 * native_smp_cpus_done().
1339 *
1340 * Must be done before set_cpus_sibling_map() is ran.
1341 */
1342 set_sched_topology(x86_topology);
1343
1344 set_cpu_sibling_map(0);
1345 init_freq_invariance(false);
1346 smp_sanity_check();
1347
1348 switch (apic_intr_mode) {
1349 case APIC_PIC:
1350 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1351 disable_smp();
1352 return;
1353 case APIC_SYMMETRIC_IO_NO_ROUTING:
1354 disable_smp();
1355 /* Setup local timer */
1356 x86_init.timers.setup_percpu_clockev();
1357 return;
1358 case APIC_VIRTUAL_WIRE:
1359 case APIC_SYMMETRIC_IO:
1360 break;
1361 }
1362
1363 /* Setup local timer */
1364 x86_init.timers.setup_percpu_clockev();
1365
1366 smp_get_logical_apicid();
1367
1368 pr_info("CPU0: ");
1369 print_cpu_info(&cpu_data(0));
1370
1371 uv_system_init();
1372
1373 set_mtrr_aps_delayed_init();
1374
1375 smp_quirk_init_udelay();
1376
1377 speculative_store_bypass_ht_init();
1378 }
1379
arch_thaw_secondary_cpus_begin(void)1380 void arch_thaw_secondary_cpus_begin(void)
1381 {
1382 set_mtrr_aps_delayed_init();
1383 }
1384
arch_thaw_secondary_cpus_end(void)1385 void arch_thaw_secondary_cpus_end(void)
1386 {
1387 mtrr_aps_init();
1388 }
1389
1390 /*
1391 * Early setup to make printk work.
1392 */
native_smp_prepare_boot_cpu(void)1393 void __init native_smp_prepare_boot_cpu(void)
1394 {
1395 int me = smp_processor_id();
1396 switch_to_new_gdt(me);
1397 /* already set me in cpu_online_mask in boot_cpu_init() */
1398 cpumask_set_cpu(me, cpu_callout_mask);
1399 cpu_set_state_online(me);
1400 native_pv_lock_init();
1401 }
1402
calculate_max_logical_packages(void)1403 void __init calculate_max_logical_packages(void)
1404 {
1405 int ncpus;
1406
1407 /*
1408 * Today neither Intel nor AMD support heterogenous systems so
1409 * extrapolate the boot cpu's data to all packages.
1410 */
1411 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1412 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1413 pr_info("Max logical packages: %u\n", __max_logical_packages);
1414 }
1415
native_smp_cpus_done(unsigned int max_cpus)1416 void __init native_smp_cpus_done(unsigned int max_cpus)
1417 {
1418 pr_debug("Boot done\n");
1419
1420 calculate_max_logical_packages();
1421
1422 if (x86_has_numa_in_package)
1423 set_sched_topology(x86_numa_in_package_topology);
1424
1425 nmi_selftest();
1426 impress_friends();
1427 mtrr_aps_init();
1428 }
1429
1430 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1431 static int __init _setup_possible_cpus(char *str)
1432 {
1433 get_option(&str, &setup_possible_cpus);
1434 return 0;
1435 }
1436 early_param("possible_cpus", _setup_possible_cpus);
1437
1438
1439 /*
1440 * cpu_possible_mask should be static, it cannot change as cpu's
1441 * are onlined, or offlined. The reason is per-cpu data-structures
1442 * are allocated by some modules at init time, and don't expect to
1443 * do this dynamically on cpu arrival/departure.
1444 * cpu_present_mask on the other hand can change dynamically.
1445 * In case when cpu_hotplug is not compiled, then we resort to current
1446 * behaviour, which is cpu_possible == cpu_present.
1447 * - Ashok Raj
1448 *
1449 * Three ways to find out the number of additional hotplug CPUs:
1450 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1451 * - The user can overwrite it with possible_cpus=NUM
1452 * - Otherwise don't reserve additional CPUs.
1453 * We do this because additional CPUs waste a lot of memory.
1454 * -AK
1455 */
prefill_possible_map(void)1456 __init void prefill_possible_map(void)
1457 {
1458 int i, possible;
1459
1460 /* No boot processor was found in mptable or ACPI MADT */
1461 if (!num_processors) {
1462 if (boot_cpu_has(X86_FEATURE_APIC)) {
1463 int apicid = boot_cpu_physical_apicid;
1464 int cpu = hard_smp_processor_id();
1465
1466 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1467
1468 /* Make sure boot cpu is enumerated */
1469 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1470 apic->apic_id_valid(apicid))
1471 generic_processor_info(apicid, boot_cpu_apic_version);
1472 }
1473
1474 if (!num_processors)
1475 num_processors = 1;
1476 }
1477
1478 i = setup_max_cpus ?: 1;
1479 if (setup_possible_cpus == -1) {
1480 possible = num_processors;
1481 #ifdef CONFIG_HOTPLUG_CPU
1482 if (setup_max_cpus)
1483 possible += disabled_cpus;
1484 #else
1485 if (possible > i)
1486 possible = i;
1487 #endif
1488 } else
1489 possible = setup_possible_cpus;
1490
1491 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1492
1493 /* nr_cpu_ids could be reduced via nr_cpus= */
1494 if (possible > nr_cpu_ids) {
1495 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1496 possible, nr_cpu_ids);
1497 possible = nr_cpu_ids;
1498 }
1499
1500 #ifdef CONFIG_HOTPLUG_CPU
1501 if (!setup_max_cpus)
1502 #endif
1503 if (possible > i) {
1504 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1505 possible, setup_max_cpus);
1506 possible = i;
1507 }
1508
1509 nr_cpu_ids = possible;
1510
1511 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1512 possible, max_t(int, possible - num_processors, 0));
1513
1514 reset_cpu_possible_mask();
1515
1516 for (i = 0; i < possible; i++)
1517 set_cpu_possible(i, true);
1518 }
1519
1520 #ifdef CONFIG_HOTPLUG_CPU
1521
1522 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1523 static void recompute_smt_state(void)
1524 {
1525 int max_threads, cpu;
1526
1527 max_threads = 0;
1528 for_each_online_cpu (cpu) {
1529 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1530
1531 if (threads > max_threads)
1532 max_threads = threads;
1533 }
1534 __max_smt_threads = max_threads;
1535 }
1536
remove_siblinginfo(int cpu)1537 static void remove_siblinginfo(int cpu)
1538 {
1539 int sibling;
1540 struct cpuinfo_x86 *c = &cpu_data(cpu);
1541
1542 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1543 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1544 /*/
1545 * last thread sibling in this cpu core going down
1546 */
1547 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1548 cpu_data(sibling).booted_cores--;
1549 }
1550
1551 for_each_cpu(sibling, topology_die_cpumask(cpu))
1552 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1553 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1554 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1555 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1556 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1557 cpumask_clear(cpu_llc_shared_mask(cpu));
1558 cpumask_clear(topology_sibling_cpumask(cpu));
1559 cpumask_clear(topology_core_cpumask(cpu));
1560 cpumask_clear(topology_die_cpumask(cpu));
1561 c->cpu_core_id = 0;
1562 c->booted_cores = 0;
1563 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1564 recompute_smt_state();
1565 }
1566
remove_cpu_from_maps(int cpu)1567 static void remove_cpu_from_maps(int cpu)
1568 {
1569 set_cpu_online(cpu, false);
1570 cpumask_clear_cpu(cpu, cpu_callout_mask);
1571 cpumask_clear_cpu(cpu, cpu_callin_mask);
1572 /* was set by cpu_init() */
1573 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1574 numa_remove_cpu(cpu);
1575 }
1576
cpu_disable_common(void)1577 void cpu_disable_common(void)
1578 {
1579 int cpu = smp_processor_id();
1580
1581 remove_siblinginfo(cpu);
1582
1583 /* It's now safe to remove this processor from the online map */
1584 lock_vector_lock();
1585 remove_cpu_from_maps(cpu);
1586 unlock_vector_lock();
1587 fixup_irqs();
1588 lapic_offline();
1589 }
1590
native_cpu_disable(void)1591 int native_cpu_disable(void)
1592 {
1593 int ret;
1594
1595 ret = lapic_can_unplug_cpu();
1596 if (ret)
1597 return ret;
1598
1599 cpu_disable_common();
1600
1601 /*
1602 * Disable the local APIC. Otherwise IPI broadcasts will reach
1603 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1604 * messages.
1605 *
1606 * Disabling the APIC must happen after cpu_disable_common()
1607 * which invokes fixup_irqs().
1608 *
1609 * Disabling the APIC preserves already set bits in IRR, but
1610 * an interrupt arriving after disabling the local APIC does not
1611 * set the corresponding IRR bit.
1612 *
1613 * fixup_irqs() scans IRR for set bits so it can raise a not
1614 * yet handled interrupt on the new destination CPU via an IPI
1615 * but obviously it can't do so for IRR bits which are not set.
1616 * IOW, interrupts arriving after disabling the local APIC will
1617 * be lost.
1618 */
1619 apic_soft_disable();
1620
1621 return 0;
1622 }
1623
common_cpu_die(unsigned int cpu)1624 int common_cpu_die(unsigned int cpu)
1625 {
1626 int ret = 0;
1627
1628 /* We don't do anything here: idle task is faking death itself. */
1629
1630 /* They ack this in play_dead() by setting CPU_DEAD */
1631 if (cpu_wait_death(cpu, 5)) {
1632 if (system_state == SYSTEM_RUNNING)
1633 pr_info("CPU %u is now offline\n", cpu);
1634 } else {
1635 pr_err("CPU %u didn't die...\n", cpu);
1636 ret = -1;
1637 }
1638
1639 return ret;
1640 }
1641
native_cpu_die(unsigned int cpu)1642 void native_cpu_die(unsigned int cpu)
1643 {
1644 common_cpu_die(cpu);
1645 }
1646
play_dead_common(void)1647 void play_dead_common(void)
1648 {
1649 idle_task_exit();
1650
1651 /* Ack it */
1652 (void)cpu_report_death();
1653
1654 /*
1655 * With physical CPU hotplug, we should halt the cpu
1656 */
1657 local_irq_disable();
1658 }
1659
1660 /**
1661 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1662 *
1663 * If NMI wants to wake up CPU0, start CPU0.
1664 */
cond_wakeup_cpu0(void)1665 void cond_wakeup_cpu0(void)
1666 {
1667 if (smp_processor_id() == 0 && enable_start_cpu0)
1668 start_cpu0();
1669 }
1670 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1671
1672 /*
1673 * We need to flush the caches before going to sleep, lest we have
1674 * dirty data in our caches when we come back up.
1675 */
mwait_play_dead(void)1676 static inline void mwait_play_dead(void)
1677 {
1678 unsigned int eax, ebx, ecx, edx;
1679 unsigned int highest_cstate = 0;
1680 unsigned int highest_subcstate = 0;
1681 void *mwait_ptr;
1682 int i;
1683
1684 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1685 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1686 return;
1687 if (!this_cpu_has(X86_FEATURE_MWAIT))
1688 return;
1689 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1690 return;
1691 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1692 return;
1693
1694 eax = CPUID_MWAIT_LEAF;
1695 ecx = 0;
1696 native_cpuid(&eax, &ebx, &ecx, &edx);
1697
1698 /*
1699 * eax will be 0 if EDX enumeration is not valid.
1700 * Initialized below to cstate, sub_cstate value when EDX is valid.
1701 */
1702 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1703 eax = 0;
1704 } else {
1705 edx >>= MWAIT_SUBSTATE_SIZE;
1706 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1707 if (edx & MWAIT_SUBSTATE_MASK) {
1708 highest_cstate = i;
1709 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1710 }
1711 }
1712 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1713 (highest_subcstate - 1);
1714 }
1715
1716 /*
1717 * This should be a memory location in a cache line which is
1718 * unlikely to be touched by other processors. The actual
1719 * content is immaterial as it is not actually modified in any way.
1720 */
1721 mwait_ptr = ¤t_thread_info()->flags;
1722
1723 wbinvd();
1724
1725 while (1) {
1726 /*
1727 * The CLFLUSH is a workaround for erratum AAI65 for
1728 * the Xeon 7400 series. It's not clear it is actually
1729 * needed, but it should be harmless in either case.
1730 * The WBINVD is insufficient due to the spurious-wakeup
1731 * case where we return around the loop.
1732 */
1733 mb();
1734 clflush(mwait_ptr);
1735 mb();
1736 __monitor(mwait_ptr, 0, 0);
1737 mb();
1738 __mwait(eax, 0);
1739
1740 cond_wakeup_cpu0();
1741 }
1742 }
1743
hlt_play_dead(void)1744 void hlt_play_dead(void)
1745 {
1746 if (__this_cpu_read(cpu_info.x86) >= 4)
1747 wbinvd();
1748
1749 while (1) {
1750 native_halt();
1751
1752 cond_wakeup_cpu0();
1753 }
1754 }
1755
native_play_dead(void)1756 void native_play_dead(void)
1757 {
1758 play_dead_common();
1759 tboot_shutdown(TB_SHUTDOWN_WFS);
1760
1761 mwait_play_dead(); /* Only returns on failure */
1762 if (cpuidle_play_dead())
1763 hlt_play_dead();
1764 }
1765
1766 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1767 int native_cpu_disable(void)
1768 {
1769 return -ENOSYS;
1770 }
1771
native_cpu_die(unsigned int cpu)1772 void native_cpu_die(unsigned int cpu)
1773 {
1774 /* We said "no" in __cpu_disable */
1775 BUG();
1776 }
1777
native_play_dead(void)1778 void native_play_dead(void)
1779 {
1780 BUG();
1781 }
1782
1783 #endif
1784
1785 #ifdef CONFIG_X86_64
1786 /*
1787 * APERF/MPERF frequency ratio computation.
1788 *
1789 * The scheduler wants to do frequency invariant accounting and needs a <1
1790 * ratio to account for the 'current' frequency, corresponding to
1791 * freq_curr / freq_max.
1792 *
1793 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1794 * our P-state setting is little more than a request/hint, we need to observe
1795 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1796 * interval after discarding idle time. This is given by:
1797 *
1798 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1799 *
1800 * where freq_base is the max non-turbo P-state.
1801 *
1802 * The freq_max term has to be set to a somewhat arbitrary value, because we
1803 * can't know which turbo states will be available at a given point in time:
1804 * it all depends on the thermal headroom of the entire package. We set it to
1805 * the turbo level with 4 cores active.
1806 *
1807 * Benchmarks show that's a good compromise between the 1C turbo ratio
1808 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1809 * which would ignore the entire turbo range (a conspicuous part, making
1810 * freq_curr/freq_max always maxed out).
1811 *
1812 * An exception to the heuristic above is the Atom uarch, where we choose the
1813 * highest turbo level for freq_max since Atom's are generally oriented towards
1814 * power efficiency.
1815 *
1816 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1817 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1818 */
1819
1820 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1821
1822 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1823 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1824 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1825 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1826
arch_set_max_freq_ratio(bool turbo_disabled)1827 void arch_set_max_freq_ratio(bool turbo_disabled)
1828 {
1829 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1830 arch_turbo_freq_ratio;
1831 }
1832 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1833
turbo_disabled(void)1834 static bool turbo_disabled(void)
1835 {
1836 u64 misc_en;
1837 int err;
1838
1839 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1840 if (err)
1841 return false;
1842
1843 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1844 }
1845
slv_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1846 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1847 {
1848 int err;
1849
1850 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1851 if (err)
1852 return false;
1853
1854 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1855 if (err)
1856 return false;
1857
1858 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1859 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1860
1861 return true;
1862 }
1863
1864 #include <asm/cpu_device_id.h>
1865 #include <asm/intel-family.h>
1866
1867 #define X86_MATCH(model) \
1868 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1869 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1870
1871 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1872 X86_MATCH(XEON_PHI_KNL),
1873 X86_MATCH(XEON_PHI_KNM),
1874 {}
1875 };
1876
1877 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1878 X86_MATCH(SKYLAKE_X),
1879 {}
1880 };
1881
1882 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1883 X86_MATCH(ATOM_GOLDMONT),
1884 X86_MATCH(ATOM_GOLDMONT_D),
1885 X86_MATCH(ATOM_GOLDMONT_PLUS),
1886 {}
1887 };
1888
knl_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int num_delta_fratio)1889 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1890 int num_delta_fratio)
1891 {
1892 int fratio, delta_fratio, found;
1893 int err, i;
1894 u64 msr;
1895
1896 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1897 if (err)
1898 return false;
1899
1900 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1901
1902 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1903 if (err)
1904 return false;
1905
1906 fratio = (msr >> 8) & 0xFF;
1907 i = 16;
1908 found = 0;
1909 do {
1910 if (found >= num_delta_fratio) {
1911 *turbo_freq = fratio;
1912 return true;
1913 }
1914
1915 delta_fratio = (msr >> (i + 5)) & 0x7;
1916
1917 if (delta_fratio) {
1918 found += 1;
1919 fratio -= delta_fratio;
1920 }
1921
1922 i += 8;
1923 } while (i < 64);
1924
1925 return true;
1926 }
1927
skx_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int size)1928 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1929 {
1930 u64 ratios, counts;
1931 u32 group_size;
1932 int err, i;
1933
1934 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1935 if (err)
1936 return false;
1937
1938 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1939
1940 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1941 if (err)
1942 return false;
1943
1944 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1945 if (err)
1946 return false;
1947
1948 for (i = 0; i < 64; i += 8) {
1949 group_size = (counts >> i) & 0xFF;
1950 if (group_size >= size) {
1951 *turbo_freq = (ratios >> i) & 0xFF;
1952 return true;
1953 }
1954 }
1955
1956 return false;
1957 }
1958
core_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1959 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1960 {
1961 u64 msr;
1962 int err;
1963
1964 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1965 if (err)
1966 return false;
1967
1968 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1969 if (err)
1970 return false;
1971
1972 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1973 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
1974
1975 /* The CPU may have less than 4 cores */
1976 if (!*turbo_freq)
1977 *turbo_freq = msr & 0xFF; /* 1C turbo */
1978
1979 return true;
1980 }
1981
intel_set_max_freq_ratio(void)1982 static bool intel_set_max_freq_ratio(void)
1983 {
1984 u64 base_freq, turbo_freq;
1985 u64 turbo_ratio;
1986
1987 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1988 goto out;
1989
1990 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1991 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1992 goto out;
1993
1994 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
1995 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1996 goto out;
1997
1998 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
1999 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2000 goto out;
2001
2002 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2003 goto out;
2004
2005 return false;
2006
2007 out:
2008 /*
2009 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2010 * but then fill all MSR's with zeroes.
2011 * Some CPUs have turbo boost but don't declare any turbo ratio
2012 * in MSR_TURBO_RATIO_LIMIT.
2013 */
2014 if (!base_freq || !turbo_freq) {
2015 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2016 return false;
2017 }
2018
2019 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2020 if (!turbo_ratio) {
2021 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2022 return false;
2023 }
2024
2025 arch_turbo_freq_ratio = turbo_ratio;
2026 arch_set_max_freq_ratio(turbo_disabled());
2027
2028 return true;
2029 }
2030
init_counter_refs(void)2031 static void init_counter_refs(void)
2032 {
2033 u64 aperf, mperf;
2034
2035 rdmsrl(MSR_IA32_APERF, aperf);
2036 rdmsrl(MSR_IA32_MPERF, mperf);
2037
2038 this_cpu_write(arch_prev_aperf, aperf);
2039 this_cpu_write(arch_prev_mperf, mperf);
2040 }
2041
init_freq_invariance(bool secondary)2042 static void init_freq_invariance(bool secondary)
2043 {
2044 bool ret = false;
2045
2046 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2047 return;
2048
2049 if (secondary) {
2050 if (static_branch_likely(&arch_scale_freq_key)) {
2051 init_counter_refs();
2052 }
2053 return;
2054 }
2055
2056 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2057 ret = intel_set_max_freq_ratio();
2058
2059 if (ret) {
2060 init_counter_refs();
2061 static_branch_enable(&arch_scale_freq_key);
2062 } else {
2063 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2064 }
2065 }
2066
disable_freq_invariance_workfn(struct work_struct * work)2067 static void disable_freq_invariance_workfn(struct work_struct *work)
2068 {
2069 static_branch_disable(&arch_scale_freq_key);
2070 }
2071
2072 static DECLARE_WORK(disable_freq_invariance_work,
2073 disable_freq_invariance_workfn);
2074
2075 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2076
arch_scale_freq_tick(void)2077 void arch_scale_freq_tick(void)
2078 {
2079 u64 freq_scale = SCHED_CAPACITY_SCALE;
2080 u64 aperf, mperf;
2081 u64 acnt, mcnt;
2082
2083 if (!arch_scale_freq_invariant())
2084 return;
2085
2086 rdmsrl(MSR_IA32_APERF, aperf);
2087 rdmsrl(MSR_IA32_MPERF, mperf);
2088
2089 acnt = aperf - this_cpu_read(arch_prev_aperf);
2090 mcnt = mperf - this_cpu_read(arch_prev_mperf);
2091
2092 this_cpu_write(arch_prev_aperf, aperf);
2093 this_cpu_write(arch_prev_mperf, mperf);
2094
2095 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2096 goto error;
2097
2098 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2099 goto error;
2100
2101 freq_scale = div64_u64(acnt, mcnt);
2102 if (!freq_scale)
2103 goto error;
2104
2105 if (freq_scale > SCHED_CAPACITY_SCALE)
2106 freq_scale = SCHED_CAPACITY_SCALE;
2107
2108 this_cpu_write(arch_freq_scale, freq_scale);
2109 return;
2110
2111 error:
2112 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2113 schedule_work(&disable_freq_invariance_work);
2114 }
2115 #else
init_freq_invariance(bool secondary)2116 static inline void init_freq_invariance(bool secondary)
2117 {
2118 }
2119 #endif /* CONFIG_X86_64 */
2120