1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include <linux/namei.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34 #include "discard.h"
35
36 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
37 [BTRFS_RAID_RAID10] = {
38 .sub_stripes = 2,
39 .dev_stripes = 1,
40 .devs_max = 0, /* 0 == as many as possible */
41 .devs_min = 4,
42 .tolerated_failures = 1,
43 .devs_increment = 2,
44 .ncopies = 2,
45 .nparity = 0,
46 .raid_name = "raid10",
47 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
48 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 },
50 [BTRFS_RAID_RAID1] = {
51 .sub_stripes = 1,
52 .dev_stripes = 1,
53 .devs_max = 2,
54 .devs_min = 2,
55 .tolerated_failures = 1,
56 .devs_increment = 2,
57 .ncopies = 2,
58 .nparity = 0,
59 .raid_name = "raid1",
60 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
61 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 },
63 [BTRFS_RAID_RAID1C3] = {
64 .sub_stripes = 1,
65 .dev_stripes = 1,
66 .devs_max = 3,
67 .devs_min = 3,
68 .tolerated_failures = 2,
69 .devs_increment = 3,
70 .ncopies = 3,
71 .nparity = 0,
72 .raid_name = "raid1c3",
73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
74 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 },
76 [BTRFS_RAID_RAID1C4] = {
77 .sub_stripes = 1,
78 .dev_stripes = 1,
79 .devs_max = 4,
80 .devs_min = 4,
81 .tolerated_failures = 3,
82 .devs_increment = 4,
83 .ncopies = 4,
84 .nparity = 0,
85 .raid_name = "raid1c4",
86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
87 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 },
89 [BTRFS_RAID_DUP] = {
90 .sub_stripes = 1,
91 .dev_stripes = 2,
92 .devs_max = 1,
93 .devs_min = 1,
94 .tolerated_failures = 0,
95 .devs_increment = 1,
96 .ncopies = 2,
97 .nparity = 0,
98 .raid_name = "dup",
99 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
100 .mindev_error = 0,
101 },
102 [BTRFS_RAID_RAID0] = {
103 .sub_stripes = 1,
104 .dev_stripes = 1,
105 .devs_max = 0,
106 .devs_min = 2,
107 .tolerated_failures = 0,
108 .devs_increment = 1,
109 .ncopies = 1,
110 .nparity = 0,
111 .raid_name = "raid0",
112 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
113 .mindev_error = 0,
114 },
115 [BTRFS_RAID_SINGLE] = {
116 .sub_stripes = 1,
117 .dev_stripes = 1,
118 .devs_max = 1,
119 .devs_min = 1,
120 .tolerated_failures = 0,
121 .devs_increment = 1,
122 .ncopies = 1,
123 .nparity = 0,
124 .raid_name = "single",
125 .bg_flag = 0,
126 .mindev_error = 0,
127 },
128 [BTRFS_RAID_RAID5] = {
129 .sub_stripes = 1,
130 .dev_stripes = 1,
131 .devs_max = 0,
132 .devs_min = 2,
133 .tolerated_failures = 1,
134 .devs_increment = 1,
135 .ncopies = 1,
136 .nparity = 1,
137 .raid_name = "raid5",
138 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
139 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 },
141 [BTRFS_RAID_RAID6] = {
142 .sub_stripes = 1,
143 .dev_stripes = 1,
144 .devs_max = 0,
145 .devs_min = 3,
146 .tolerated_failures = 2,
147 .devs_increment = 1,
148 .ncopies = 1,
149 .nparity = 2,
150 .raid_name = "raid6",
151 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
152 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
153 },
154 };
155
btrfs_bg_type_to_raid_name(u64 flags)156 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 {
158 const int index = btrfs_bg_flags_to_raid_index(flags);
159
160 if (index >= BTRFS_NR_RAID_TYPES)
161 return NULL;
162
163 return btrfs_raid_array[index].raid_name;
164 }
165
166 /*
167 * Fill @buf with textual description of @bg_flags, no more than @size_buf
168 * bytes including terminating null byte.
169 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)170 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 {
172 int i;
173 int ret;
174 char *bp = buf;
175 u64 flags = bg_flags;
176 u32 size_bp = size_buf;
177
178 if (!flags) {
179 strcpy(bp, "NONE");
180 return;
181 }
182
183 #define DESCRIBE_FLAG(flag, desc) \
184 do { \
185 if (flags & (flag)) { \
186 ret = snprintf(bp, size_bp, "%s|", (desc)); \
187 if (ret < 0 || ret >= size_bp) \
188 goto out_overflow; \
189 size_bp -= ret; \
190 bp += ret; \
191 flags &= ~(flag); \
192 } \
193 } while (0)
194
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
197 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198
199 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
200 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
201 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
202 btrfs_raid_array[i].raid_name);
203 #undef DESCRIBE_FLAG
204
205 if (flags) {
206 ret = snprintf(bp, size_bp, "0x%llx|", flags);
207 size_bp -= ret;
208 }
209
210 if (size_bp < size_buf)
211 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
212
213 /*
214 * The text is trimmed, it's up to the caller to provide sufficiently
215 * large buffer
216 */
217 out_overflow:;
218 }
219
220 static int init_first_rw_device(struct btrfs_trans_handle *trans);
221 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
222 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
223 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
224 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
225 enum btrfs_map_op op,
226 u64 logical, u64 *length,
227 struct btrfs_bio **bbio_ret,
228 int mirror_num, int need_raid_map);
229
230 /*
231 * Device locking
232 * ==============
233 *
234 * There are several mutexes that protect manipulation of devices and low-level
235 * structures like chunks but not block groups, extents or files
236 *
237 * uuid_mutex (global lock)
238 * ------------------------
239 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
240 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
241 * device) or requested by the device= mount option
242 *
243 * the mutex can be very coarse and can cover long-running operations
244 *
245 * protects: updates to fs_devices counters like missing devices, rw devices,
246 * seeding, structure cloning, opening/closing devices at mount/umount time
247 *
248 * global::fs_devs - add, remove, updates to the global list
249 *
250 * does not protect: manipulation of the fs_devices::devices list in general
251 * but in mount context it could be used to exclude list modifications by eg.
252 * scan ioctl
253 *
254 * btrfs_device::name - renames (write side), read is RCU
255 *
256 * fs_devices::device_list_mutex (per-fs, with RCU)
257 * ------------------------------------------------
258 * protects updates to fs_devices::devices, ie. adding and deleting
259 *
260 * simple list traversal with read-only actions can be done with RCU protection
261 *
262 * may be used to exclude some operations from running concurrently without any
263 * modifications to the list (see write_all_supers)
264 *
265 * Is not required at mount and close times, because our device list is
266 * protected by the uuid_mutex at that point.
267 *
268 * balance_mutex
269 * -------------
270 * protects balance structures (status, state) and context accessed from
271 * several places (internally, ioctl)
272 *
273 * chunk_mutex
274 * -----------
275 * protects chunks, adding or removing during allocation, trim or when a new
276 * device is added/removed. Additionally it also protects post_commit_list of
277 * individual devices, since they can be added to the transaction's
278 * post_commit_list only with chunk_mutex held.
279 *
280 * cleaner_mutex
281 * -------------
282 * a big lock that is held by the cleaner thread and prevents running subvolume
283 * cleaning together with relocation or delayed iputs
284 *
285 *
286 * Lock nesting
287 * ============
288 *
289 * uuid_mutex
290 * device_list_mutex
291 * chunk_mutex
292 * balance_mutex
293 *
294 *
295 * Exclusive operations
296 * ====================
297 *
298 * Maintains the exclusivity of the following operations that apply to the
299 * whole filesystem and cannot run in parallel.
300 *
301 * - Balance (*)
302 * - Device add
303 * - Device remove
304 * - Device replace (*)
305 * - Resize
306 *
307 * The device operations (as above) can be in one of the following states:
308 *
309 * - Running state
310 * - Paused state
311 * - Completed state
312 *
313 * Only device operations marked with (*) can go into the Paused state for the
314 * following reasons:
315 *
316 * - ioctl (only Balance can be Paused through ioctl)
317 * - filesystem remounted as read-only
318 * - filesystem unmounted and mounted as read-only
319 * - system power-cycle and filesystem mounted as read-only
320 * - filesystem or device errors leading to forced read-only
321 *
322 * The status of exclusive operation is set and cleared atomically.
323 * During the course of Paused state, fs_info::exclusive_operation remains set.
324 * A device operation in Paused or Running state can be canceled or resumed
325 * either by ioctl (Balance only) or when remounted as read-write.
326 * The exclusive status is cleared when the device operation is canceled or
327 * completed.
328 */
329
330 DEFINE_MUTEX(uuid_mutex);
331 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)332 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
333 {
334 return &fs_uuids;
335 }
336
337 /*
338 * alloc_fs_devices - allocate struct btrfs_fs_devices
339 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
340 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
341 *
342 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
343 * The returned struct is not linked onto any lists and can be destroyed with
344 * kfree() right away.
345 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)346 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
347 const u8 *metadata_fsid)
348 {
349 struct btrfs_fs_devices *fs_devs;
350
351 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
352 if (!fs_devs)
353 return ERR_PTR(-ENOMEM);
354
355 mutex_init(&fs_devs->device_list_mutex);
356
357 INIT_LIST_HEAD(&fs_devs->devices);
358 INIT_LIST_HEAD(&fs_devs->alloc_list);
359 INIT_LIST_HEAD(&fs_devs->fs_list);
360 INIT_LIST_HEAD(&fs_devs->seed_list);
361 if (fsid)
362 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
363
364 if (metadata_fsid)
365 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
366 else if (fsid)
367 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
368
369 return fs_devs;
370 }
371
btrfs_free_device(struct btrfs_device * device)372 void btrfs_free_device(struct btrfs_device *device)
373 {
374 WARN_ON(!list_empty(&device->post_commit_list));
375 rcu_string_free(device->name);
376 extent_io_tree_release(&device->alloc_state);
377 bio_put(device->flush_bio);
378 kfree(device);
379 }
380
free_fs_devices(struct btrfs_fs_devices * fs_devices)381 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
382 {
383 struct btrfs_device *device;
384 WARN_ON(fs_devices->opened);
385 while (!list_empty(&fs_devices->devices)) {
386 device = list_entry(fs_devices->devices.next,
387 struct btrfs_device, dev_list);
388 list_del(&device->dev_list);
389 btrfs_free_device(device);
390 }
391 kfree(fs_devices);
392 }
393
btrfs_cleanup_fs_uuids(void)394 void __exit btrfs_cleanup_fs_uuids(void)
395 {
396 struct btrfs_fs_devices *fs_devices;
397
398 while (!list_empty(&fs_uuids)) {
399 fs_devices = list_entry(fs_uuids.next,
400 struct btrfs_fs_devices, fs_list);
401 list_del(&fs_devices->fs_list);
402 free_fs_devices(fs_devices);
403 }
404 }
405
406 /*
407 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
408 * Returned struct is not linked onto any lists and must be destroyed using
409 * btrfs_free_device.
410 */
__alloc_device(struct btrfs_fs_info * fs_info)411 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info)
412 {
413 struct btrfs_device *dev;
414
415 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
416 if (!dev)
417 return ERR_PTR(-ENOMEM);
418
419 /*
420 * Preallocate a bio that's always going to be used for flushing device
421 * barriers and matches the device lifespan
422 */
423 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
424 if (!dev->flush_bio) {
425 kfree(dev);
426 return ERR_PTR(-ENOMEM);
427 }
428
429 INIT_LIST_HEAD(&dev->dev_list);
430 INIT_LIST_HEAD(&dev->dev_alloc_list);
431 INIT_LIST_HEAD(&dev->post_commit_list);
432
433 atomic_set(&dev->reada_in_flight, 0);
434 atomic_set(&dev->dev_stats_ccnt, 0);
435 btrfs_device_data_ordered_init(dev);
436 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
437 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
438 extent_io_tree_init(fs_info, &dev->alloc_state,
439 IO_TREE_DEVICE_ALLOC_STATE, NULL);
440
441 return dev;
442 }
443
find_fsid(const u8 * fsid,const u8 * metadata_fsid)444 static noinline struct btrfs_fs_devices *find_fsid(
445 const u8 *fsid, const u8 *metadata_fsid)
446 {
447 struct btrfs_fs_devices *fs_devices;
448
449 ASSERT(fsid);
450
451 /* Handle non-split brain cases */
452 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
453 if (metadata_fsid) {
454 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
455 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
456 BTRFS_FSID_SIZE) == 0)
457 return fs_devices;
458 } else {
459 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
460 return fs_devices;
461 }
462 }
463 return NULL;
464 }
465
find_fsid_with_metadata_uuid(struct btrfs_super_block * disk_super)466 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
467 struct btrfs_super_block *disk_super)
468 {
469
470 struct btrfs_fs_devices *fs_devices;
471
472 /*
473 * Handle scanned device having completed its fsid change but
474 * belonging to a fs_devices that was created by first scanning
475 * a device which didn't have its fsid/metadata_uuid changed
476 * at all and the CHANGING_FSID_V2 flag set.
477 */
478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
479 if (fs_devices->fsid_change &&
480 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
481 BTRFS_FSID_SIZE) == 0 &&
482 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
483 BTRFS_FSID_SIZE) == 0) {
484 return fs_devices;
485 }
486 }
487 /*
488 * Handle scanned device having completed its fsid change but
489 * belonging to a fs_devices that was created by a device that
490 * has an outdated pair of fsid/metadata_uuid and
491 * CHANGING_FSID_V2 flag set.
492 */
493 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
494 if (fs_devices->fsid_change &&
495 memcmp(fs_devices->metadata_uuid,
496 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
497 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
498 BTRFS_FSID_SIZE) == 0) {
499 return fs_devices;
500 }
501 }
502
503 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
504 }
505
506
507 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct btrfs_super_block ** disk_super)508 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
509 int flush, struct block_device **bdev,
510 struct btrfs_super_block **disk_super)
511 {
512 int ret;
513
514 *bdev = blkdev_get_by_path(device_path, flags, holder);
515
516 if (IS_ERR(*bdev)) {
517 ret = PTR_ERR(*bdev);
518 goto error;
519 }
520
521 if (flush)
522 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
523 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
524 if (ret) {
525 blkdev_put(*bdev, flags);
526 goto error;
527 }
528 invalidate_bdev(*bdev);
529 *disk_super = btrfs_read_dev_super(*bdev);
530 if (IS_ERR(*disk_super)) {
531 ret = PTR_ERR(*disk_super);
532 blkdev_put(*bdev, flags);
533 goto error;
534 }
535
536 return 0;
537
538 error:
539 *bdev = NULL;
540 return ret;
541 }
542
543 /*
544 * Check if the device in the path matches the device in the given struct device.
545 *
546 * Returns:
547 * true If it is the same device.
548 * false If it is not the same device or on error.
549 */
device_matched(const struct btrfs_device * device,const char * path)550 static bool device_matched(const struct btrfs_device *device, const char *path)
551 {
552 char *device_name;
553 struct block_device *bdev_old;
554 struct block_device *bdev_new;
555
556 /*
557 * If we are looking for a device with the matching dev_t, then skip
558 * device without a name (a missing device).
559 */
560 if (!device->name)
561 return false;
562
563 device_name = kzalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
564 if (!device_name)
565 return false;
566
567 rcu_read_lock();
568 scnprintf(device_name, BTRFS_PATH_NAME_MAX, "%s", rcu_str_deref(device->name));
569 rcu_read_unlock();
570
571 bdev_old = lookup_bdev(device_name);
572 kfree(device_name);
573 if (IS_ERR(bdev_old))
574 return false;
575
576 bdev_new = lookup_bdev(path);
577 if (IS_ERR(bdev_new))
578 return false;
579
580 if (bdev_old == bdev_new)
581 return true;
582
583 return false;
584 }
585
586 /*
587 * Search and remove all stale (devices which are not mounted) devices.
588 * When both inputs are NULL, it will search and release all stale devices.
589 * path: Optional. When provided will it release all unmounted devices
590 * matching this path only.
591 * skip_dev: Optional. Will skip this device when searching for the stale
592 * devices.
593 * Return: 0 for success or if @path is NULL.
594 * -EBUSY if @path is a mounted device.
595 * -ENOENT if @path does not match any device in the list.
596 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)597 static int btrfs_free_stale_devices(const char *path,
598 struct btrfs_device *skip_device)
599 {
600 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
601 struct btrfs_device *device, *tmp_device;
602 int ret = 0;
603
604 lockdep_assert_held(&uuid_mutex);
605
606 if (path)
607 ret = -ENOENT;
608
609 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
610
611 mutex_lock(&fs_devices->device_list_mutex);
612 list_for_each_entry_safe(device, tmp_device,
613 &fs_devices->devices, dev_list) {
614 if (skip_device && skip_device == device)
615 continue;
616 if (path && !device_matched(device, path))
617 continue;
618 if (fs_devices->opened) {
619 /* for an already deleted device return 0 */
620 if (path && ret != 0)
621 ret = -EBUSY;
622 break;
623 }
624
625 /* delete the stale device */
626 fs_devices->num_devices--;
627 list_del(&device->dev_list);
628 btrfs_free_device(device);
629
630 ret = 0;
631 }
632 mutex_unlock(&fs_devices->device_list_mutex);
633
634 if (fs_devices->num_devices == 0) {
635 btrfs_sysfs_remove_fsid(fs_devices);
636 list_del(&fs_devices->fs_list);
637 free_fs_devices(fs_devices);
638 }
639 }
640
641 return ret;
642 }
643
644 /*
645 * This is only used on mount, and we are protected from competing things
646 * messing with our fs_devices by the uuid_mutex, thus we do not need the
647 * fs_devices->device_list_mutex here.
648 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)649 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
650 struct btrfs_device *device, fmode_t flags,
651 void *holder)
652 {
653 struct request_queue *q;
654 struct block_device *bdev;
655 struct btrfs_super_block *disk_super;
656 u64 devid;
657 int ret;
658
659 if (device->bdev)
660 return -EINVAL;
661 if (!device->name)
662 return -EINVAL;
663
664 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
665 &bdev, &disk_super);
666 if (ret)
667 return ret;
668
669 devid = btrfs_stack_device_id(&disk_super->dev_item);
670 if (devid != device->devid)
671 goto error_free_page;
672
673 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
674 goto error_free_page;
675
676 device->generation = btrfs_super_generation(disk_super);
677
678 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
679 if (btrfs_super_incompat_flags(disk_super) &
680 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
681 pr_err(
682 "BTRFS: Invalid seeding and uuid-changed device detected\n");
683 goto error_free_page;
684 }
685
686 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
687 fs_devices->seeding = true;
688 } else {
689 if (bdev_read_only(bdev))
690 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 else
692 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
693 }
694
695 q = bdev_get_queue(bdev);
696 if (!blk_queue_nonrot(q))
697 fs_devices->rotating = true;
698
699 device->bdev = bdev;
700 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
701 device->mode = flags;
702
703 fs_devices->open_devices++;
704 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
705 device->devid != BTRFS_DEV_REPLACE_DEVID) {
706 fs_devices->rw_devices++;
707 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
708 }
709 btrfs_release_disk_super(disk_super);
710
711 return 0;
712
713 error_free_page:
714 btrfs_release_disk_super(disk_super);
715 blkdev_put(bdev, flags);
716
717 return -EINVAL;
718 }
719
720 /*
721 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
722 * being created with a disk that has already completed its fsid change. Such
723 * disk can belong to an fs which has its FSID changed or to one which doesn't.
724 * Handle both cases here.
725 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)726 static struct btrfs_fs_devices *find_fsid_inprogress(
727 struct btrfs_super_block *disk_super)
728 {
729 struct btrfs_fs_devices *fs_devices;
730
731 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
732 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
733 BTRFS_FSID_SIZE) != 0 &&
734 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
735 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
736 return fs_devices;
737 }
738 }
739
740 return find_fsid(disk_super->fsid, NULL);
741 }
742
743
find_fsid_changed(struct btrfs_super_block * disk_super)744 static struct btrfs_fs_devices *find_fsid_changed(
745 struct btrfs_super_block *disk_super)
746 {
747 struct btrfs_fs_devices *fs_devices;
748
749 /*
750 * Handles the case where scanned device is part of an fs that had
751 * multiple successful changes of FSID but curently device didn't
752 * observe it. Meaning our fsid will be different than theirs. We need
753 * to handle two subcases :
754 * 1 - The fs still continues to have different METADATA/FSID uuids.
755 * 2 - The fs is switched back to its original FSID (METADATA/FSID
756 * are equal).
757 */
758 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
759 /* Changed UUIDs */
760 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
761 BTRFS_FSID_SIZE) != 0 &&
762 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
763 BTRFS_FSID_SIZE) == 0 &&
764 memcmp(fs_devices->fsid, disk_super->fsid,
765 BTRFS_FSID_SIZE) != 0)
766 return fs_devices;
767
768 /* Unchanged UUIDs */
769 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
770 BTRFS_FSID_SIZE) == 0 &&
771 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
772 BTRFS_FSID_SIZE) == 0)
773 return fs_devices;
774 }
775
776 return NULL;
777 }
778
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)779 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
780 struct btrfs_super_block *disk_super)
781 {
782 struct btrfs_fs_devices *fs_devices;
783
784 /*
785 * Handle the case where the scanned device is part of an fs whose last
786 * metadata UUID change reverted it to the original FSID. At the same
787 * time * fs_devices was first created by another constitutent device
788 * which didn't fully observe the operation. This results in an
789 * btrfs_fs_devices created with metadata/fsid different AND
790 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
791 * fs_devices equal to the FSID of the disk.
792 */
793 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
794 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
795 BTRFS_FSID_SIZE) != 0 &&
796 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
797 BTRFS_FSID_SIZE) == 0 &&
798 fs_devices->fsid_change)
799 return fs_devices;
800 }
801
802 return NULL;
803 }
804 /*
805 * Add new device to list of registered devices
806 *
807 * Returns:
808 * device pointer which was just added or updated when successful
809 * error pointer when failed
810 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)811 static noinline struct btrfs_device *device_list_add(const char *path,
812 struct btrfs_super_block *disk_super,
813 bool *new_device_added)
814 {
815 struct btrfs_device *device;
816 struct btrfs_fs_devices *fs_devices = NULL;
817 struct rcu_string *name;
818 u64 found_transid = btrfs_super_generation(disk_super);
819 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
820 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
821 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
822 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
823 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
824
825 if (fsid_change_in_progress) {
826 if (!has_metadata_uuid)
827 fs_devices = find_fsid_inprogress(disk_super);
828 else
829 fs_devices = find_fsid_changed(disk_super);
830 } else if (has_metadata_uuid) {
831 fs_devices = find_fsid_with_metadata_uuid(disk_super);
832 } else {
833 fs_devices = find_fsid_reverted_metadata(disk_super);
834 if (!fs_devices)
835 fs_devices = find_fsid(disk_super->fsid, NULL);
836 }
837
838
839 if (!fs_devices) {
840 if (has_metadata_uuid)
841 fs_devices = alloc_fs_devices(disk_super->fsid,
842 disk_super->metadata_uuid);
843 else
844 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
845
846 if (IS_ERR(fs_devices))
847 return ERR_CAST(fs_devices);
848
849 fs_devices->fsid_change = fsid_change_in_progress;
850
851 mutex_lock(&fs_devices->device_list_mutex);
852 list_add(&fs_devices->fs_list, &fs_uuids);
853
854 device = NULL;
855 } else {
856 mutex_lock(&fs_devices->device_list_mutex);
857 device = btrfs_find_device(fs_devices, devid,
858 disk_super->dev_item.uuid, NULL, false);
859
860 /*
861 * If this disk has been pulled into an fs devices created by
862 * a device which had the CHANGING_FSID_V2 flag then replace the
863 * metadata_uuid/fsid values of the fs_devices.
864 */
865 if (fs_devices->fsid_change &&
866 found_transid > fs_devices->latest_generation) {
867 memcpy(fs_devices->fsid, disk_super->fsid,
868 BTRFS_FSID_SIZE);
869
870 if (has_metadata_uuid)
871 memcpy(fs_devices->metadata_uuid,
872 disk_super->metadata_uuid,
873 BTRFS_FSID_SIZE);
874 else
875 memcpy(fs_devices->metadata_uuid,
876 disk_super->fsid, BTRFS_FSID_SIZE);
877
878 fs_devices->fsid_change = false;
879 }
880 }
881
882 if (!device) {
883 if (fs_devices->opened) {
884 mutex_unlock(&fs_devices->device_list_mutex);
885 return ERR_PTR(-EBUSY);
886 }
887
888 device = btrfs_alloc_device(NULL, &devid,
889 disk_super->dev_item.uuid);
890 if (IS_ERR(device)) {
891 mutex_unlock(&fs_devices->device_list_mutex);
892 /* we can safely leave the fs_devices entry around */
893 return device;
894 }
895
896 name = rcu_string_strdup(path, GFP_NOFS);
897 if (!name) {
898 btrfs_free_device(device);
899 mutex_unlock(&fs_devices->device_list_mutex);
900 return ERR_PTR(-ENOMEM);
901 }
902 rcu_assign_pointer(device->name, name);
903
904 list_add_rcu(&device->dev_list, &fs_devices->devices);
905 fs_devices->num_devices++;
906
907 device->fs_devices = fs_devices;
908 *new_device_added = true;
909
910 if (disk_super->label[0])
911 pr_info(
912 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
913 disk_super->label, devid, found_transid, path,
914 current->comm, task_pid_nr(current));
915 else
916 pr_info(
917 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
918 disk_super->fsid, devid, found_transid, path,
919 current->comm, task_pid_nr(current));
920
921 } else if (!device->name || strcmp(device->name->str, path)) {
922 /*
923 * When FS is already mounted.
924 * 1. If you are here and if the device->name is NULL that
925 * means this device was missing at time of FS mount.
926 * 2. If you are here and if the device->name is different
927 * from 'path' that means either
928 * a. The same device disappeared and reappeared with
929 * different name. or
930 * b. The missing-disk-which-was-replaced, has
931 * reappeared now.
932 *
933 * We must allow 1 and 2a above. But 2b would be a spurious
934 * and unintentional.
935 *
936 * Further in case of 1 and 2a above, the disk at 'path'
937 * would have missed some transaction when it was away and
938 * in case of 2a the stale bdev has to be updated as well.
939 * 2b must not be allowed at all time.
940 */
941
942 /*
943 * For now, we do allow update to btrfs_fs_device through the
944 * btrfs dev scan cli after FS has been mounted. We're still
945 * tracking a problem where systems fail mount by subvolume id
946 * when we reject replacement on a mounted FS.
947 */
948 if (!fs_devices->opened && found_transid < device->generation) {
949 /*
950 * That is if the FS is _not_ mounted and if you
951 * are here, that means there is more than one
952 * disk with same uuid and devid.We keep the one
953 * with larger generation number or the last-in if
954 * generation are equal.
955 */
956 mutex_unlock(&fs_devices->device_list_mutex);
957 return ERR_PTR(-EEXIST);
958 }
959
960 /*
961 * We are going to replace the device path for a given devid,
962 * make sure it's the same device if the device is mounted
963 */
964 if (device->bdev) {
965 struct block_device *path_bdev;
966
967 path_bdev = lookup_bdev(path);
968 if (IS_ERR(path_bdev)) {
969 mutex_unlock(&fs_devices->device_list_mutex);
970 return ERR_CAST(path_bdev);
971 }
972
973 if (device->bdev != path_bdev) {
974 bdput(path_bdev);
975 mutex_unlock(&fs_devices->device_list_mutex);
976 /*
977 * device->fs_info may not be reliable here, so
978 * pass in a NULL instead. This avoids a
979 * possible use-after-free when the fs_info and
980 * fs_info->sb are already torn down.
981 */
982 btrfs_warn_in_rcu(NULL,
983 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
984 path, devid, found_transid,
985 current->comm,
986 task_pid_nr(current));
987 return ERR_PTR(-EEXIST);
988 }
989 bdput(path_bdev);
990 btrfs_info_in_rcu(device->fs_info,
991 "devid %llu device path %s changed to %s scanned by %s (%d)",
992 devid, rcu_str_deref(device->name),
993 path, current->comm,
994 task_pid_nr(current));
995 }
996
997 name = rcu_string_strdup(path, GFP_NOFS);
998 if (!name) {
999 mutex_unlock(&fs_devices->device_list_mutex);
1000 return ERR_PTR(-ENOMEM);
1001 }
1002 rcu_string_free(device->name);
1003 rcu_assign_pointer(device->name, name);
1004 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1005 fs_devices->missing_devices--;
1006 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1007 }
1008 }
1009
1010 /*
1011 * Unmount does not free the btrfs_device struct but would zero
1012 * generation along with most of the other members. So just update
1013 * it back. We need it to pick the disk with largest generation
1014 * (as above).
1015 */
1016 if (!fs_devices->opened) {
1017 device->generation = found_transid;
1018 fs_devices->latest_generation = max_t(u64, found_transid,
1019 fs_devices->latest_generation);
1020 }
1021
1022 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1023
1024 mutex_unlock(&fs_devices->device_list_mutex);
1025 return device;
1026 }
1027
clone_fs_devices(struct btrfs_fs_devices * orig)1028 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1029 {
1030 struct btrfs_fs_devices *fs_devices;
1031 struct btrfs_device *device;
1032 struct btrfs_device *orig_dev;
1033 int ret = 0;
1034
1035 lockdep_assert_held(&uuid_mutex);
1036
1037 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1038 if (IS_ERR(fs_devices))
1039 return fs_devices;
1040
1041 fs_devices->total_devices = orig->total_devices;
1042
1043 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1044 struct rcu_string *name;
1045
1046 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1047 orig_dev->uuid);
1048 if (IS_ERR(device)) {
1049 ret = PTR_ERR(device);
1050 goto error;
1051 }
1052
1053 /*
1054 * This is ok to do without rcu read locked because we hold the
1055 * uuid mutex so nothing we touch in here is going to disappear.
1056 */
1057 if (orig_dev->name) {
1058 name = rcu_string_strdup(orig_dev->name->str,
1059 GFP_KERNEL);
1060 if (!name) {
1061 btrfs_free_device(device);
1062 ret = -ENOMEM;
1063 goto error;
1064 }
1065 rcu_assign_pointer(device->name, name);
1066 }
1067
1068 list_add(&device->dev_list, &fs_devices->devices);
1069 device->fs_devices = fs_devices;
1070 fs_devices->num_devices++;
1071 }
1072 return fs_devices;
1073 error:
1074 free_fs_devices(fs_devices);
1075 return ERR_PTR(ret);
1076 }
1077
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step,struct btrfs_device ** latest_dev)1078 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1079 int step, struct btrfs_device **latest_dev)
1080 {
1081 struct btrfs_device *device, *next;
1082
1083 /* This is the initialized path, it is safe to release the devices. */
1084 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1085 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1086 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1087 &device->dev_state) &&
1088 !test_bit(BTRFS_DEV_STATE_MISSING,
1089 &device->dev_state) &&
1090 (!*latest_dev ||
1091 device->generation > (*latest_dev)->generation)) {
1092 *latest_dev = device;
1093 }
1094 continue;
1095 }
1096
1097 /*
1098 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1099 * in btrfs_init_dev_replace() so just continue.
1100 */
1101 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1102 continue;
1103
1104 if (device->bdev) {
1105 blkdev_put(device->bdev, device->mode);
1106 device->bdev = NULL;
1107 fs_devices->open_devices--;
1108 }
1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1110 list_del_init(&device->dev_alloc_list);
1111 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1112 fs_devices->rw_devices--;
1113 }
1114 list_del_init(&device->dev_list);
1115 fs_devices->num_devices--;
1116 btrfs_free_device(device);
1117 }
1118
1119 }
1120
1121 /*
1122 * After we have read the system tree and know devids belonging to this
1123 * filesystem, remove the device which does not belong there.
1124 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)1125 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1126 {
1127 struct btrfs_device *latest_dev = NULL;
1128 struct btrfs_fs_devices *seed_dev;
1129
1130 mutex_lock(&uuid_mutex);
1131 __btrfs_free_extra_devids(fs_devices, step, &latest_dev);
1132
1133 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1134 __btrfs_free_extra_devids(seed_dev, step, &latest_dev);
1135
1136 fs_devices->latest_bdev = latest_dev->bdev;
1137
1138 mutex_unlock(&uuid_mutex);
1139 }
1140
btrfs_close_bdev(struct btrfs_device * device)1141 static void btrfs_close_bdev(struct btrfs_device *device)
1142 {
1143 if (!device->bdev)
1144 return;
1145
1146 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1147 sync_blockdev(device->bdev);
1148 invalidate_bdev(device->bdev);
1149 }
1150
1151 blkdev_put(device->bdev, device->mode);
1152 }
1153
btrfs_close_one_device(struct btrfs_device * device)1154 static void btrfs_close_one_device(struct btrfs_device *device)
1155 {
1156 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1157
1158 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1159 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1160 list_del_init(&device->dev_alloc_list);
1161 fs_devices->rw_devices--;
1162 }
1163
1164 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1165 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1166
1167 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1168 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1169 fs_devices->missing_devices--;
1170 }
1171
1172 btrfs_close_bdev(device);
1173 if (device->bdev) {
1174 fs_devices->open_devices--;
1175 device->bdev = NULL;
1176 }
1177 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1178
1179 device->fs_info = NULL;
1180 atomic_set(&device->dev_stats_ccnt, 0);
1181 extent_io_tree_release(&device->alloc_state);
1182
1183 /*
1184 * Reset the flush error record. We might have a transient flush error
1185 * in this mount, and if so we aborted the current transaction and set
1186 * the fs to an error state, guaranteeing no super blocks can be further
1187 * committed. However that error might be transient and if we unmount the
1188 * filesystem and mount it again, we should allow the mount to succeed
1189 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1190 * filesystem again we still get flush errors, then we will again abort
1191 * any transaction and set the error state, guaranteeing no commits of
1192 * unsafe super blocks.
1193 */
1194 device->last_flush_error = 0;
1195
1196 /* Verify the device is back in a pristine state */
1197 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1198 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1199 ASSERT(list_empty(&device->dev_alloc_list));
1200 ASSERT(list_empty(&device->post_commit_list));
1201 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1202 }
1203
close_fs_devices(struct btrfs_fs_devices * fs_devices)1204 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1205 {
1206 struct btrfs_device *device, *tmp;
1207
1208 lockdep_assert_held(&uuid_mutex);
1209
1210 if (--fs_devices->opened > 0)
1211 return;
1212
1213 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1214 btrfs_close_one_device(device);
1215
1216 WARN_ON(fs_devices->open_devices);
1217 WARN_ON(fs_devices->rw_devices);
1218 fs_devices->opened = 0;
1219 fs_devices->seeding = false;
1220 fs_devices->fs_info = NULL;
1221 }
1222
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1223 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1224 {
1225 LIST_HEAD(list);
1226 struct btrfs_fs_devices *tmp;
1227
1228 mutex_lock(&uuid_mutex);
1229 close_fs_devices(fs_devices);
1230 if (!fs_devices->opened)
1231 list_splice_init(&fs_devices->seed_list, &list);
1232
1233 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1234 close_fs_devices(fs_devices);
1235 list_del(&fs_devices->seed_list);
1236 free_fs_devices(fs_devices);
1237 }
1238 mutex_unlock(&uuid_mutex);
1239 }
1240
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1241 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1242 fmode_t flags, void *holder)
1243 {
1244 struct btrfs_device *device;
1245 struct btrfs_device *latest_dev = NULL;
1246 struct btrfs_device *tmp_device;
1247
1248 flags |= FMODE_EXCL;
1249
1250 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1251 dev_list) {
1252 int ret;
1253
1254 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1255 if (ret == 0 &&
1256 (!latest_dev || device->generation > latest_dev->generation)) {
1257 latest_dev = device;
1258 } else if (ret == -ENODATA) {
1259 fs_devices->num_devices--;
1260 list_del(&device->dev_list);
1261 btrfs_free_device(device);
1262 }
1263 }
1264 if (fs_devices->open_devices == 0)
1265 return -EINVAL;
1266
1267 fs_devices->opened = 1;
1268 fs_devices->latest_bdev = latest_dev->bdev;
1269 fs_devices->total_rw_bytes = 0;
1270 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1271
1272 return 0;
1273 }
1274
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1275 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1276 {
1277 struct btrfs_device *dev1, *dev2;
1278
1279 dev1 = list_entry(a, struct btrfs_device, dev_list);
1280 dev2 = list_entry(b, struct btrfs_device, dev_list);
1281
1282 if (dev1->devid < dev2->devid)
1283 return -1;
1284 else if (dev1->devid > dev2->devid)
1285 return 1;
1286 return 0;
1287 }
1288
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1289 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1290 fmode_t flags, void *holder)
1291 {
1292 int ret;
1293
1294 lockdep_assert_held(&uuid_mutex);
1295 /*
1296 * The device_list_mutex cannot be taken here in case opening the
1297 * underlying device takes further locks like bd_mutex.
1298 *
1299 * We also don't need the lock here as this is called during mount and
1300 * exclusion is provided by uuid_mutex
1301 */
1302
1303 if (fs_devices->opened) {
1304 fs_devices->opened++;
1305 ret = 0;
1306 } else {
1307 list_sort(NULL, &fs_devices->devices, devid_cmp);
1308 ret = open_fs_devices(fs_devices, flags, holder);
1309 }
1310
1311 return ret;
1312 }
1313
btrfs_release_disk_super(struct btrfs_super_block * super)1314 void btrfs_release_disk_super(struct btrfs_super_block *super)
1315 {
1316 struct page *page = virt_to_page(super);
1317
1318 put_page(page);
1319 }
1320
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr)1321 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1322 u64 bytenr)
1323 {
1324 struct btrfs_super_block *disk_super;
1325 struct page *page;
1326 void *p;
1327 pgoff_t index;
1328
1329 /* make sure our super fits in the device */
1330 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1331 return ERR_PTR(-EINVAL);
1332
1333 /* make sure our super fits in the page */
1334 if (sizeof(*disk_super) > PAGE_SIZE)
1335 return ERR_PTR(-EINVAL);
1336
1337 /* make sure our super doesn't straddle pages on disk */
1338 index = bytenr >> PAGE_SHIFT;
1339 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1340 return ERR_PTR(-EINVAL);
1341
1342 /* pull in the page with our super */
1343 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1344
1345 if (IS_ERR(page))
1346 return ERR_CAST(page);
1347
1348 p = page_address(page);
1349
1350 /* align our pointer to the offset of the super block */
1351 disk_super = p + offset_in_page(bytenr);
1352
1353 if (btrfs_super_bytenr(disk_super) != bytenr ||
1354 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1355 btrfs_release_disk_super(p);
1356 return ERR_PTR(-EINVAL);
1357 }
1358
1359 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1360 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1361
1362 return disk_super;
1363 }
1364
btrfs_forget_devices(const char * path)1365 int btrfs_forget_devices(const char *path)
1366 {
1367 int ret;
1368
1369 mutex_lock(&uuid_mutex);
1370 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1371 mutex_unlock(&uuid_mutex);
1372
1373 return ret;
1374 }
1375
1376 /*
1377 * Look for a btrfs signature on a device. This may be called out of the mount path
1378 * and we are not allowed to call set_blocksize during the scan. The superblock
1379 * is read via pagecache
1380 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1381 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1382 void *holder)
1383 {
1384 struct btrfs_super_block *disk_super;
1385 bool new_device_added = false;
1386 struct btrfs_device *device = NULL;
1387 struct block_device *bdev;
1388 u64 bytenr;
1389
1390 lockdep_assert_held(&uuid_mutex);
1391
1392 /*
1393 * we would like to check all the supers, but that would make
1394 * a btrfs mount succeed after a mkfs from a different FS.
1395 * So, we need to add a special mount option to scan for
1396 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1397 */
1398 bytenr = btrfs_sb_offset(0);
1399 flags |= FMODE_EXCL;
1400
1401 bdev = blkdev_get_by_path(path, flags, holder);
1402 if (IS_ERR(bdev))
1403 return ERR_CAST(bdev);
1404
1405 disk_super = btrfs_read_disk_super(bdev, bytenr);
1406 if (IS_ERR(disk_super)) {
1407 device = ERR_CAST(disk_super);
1408 goto error_bdev_put;
1409 }
1410
1411 device = device_list_add(path, disk_super, &new_device_added);
1412 if (!IS_ERR(device)) {
1413 if (new_device_added)
1414 btrfs_free_stale_devices(path, device);
1415 }
1416
1417 btrfs_release_disk_super(disk_super);
1418
1419 error_bdev_put:
1420 blkdev_put(bdev, flags);
1421
1422 return device;
1423 }
1424
1425 /*
1426 * Try to find a chunk that intersects [start, start + len] range and when one
1427 * such is found, record the end of it in *start
1428 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1429 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1430 u64 len)
1431 {
1432 u64 physical_start, physical_end;
1433
1434 lockdep_assert_held(&device->fs_info->chunk_mutex);
1435
1436 if (!find_first_extent_bit(&device->alloc_state, *start,
1437 &physical_start, &physical_end,
1438 CHUNK_ALLOCATED, NULL)) {
1439
1440 if (in_range(physical_start, *start, len) ||
1441 in_range(*start, physical_start,
1442 physical_end - physical_start)) {
1443 *start = physical_end + 1;
1444 return true;
1445 }
1446 }
1447 return false;
1448 }
1449
dev_extent_search_start(struct btrfs_device * device,u64 start)1450 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1451 {
1452 switch (device->fs_devices->chunk_alloc_policy) {
1453 case BTRFS_CHUNK_ALLOC_REGULAR:
1454 /*
1455 * We don't want to overwrite the superblock on the drive nor
1456 * any area used by the boot loader (grub for example), so we
1457 * make sure to start at an offset of at least 1MB.
1458 */
1459 return max_t(u64, start, SZ_1M);
1460 default:
1461 BUG();
1462 }
1463 }
1464
1465 /**
1466 * dev_extent_hole_check - check if specified hole is suitable for allocation
1467 * @device: the device which we have the hole
1468 * @hole_start: starting position of the hole
1469 * @hole_size: the size of the hole
1470 * @num_bytes: the size of the free space that we need
1471 *
1472 * This function may modify @hole_start and @hole_end to reflect the suitable
1473 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1474 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1475 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1476 u64 *hole_size, u64 num_bytes)
1477 {
1478 bool changed = false;
1479 u64 hole_end = *hole_start + *hole_size;
1480
1481 /*
1482 * Check before we set max_hole_start, otherwise we could end up
1483 * sending back this offset anyway.
1484 */
1485 if (contains_pending_extent(device, hole_start, *hole_size)) {
1486 if (hole_end >= *hole_start)
1487 *hole_size = hole_end - *hole_start;
1488 else
1489 *hole_size = 0;
1490 changed = true;
1491 }
1492
1493 switch (device->fs_devices->chunk_alloc_policy) {
1494 case BTRFS_CHUNK_ALLOC_REGULAR:
1495 /* No extra check */
1496 break;
1497 default:
1498 BUG();
1499 }
1500
1501 return changed;
1502 }
1503
1504 /*
1505 * find_free_dev_extent_start - find free space in the specified device
1506 * @device: the device which we search the free space in
1507 * @num_bytes: the size of the free space that we need
1508 * @search_start: the position from which to begin the search
1509 * @start: store the start of the free space.
1510 * @len: the size of the free space. that we find, or the size
1511 * of the max free space if we don't find suitable free space
1512 *
1513 * this uses a pretty simple search, the expectation is that it is
1514 * called very infrequently and that a given device has a small number
1515 * of extents
1516 *
1517 * @start is used to store the start of the free space if we find. But if we
1518 * don't find suitable free space, it will be used to store the start position
1519 * of the max free space.
1520 *
1521 * @len is used to store the size of the free space that we find.
1522 * But if we don't find suitable free space, it is used to store the size of
1523 * the max free space.
1524 *
1525 * NOTE: This function will search *commit* root of device tree, and does extra
1526 * check to ensure dev extents are not double allocated.
1527 * This makes the function safe to allocate dev extents but may not report
1528 * correct usable device space, as device extent freed in current transaction
1529 * is not reported as avaiable.
1530 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1531 static int find_free_dev_extent_start(struct btrfs_device *device,
1532 u64 num_bytes, u64 search_start, u64 *start,
1533 u64 *len)
1534 {
1535 struct btrfs_fs_info *fs_info = device->fs_info;
1536 struct btrfs_root *root = fs_info->dev_root;
1537 struct btrfs_key key;
1538 struct btrfs_dev_extent *dev_extent;
1539 struct btrfs_path *path;
1540 u64 hole_size;
1541 u64 max_hole_start;
1542 u64 max_hole_size;
1543 u64 extent_end;
1544 u64 search_end = device->total_bytes;
1545 int ret;
1546 int slot;
1547 struct extent_buffer *l;
1548
1549 search_start = dev_extent_search_start(device, search_start);
1550
1551 path = btrfs_alloc_path();
1552 if (!path)
1553 return -ENOMEM;
1554
1555 max_hole_start = search_start;
1556 max_hole_size = 0;
1557
1558 again:
1559 if (search_start >= search_end ||
1560 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1561 ret = -ENOSPC;
1562 goto out;
1563 }
1564
1565 path->reada = READA_FORWARD;
1566 path->search_commit_root = 1;
1567 path->skip_locking = 1;
1568
1569 key.objectid = device->devid;
1570 key.offset = search_start;
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572
1573 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1574 if (ret < 0)
1575 goto out;
1576 if (ret > 0) {
1577 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1578 if (ret < 0)
1579 goto out;
1580 }
1581
1582 while (1) {
1583 l = path->nodes[0];
1584 slot = path->slots[0];
1585 if (slot >= btrfs_header_nritems(l)) {
1586 ret = btrfs_next_leaf(root, path);
1587 if (ret == 0)
1588 continue;
1589 if (ret < 0)
1590 goto out;
1591
1592 break;
1593 }
1594 btrfs_item_key_to_cpu(l, &key, slot);
1595
1596 if (key.objectid < device->devid)
1597 goto next;
1598
1599 if (key.objectid > device->devid)
1600 break;
1601
1602 if (key.type != BTRFS_DEV_EXTENT_KEY)
1603 goto next;
1604
1605 if (key.offset > search_start) {
1606 hole_size = key.offset - search_start;
1607 dev_extent_hole_check(device, &search_start, &hole_size,
1608 num_bytes);
1609
1610 if (hole_size > max_hole_size) {
1611 max_hole_start = search_start;
1612 max_hole_size = hole_size;
1613 }
1614
1615 /*
1616 * If this free space is greater than which we need,
1617 * it must be the max free space that we have found
1618 * until now, so max_hole_start must point to the start
1619 * of this free space and the length of this free space
1620 * is stored in max_hole_size. Thus, we return
1621 * max_hole_start and max_hole_size and go back to the
1622 * caller.
1623 */
1624 if (hole_size >= num_bytes) {
1625 ret = 0;
1626 goto out;
1627 }
1628 }
1629
1630 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1631 extent_end = key.offset + btrfs_dev_extent_length(l,
1632 dev_extent);
1633 if (extent_end > search_start)
1634 search_start = extent_end;
1635 next:
1636 path->slots[0]++;
1637 cond_resched();
1638 }
1639
1640 /*
1641 * At this point, search_start should be the end of
1642 * allocated dev extents, and when shrinking the device,
1643 * search_end may be smaller than search_start.
1644 */
1645 if (search_end > search_start) {
1646 hole_size = search_end - search_start;
1647 if (dev_extent_hole_check(device, &search_start, &hole_size,
1648 num_bytes)) {
1649 btrfs_release_path(path);
1650 goto again;
1651 }
1652
1653 if (hole_size > max_hole_size) {
1654 max_hole_start = search_start;
1655 max_hole_size = hole_size;
1656 }
1657 }
1658
1659 /* See above. */
1660 if (max_hole_size < num_bytes)
1661 ret = -ENOSPC;
1662 else
1663 ret = 0;
1664
1665 out:
1666 btrfs_free_path(path);
1667 *start = max_hole_start;
1668 if (len)
1669 *len = max_hole_size;
1670 return ret;
1671 }
1672
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1673 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1674 u64 *start, u64 *len)
1675 {
1676 /* FIXME use last free of some kind */
1677 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1678 }
1679
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1680 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1681 struct btrfs_device *device,
1682 u64 start, u64 *dev_extent_len)
1683 {
1684 struct btrfs_fs_info *fs_info = device->fs_info;
1685 struct btrfs_root *root = fs_info->dev_root;
1686 int ret;
1687 struct btrfs_path *path;
1688 struct btrfs_key key;
1689 struct btrfs_key found_key;
1690 struct extent_buffer *leaf = NULL;
1691 struct btrfs_dev_extent *extent = NULL;
1692
1693 path = btrfs_alloc_path();
1694 if (!path)
1695 return -ENOMEM;
1696
1697 key.objectid = device->devid;
1698 key.offset = start;
1699 key.type = BTRFS_DEV_EXTENT_KEY;
1700 again:
1701 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1702 if (ret > 0) {
1703 ret = btrfs_previous_item(root, path, key.objectid,
1704 BTRFS_DEV_EXTENT_KEY);
1705 if (ret)
1706 goto out;
1707 leaf = path->nodes[0];
1708 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1709 extent = btrfs_item_ptr(leaf, path->slots[0],
1710 struct btrfs_dev_extent);
1711 BUG_ON(found_key.offset > start || found_key.offset +
1712 btrfs_dev_extent_length(leaf, extent) < start);
1713 key = found_key;
1714 btrfs_release_path(path);
1715 goto again;
1716 } else if (ret == 0) {
1717 leaf = path->nodes[0];
1718 extent = btrfs_item_ptr(leaf, path->slots[0],
1719 struct btrfs_dev_extent);
1720 } else {
1721 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1722 goto out;
1723 }
1724
1725 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1726
1727 ret = btrfs_del_item(trans, root, path);
1728 if (ret) {
1729 btrfs_handle_fs_error(fs_info, ret,
1730 "Failed to remove dev extent item");
1731 } else {
1732 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1733 }
1734 out:
1735 btrfs_free_path(path);
1736 return ret;
1737 }
1738
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1739 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1740 struct btrfs_device *device,
1741 u64 chunk_offset, u64 start, u64 num_bytes)
1742 {
1743 int ret;
1744 struct btrfs_path *path;
1745 struct btrfs_fs_info *fs_info = device->fs_info;
1746 struct btrfs_root *root = fs_info->dev_root;
1747 struct btrfs_dev_extent *extent;
1748 struct extent_buffer *leaf;
1749 struct btrfs_key key;
1750
1751 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1752 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1753 path = btrfs_alloc_path();
1754 if (!path)
1755 return -ENOMEM;
1756
1757 key.objectid = device->devid;
1758 key.offset = start;
1759 key.type = BTRFS_DEV_EXTENT_KEY;
1760 ret = btrfs_insert_empty_item(trans, root, path, &key,
1761 sizeof(*extent));
1762 if (ret)
1763 goto out;
1764
1765 leaf = path->nodes[0];
1766 extent = btrfs_item_ptr(leaf, path->slots[0],
1767 struct btrfs_dev_extent);
1768 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1769 BTRFS_CHUNK_TREE_OBJECTID);
1770 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1771 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1772 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1773
1774 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1775 btrfs_mark_buffer_dirty(leaf);
1776 out:
1777 btrfs_free_path(path);
1778 return ret;
1779 }
1780
find_next_chunk(struct btrfs_fs_info * fs_info)1781 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1782 {
1783 struct extent_map_tree *em_tree;
1784 struct extent_map *em;
1785 struct rb_node *n;
1786 u64 ret = 0;
1787
1788 em_tree = &fs_info->mapping_tree;
1789 read_lock(&em_tree->lock);
1790 n = rb_last(&em_tree->map.rb_root);
1791 if (n) {
1792 em = rb_entry(n, struct extent_map, rb_node);
1793 ret = em->start + em->len;
1794 }
1795 read_unlock(&em_tree->lock);
1796
1797 return ret;
1798 }
1799
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1800 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1801 u64 *devid_ret)
1802 {
1803 int ret;
1804 struct btrfs_key key;
1805 struct btrfs_key found_key;
1806 struct btrfs_path *path;
1807
1808 path = btrfs_alloc_path();
1809 if (!path)
1810 return -ENOMEM;
1811
1812 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1813 key.type = BTRFS_DEV_ITEM_KEY;
1814 key.offset = (u64)-1;
1815
1816 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1817 if (ret < 0)
1818 goto error;
1819
1820 if (ret == 0) {
1821 /* Corruption */
1822 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1823 ret = -EUCLEAN;
1824 goto error;
1825 }
1826
1827 ret = btrfs_previous_item(fs_info->chunk_root, path,
1828 BTRFS_DEV_ITEMS_OBJECTID,
1829 BTRFS_DEV_ITEM_KEY);
1830 if (ret) {
1831 *devid_ret = 1;
1832 } else {
1833 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1834 path->slots[0]);
1835 *devid_ret = found_key.offset + 1;
1836 }
1837 ret = 0;
1838 error:
1839 btrfs_free_path(path);
1840 return ret;
1841 }
1842
1843 /*
1844 * the device information is stored in the chunk root
1845 * the btrfs_device struct should be fully filled in
1846 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1847 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1848 struct btrfs_device *device)
1849 {
1850 int ret;
1851 struct btrfs_path *path;
1852 struct btrfs_dev_item *dev_item;
1853 struct extent_buffer *leaf;
1854 struct btrfs_key key;
1855 unsigned long ptr;
1856
1857 path = btrfs_alloc_path();
1858 if (!path)
1859 return -ENOMEM;
1860
1861 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1862 key.type = BTRFS_DEV_ITEM_KEY;
1863 key.offset = device->devid;
1864
1865 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1866 &key, sizeof(*dev_item));
1867 if (ret)
1868 goto out;
1869
1870 leaf = path->nodes[0];
1871 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1872
1873 btrfs_set_device_id(leaf, dev_item, device->devid);
1874 btrfs_set_device_generation(leaf, dev_item, 0);
1875 btrfs_set_device_type(leaf, dev_item, device->type);
1876 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1877 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1878 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1879 btrfs_set_device_total_bytes(leaf, dev_item,
1880 btrfs_device_get_disk_total_bytes(device));
1881 btrfs_set_device_bytes_used(leaf, dev_item,
1882 btrfs_device_get_bytes_used(device));
1883 btrfs_set_device_group(leaf, dev_item, 0);
1884 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1885 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1886 btrfs_set_device_start_offset(leaf, dev_item, 0);
1887
1888 ptr = btrfs_device_uuid(dev_item);
1889 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1890 ptr = btrfs_device_fsid(dev_item);
1891 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1892 ptr, BTRFS_FSID_SIZE);
1893 btrfs_mark_buffer_dirty(leaf);
1894
1895 ret = 0;
1896 out:
1897 btrfs_free_path(path);
1898 return ret;
1899 }
1900
1901 /*
1902 * Function to update ctime/mtime for a given device path.
1903 * Mainly used for ctime/mtime based probe like libblkid.
1904 *
1905 * We don't care about errors here, this is just to be kind to userspace.
1906 */
update_dev_time(const char * device_path)1907 static void update_dev_time(const char *device_path)
1908 {
1909 struct path path;
1910 struct timespec64 now;
1911 int ret;
1912
1913 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1914 if (ret)
1915 return;
1916
1917 now = current_time(d_inode(path.dentry));
1918 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1919 path_put(&path);
1920 }
1921
btrfs_rm_dev_item(struct btrfs_device * device)1922 static int btrfs_rm_dev_item(struct btrfs_device *device)
1923 {
1924 struct btrfs_root *root = device->fs_info->chunk_root;
1925 int ret;
1926 struct btrfs_path *path;
1927 struct btrfs_key key;
1928 struct btrfs_trans_handle *trans;
1929
1930 path = btrfs_alloc_path();
1931 if (!path)
1932 return -ENOMEM;
1933
1934 trans = btrfs_start_transaction(root, 0);
1935 if (IS_ERR(trans)) {
1936 btrfs_free_path(path);
1937 return PTR_ERR(trans);
1938 }
1939 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1940 key.type = BTRFS_DEV_ITEM_KEY;
1941 key.offset = device->devid;
1942
1943 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1944 if (ret) {
1945 if (ret > 0)
1946 ret = -ENOENT;
1947 btrfs_abort_transaction(trans, ret);
1948 btrfs_end_transaction(trans);
1949 goto out;
1950 }
1951
1952 ret = btrfs_del_item(trans, root, path);
1953 if (ret) {
1954 btrfs_abort_transaction(trans, ret);
1955 btrfs_end_transaction(trans);
1956 }
1957
1958 out:
1959 btrfs_free_path(path);
1960 if (!ret)
1961 ret = btrfs_commit_transaction(trans);
1962 return ret;
1963 }
1964
1965 /*
1966 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1967 * filesystem. It's up to the caller to adjust that number regarding eg. device
1968 * replace.
1969 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1970 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1971 u64 num_devices)
1972 {
1973 u64 all_avail;
1974 unsigned seq;
1975 int i;
1976
1977 do {
1978 seq = read_seqbegin(&fs_info->profiles_lock);
1979
1980 all_avail = fs_info->avail_data_alloc_bits |
1981 fs_info->avail_system_alloc_bits |
1982 fs_info->avail_metadata_alloc_bits;
1983 } while (read_seqretry(&fs_info->profiles_lock, seq));
1984
1985 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1986 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1987 continue;
1988
1989 if (num_devices < btrfs_raid_array[i].devs_min) {
1990 int ret = btrfs_raid_array[i].mindev_error;
1991
1992 if (ret)
1993 return ret;
1994 }
1995 }
1996
1997 return 0;
1998 }
1999
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2000 static struct btrfs_device * btrfs_find_next_active_device(
2001 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2002 {
2003 struct btrfs_device *next_device;
2004
2005 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2006 if (next_device != device &&
2007 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2008 && next_device->bdev)
2009 return next_device;
2010 }
2011
2012 return NULL;
2013 }
2014
2015 /*
2016 * Helper function to check if the given device is part of s_bdev / latest_bdev
2017 * and replace it with the provided or the next active device, in the context
2018 * where this function called, there should be always be another device (or
2019 * this_dev) which is active.
2020 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2021 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2022 struct btrfs_device *next_device)
2023 {
2024 struct btrfs_fs_info *fs_info = device->fs_info;
2025
2026 if (!next_device)
2027 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2028 device);
2029 ASSERT(next_device);
2030
2031 if (fs_info->sb->s_bdev &&
2032 (fs_info->sb->s_bdev == device->bdev))
2033 fs_info->sb->s_bdev = next_device->bdev;
2034
2035 if (fs_info->fs_devices->latest_bdev == device->bdev)
2036 fs_info->fs_devices->latest_bdev = next_device->bdev;
2037 }
2038
2039 /*
2040 * Return btrfs_fs_devices::num_devices excluding the device that's being
2041 * currently replaced.
2042 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2043 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2044 {
2045 u64 num_devices = fs_info->fs_devices->num_devices;
2046
2047 down_read(&fs_info->dev_replace.rwsem);
2048 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2049 ASSERT(num_devices > 1);
2050 num_devices--;
2051 }
2052 up_read(&fs_info->dev_replace.rwsem);
2053
2054 return num_devices;
2055 }
2056
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct block_device * bdev,const char * device_path)2057 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2058 struct block_device *bdev,
2059 const char *device_path)
2060 {
2061 struct btrfs_super_block *disk_super;
2062 int copy_num;
2063
2064 if (!bdev)
2065 return;
2066
2067 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2068 struct page *page;
2069 int ret;
2070
2071 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2072 if (IS_ERR(disk_super))
2073 continue;
2074
2075 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
2076
2077 page = virt_to_page(disk_super);
2078 set_page_dirty(page);
2079 lock_page(page);
2080 /* write_on_page() unlocks the page */
2081 ret = write_one_page(page);
2082 if (ret)
2083 btrfs_warn(fs_info,
2084 "error clearing superblock number %d (%d)",
2085 copy_num, ret);
2086 btrfs_release_disk_super(disk_super);
2087
2088 }
2089
2090 /* Notify udev that device has changed */
2091 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2092
2093 /* Update ctime/mtime for device path for libblkid */
2094 update_dev_time(device_path);
2095 }
2096
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)2097 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2098 u64 devid)
2099 {
2100 struct btrfs_device *device;
2101 struct btrfs_fs_devices *cur_devices;
2102 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2103 u64 num_devices;
2104 int ret = 0;
2105
2106 /*
2107 * The device list in fs_devices is accessed without locks (neither
2108 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2109 * filesystem and another device rm cannot run.
2110 */
2111 num_devices = btrfs_num_devices(fs_info);
2112
2113 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2114 if (ret)
2115 goto out;
2116
2117 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2118
2119 if (IS_ERR(device)) {
2120 if (PTR_ERR(device) == -ENOENT &&
2121 device_path && strcmp(device_path, "missing") == 0)
2122 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2123 else
2124 ret = PTR_ERR(device);
2125 goto out;
2126 }
2127
2128 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2129 btrfs_warn_in_rcu(fs_info,
2130 "cannot remove device %s (devid %llu) due to active swapfile",
2131 rcu_str_deref(device->name), device->devid);
2132 ret = -ETXTBSY;
2133 goto out;
2134 }
2135
2136 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2137 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2138 goto out;
2139 }
2140
2141 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2142 fs_info->fs_devices->rw_devices == 1) {
2143 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2144 goto out;
2145 }
2146
2147 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2148 mutex_lock(&fs_info->chunk_mutex);
2149 list_del_init(&device->dev_alloc_list);
2150 device->fs_devices->rw_devices--;
2151 mutex_unlock(&fs_info->chunk_mutex);
2152 }
2153
2154 ret = btrfs_shrink_device(device, 0);
2155 if (!ret)
2156 btrfs_reada_remove_dev(device);
2157 if (ret)
2158 goto error_undo;
2159
2160 /*
2161 * TODO: the superblock still includes this device in its num_devices
2162 * counter although write_all_supers() is not locked out. This
2163 * could give a filesystem state which requires a degraded mount.
2164 */
2165 ret = btrfs_rm_dev_item(device);
2166 if (ret)
2167 goto error_undo;
2168
2169 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2170 btrfs_scrub_cancel_dev(device);
2171
2172 /*
2173 * the device list mutex makes sure that we don't change
2174 * the device list while someone else is writing out all
2175 * the device supers. Whoever is writing all supers, should
2176 * lock the device list mutex before getting the number of
2177 * devices in the super block (super_copy). Conversely,
2178 * whoever updates the number of devices in the super block
2179 * (super_copy) should hold the device list mutex.
2180 */
2181
2182 /*
2183 * In normal cases the cur_devices == fs_devices. But in case
2184 * of deleting a seed device, the cur_devices should point to
2185 * its own fs_devices listed under the fs_devices->seed.
2186 */
2187 cur_devices = device->fs_devices;
2188 mutex_lock(&fs_devices->device_list_mutex);
2189 list_del_rcu(&device->dev_list);
2190
2191 cur_devices->num_devices--;
2192 cur_devices->total_devices--;
2193 /* Update total_devices of the parent fs_devices if it's seed */
2194 if (cur_devices != fs_devices)
2195 fs_devices->total_devices--;
2196
2197 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2198 cur_devices->missing_devices--;
2199
2200 btrfs_assign_next_active_device(device, NULL);
2201
2202 if (device->bdev) {
2203 cur_devices->open_devices--;
2204 /* remove sysfs entry */
2205 btrfs_sysfs_remove_device(device);
2206 }
2207
2208 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2209 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2210 mutex_unlock(&fs_devices->device_list_mutex);
2211
2212 /*
2213 * at this point, the device is zero sized and detached from
2214 * the devices list. All that's left is to zero out the old
2215 * supers and free the device.
2216 */
2217 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2218 btrfs_scratch_superblocks(fs_info, device->bdev,
2219 device->name->str);
2220
2221 btrfs_close_bdev(device);
2222 synchronize_rcu();
2223 btrfs_free_device(device);
2224
2225 if (cur_devices->open_devices == 0) {
2226 list_del_init(&cur_devices->seed_list);
2227 close_fs_devices(cur_devices);
2228 free_fs_devices(cur_devices);
2229 }
2230
2231 out:
2232 return ret;
2233
2234 error_undo:
2235 btrfs_reada_undo_remove_dev(device);
2236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2237 mutex_lock(&fs_info->chunk_mutex);
2238 list_add(&device->dev_alloc_list,
2239 &fs_devices->alloc_list);
2240 device->fs_devices->rw_devices++;
2241 mutex_unlock(&fs_info->chunk_mutex);
2242 }
2243 goto out;
2244 }
2245
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2246 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2247 {
2248 struct btrfs_fs_devices *fs_devices;
2249
2250 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2251
2252 /*
2253 * in case of fs with no seed, srcdev->fs_devices will point
2254 * to fs_devices of fs_info. However when the dev being replaced is
2255 * a seed dev it will point to the seed's local fs_devices. In short
2256 * srcdev will have its correct fs_devices in both the cases.
2257 */
2258 fs_devices = srcdev->fs_devices;
2259
2260 list_del_rcu(&srcdev->dev_list);
2261 list_del(&srcdev->dev_alloc_list);
2262 fs_devices->num_devices--;
2263 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2264 fs_devices->missing_devices--;
2265
2266 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2267 fs_devices->rw_devices--;
2268
2269 if (srcdev->bdev)
2270 fs_devices->open_devices--;
2271 }
2272
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2273 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2274 {
2275 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2276
2277 mutex_lock(&uuid_mutex);
2278
2279 btrfs_close_bdev(srcdev);
2280 synchronize_rcu();
2281 btrfs_free_device(srcdev);
2282
2283 /* if this is no devs we rather delete the fs_devices */
2284 if (!fs_devices->num_devices) {
2285 /*
2286 * On a mounted FS, num_devices can't be zero unless it's a
2287 * seed. In case of a seed device being replaced, the replace
2288 * target added to the sprout FS, so there will be no more
2289 * device left under the seed FS.
2290 */
2291 ASSERT(fs_devices->seeding);
2292
2293 list_del_init(&fs_devices->seed_list);
2294 close_fs_devices(fs_devices);
2295 free_fs_devices(fs_devices);
2296 }
2297 mutex_unlock(&uuid_mutex);
2298 }
2299
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2300 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2301 {
2302 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2303
2304 mutex_lock(&fs_devices->device_list_mutex);
2305
2306 btrfs_sysfs_remove_device(tgtdev);
2307
2308 if (tgtdev->bdev)
2309 fs_devices->open_devices--;
2310
2311 fs_devices->num_devices--;
2312
2313 btrfs_assign_next_active_device(tgtdev, NULL);
2314
2315 list_del_rcu(&tgtdev->dev_list);
2316
2317 mutex_unlock(&fs_devices->device_list_mutex);
2318
2319 /*
2320 * The update_dev_time() with in btrfs_scratch_superblocks()
2321 * may lead to a call to btrfs_show_devname() which will try
2322 * to hold device_list_mutex. And here this device
2323 * is already out of device list, so we don't have to hold
2324 * the device_list_mutex lock.
2325 */
2326 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2327 tgtdev->name->str);
2328
2329 btrfs_close_bdev(tgtdev);
2330 synchronize_rcu();
2331 btrfs_free_device(tgtdev);
2332 }
2333
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2334 static struct btrfs_device *btrfs_find_device_by_path(
2335 struct btrfs_fs_info *fs_info, const char *device_path)
2336 {
2337 int ret = 0;
2338 struct btrfs_super_block *disk_super;
2339 u64 devid;
2340 u8 *dev_uuid;
2341 struct block_device *bdev;
2342 struct btrfs_device *device;
2343
2344 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2345 fs_info->bdev_holder, 0, &bdev, &disk_super);
2346 if (ret)
2347 return ERR_PTR(ret);
2348
2349 devid = btrfs_stack_device_id(&disk_super->dev_item);
2350 dev_uuid = disk_super->dev_item.uuid;
2351 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2352 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2353 disk_super->metadata_uuid, true);
2354 else
2355 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2356 disk_super->fsid, true);
2357
2358 btrfs_release_disk_super(disk_super);
2359 if (!device)
2360 device = ERR_PTR(-ENOENT);
2361 blkdev_put(bdev, FMODE_READ);
2362 return device;
2363 }
2364
2365 /*
2366 * Lookup a device given by device id, or the path if the id is 0.
2367 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2368 struct btrfs_device *btrfs_find_device_by_devspec(
2369 struct btrfs_fs_info *fs_info, u64 devid,
2370 const char *device_path)
2371 {
2372 struct btrfs_device *device;
2373
2374 if (devid) {
2375 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2376 NULL, true);
2377 if (!device)
2378 return ERR_PTR(-ENOENT);
2379 return device;
2380 }
2381
2382 if (!device_path || !device_path[0])
2383 return ERR_PTR(-EINVAL);
2384
2385 if (strcmp(device_path, "missing") == 0) {
2386 /* Find first missing device */
2387 list_for_each_entry(device, &fs_info->fs_devices->devices,
2388 dev_list) {
2389 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2390 &device->dev_state) && !device->bdev)
2391 return device;
2392 }
2393 return ERR_PTR(-ENOENT);
2394 }
2395
2396 return btrfs_find_device_by_path(fs_info, device_path);
2397 }
2398
2399 /*
2400 * does all the dirty work required for changing file system's UUID.
2401 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2402 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2403 {
2404 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2405 struct btrfs_fs_devices *old_devices;
2406 struct btrfs_fs_devices *seed_devices;
2407 struct btrfs_super_block *disk_super = fs_info->super_copy;
2408 struct btrfs_device *device;
2409 u64 super_flags;
2410
2411 lockdep_assert_held(&uuid_mutex);
2412 if (!fs_devices->seeding)
2413 return -EINVAL;
2414
2415 /*
2416 * Private copy of the seed devices, anchored at
2417 * fs_info->fs_devices->seed_list
2418 */
2419 seed_devices = alloc_fs_devices(NULL, NULL);
2420 if (IS_ERR(seed_devices))
2421 return PTR_ERR(seed_devices);
2422
2423 /*
2424 * It's necessary to retain a copy of the original seed fs_devices in
2425 * fs_uuids so that filesystems which have been seeded can successfully
2426 * reference the seed device from open_seed_devices. This also supports
2427 * multiple fs seed.
2428 */
2429 old_devices = clone_fs_devices(fs_devices);
2430 if (IS_ERR(old_devices)) {
2431 kfree(seed_devices);
2432 return PTR_ERR(old_devices);
2433 }
2434
2435 list_add(&old_devices->fs_list, &fs_uuids);
2436
2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438 seed_devices->opened = 1;
2439 INIT_LIST_HEAD(&seed_devices->devices);
2440 INIT_LIST_HEAD(&seed_devices->alloc_list);
2441 mutex_init(&seed_devices->device_list_mutex);
2442
2443 mutex_lock(&fs_devices->device_list_mutex);
2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445 synchronize_rcu);
2446 list_for_each_entry(device, &seed_devices->devices, dev_list)
2447 device->fs_devices = seed_devices;
2448
2449 fs_devices->seeding = false;
2450 fs_devices->num_devices = 0;
2451 fs_devices->open_devices = 0;
2452 fs_devices->missing_devices = 0;
2453 fs_devices->rotating = false;
2454 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2455
2456 generate_random_uuid(fs_devices->fsid);
2457 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2458 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2459 mutex_unlock(&fs_devices->device_list_mutex);
2460
2461 super_flags = btrfs_super_flags(disk_super) &
2462 ~BTRFS_SUPER_FLAG_SEEDING;
2463 btrfs_set_super_flags(disk_super, super_flags);
2464
2465 return 0;
2466 }
2467
2468 /*
2469 * Store the expected generation for seed devices in device items.
2470 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2471 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2472 {
2473 struct btrfs_fs_info *fs_info = trans->fs_info;
2474 struct btrfs_root *root = fs_info->chunk_root;
2475 struct btrfs_path *path;
2476 struct extent_buffer *leaf;
2477 struct btrfs_dev_item *dev_item;
2478 struct btrfs_device *device;
2479 struct btrfs_key key;
2480 u8 fs_uuid[BTRFS_FSID_SIZE];
2481 u8 dev_uuid[BTRFS_UUID_SIZE];
2482 u64 devid;
2483 int ret;
2484
2485 path = btrfs_alloc_path();
2486 if (!path)
2487 return -ENOMEM;
2488
2489 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2490 key.offset = 0;
2491 key.type = BTRFS_DEV_ITEM_KEY;
2492
2493 while (1) {
2494 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2495 if (ret < 0)
2496 goto error;
2497
2498 leaf = path->nodes[0];
2499 next_slot:
2500 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2501 ret = btrfs_next_leaf(root, path);
2502 if (ret > 0)
2503 break;
2504 if (ret < 0)
2505 goto error;
2506 leaf = path->nodes[0];
2507 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2508 btrfs_release_path(path);
2509 continue;
2510 }
2511
2512 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2513 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2514 key.type != BTRFS_DEV_ITEM_KEY)
2515 break;
2516
2517 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2518 struct btrfs_dev_item);
2519 devid = btrfs_device_id(leaf, dev_item);
2520 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2521 BTRFS_UUID_SIZE);
2522 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2523 BTRFS_FSID_SIZE);
2524 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2525 fs_uuid, true);
2526 BUG_ON(!device); /* Logic error */
2527
2528 if (device->fs_devices->seeding) {
2529 btrfs_set_device_generation(leaf, dev_item,
2530 device->generation);
2531 btrfs_mark_buffer_dirty(leaf);
2532 }
2533
2534 path->slots[0]++;
2535 goto next_slot;
2536 }
2537 ret = 0;
2538 error:
2539 btrfs_free_path(path);
2540 return ret;
2541 }
2542
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2543 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2544 {
2545 struct btrfs_root *root = fs_info->dev_root;
2546 struct request_queue *q;
2547 struct btrfs_trans_handle *trans;
2548 struct btrfs_device *device;
2549 struct block_device *bdev;
2550 struct super_block *sb = fs_info->sb;
2551 struct rcu_string *name;
2552 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2553 u64 orig_super_total_bytes;
2554 u64 orig_super_num_devices;
2555 int seeding_dev = 0;
2556 int ret = 0;
2557 bool locked = false;
2558
2559 if (sb_rdonly(sb) && !fs_devices->seeding)
2560 return -EROFS;
2561
2562 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2563 fs_info->bdev_holder);
2564 if (IS_ERR(bdev))
2565 return PTR_ERR(bdev);
2566
2567 if (fs_devices->seeding) {
2568 seeding_dev = 1;
2569 down_write(&sb->s_umount);
2570 mutex_lock(&uuid_mutex);
2571 locked = true;
2572 }
2573
2574 sync_blockdev(bdev);
2575
2576 rcu_read_lock();
2577 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2578 if (device->bdev == bdev) {
2579 ret = -EEXIST;
2580 rcu_read_unlock();
2581 goto error;
2582 }
2583 }
2584 rcu_read_unlock();
2585
2586 device = btrfs_alloc_device(fs_info, NULL, NULL);
2587 if (IS_ERR(device)) {
2588 /* we can safely leave the fs_devices entry around */
2589 ret = PTR_ERR(device);
2590 goto error;
2591 }
2592
2593 name = rcu_string_strdup(device_path, GFP_KERNEL);
2594 if (!name) {
2595 ret = -ENOMEM;
2596 goto error_free_device;
2597 }
2598 rcu_assign_pointer(device->name, name);
2599
2600 trans = btrfs_start_transaction(root, 0);
2601 if (IS_ERR(trans)) {
2602 ret = PTR_ERR(trans);
2603 goto error_free_device;
2604 }
2605
2606 q = bdev_get_queue(bdev);
2607 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2608 device->generation = trans->transid;
2609 device->io_width = fs_info->sectorsize;
2610 device->io_align = fs_info->sectorsize;
2611 device->sector_size = fs_info->sectorsize;
2612 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2613 fs_info->sectorsize);
2614 device->disk_total_bytes = device->total_bytes;
2615 device->commit_total_bytes = device->total_bytes;
2616 device->fs_info = fs_info;
2617 device->bdev = bdev;
2618 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2619 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2620 device->mode = FMODE_EXCL;
2621 device->dev_stats_valid = 1;
2622 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2623
2624 if (seeding_dev) {
2625 sb->s_flags &= ~SB_RDONLY;
2626 ret = btrfs_prepare_sprout(fs_info);
2627 if (ret) {
2628 btrfs_abort_transaction(trans, ret);
2629 goto error_trans;
2630 }
2631 }
2632
2633 device->fs_devices = fs_devices;
2634
2635 mutex_lock(&fs_devices->device_list_mutex);
2636 mutex_lock(&fs_info->chunk_mutex);
2637 list_add_rcu(&device->dev_list, &fs_devices->devices);
2638 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2639 fs_devices->num_devices++;
2640 fs_devices->open_devices++;
2641 fs_devices->rw_devices++;
2642 fs_devices->total_devices++;
2643 fs_devices->total_rw_bytes += device->total_bytes;
2644
2645 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2646
2647 if (!blk_queue_nonrot(q))
2648 fs_devices->rotating = true;
2649
2650 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2651 btrfs_set_super_total_bytes(fs_info->super_copy,
2652 round_down(orig_super_total_bytes + device->total_bytes,
2653 fs_info->sectorsize));
2654
2655 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2656 btrfs_set_super_num_devices(fs_info->super_copy,
2657 orig_super_num_devices + 1);
2658
2659 /*
2660 * we've got more storage, clear any full flags on the space
2661 * infos
2662 */
2663 btrfs_clear_space_info_full(fs_info);
2664
2665 mutex_unlock(&fs_info->chunk_mutex);
2666
2667 /* Add sysfs device entry */
2668 btrfs_sysfs_add_device(device);
2669
2670 mutex_unlock(&fs_devices->device_list_mutex);
2671
2672 if (seeding_dev) {
2673 mutex_lock(&fs_info->chunk_mutex);
2674 ret = init_first_rw_device(trans);
2675 mutex_unlock(&fs_info->chunk_mutex);
2676 if (ret) {
2677 btrfs_abort_transaction(trans, ret);
2678 goto error_sysfs;
2679 }
2680 }
2681
2682 ret = btrfs_add_dev_item(trans, device);
2683 if (ret) {
2684 btrfs_abort_transaction(trans, ret);
2685 goto error_sysfs;
2686 }
2687
2688 if (seeding_dev) {
2689 ret = btrfs_finish_sprout(trans);
2690 if (ret) {
2691 btrfs_abort_transaction(trans, ret);
2692 goto error_sysfs;
2693 }
2694
2695 /*
2696 * fs_devices now represents the newly sprouted filesystem and
2697 * its fsid has been changed by btrfs_prepare_sprout
2698 */
2699 btrfs_sysfs_update_sprout_fsid(fs_devices);
2700 }
2701
2702 ret = btrfs_commit_transaction(trans);
2703
2704 if (seeding_dev) {
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
2707 locked = false;
2708
2709 if (ret) /* transaction commit */
2710 return ret;
2711
2712 ret = btrfs_relocate_sys_chunks(fs_info);
2713 if (ret < 0)
2714 btrfs_handle_fs_error(fs_info, ret,
2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2719 return 0;
2720 ret = PTR_ERR(trans);
2721 trans = NULL;
2722 goto error_sysfs;
2723 }
2724 ret = btrfs_commit_transaction(trans);
2725 }
2726
2727 /*
2728 * Now that we have written a new super block to this device, check all
2729 * other fs_devices list if device_path alienates any other scanned
2730 * device.
2731 * We can ignore the return value as it typically returns -EINVAL and
2732 * only succeeds if the device was an alien.
2733 */
2734 btrfs_forget_devices(device_path);
2735
2736 /* Update ctime/mtime for blkid or udev */
2737 update_dev_time(device_path);
2738
2739 return ret;
2740
2741 error_sysfs:
2742 btrfs_sysfs_remove_device(device);
2743 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2744 mutex_lock(&fs_info->chunk_mutex);
2745 list_del_rcu(&device->dev_list);
2746 list_del(&device->dev_alloc_list);
2747 fs_info->fs_devices->num_devices--;
2748 fs_info->fs_devices->open_devices--;
2749 fs_info->fs_devices->rw_devices--;
2750 fs_info->fs_devices->total_devices--;
2751 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2752 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2753 btrfs_set_super_total_bytes(fs_info->super_copy,
2754 orig_super_total_bytes);
2755 btrfs_set_super_num_devices(fs_info->super_copy,
2756 orig_super_num_devices);
2757 mutex_unlock(&fs_info->chunk_mutex);
2758 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2759 error_trans:
2760 if (seeding_dev)
2761 sb->s_flags |= SB_RDONLY;
2762 if (trans)
2763 btrfs_end_transaction(trans);
2764 error_free_device:
2765 btrfs_free_device(device);
2766 error:
2767 blkdev_put(bdev, FMODE_EXCL);
2768 if (locked) {
2769 mutex_unlock(&uuid_mutex);
2770 up_write(&sb->s_umount);
2771 }
2772 return ret;
2773 }
2774
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2775 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2776 struct btrfs_device *device)
2777 {
2778 int ret;
2779 struct btrfs_path *path;
2780 struct btrfs_root *root = device->fs_info->chunk_root;
2781 struct btrfs_dev_item *dev_item;
2782 struct extent_buffer *leaf;
2783 struct btrfs_key key;
2784
2785 path = btrfs_alloc_path();
2786 if (!path)
2787 return -ENOMEM;
2788
2789 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2790 key.type = BTRFS_DEV_ITEM_KEY;
2791 key.offset = device->devid;
2792
2793 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2794 if (ret < 0)
2795 goto out;
2796
2797 if (ret > 0) {
2798 ret = -ENOENT;
2799 goto out;
2800 }
2801
2802 leaf = path->nodes[0];
2803 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2804
2805 btrfs_set_device_id(leaf, dev_item, device->devid);
2806 btrfs_set_device_type(leaf, dev_item, device->type);
2807 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2808 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2809 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2810 btrfs_set_device_total_bytes(leaf, dev_item,
2811 btrfs_device_get_disk_total_bytes(device));
2812 btrfs_set_device_bytes_used(leaf, dev_item,
2813 btrfs_device_get_bytes_used(device));
2814 btrfs_mark_buffer_dirty(leaf);
2815
2816 out:
2817 btrfs_free_path(path);
2818 return ret;
2819 }
2820
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2821 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2822 struct btrfs_device *device, u64 new_size)
2823 {
2824 struct btrfs_fs_info *fs_info = device->fs_info;
2825 struct btrfs_super_block *super_copy = fs_info->super_copy;
2826 u64 old_total;
2827 u64 diff;
2828
2829 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2830 return -EACCES;
2831
2832 new_size = round_down(new_size, fs_info->sectorsize);
2833
2834 mutex_lock(&fs_info->chunk_mutex);
2835 old_total = btrfs_super_total_bytes(super_copy);
2836 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2837
2838 if (new_size <= device->total_bytes ||
2839 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2840 mutex_unlock(&fs_info->chunk_mutex);
2841 return -EINVAL;
2842 }
2843
2844 btrfs_set_super_total_bytes(super_copy,
2845 round_down(old_total + diff, fs_info->sectorsize));
2846 device->fs_devices->total_rw_bytes += diff;
2847
2848 btrfs_device_set_total_bytes(device, new_size);
2849 btrfs_device_set_disk_total_bytes(device, new_size);
2850 btrfs_clear_space_info_full(device->fs_info);
2851 if (list_empty(&device->post_commit_list))
2852 list_add_tail(&device->post_commit_list,
2853 &trans->transaction->dev_update_list);
2854 mutex_unlock(&fs_info->chunk_mutex);
2855
2856 return btrfs_update_device(trans, device);
2857 }
2858
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2859 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2860 {
2861 struct btrfs_fs_info *fs_info = trans->fs_info;
2862 struct btrfs_root *root = fs_info->chunk_root;
2863 int ret;
2864 struct btrfs_path *path;
2865 struct btrfs_key key;
2866
2867 path = btrfs_alloc_path();
2868 if (!path)
2869 return -ENOMEM;
2870
2871 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2872 key.offset = chunk_offset;
2873 key.type = BTRFS_CHUNK_ITEM_KEY;
2874
2875 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2876 if (ret < 0)
2877 goto out;
2878 else if (ret > 0) { /* Logic error or corruption */
2879 btrfs_handle_fs_error(fs_info, -ENOENT,
2880 "Failed lookup while freeing chunk.");
2881 ret = -ENOENT;
2882 goto out;
2883 }
2884
2885 ret = btrfs_del_item(trans, root, path);
2886 if (ret < 0)
2887 btrfs_handle_fs_error(fs_info, ret,
2888 "Failed to delete chunk item.");
2889 out:
2890 btrfs_free_path(path);
2891 return ret;
2892 }
2893
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)2894 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2895 {
2896 struct btrfs_super_block *super_copy = fs_info->super_copy;
2897 struct btrfs_disk_key *disk_key;
2898 struct btrfs_chunk *chunk;
2899 u8 *ptr;
2900 int ret = 0;
2901 u32 num_stripes;
2902 u32 array_size;
2903 u32 len = 0;
2904 u32 cur;
2905 struct btrfs_key key;
2906
2907 mutex_lock(&fs_info->chunk_mutex);
2908 array_size = btrfs_super_sys_array_size(super_copy);
2909
2910 ptr = super_copy->sys_chunk_array;
2911 cur = 0;
2912
2913 while (cur < array_size) {
2914 disk_key = (struct btrfs_disk_key *)ptr;
2915 btrfs_disk_key_to_cpu(&key, disk_key);
2916
2917 len = sizeof(*disk_key);
2918
2919 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2920 chunk = (struct btrfs_chunk *)(ptr + len);
2921 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2922 len += btrfs_chunk_item_size(num_stripes);
2923 } else {
2924 ret = -EIO;
2925 break;
2926 }
2927 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2928 key.offset == chunk_offset) {
2929 memmove(ptr, ptr + len, array_size - (cur + len));
2930 array_size -= len;
2931 btrfs_set_super_sys_array_size(super_copy, array_size);
2932 } else {
2933 ptr += len;
2934 cur += len;
2935 }
2936 }
2937 mutex_unlock(&fs_info->chunk_mutex);
2938 return ret;
2939 }
2940
2941 /*
2942 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2943 * @logical: Logical block offset in bytes.
2944 * @length: Length of extent in bytes.
2945 *
2946 * Return: Chunk mapping or ERR_PTR.
2947 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)2948 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2949 u64 logical, u64 length)
2950 {
2951 struct extent_map_tree *em_tree;
2952 struct extent_map *em;
2953
2954 em_tree = &fs_info->mapping_tree;
2955 read_lock(&em_tree->lock);
2956 em = lookup_extent_mapping(em_tree, logical, length);
2957 read_unlock(&em_tree->lock);
2958
2959 if (!em) {
2960 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2961 logical, length);
2962 return ERR_PTR(-EINVAL);
2963 }
2964
2965 if (em->start > logical || em->start + em->len < logical) {
2966 btrfs_crit(fs_info,
2967 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2968 logical, length, em->start, em->start + em->len);
2969 free_extent_map(em);
2970 return ERR_PTR(-EINVAL);
2971 }
2972
2973 /* callers are responsible for dropping em's ref. */
2974 return em;
2975 }
2976
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2977 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2978 {
2979 struct btrfs_fs_info *fs_info = trans->fs_info;
2980 struct extent_map *em;
2981 struct map_lookup *map;
2982 u64 dev_extent_len = 0;
2983 int i, ret = 0;
2984 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2985
2986 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2987 if (IS_ERR(em)) {
2988 /*
2989 * This is a logic error, but we don't want to just rely on the
2990 * user having built with ASSERT enabled, so if ASSERT doesn't
2991 * do anything we still error out.
2992 */
2993 ASSERT(0);
2994 return PTR_ERR(em);
2995 }
2996 map = em->map_lookup;
2997 mutex_lock(&fs_info->chunk_mutex);
2998 check_system_chunk(trans, map->type);
2999 mutex_unlock(&fs_info->chunk_mutex);
3000
3001 /*
3002 * Take the device list mutex to prevent races with the final phase of
3003 * a device replace operation that replaces the device object associated
3004 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3005 */
3006 mutex_lock(&fs_devices->device_list_mutex);
3007 for (i = 0; i < map->num_stripes; i++) {
3008 struct btrfs_device *device = map->stripes[i].dev;
3009 ret = btrfs_free_dev_extent(trans, device,
3010 map->stripes[i].physical,
3011 &dev_extent_len);
3012 if (ret) {
3013 mutex_unlock(&fs_devices->device_list_mutex);
3014 btrfs_abort_transaction(trans, ret);
3015 goto out;
3016 }
3017
3018 if (device->bytes_used > 0) {
3019 mutex_lock(&fs_info->chunk_mutex);
3020 btrfs_device_set_bytes_used(device,
3021 device->bytes_used - dev_extent_len);
3022 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3023 btrfs_clear_space_info_full(fs_info);
3024 mutex_unlock(&fs_info->chunk_mutex);
3025 }
3026
3027 ret = btrfs_update_device(trans, device);
3028 if (ret) {
3029 mutex_unlock(&fs_devices->device_list_mutex);
3030 btrfs_abort_transaction(trans, ret);
3031 goto out;
3032 }
3033 }
3034 mutex_unlock(&fs_devices->device_list_mutex);
3035
3036 ret = btrfs_free_chunk(trans, chunk_offset);
3037 if (ret) {
3038 btrfs_abort_transaction(trans, ret);
3039 goto out;
3040 }
3041
3042 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3043
3044 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3045 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3046 if (ret) {
3047 btrfs_abort_transaction(trans, ret);
3048 goto out;
3049 }
3050 }
3051
3052 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3053 if (ret) {
3054 btrfs_abort_transaction(trans, ret);
3055 goto out;
3056 }
3057
3058 out:
3059 /* once for us */
3060 free_extent_map(em);
3061 return ret;
3062 }
3063
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3064 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3065 {
3066 struct btrfs_root *root = fs_info->chunk_root;
3067 struct btrfs_trans_handle *trans;
3068 struct btrfs_block_group *block_group;
3069 int ret;
3070
3071 /*
3072 * Prevent races with automatic removal of unused block groups.
3073 * After we relocate and before we remove the chunk with offset
3074 * chunk_offset, automatic removal of the block group can kick in,
3075 * resulting in a failure when calling btrfs_remove_chunk() below.
3076 *
3077 * Make sure to acquire this mutex before doing a tree search (dev
3078 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3079 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3080 * we release the path used to search the chunk/dev tree and before
3081 * the current task acquires this mutex and calls us.
3082 */
3083 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3084
3085 /* step one, relocate all the extents inside this chunk */
3086 btrfs_scrub_pause(fs_info);
3087 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3088 btrfs_scrub_continue(fs_info);
3089 if (ret)
3090 return ret;
3091
3092 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3093 if (!block_group)
3094 return -ENOENT;
3095 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3096 btrfs_put_block_group(block_group);
3097
3098 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3099 chunk_offset);
3100 if (IS_ERR(trans)) {
3101 ret = PTR_ERR(trans);
3102 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3103 return ret;
3104 }
3105
3106 /*
3107 * step two, delete the device extents and the
3108 * chunk tree entries
3109 */
3110 ret = btrfs_remove_chunk(trans, chunk_offset);
3111 btrfs_end_transaction(trans);
3112 return ret;
3113 }
3114
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3115 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3116 {
3117 struct btrfs_root *chunk_root = fs_info->chunk_root;
3118 struct btrfs_path *path;
3119 struct extent_buffer *leaf;
3120 struct btrfs_chunk *chunk;
3121 struct btrfs_key key;
3122 struct btrfs_key found_key;
3123 u64 chunk_type;
3124 bool retried = false;
3125 int failed = 0;
3126 int ret;
3127
3128 path = btrfs_alloc_path();
3129 if (!path)
3130 return -ENOMEM;
3131
3132 again:
3133 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3134 key.offset = (u64)-1;
3135 key.type = BTRFS_CHUNK_ITEM_KEY;
3136
3137 while (1) {
3138 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3139 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3140 if (ret < 0) {
3141 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3142 goto error;
3143 }
3144 BUG_ON(ret == 0); /* Corruption */
3145
3146 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3147 key.type);
3148 if (ret)
3149 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3150 if (ret < 0)
3151 goto error;
3152 if (ret > 0)
3153 break;
3154
3155 leaf = path->nodes[0];
3156 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3157
3158 chunk = btrfs_item_ptr(leaf, path->slots[0],
3159 struct btrfs_chunk);
3160 chunk_type = btrfs_chunk_type(leaf, chunk);
3161 btrfs_release_path(path);
3162
3163 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3164 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3165 if (ret == -ENOSPC)
3166 failed++;
3167 else
3168 BUG_ON(ret);
3169 }
3170 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3171
3172 if (found_key.offset == 0)
3173 break;
3174 key.offset = found_key.offset - 1;
3175 }
3176 ret = 0;
3177 if (failed && !retried) {
3178 failed = 0;
3179 retried = true;
3180 goto again;
3181 } else if (WARN_ON(failed && retried)) {
3182 ret = -ENOSPC;
3183 }
3184 error:
3185 btrfs_free_path(path);
3186 return ret;
3187 }
3188
3189 /*
3190 * return 1 : allocate a data chunk successfully,
3191 * return <0: errors during allocating a data chunk,
3192 * return 0 : no need to allocate a data chunk.
3193 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3194 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3195 u64 chunk_offset)
3196 {
3197 struct btrfs_block_group *cache;
3198 u64 bytes_used;
3199 u64 chunk_type;
3200
3201 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3202 ASSERT(cache);
3203 chunk_type = cache->flags;
3204 btrfs_put_block_group(cache);
3205
3206 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3207 return 0;
3208
3209 spin_lock(&fs_info->data_sinfo->lock);
3210 bytes_used = fs_info->data_sinfo->bytes_used;
3211 spin_unlock(&fs_info->data_sinfo->lock);
3212
3213 if (!bytes_used) {
3214 struct btrfs_trans_handle *trans;
3215 int ret;
3216
3217 trans = btrfs_join_transaction(fs_info->tree_root);
3218 if (IS_ERR(trans))
3219 return PTR_ERR(trans);
3220
3221 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3222 btrfs_end_transaction(trans);
3223 if (ret < 0)
3224 return ret;
3225 return 1;
3226 }
3227
3228 return 0;
3229 }
3230
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3231 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3232 struct btrfs_balance_control *bctl)
3233 {
3234 struct btrfs_root *root = fs_info->tree_root;
3235 struct btrfs_trans_handle *trans;
3236 struct btrfs_balance_item *item;
3237 struct btrfs_disk_balance_args disk_bargs;
3238 struct btrfs_path *path;
3239 struct extent_buffer *leaf;
3240 struct btrfs_key key;
3241 int ret, err;
3242
3243 path = btrfs_alloc_path();
3244 if (!path)
3245 return -ENOMEM;
3246
3247 trans = btrfs_start_transaction(root, 0);
3248 if (IS_ERR(trans)) {
3249 btrfs_free_path(path);
3250 return PTR_ERR(trans);
3251 }
3252
3253 key.objectid = BTRFS_BALANCE_OBJECTID;
3254 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3255 key.offset = 0;
3256
3257 ret = btrfs_insert_empty_item(trans, root, path, &key,
3258 sizeof(*item));
3259 if (ret)
3260 goto out;
3261
3262 leaf = path->nodes[0];
3263 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3264
3265 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3266
3267 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3268 btrfs_set_balance_data(leaf, item, &disk_bargs);
3269 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3270 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3271 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3272 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3273
3274 btrfs_set_balance_flags(leaf, item, bctl->flags);
3275
3276 btrfs_mark_buffer_dirty(leaf);
3277 out:
3278 btrfs_free_path(path);
3279 err = btrfs_commit_transaction(trans);
3280 if (err && !ret)
3281 ret = err;
3282 return ret;
3283 }
3284
del_balance_item(struct btrfs_fs_info * fs_info)3285 static int del_balance_item(struct btrfs_fs_info *fs_info)
3286 {
3287 struct btrfs_root *root = fs_info->tree_root;
3288 struct btrfs_trans_handle *trans;
3289 struct btrfs_path *path;
3290 struct btrfs_key key;
3291 int ret, err;
3292
3293 path = btrfs_alloc_path();
3294 if (!path)
3295 return -ENOMEM;
3296
3297 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3298 if (IS_ERR(trans)) {
3299 btrfs_free_path(path);
3300 return PTR_ERR(trans);
3301 }
3302
3303 key.objectid = BTRFS_BALANCE_OBJECTID;
3304 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3305 key.offset = 0;
3306
3307 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3308 if (ret < 0)
3309 goto out;
3310 if (ret > 0) {
3311 ret = -ENOENT;
3312 goto out;
3313 }
3314
3315 ret = btrfs_del_item(trans, root, path);
3316 out:
3317 btrfs_free_path(path);
3318 err = btrfs_commit_transaction(trans);
3319 if (err && !ret)
3320 ret = err;
3321 return ret;
3322 }
3323
3324 /*
3325 * This is a heuristic used to reduce the number of chunks balanced on
3326 * resume after balance was interrupted.
3327 */
update_balance_args(struct btrfs_balance_control * bctl)3328 static void update_balance_args(struct btrfs_balance_control *bctl)
3329 {
3330 /*
3331 * Turn on soft mode for chunk types that were being converted.
3332 */
3333 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3334 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3335 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3336 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3337 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3338 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3339
3340 /*
3341 * Turn on usage filter if is not already used. The idea is
3342 * that chunks that we have already balanced should be
3343 * reasonably full. Don't do it for chunks that are being
3344 * converted - that will keep us from relocating unconverted
3345 * (albeit full) chunks.
3346 */
3347 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3348 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3349 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3350 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3351 bctl->data.usage = 90;
3352 }
3353 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3354 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3355 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3356 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3357 bctl->sys.usage = 90;
3358 }
3359 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3360 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3361 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3362 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3363 bctl->meta.usage = 90;
3364 }
3365 }
3366
3367 /*
3368 * Clear the balance status in fs_info and delete the balance item from disk.
3369 */
reset_balance_state(struct btrfs_fs_info * fs_info)3370 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3371 {
3372 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3373 int ret;
3374
3375 BUG_ON(!fs_info->balance_ctl);
3376
3377 spin_lock(&fs_info->balance_lock);
3378 fs_info->balance_ctl = NULL;
3379 spin_unlock(&fs_info->balance_lock);
3380
3381 kfree(bctl);
3382 ret = del_balance_item(fs_info);
3383 if (ret)
3384 btrfs_handle_fs_error(fs_info, ret, NULL);
3385 }
3386
3387 /*
3388 * Balance filters. Return 1 if chunk should be filtered out
3389 * (should not be balanced).
3390 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3391 static int chunk_profiles_filter(u64 chunk_type,
3392 struct btrfs_balance_args *bargs)
3393 {
3394 chunk_type = chunk_to_extended(chunk_type) &
3395 BTRFS_EXTENDED_PROFILE_MASK;
3396
3397 if (bargs->profiles & chunk_type)
3398 return 0;
3399
3400 return 1;
3401 }
3402
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3403 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3404 struct btrfs_balance_args *bargs)
3405 {
3406 struct btrfs_block_group *cache;
3407 u64 chunk_used;
3408 u64 user_thresh_min;
3409 u64 user_thresh_max;
3410 int ret = 1;
3411
3412 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3413 chunk_used = cache->used;
3414
3415 if (bargs->usage_min == 0)
3416 user_thresh_min = 0;
3417 else
3418 user_thresh_min = div_factor_fine(cache->length,
3419 bargs->usage_min);
3420
3421 if (bargs->usage_max == 0)
3422 user_thresh_max = 1;
3423 else if (bargs->usage_max > 100)
3424 user_thresh_max = cache->length;
3425 else
3426 user_thresh_max = div_factor_fine(cache->length,
3427 bargs->usage_max);
3428
3429 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3430 ret = 0;
3431
3432 btrfs_put_block_group(cache);
3433 return ret;
3434 }
3435
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3436 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3437 u64 chunk_offset, struct btrfs_balance_args *bargs)
3438 {
3439 struct btrfs_block_group *cache;
3440 u64 chunk_used, user_thresh;
3441 int ret = 1;
3442
3443 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3444 chunk_used = cache->used;
3445
3446 if (bargs->usage_min == 0)
3447 user_thresh = 1;
3448 else if (bargs->usage > 100)
3449 user_thresh = cache->length;
3450 else
3451 user_thresh = div_factor_fine(cache->length, bargs->usage);
3452
3453 if (chunk_used < user_thresh)
3454 ret = 0;
3455
3456 btrfs_put_block_group(cache);
3457 return ret;
3458 }
3459
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3460 static int chunk_devid_filter(struct extent_buffer *leaf,
3461 struct btrfs_chunk *chunk,
3462 struct btrfs_balance_args *bargs)
3463 {
3464 struct btrfs_stripe *stripe;
3465 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3466 int i;
3467
3468 for (i = 0; i < num_stripes; i++) {
3469 stripe = btrfs_stripe_nr(chunk, i);
3470 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3471 return 0;
3472 }
3473
3474 return 1;
3475 }
3476
calc_data_stripes(u64 type,int num_stripes)3477 static u64 calc_data_stripes(u64 type, int num_stripes)
3478 {
3479 const int index = btrfs_bg_flags_to_raid_index(type);
3480 const int ncopies = btrfs_raid_array[index].ncopies;
3481 const int nparity = btrfs_raid_array[index].nparity;
3482
3483 if (nparity)
3484 return num_stripes - nparity;
3485 else
3486 return num_stripes / ncopies;
3487 }
3488
3489 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3490 static int chunk_drange_filter(struct extent_buffer *leaf,
3491 struct btrfs_chunk *chunk,
3492 struct btrfs_balance_args *bargs)
3493 {
3494 struct btrfs_stripe *stripe;
3495 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3496 u64 stripe_offset;
3497 u64 stripe_length;
3498 u64 type;
3499 int factor;
3500 int i;
3501
3502 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3503 return 0;
3504
3505 type = btrfs_chunk_type(leaf, chunk);
3506 factor = calc_data_stripes(type, num_stripes);
3507
3508 for (i = 0; i < num_stripes; i++) {
3509 stripe = btrfs_stripe_nr(chunk, i);
3510 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3511 continue;
3512
3513 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3514 stripe_length = btrfs_chunk_length(leaf, chunk);
3515 stripe_length = div_u64(stripe_length, factor);
3516
3517 if (stripe_offset < bargs->pend &&
3518 stripe_offset + stripe_length > bargs->pstart)
3519 return 0;
3520 }
3521
3522 return 1;
3523 }
3524
3525 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3526 static int chunk_vrange_filter(struct extent_buffer *leaf,
3527 struct btrfs_chunk *chunk,
3528 u64 chunk_offset,
3529 struct btrfs_balance_args *bargs)
3530 {
3531 if (chunk_offset < bargs->vend &&
3532 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3533 /* at least part of the chunk is inside this vrange */
3534 return 0;
3535
3536 return 1;
3537 }
3538
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3539 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3540 struct btrfs_chunk *chunk,
3541 struct btrfs_balance_args *bargs)
3542 {
3543 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3544
3545 if (bargs->stripes_min <= num_stripes
3546 && num_stripes <= bargs->stripes_max)
3547 return 0;
3548
3549 return 1;
3550 }
3551
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3552 static int chunk_soft_convert_filter(u64 chunk_type,
3553 struct btrfs_balance_args *bargs)
3554 {
3555 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3556 return 0;
3557
3558 chunk_type = chunk_to_extended(chunk_type) &
3559 BTRFS_EXTENDED_PROFILE_MASK;
3560
3561 if (bargs->target == chunk_type)
3562 return 1;
3563
3564 return 0;
3565 }
3566
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3567 static int should_balance_chunk(struct extent_buffer *leaf,
3568 struct btrfs_chunk *chunk, u64 chunk_offset)
3569 {
3570 struct btrfs_fs_info *fs_info = leaf->fs_info;
3571 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3572 struct btrfs_balance_args *bargs = NULL;
3573 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3574
3575 /* type filter */
3576 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3577 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3578 return 0;
3579 }
3580
3581 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3582 bargs = &bctl->data;
3583 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3584 bargs = &bctl->sys;
3585 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3586 bargs = &bctl->meta;
3587
3588 /* profiles filter */
3589 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3590 chunk_profiles_filter(chunk_type, bargs)) {
3591 return 0;
3592 }
3593
3594 /* usage filter */
3595 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3596 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3597 return 0;
3598 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3599 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3600 return 0;
3601 }
3602
3603 /* devid filter */
3604 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3605 chunk_devid_filter(leaf, chunk, bargs)) {
3606 return 0;
3607 }
3608
3609 /* drange filter, makes sense only with devid filter */
3610 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3611 chunk_drange_filter(leaf, chunk, bargs)) {
3612 return 0;
3613 }
3614
3615 /* vrange filter */
3616 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3617 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3618 return 0;
3619 }
3620
3621 /* stripes filter */
3622 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3623 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3624 return 0;
3625 }
3626
3627 /* soft profile changing mode */
3628 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3629 chunk_soft_convert_filter(chunk_type, bargs)) {
3630 return 0;
3631 }
3632
3633 /*
3634 * limited by count, must be the last filter
3635 */
3636 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3637 if (bargs->limit == 0)
3638 return 0;
3639 else
3640 bargs->limit--;
3641 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3642 /*
3643 * Same logic as the 'limit' filter; the minimum cannot be
3644 * determined here because we do not have the global information
3645 * about the count of all chunks that satisfy the filters.
3646 */
3647 if (bargs->limit_max == 0)
3648 return 0;
3649 else
3650 bargs->limit_max--;
3651 }
3652
3653 return 1;
3654 }
3655
__btrfs_balance(struct btrfs_fs_info * fs_info)3656 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3657 {
3658 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3659 struct btrfs_root *chunk_root = fs_info->chunk_root;
3660 u64 chunk_type;
3661 struct btrfs_chunk *chunk;
3662 struct btrfs_path *path = NULL;
3663 struct btrfs_key key;
3664 struct btrfs_key found_key;
3665 struct extent_buffer *leaf;
3666 int slot;
3667 int ret;
3668 int enospc_errors = 0;
3669 bool counting = true;
3670 /* The single value limit and min/max limits use the same bytes in the */
3671 u64 limit_data = bctl->data.limit;
3672 u64 limit_meta = bctl->meta.limit;
3673 u64 limit_sys = bctl->sys.limit;
3674 u32 count_data = 0;
3675 u32 count_meta = 0;
3676 u32 count_sys = 0;
3677 int chunk_reserved = 0;
3678
3679 path = btrfs_alloc_path();
3680 if (!path) {
3681 ret = -ENOMEM;
3682 goto error;
3683 }
3684
3685 /* zero out stat counters */
3686 spin_lock(&fs_info->balance_lock);
3687 memset(&bctl->stat, 0, sizeof(bctl->stat));
3688 spin_unlock(&fs_info->balance_lock);
3689 again:
3690 if (!counting) {
3691 /*
3692 * The single value limit and min/max limits use the same bytes
3693 * in the
3694 */
3695 bctl->data.limit = limit_data;
3696 bctl->meta.limit = limit_meta;
3697 bctl->sys.limit = limit_sys;
3698 }
3699 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3700 key.offset = (u64)-1;
3701 key.type = BTRFS_CHUNK_ITEM_KEY;
3702
3703 while (1) {
3704 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3705 atomic_read(&fs_info->balance_cancel_req)) {
3706 ret = -ECANCELED;
3707 goto error;
3708 }
3709
3710 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3711 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3712 if (ret < 0) {
3713 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3714 goto error;
3715 }
3716
3717 /*
3718 * this shouldn't happen, it means the last relocate
3719 * failed
3720 */
3721 if (ret == 0)
3722 BUG(); /* FIXME break ? */
3723
3724 ret = btrfs_previous_item(chunk_root, path, 0,
3725 BTRFS_CHUNK_ITEM_KEY);
3726 if (ret) {
3727 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3728 ret = 0;
3729 break;
3730 }
3731
3732 leaf = path->nodes[0];
3733 slot = path->slots[0];
3734 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3735
3736 if (found_key.objectid != key.objectid) {
3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3738 break;
3739 }
3740
3741 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3742 chunk_type = btrfs_chunk_type(leaf, chunk);
3743
3744 if (!counting) {
3745 spin_lock(&fs_info->balance_lock);
3746 bctl->stat.considered++;
3747 spin_unlock(&fs_info->balance_lock);
3748 }
3749
3750 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3751
3752 btrfs_release_path(path);
3753 if (!ret) {
3754 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3755 goto loop;
3756 }
3757
3758 if (counting) {
3759 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760 spin_lock(&fs_info->balance_lock);
3761 bctl->stat.expected++;
3762 spin_unlock(&fs_info->balance_lock);
3763
3764 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3765 count_data++;
3766 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3767 count_sys++;
3768 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3769 count_meta++;
3770
3771 goto loop;
3772 }
3773
3774 /*
3775 * Apply limit_min filter, no need to check if the LIMITS
3776 * filter is used, limit_min is 0 by default
3777 */
3778 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3779 count_data < bctl->data.limit_min)
3780 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3781 count_meta < bctl->meta.limit_min)
3782 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3783 count_sys < bctl->sys.limit_min)) {
3784 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3785 goto loop;
3786 }
3787
3788 if (!chunk_reserved) {
3789 /*
3790 * We may be relocating the only data chunk we have,
3791 * which could potentially end up with losing data's
3792 * raid profile, so lets allocate an empty one in
3793 * advance.
3794 */
3795 ret = btrfs_may_alloc_data_chunk(fs_info,
3796 found_key.offset);
3797 if (ret < 0) {
3798 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3799 goto error;
3800 } else if (ret == 1) {
3801 chunk_reserved = 1;
3802 }
3803 }
3804
3805 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3806 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3807 if (ret == -ENOSPC) {
3808 enospc_errors++;
3809 } else if (ret == -ETXTBSY) {
3810 btrfs_info(fs_info,
3811 "skipping relocation of block group %llu due to active swapfile",
3812 found_key.offset);
3813 ret = 0;
3814 } else if (ret) {
3815 goto error;
3816 } else {
3817 spin_lock(&fs_info->balance_lock);
3818 bctl->stat.completed++;
3819 spin_unlock(&fs_info->balance_lock);
3820 }
3821 loop:
3822 if (found_key.offset == 0)
3823 break;
3824 key.offset = found_key.offset - 1;
3825 }
3826
3827 if (counting) {
3828 btrfs_release_path(path);
3829 counting = false;
3830 goto again;
3831 }
3832 error:
3833 btrfs_free_path(path);
3834 if (enospc_errors) {
3835 btrfs_info(fs_info, "%d enospc errors during balance",
3836 enospc_errors);
3837 if (!ret)
3838 ret = -ENOSPC;
3839 }
3840
3841 return ret;
3842 }
3843
3844 /**
3845 * alloc_profile_is_valid - see if a given profile is valid and reduced
3846 * @flags: profile to validate
3847 * @extended: if true @flags is treated as an extended profile
3848 */
alloc_profile_is_valid(u64 flags,int extended)3849 static int alloc_profile_is_valid(u64 flags, int extended)
3850 {
3851 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3852 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3853
3854 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3855
3856 /* 1) check that all other bits are zeroed */
3857 if (flags & ~mask)
3858 return 0;
3859
3860 /* 2) see if profile is reduced */
3861 if (flags == 0)
3862 return !extended; /* "0" is valid for usual profiles */
3863
3864 return has_single_bit_set(flags);
3865 }
3866
balance_need_close(struct btrfs_fs_info * fs_info)3867 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3868 {
3869 /* cancel requested || normal exit path */
3870 return atomic_read(&fs_info->balance_cancel_req) ||
3871 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3872 atomic_read(&fs_info->balance_cancel_req) == 0);
3873 }
3874
3875 /*
3876 * Validate target profile against allowed profiles and return true if it's OK.
3877 * Otherwise print the error message and return false.
3878 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)3879 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
3880 const struct btrfs_balance_args *bargs,
3881 u64 allowed, const char *type)
3882 {
3883 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3884 return true;
3885
3886 /* Profile is valid and does not have bits outside of the allowed set */
3887 if (alloc_profile_is_valid(bargs->target, 1) &&
3888 (bargs->target & ~allowed) == 0)
3889 return true;
3890
3891 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
3892 type, btrfs_bg_type_to_raid_name(bargs->target));
3893 return false;
3894 }
3895
3896 /*
3897 * Fill @buf with textual description of balance filter flags @bargs, up to
3898 * @size_buf including the terminating null. The output may be trimmed if it
3899 * does not fit into the provided buffer.
3900 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)3901 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3902 u32 size_buf)
3903 {
3904 int ret;
3905 u32 size_bp = size_buf;
3906 char *bp = buf;
3907 u64 flags = bargs->flags;
3908 char tmp_buf[128] = {'\0'};
3909
3910 if (!flags)
3911 return;
3912
3913 #define CHECK_APPEND_NOARG(a) \
3914 do { \
3915 ret = snprintf(bp, size_bp, (a)); \
3916 if (ret < 0 || ret >= size_bp) \
3917 goto out_overflow; \
3918 size_bp -= ret; \
3919 bp += ret; \
3920 } while (0)
3921
3922 #define CHECK_APPEND_1ARG(a, v1) \
3923 do { \
3924 ret = snprintf(bp, size_bp, (a), (v1)); \
3925 if (ret < 0 || ret >= size_bp) \
3926 goto out_overflow; \
3927 size_bp -= ret; \
3928 bp += ret; \
3929 } while (0)
3930
3931 #define CHECK_APPEND_2ARG(a, v1, v2) \
3932 do { \
3933 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3934 if (ret < 0 || ret >= size_bp) \
3935 goto out_overflow; \
3936 size_bp -= ret; \
3937 bp += ret; \
3938 } while (0)
3939
3940 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3941 CHECK_APPEND_1ARG("convert=%s,",
3942 btrfs_bg_type_to_raid_name(bargs->target));
3943
3944 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3945 CHECK_APPEND_NOARG("soft,");
3946
3947 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3948 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3949 sizeof(tmp_buf));
3950 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3951 }
3952
3953 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3954 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3955
3956 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3957 CHECK_APPEND_2ARG("usage=%u..%u,",
3958 bargs->usage_min, bargs->usage_max);
3959
3960 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3961 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3962
3963 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3964 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3965 bargs->pstart, bargs->pend);
3966
3967 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3968 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3969 bargs->vstart, bargs->vend);
3970
3971 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3972 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3973
3974 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3975 CHECK_APPEND_2ARG("limit=%u..%u,",
3976 bargs->limit_min, bargs->limit_max);
3977
3978 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3979 CHECK_APPEND_2ARG("stripes=%u..%u,",
3980 bargs->stripes_min, bargs->stripes_max);
3981
3982 #undef CHECK_APPEND_2ARG
3983 #undef CHECK_APPEND_1ARG
3984 #undef CHECK_APPEND_NOARG
3985
3986 out_overflow:
3987
3988 if (size_bp < size_buf)
3989 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3990 else
3991 buf[0] = '\0';
3992 }
3993
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)3994 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3995 {
3996 u32 size_buf = 1024;
3997 char tmp_buf[192] = {'\0'};
3998 char *buf;
3999 char *bp;
4000 u32 size_bp = size_buf;
4001 int ret;
4002 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4003
4004 buf = kzalloc(size_buf, GFP_KERNEL);
4005 if (!buf)
4006 return;
4007
4008 bp = buf;
4009
4010 #define CHECK_APPEND_1ARG(a, v1) \
4011 do { \
4012 ret = snprintf(bp, size_bp, (a), (v1)); \
4013 if (ret < 0 || ret >= size_bp) \
4014 goto out_overflow; \
4015 size_bp -= ret; \
4016 bp += ret; \
4017 } while (0)
4018
4019 if (bctl->flags & BTRFS_BALANCE_FORCE)
4020 CHECK_APPEND_1ARG("%s", "-f ");
4021
4022 if (bctl->flags & BTRFS_BALANCE_DATA) {
4023 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4024 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4025 }
4026
4027 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4028 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4029 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4030 }
4031
4032 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4033 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4034 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4035 }
4036
4037 #undef CHECK_APPEND_1ARG
4038
4039 out_overflow:
4040
4041 if (size_bp < size_buf)
4042 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4043 btrfs_info(fs_info, "balance: %s %s",
4044 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4045 "resume" : "start", buf);
4046
4047 kfree(buf);
4048 }
4049
4050 /*
4051 * Should be called with balance mutexe held
4052 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4053 int btrfs_balance(struct btrfs_fs_info *fs_info,
4054 struct btrfs_balance_control *bctl,
4055 struct btrfs_ioctl_balance_args *bargs)
4056 {
4057 u64 meta_target, data_target;
4058 u64 allowed;
4059 int mixed = 0;
4060 int ret;
4061 u64 num_devices;
4062 unsigned seq;
4063 bool reducing_redundancy;
4064 int i;
4065
4066 if (btrfs_fs_closing(fs_info) ||
4067 atomic_read(&fs_info->balance_pause_req) ||
4068 btrfs_should_cancel_balance(fs_info)) {
4069 ret = -EINVAL;
4070 goto out;
4071 }
4072
4073 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4074 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4075 mixed = 1;
4076
4077 /*
4078 * In case of mixed groups both data and meta should be picked,
4079 * and identical options should be given for both of them.
4080 */
4081 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4082 if (mixed && (bctl->flags & allowed)) {
4083 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4084 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4085 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4086 btrfs_err(fs_info,
4087 "balance: mixed groups data and metadata options must be the same");
4088 ret = -EINVAL;
4089 goto out;
4090 }
4091 }
4092
4093 /*
4094 * rw_devices will not change at the moment, device add/delete/replace
4095 * are exclusive
4096 */
4097 num_devices = fs_info->fs_devices->rw_devices;
4098
4099 /*
4100 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4101 * special bit for it, to make it easier to distinguish. Thus we need
4102 * to set it manually, or balance would refuse the profile.
4103 */
4104 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4105 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4106 if (num_devices >= btrfs_raid_array[i].devs_min)
4107 allowed |= btrfs_raid_array[i].bg_flag;
4108
4109 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4110 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4111 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4112 ret = -EINVAL;
4113 goto out;
4114 }
4115
4116 /*
4117 * Allow to reduce metadata or system integrity only if force set for
4118 * profiles with redundancy (copies, parity)
4119 */
4120 allowed = 0;
4121 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4122 if (btrfs_raid_array[i].ncopies >= 2 ||
4123 btrfs_raid_array[i].tolerated_failures >= 1)
4124 allowed |= btrfs_raid_array[i].bg_flag;
4125 }
4126 do {
4127 seq = read_seqbegin(&fs_info->profiles_lock);
4128
4129 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4130 (fs_info->avail_system_alloc_bits & allowed) &&
4131 !(bctl->sys.target & allowed)) ||
4132 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4133 (fs_info->avail_metadata_alloc_bits & allowed) &&
4134 !(bctl->meta.target & allowed)))
4135 reducing_redundancy = true;
4136 else
4137 reducing_redundancy = false;
4138
4139 /* if we're not converting, the target field is uninitialized */
4140 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4141 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4142 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4143 bctl->data.target : fs_info->avail_data_alloc_bits;
4144 } while (read_seqretry(&fs_info->profiles_lock, seq));
4145
4146 if (reducing_redundancy) {
4147 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4148 btrfs_info(fs_info,
4149 "balance: force reducing metadata redundancy");
4150 } else {
4151 btrfs_err(fs_info,
4152 "balance: reduces metadata redundancy, use --force if you want this");
4153 ret = -EINVAL;
4154 goto out;
4155 }
4156 }
4157
4158 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4159 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4160 btrfs_warn(fs_info,
4161 "balance: metadata profile %s has lower redundancy than data profile %s",
4162 btrfs_bg_type_to_raid_name(meta_target),
4163 btrfs_bg_type_to_raid_name(data_target));
4164 }
4165
4166 if (fs_info->send_in_progress) {
4167 btrfs_warn_rl(fs_info,
4168 "cannot run balance while send operations are in progress (%d in progress)",
4169 fs_info->send_in_progress);
4170 ret = -EAGAIN;
4171 goto out;
4172 }
4173
4174 ret = insert_balance_item(fs_info, bctl);
4175 if (ret && ret != -EEXIST)
4176 goto out;
4177
4178 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4179 BUG_ON(ret == -EEXIST);
4180 BUG_ON(fs_info->balance_ctl);
4181 spin_lock(&fs_info->balance_lock);
4182 fs_info->balance_ctl = bctl;
4183 spin_unlock(&fs_info->balance_lock);
4184 } else {
4185 BUG_ON(ret != -EEXIST);
4186 spin_lock(&fs_info->balance_lock);
4187 update_balance_args(bctl);
4188 spin_unlock(&fs_info->balance_lock);
4189 }
4190
4191 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4192 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4193 describe_balance_start_or_resume(fs_info);
4194 mutex_unlock(&fs_info->balance_mutex);
4195
4196 ret = __btrfs_balance(fs_info);
4197
4198 mutex_lock(&fs_info->balance_mutex);
4199 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4200 btrfs_info(fs_info, "balance: paused");
4201 /*
4202 * Balance can be canceled by:
4203 *
4204 * - Regular cancel request
4205 * Then ret == -ECANCELED and balance_cancel_req > 0
4206 *
4207 * - Fatal signal to "btrfs" process
4208 * Either the signal caught by wait_reserve_ticket() and callers
4209 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4210 * got -ECANCELED.
4211 * Either way, in this case balance_cancel_req = 0, and
4212 * ret == -EINTR or ret == -ECANCELED.
4213 *
4214 * So here we only check the return value to catch canceled balance.
4215 */
4216 else if (ret == -ECANCELED || ret == -EINTR)
4217 btrfs_info(fs_info, "balance: canceled");
4218 else
4219 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4220
4221 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4222
4223 if (bargs) {
4224 memset(bargs, 0, sizeof(*bargs));
4225 btrfs_update_ioctl_balance_args(fs_info, bargs);
4226 }
4227
4228 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4229 balance_need_close(fs_info)) {
4230 reset_balance_state(fs_info);
4231 btrfs_exclop_finish(fs_info);
4232 }
4233
4234 wake_up(&fs_info->balance_wait_q);
4235
4236 return ret;
4237 out:
4238 if (bctl->flags & BTRFS_BALANCE_RESUME)
4239 reset_balance_state(fs_info);
4240 else
4241 kfree(bctl);
4242 btrfs_exclop_finish(fs_info);
4243
4244 return ret;
4245 }
4246
balance_kthread(void * data)4247 static int balance_kthread(void *data)
4248 {
4249 struct btrfs_fs_info *fs_info = data;
4250 int ret = 0;
4251
4252 sb_start_write(fs_info->sb);
4253 mutex_lock(&fs_info->balance_mutex);
4254 if (fs_info->balance_ctl)
4255 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4256 mutex_unlock(&fs_info->balance_mutex);
4257 sb_end_write(fs_info->sb);
4258
4259 return ret;
4260 }
4261
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4262 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4263 {
4264 struct task_struct *tsk;
4265
4266 mutex_lock(&fs_info->balance_mutex);
4267 if (!fs_info->balance_ctl) {
4268 mutex_unlock(&fs_info->balance_mutex);
4269 return 0;
4270 }
4271 mutex_unlock(&fs_info->balance_mutex);
4272
4273 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4274 btrfs_info(fs_info, "balance: resume skipped");
4275 return 0;
4276 }
4277
4278 /*
4279 * A ro->rw remount sequence should continue with the paused balance
4280 * regardless of who pauses it, system or the user as of now, so set
4281 * the resume flag.
4282 */
4283 spin_lock(&fs_info->balance_lock);
4284 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4285 spin_unlock(&fs_info->balance_lock);
4286
4287 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4288 return PTR_ERR_OR_ZERO(tsk);
4289 }
4290
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4291 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4292 {
4293 struct btrfs_balance_control *bctl;
4294 struct btrfs_balance_item *item;
4295 struct btrfs_disk_balance_args disk_bargs;
4296 struct btrfs_path *path;
4297 struct extent_buffer *leaf;
4298 struct btrfs_key key;
4299 int ret;
4300
4301 path = btrfs_alloc_path();
4302 if (!path)
4303 return -ENOMEM;
4304
4305 key.objectid = BTRFS_BALANCE_OBJECTID;
4306 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4307 key.offset = 0;
4308
4309 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4310 if (ret < 0)
4311 goto out;
4312 if (ret > 0) { /* ret = -ENOENT; */
4313 ret = 0;
4314 goto out;
4315 }
4316
4317 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4318 if (!bctl) {
4319 ret = -ENOMEM;
4320 goto out;
4321 }
4322
4323 leaf = path->nodes[0];
4324 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4325
4326 bctl->flags = btrfs_balance_flags(leaf, item);
4327 bctl->flags |= BTRFS_BALANCE_RESUME;
4328
4329 btrfs_balance_data(leaf, item, &disk_bargs);
4330 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4331 btrfs_balance_meta(leaf, item, &disk_bargs);
4332 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4333 btrfs_balance_sys(leaf, item, &disk_bargs);
4334 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4335
4336 /*
4337 * This should never happen, as the paused balance state is recovered
4338 * during mount without any chance of other exclusive ops to collide.
4339 *
4340 * This gives the exclusive op status to balance and keeps in paused
4341 * state until user intervention (cancel or umount). If the ownership
4342 * cannot be assigned, show a message but do not fail. The balance
4343 * is in a paused state and must have fs_info::balance_ctl properly
4344 * set up.
4345 */
4346 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
4347 btrfs_warn(fs_info,
4348 "balance: cannot set exclusive op status, resume manually");
4349
4350 btrfs_release_path(path);
4351
4352 mutex_lock(&fs_info->balance_mutex);
4353 BUG_ON(fs_info->balance_ctl);
4354 spin_lock(&fs_info->balance_lock);
4355 fs_info->balance_ctl = bctl;
4356 spin_unlock(&fs_info->balance_lock);
4357 mutex_unlock(&fs_info->balance_mutex);
4358 out:
4359 btrfs_free_path(path);
4360 return ret;
4361 }
4362
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4363 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4364 {
4365 int ret = 0;
4366
4367 mutex_lock(&fs_info->balance_mutex);
4368 if (!fs_info->balance_ctl) {
4369 mutex_unlock(&fs_info->balance_mutex);
4370 return -ENOTCONN;
4371 }
4372
4373 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4374 atomic_inc(&fs_info->balance_pause_req);
4375 mutex_unlock(&fs_info->balance_mutex);
4376
4377 wait_event(fs_info->balance_wait_q,
4378 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4379
4380 mutex_lock(&fs_info->balance_mutex);
4381 /* we are good with balance_ctl ripped off from under us */
4382 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4383 atomic_dec(&fs_info->balance_pause_req);
4384 } else {
4385 ret = -ENOTCONN;
4386 }
4387
4388 mutex_unlock(&fs_info->balance_mutex);
4389 return ret;
4390 }
4391
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4392 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4393 {
4394 mutex_lock(&fs_info->balance_mutex);
4395 if (!fs_info->balance_ctl) {
4396 mutex_unlock(&fs_info->balance_mutex);
4397 return -ENOTCONN;
4398 }
4399
4400 /*
4401 * A paused balance with the item stored on disk can be resumed at
4402 * mount time if the mount is read-write. Otherwise it's still paused
4403 * and we must not allow cancelling as it deletes the item.
4404 */
4405 if (sb_rdonly(fs_info->sb)) {
4406 mutex_unlock(&fs_info->balance_mutex);
4407 return -EROFS;
4408 }
4409
4410 atomic_inc(&fs_info->balance_cancel_req);
4411 /*
4412 * if we are running just wait and return, balance item is
4413 * deleted in btrfs_balance in this case
4414 */
4415 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4416 mutex_unlock(&fs_info->balance_mutex);
4417 wait_event(fs_info->balance_wait_q,
4418 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4419 mutex_lock(&fs_info->balance_mutex);
4420 } else {
4421 mutex_unlock(&fs_info->balance_mutex);
4422 /*
4423 * Lock released to allow other waiters to continue, we'll
4424 * reexamine the status again.
4425 */
4426 mutex_lock(&fs_info->balance_mutex);
4427
4428 if (fs_info->balance_ctl) {
4429 reset_balance_state(fs_info);
4430 btrfs_exclop_finish(fs_info);
4431 btrfs_info(fs_info, "balance: canceled");
4432 }
4433 }
4434
4435 BUG_ON(fs_info->balance_ctl ||
4436 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4437 atomic_dec(&fs_info->balance_cancel_req);
4438 mutex_unlock(&fs_info->balance_mutex);
4439 return 0;
4440 }
4441
btrfs_uuid_scan_kthread(void * data)4442 int btrfs_uuid_scan_kthread(void *data)
4443 {
4444 struct btrfs_fs_info *fs_info = data;
4445 struct btrfs_root *root = fs_info->tree_root;
4446 struct btrfs_key key;
4447 struct btrfs_path *path = NULL;
4448 int ret = 0;
4449 struct extent_buffer *eb;
4450 int slot;
4451 struct btrfs_root_item root_item;
4452 u32 item_size;
4453 struct btrfs_trans_handle *trans = NULL;
4454 bool closing = false;
4455
4456 path = btrfs_alloc_path();
4457 if (!path) {
4458 ret = -ENOMEM;
4459 goto out;
4460 }
4461
4462 key.objectid = 0;
4463 key.type = BTRFS_ROOT_ITEM_KEY;
4464 key.offset = 0;
4465
4466 while (1) {
4467 if (btrfs_fs_closing(fs_info)) {
4468 closing = true;
4469 break;
4470 }
4471 ret = btrfs_search_forward(root, &key, path,
4472 BTRFS_OLDEST_GENERATION);
4473 if (ret) {
4474 if (ret > 0)
4475 ret = 0;
4476 break;
4477 }
4478
4479 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4480 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4481 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4482 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4483 goto skip;
4484
4485 eb = path->nodes[0];
4486 slot = path->slots[0];
4487 item_size = btrfs_item_size_nr(eb, slot);
4488 if (item_size < sizeof(root_item))
4489 goto skip;
4490
4491 read_extent_buffer(eb, &root_item,
4492 btrfs_item_ptr_offset(eb, slot),
4493 (int)sizeof(root_item));
4494 if (btrfs_root_refs(&root_item) == 0)
4495 goto skip;
4496
4497 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4498 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4499 if (trans)
4500 goto update_tree;
4501
4502 btrfs_release_path(path);
4503 /*
4504 * 1 - subvol uuid item
4505 * 1 - received_subvol uuid item
4506 */
4507 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4508 if (IS_ERR(trans)) {
4509 ret = PTR_ERR(trans);
4510 break;
4511 }
4512 continue;
4513 } else {
4514 goto skip;
4515 }
4516 update_tree:
4517 btrfs_release_path(path);
4518 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4519 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4520 BTRFS_UUID_KEY_SUBVOL,
4521 key.objectid);
4522 if (ret < 0) {
4523 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4524 ret);
4525 break;
4526 }
4527 }
4528
4529 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4530 ret = btrfs_uuid_tree_add(trans,
4531 root_item.received_uuid,
4532 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4533 key.objectid);
4534 if (ret < 0) {
4535 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4536 ret);
4537 break;
4538 }
4539 }
4540
4541 skip:
4542 btrfs_release_path(path);
4543 if (trans) {
4544 ret = btrfs_end_transaction(trans);
4545 trans = NULL;
4546 if (ret)
4547 break;
4548 }
4549
4550 if (key.offset < (u64)-1) {
4551 key.offset++;
4552 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4553 key.offset = 0;
4554 key.type = BTRFS_ROOT_ITEM_KEY;
4555 } else if (key.objectid < (u64)-1) {
4556 key.offset = 0;
4557 key.type = BTRFS_ROOT_ITEM_KEY;
4558 key.objectid++;
4559 } else {
4560 break;
4561 }
4562 cond_resched();
4563 }
4564
4565 out:
4566 btrfs_free_path(path);
4567 if (trans && !IS_ERR(trans))
4568 btrfs_end_transaction(trans);
4569 if (ret)
4570 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4571 else if (!closing)
4572 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4573 up(&fs_info->uuid_tree_rescan_sem);
4574 return 0;
4575 }
4576
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4577 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4578 {
4579 struct btrfs_trans_handle *trans;
4580 struct btrfs_root *tree_root = fs_info->tree_root;
4581 struct btrfs_root *uuid_root;
4582 struct task_struct *task;
4583 int ret;
4584
4585 /*
4586 * 1 - root node
4587 * 1 - root item
4588 */
4589 trans = btrfs_start_transaction(tree_root, 2);
4590 if (IS_ERR(trans))
4591 return PTR_ERR(trans);
4592
4593 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4594 if (IS_ERR(uuid_root)) {
4595 ret = PTR_ERR(uuid_root);
4596 btrfs_abort_transaction(trans, ret);
4597 btrfs_end_transaction(trans);
4598 return ret;
4599 }
4600
4601 fs_info->uuid_root = uuid_root;
4602
4603 ret = btrfs_commit_transaction(trans);
4604 if (ret)
4605 return ret;
4606
4607 down(&fs_info->uuid_tree_rescan_sem);
4608 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4609 if (IS_ERR(task)) {
4610 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4611 btrfs_warn(fs_info, "failed to start uuid_scan task");
4612 up(&fs_info->uuid_tree_rescan_sem);
4613 return PTR_ERR(task);
4614 }
4615
4616 return 0;
4617 }
4618
4619 /*
4620 * shrinking a device means finding all of the device extents past
4621 * the new size, and then following the back refs to the chunks.
4622 * The chunk relocation code actually frees the device extent
4623 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4624 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4625 {
4626 struct btrfs_fs_info *fs_info = device->fs_info;
4627 struct btrfs_root *root = fs_info->dev_root;
4628 struct btrfs_trans_handle *trans;
4629 struct btrfs_dev_extent *dev_extent = NULL;
4630 struct btrfs_path *path;
4631 u64 length;
4632 u64 chunk_offset;
4633 int ret;
4634 int slot;
4635 int failed = 0;
4636 bool retried = false;
4637 struct extent_buffer *l;
4638 struct btrfs_key key;
4639 struct btrfs_super_block *super_copy = fs_info->super_copy;
4640 u64 old_total = btrfs_super_total_bytes(super_copy);
4641 u64 old_size = btrfs_device_get_total_bytes(device);
4642 u64 diff;
4643 u64 start;
4644
4645 new_size = round_down(new_size, fs_info->sectorsize);
4646 start = new_size;
4647 diff = round_down(old_size - new_size, fs_info->sectorsize);
4648
4649 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4650 return -EINVAL;
4651
4652 path = btrfs_alloc_path();
4653 if (!path)
4654 return -ENOMEM;
4655
4656 path->reada = READA_BACK;
4657
4658 trans = btrfs_start_transaction(root, 0);
4659 if (IS_ERR(trans)) {
4660 btrfs_free_path(path);
4661 return PTR_ERR(trans);
4662 }
4663
4664 mutex_lock(&fs_info->chunk_mutex);
4665
4666 btrfs_device_set_total_bytes(device, new_size);
4667 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4668 device->fs_devices->total_rw_bytes -= diff;
4669 atomic64_sub(diff, &fs_info->free_chunk_space);
4670 }
4671
4672 /*
4673 * Once the device's size has been set to the new size, ensure all
4674 * in-memory chunks are synced to disk so that the loop below sees them
4675 * and relocates them accordingly.
4676 */
4677 if (contains_pending_extent(device, &start, diff)) {
4678 mutex_unlock(&fs_info->chunk_mutex);
4679 ret = btrfs_commit_transaction(trans);
4680 if (ret)
4681 goto done;
4682 } else {
4683 mutex_unlock(&fs_info->chunk_mutex);
4684 btrfs_end_transaction(trans);
4685 }
4686
4687 again:
4688 key.objectid = device->devid;
4689 key.offset = (u64)-1;
4690 key.type = BTRFS_DEV_EXTENT_KEY;
4691
4692 do {
4693 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4694 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4695 if (ret < 0) {
4696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4697 goto done;
4698 }
4699
4700 ret = btrfs_previous_item(root, path, 0, key.type);
4701 if (ret)
4702 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4703 if (ret < 0)
4704 goto done;
4705 if (ret) {
4706 ret = 0;
4707 btrfs_release_path(path);
4708 break;
4709 }
4710
4711 l = path->nodes[0];
4712 slot = path->slots[0];
4713 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4714
4715 if (key.objectid != device->devid) {
4716 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4717 btrfs_release_path(path);
4718 break;
4719 }
4720
4721 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4722 length = btrfs_dev_extent_length(l, dev_extent);
4723
4724 if (key.offset + length <= new_size) {
4725 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4726 btrfs_release_path(path);
4727 break;
4728 }
4729
4730 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4731 btrfs_release_path(path);
4732
4733 /*
4734 * We may be relocating the only data chunk we have,
4735 * which could potentially end up with losing data's
4736 * raid profile, so lets allocate an empty one in
4737 * advance.
4738 */
4739 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4740 if (ret < 0) {
4741 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4742 goto done;
4743 }
4744
4745 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4746 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4747 if (ret == -ENOSPC) {
4748 failed++;
4749 } else if (ret) {
4750 if (ret == -ETXTBSY) {
4751 btrfs_warn(fs_info,
4752 "could not shrink block group %llu due to active swapfile",
4753 chunk_offset);
4754 }
4755 goto done;
4756 }
4757 } while (key.offset-- > 0);
4758
4759 if (failed && !retried) {
4760 failed = 0;
4761 retried = true;
4762 goto again;
4763 } else if (failed && retried) {
4764 ret = -ENOSPC;
4765 goto done;
4766 }
4767
4768 /* Shrinking succeeded, else we would be at "done". */
4769 trans = btrfs_start_transaction(root, 0);
4770 if (IS_ERR(trans)) {
4771 ret = PTR_ERR(trans);
4772 goto done;
4773 }
4774
4775 mutex_lock(&fs_info->chunk_mutex);
4776 /* Clear all state bits beyond the shrunk device size */
4777 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4778 CHUNK_STATE_MASK);
4779
4780 btrfs_device_set_disk_total_bytes(device, new_size);
4781 if (list_empty(&device->post_commit_list))
4782 list_add_tail(&device->post_commit_list,
4783 &trans->transaction->dev_update_list);
4784
4785 WARN_ON(diff > old_total);
4786 btrfs_set_super_total_bytes(super_copy,
4787 round_down(old_total - diff, fs_info->sectorsize));
4788 mutex_unlock(&fs_info->chunk_mutex);
4789
4790 /* Now btrfs_update_device() will change the on-disk size. */
4791 ret = btrfs_update_device(trans, device);
4792 if (ret < 0) {
4793 btrfs_abort_transaction(trans, ret);
4794 btrfs_end_transaction(trans);
4795 } else {
4796 ret = btrfs_commit_transaction(trans);
4797 }
4798 done:
4799 btrfs_free_path(path);
4800 if (ret) {
4801 mutex_lock(&fs_info->chunk_mutex);
4802 btrfs_device_set_total_bytes(device, old_size);
4803 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4804 device->fs_devices->total_rw_bytes += diff;
4805 atomic64_add(diff, &fs_info->free_chunk_space);
4806 mutex_unlock(&fs_info->chunk_mutex);
4807 }
4808 return ret;
4809 }
4810
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4811 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4812 struct btrfs_key *key,
4813 struct btrfs_chunk *chunk, int item_size)
4814 {
4815 struct btrfs_super_block *super_copy = fs_info->super_copy;
4816 struct btrfs_disk_key disk_key;
4817 u32 array_size;
4818 u8 *ptr;
4819
4820 mutex_lock(&fs_info->chunk_mutex);
4821 array_size = btrfs_super_sys_array_size(super_copy);
4822 if (array_size + item_size + sizeof(disk_key)
4823 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4824 mutex_unlock(&fs_info->chunk_mutex);
4825 return -EFBIG;
4826 }
4827
4828 ptr = super_copy->sys_chunk_array + array_size;
4829 btrfs_cpu_key_to_disk(&disk_key, key);
4830 memcpy(ptr, &disk_key, sizeof(disk_key));
4831 ptr += sizeof(disk_key);
4832 memcpy(ptr, chunk, item_size);
4833 item_size += sizeof(disk_key);
4834 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4835 mutex_unlock(&fs_info->chunk_mutex);
4836
4837 return 0;
4838 }
4839
4840 /*
4841 * sort the devices in descending order by max_avail, total_avail
4842 */
btrfs_cmp_device_info(const void * a,const void * b)4843 static int btrfs_cmp_device_info(const void *a, const void *b)
4844 {
4845 const struct btrfs_device_info *di_a = a;
4846 const struct btrfs_device_info *di_b = b;
4847
4848 if (di_a->max_avail > di_b->max_avail)
4849 return -1;
4850 if (di_a->max_avail < di_b->max_avail)
4851 return 1;
4852 if (di_a->total_avail > di_b->total_avail)
4853 return -1;
4854 if (di_a->total_avail < di_b->total_avail)
4855 return 1;
4856 return 0;
4857 }
4858
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4859 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4860 {
4861 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4862 return;
4863
4864 btrfs_set_fs_incompat(info, RAID56);
4865 }
4866
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)4867 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4868 {
4869 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4870 return;
4871
4872 btrfs_set_fs_incompat(info, RAID1C34);
4873 }
4874
4875 /*
4876 * Structure used internally for __btrfs_alloc_chunk() function.
4877 * Wraps needed parameters.
4878 */
4879 struct alloc_chunk_ctl {
4880 u64 start;
4881 u64 type;
4882 /* Total number of stripes to allocate */
4883 int num_stripes;
4884 /* sub_stripes info for map */
4885 int sub_stripes;
4886 /* Stripes per device */
4887 int dev_stripes;
4888 /* Maximum number of devices to use */
4889 int devs_max;
4890 /* Minimum number of devices to use */
4891 int devs_min;
4892 /* ndevs has to be a multiple of this */
4893 int devs_increment;
4894 /* Number of copies */
4895 int ncopies;
4896 /* Number of stripes worth of bytes to store parity information */
4897 int nparity;
4898 u64 max_stripe_size;
4899 u64 max_chunk_size;
4900 u64 dev_extent_min;
4901 u64 stripe_size;
4902 u64 chunk_size;
4903 int ndevs;
4904 };
4905
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)4906 static void init_alloc_chunk_ctl_policy_regular(
4907 struct btrfs_fs_devices *fs_devices,
4908 struct alloc_chunk_ctl *ctl)
4909 {
4910 u64 type = ctl->type;
4911
4912 if (type & BTRFS_BLOCK_GROUP_DATA) {
4913 ctl->max_stripe_size = SZ_1G;
4914 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4915 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4916 /* For larger filesystems, use larger metadata chunks */
4917 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4918 ctl->max_stripe_size = SZ_1G;
4919 else
4920 ctl->max_stripe_size = SZ_256M;
4921 ctl->max_chunk_size = ctl->max_stripe_size;
4922 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4923 ctl->max_stripe_size = SZ_32M;
4924 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
4925 ctl->devs_max = min_t(int, ctl->devs_max,
4926 BTRFS_MAX_DEVS_SYS_CHUNK);
4927 } else {
4928 BUG();
4929 }
4930
4931 /* We don't want a chunk larger than 10% of writable space */
4932 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4933 ctl->max_chunk_size);
4934 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
4935 }
4936
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)4937 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
4938 struct alloc_chunk_ctl *ctl)
4939 {
4940 int index = btrfs_bg_flags_to_raid_index(ctl->type);
4941
4942 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
4943 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
4944 ctl->devs_max = btrfs_raid_array[index].devs_max;
4945 if (!ctl->devs_max)
4946 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
4947 ctl->devs_min = btrfs_raid_array[index].devs_min;
4948 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
4949 ctl->ncopies = btrfs_raid_array[index].ncopies;
4950 ctl->nparity = btrfs_raid_array[index].nparity;
4951 ctl->ndevs = 0;
4952
4953 switch (fs_devices->chunk_alloc_policy) {
4954 case BTRFS_CHUNK_ALLOC_REGULAR:
4955 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
4956 break;
4957 default:
4958 BUG();
4959 }
4960 }
4961
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)4962 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
4963 struct alloc_chunk_ctl *ctl,
4964 struct btrfs_device_info *devices_info)
4965 {
4966 struct btrfs_fs_info *info = fs_devices->fs_info;
4967 struct btrfs_device *device;
4968 u64 total_avail;
4969 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
4970 int ret;
4971 int ndevs = 0;
4972 u64 max_avail;
4973 u64 dev_offset;
4974
4975 /*
4976 * in the first pass through the devices list, we gather information
4977 * about the available holes on each device.
4978 */
4979 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4980 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4981 WARN(1, KERN_ERR
4982 "BTRFS: read-only device in alloc_list\n");
4983 continue;
4984 }
4985
4986 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4987 &device->dev_state) ||
4988 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4989 continue;
4990
4991 if (device->total_bytes > device->bytes_used)
4992 total_avail = device->total_bytes - device->bytes_used;
4993 else
4994 total_avail = 0;
4995
4996 /* If there is no space on this device, skip it. */
4997 if (total_avail < ctl->dev_extent_min)
4998 continue;
4999
5000 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5001 &max_avail);
5002 if (ret && ret != -ENOSPC)
5003 return ret;
5004
5005 if (ret == 0)
5006 max_avail = dev_extent_want;
5007
5008 if (max_avail < ctl->dev_extent_min) {
5009 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5010 btrfs_debug(info,
5011 "%s: devid %llu has no free space, have=%llu want=%llu",
5012 __func__, device->devid, max_avail,
5013 ctl->dev_extent_min);
5014 continue;
5015 }
5016
5017 if (ndevs == fs_devices->rw_devices) {
5018 WARN(1, "%s: found more than %llu devices\n",
5019 __func__, fs_devices->rw_devices);
5020 break;
5021 }
5022 devices_info[ndevs].dev_offset = dev_offset;
5023 devices_info[ndevs].max_avail = max_avail;
5024 devices_info[ndevs].total_avail = total_avail;
5025 devices_info[ndevs].dev = device;
5026 ++ndevs;
5027 }
5028 ctl->ndevs = ndevs;
5029
5030 /*
5031 * now sort the devices by hole size / available space
5032 */
5033 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5034 btrfs_cmp_device_info, NULL);
5035
5036 return 0;
5037 }
5038
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5039 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5040 struct btrfs_device_info *devices_info)
5041 {
5042 /* Number of stripes that count for block group size */
5043 int data_stripes;
5044
5045 /*
5046 * The primary goal is to maximize the number of stripes, so use as
5047 * many devices as possible, even if the stripes are not maximum sized.
5048 *
5049 * The DUP profile stores more than one stripe per device, the
5050 * max_avail is the total size so we have to adjust.
5051 */
5052 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5053 ctl->dev_stripes);
5054 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5055
5056 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5057 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5058
5059 /*
5060 * Use the number of data stripes to figure out how big this chunk is
5061 * really going to be in terms of logical address space, and compare
5062 * that answer with the max chunk size. If it's higher, we try to
5063 * reduce stripe_size.
5064 */
5065 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5066 /*
5067 * Reduce stripe_size, round it up to a 16MB boundary again and
5068 * then use it, unless it ends up being even bigger than the
5069 * previous value we had already.
5070 */
5071 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5072 data_stripes), SZ_16M),
5073 ctl->stripe_size);
5074 }
5075
5076 /* Align to BTRFS_STRIPE_LEN */
5077 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5078 ctl->chunk_size = ctl->stripe_size * data_stripes;
5079
5080 return 0;
5081 }
5082
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5083 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5084 struct alloc_chunk_ctl *ctl,
5085 struct btrfs_device_info *devices_info)
5086 {
5087 struct btrfs_fs_info *info = fs_devices->fs_info;
5088
5089 /*
5090 * Round down to number of usable stripes, devs_increment can be any
5091 * number so we can't use round_down() that requires power of 2, while
5092 * rounddown is safe.
5093 */
5094 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5095
5096 if (ctl->ndevs < ctl->devs_min) {
5097 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5098 btrfs_debug(info,
5099 "%s: not enough devices with free space: have=%d minimum required=%d",
5100 __func__, ctl->ndevs, ctl->devs_min);
5101 }
5102 return -ENOSPC;
5103 }
5104
5105 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5106
5107 switch (fs_devices->chunk_alloc_policy) {
5108 case BTRFS_CHUNK_ALLOC_REGULAR:
5109 return decide_stripe_size_regular(ctl, devices_info);
5110 default:
5111 BUG();
5112 }
5113 }
5114
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5115 static int create_chunk(struct btrfs_trans_handle *trans,
5116 struct alloc_chunk_ctl *ctl,
5117 struct btrfs_device_info *devices_info)
5118 {
5119 struct btrfs_fs_info *info = trans->fs_info;
5120 struct map_lookup *map = NULL;
5121 struct extent_map_tree *em_tree;
5122 struct extent_map *em;
5123 u64 start = ctl->start;
5124 u64 type = ctl->type;
5125 int ret;
5126 int i;
5127 int j;
5128
5129 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5130 if (!map)
5131 return -ENOMEM;
5132 map->num_stripes = ctl->num_stripes;
5133
5134 for (i = 0; i < ctl->ndevs; ++i) {
5135 for (j = 0; j < ctl->dev_stripes; ++j) {
5136 int s = i * ctl->dev_stripes + j;
5137 map->stripes[s].dev = devices_info[i].dev;
5138 map->stripes[s].physical = devices_info[i].dev_offset +
5139 j * ctl->stripe_size;
5140 }
5141 }
5142 map->stripe_len = BTRFS_STRIPE_LEN;
5143 map->io_align = BTRFS_STRIPE_LEN;
5144 map->io_width = BTRFS_STRIPE_LEN;
5145 map->type = type;
5146 map->sub_stripes = ctl->sub_stripes;
5147
5148 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5149
5150 em = alloc_extent_map();
5151 if (!em) {
5152 kfree(map);
5153 return -ENOMEM;
5154 }
5155 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5156 em->map_lookup = map;
5157 em->start = start;
5158 em->len = ctl->chunk_size;
5159 em->block_start = 0;
5160 em->block_len = em->len;
5161 em->orig_block_len = ctl->stripe_size;
5162
5163 em_tree = &info->mapping_tree;
5164 write_lock(&em_tree->lock);
5165 ret = add_extent_mapping(em_tree, em, 0);
5166 if (ret) {
5167 write_unlock(&em_tree->lock);
5168 free_extent_map(em);
5169 return ret;
5170 }
5171 write_unlock(&em_tree->lock);
5172
5173 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5174 if (ret)
5175 goto error_del_extent;
5176
5177 for (i = 0; i < map->num_stripes; i++) {
5178 struct btrfs_device *dev = map->stripes[i].dev;
5179
5180 btrfs_device_set_bytes_used(dev,
5181 dev->bytes_used + ctl->stripe_size);
5182 if (list_empty(&dev->post_commit_list))
5183 list_add_tail(&dev->post_commit_list,
5184 &trans->transaction->dev_update_list);
5185 }
5186
5187 atomic64_sub(ctl->stripe_size * map->num_stripes,
5188 &info->free_chunk_space);
5189
5190 free_extent_map(em);
5191 check_raid56_incompat_flag(info, type);
5192 check_raid1c34_incompat_flag(info, type);
5193
5194 return 0;
5195
5196 error_del_extent:
5197 write_lock(&em_tree->lock);
5198 remove_extent_mapping(em_tree, em);
5199 write_unlock(&em_tree->lock);
5200
5201 /* One for our allocation */
5202 free_extent_map(em);
5203 /* One for the tree reference */
5204 free_extent_map(em);
5205
5206 return ret;
5207 }
5208
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5209 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5210 {
5211 struct btrfs_fs_info *info = trans->fs_info;
5212 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5213 struct btrfs_device_info *devices_info = NULL;
5214 struct alloc_chunk_ctl ctl;
5215 int ret;
5216
5217 lockdep_assert_held(&info->chunk_mutex);
5218
5219 if (!alloc_profile_is_valid(type, 0)) {
5220 ASSERT(0);
5221 return -EINVAL;
5222 }
5223
5224 if (list_empty(&fs_devices->alloc_list)) {
5225 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5226 btrfs_debug(info, "%s: no writable device", __func__);
5227 return -ENOSPC;
5228 }
5229
5230 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5231 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5232 ASSERT(0);
5233 return -EINVAL;
5234 }
5235
5236 ctl.start = find_next_chunk(info);
5237 ctl.type = type;
5238 init_alloc_chunk_ctl(fs_devices, &ctl);
5239
5240 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5241 GFP_NOFS);
5242 if (!devices_info)
5243 return -ENOMEM;
5244
5245 ret = gather_device_info(fs_devices, &ctl, devices_info);
5246 if (ret < 0)
5247 goto out;
5248
5249 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5250 if (ret < 0)
5251 goto out;
5252
5253 ret = create_chunk(trans, &ctl, devices_info);
5254
5255 out:
5256 kfree(devices_info);
5257 return ret;
5258 }
5259
5260 /*
5261 * Chunk allocation falls into two parts. The first part does work
5262 * that makes the new allocated chunk usable, but does not do any operation
5263 * that modifies the chunk tree. The second part does the work that
5264 * requires modifying the chunk tree. This division is important for the
5265 * bootstrap process of adding storage to a seed btrfs.
5266 */
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)5267 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5268 u64 chunk_offset, u64 chunk_size)
5269 {
5270 struct btrfs_fs_info *fs_info = trans->fs_info;
5271 struct btrfs_root *extent_root = fs_info->extent_root;
5272 struct btrfs_root *chunk_root = fs_info->chunk_root;
5273 struct btrfs_key key;
5274 struct btrfs_device *device;
5275 struct btrfs_chunk *chunk;
5276 struct btrfs_stripe *stripe;
5277 struct extent_map *em;
5278 struct map_lookup *map;
5279 size_t item_size;
5280 u64 dev_offset;
5281 u64 stripe_size;
5282 int i = 0;
5283 int ret = 0;
5284
5285 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5286 if (IS_ERR(em))
5287 return PTR_ERR(em);
5288
5289 map = em->map_lookup;
5290 item_size = btrfs_chunk_item_size(map->num_stripes);
5291 stripe_size = em->orig_block_len;
5292
5293 chunk = kzalloc(item_size, GFP_NOFS);
5294 if (!chunk) {
5295 ret = -ENOMEM;
5296 goto out;
5297 }
5298
5299 /*
5300 * Take the device list mutex to prevent races with the final phase of
5301 * a device replace operation that replaces the device object associated
5302 * with the map's stripes, because the device object's id can change
5303 * at any time during that final phase of the device replace operation
5304 * (dev-replace.c:btrfs_dev_replace_finishing()).
5305 */
5306 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5307 for (i = 0; i < map->num_stripes; i++) {
5308 device = map->stripes[i].dev;
5309 dev_offset = map->stripes[i].physical;
5310
5311 ret = btrfs_update_device(trans, device);
5312 if (ret)
5313 break;
5314 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5315 dev_offset, stripe_size);
5316 if (ret)
5317 break;
5318 }
5319 if (ret) {
5320 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5321 goto out;
5322 }
5323
5324 stripe = &chunk->stripe;
5325 for (i = 0; i < map->num_stripes; i++) {
5326 device = map->stripes[i].dev;
5327 dev_offset = map->stripes[i].physical;
5328
5329 btrfs_set_stack_stripe_devid(stripe, device->devid);
5330 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5331 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5332 stripe++;
5333 }
5334 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5335
5336 btrfs_set_stack_chunk_length(chunk, chunk_size);
5337 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5338 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5339 btrfs_set_stack_chunk_type(chunk, map->type);
5340 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5341 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5342 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5343 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5344 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5345
5346 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5347 key.type = BTRFS_CHUNK_ITEM_KEY;
5348 key.offset = chunk_offset;
5349
5350 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5351 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5352 /*
5353 * TODO: Cleanup of inserted chunk root in case of
5354 * failure.
5355 */
5356 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5357 }
5358
5359 out:
5360 kfree(chunk);
5361 free_extent_map(em);
5362 return ret;
5363 }
5364
init_first_rw_device(struct btrfs_trans_handle * trans)5365 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5366 {
5367 struct btrfs_fs_info *fs_info = trans->fs_info;
5368 u64 alloc_profile;
5369 int ret;
5370
5371 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5372 ret = btrfs_alloc_chunk(trans, alloc_profile);
5373 if (ret)
5374 return ret;
5375
5376 alloc_profile = btrfs_system_alloc_profile(fs_info);
5377 ret = btrfs_alloc_chunk(trans, alloc_profile);
5378 return ret;
5379 }
5380
btrfs_chunk_max_errors(struct map_lookup * map)5381 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5382 {
5383 const int index = btrfs_bg_flags_to_raid_index(map->type);
5384
5385 return btrfs_raid_array[index].tolerated_failures;
5386 }
5387
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5388 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5389 {
5390 struct extent_map *em;
5391 struct map_lookup *map;
5392 int readonly = 0;
5393 int miss_ndevs = 0;
5394 int i;
5395
5396 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5397 if (IS_ERR(em))
5398 return 1;
5399
5400 map = em->map_lookup;
5401 for (i = 0; i < map->num_stripes; i++) {
5402 if (test_bit(BTRFS_DEV_STATE_MISSING,
5403 &map->stripes[i].dev->dev_state)) {
5404 miss_ndevs++;
5405 continue;
5406 }
5407 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5408 &map->stripes[i].dev->dev_state)) {
5409 readonly = 1;
5410 goto end;
5411 }
5412 }
5413
5414 /*
5415 * If the number of missing devices is larger than max errors,
5416 * we can not write the data into that chunk successfully, so
5417 * set it readonly.
5418 */
5419 if (miss_ndevs > btrfs_chunk_max_errors(map))
5420 readonly = 1;
5421 end:
5422 free_extent_map(em);
5423 return readonly;
5424 }
5425
btrfs_mapping_tree_free(struct extent_map_tree * tree)5426 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5427 {
5428 struct extent_map *em;
5429
5430 while (1) {
5431 write_lock(&tree->lock);
5432 em = lookup_extent_mapping(tree, 0, (u64)-1);
5433 if (em)
5434 remove_extent_mapping(tree, em);
5435 write_unlock(&tree->lock);
5436 if (!em)
5437 break;
5438 /* once for us */
5439 free_extent_map(em);
5440 /* once for the tree */
5441 free_extent_map(em);
5442 }
5443 }
5444
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5445 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5446 {
5447 struct extent_map *em;
5448 struct map_lookup *map;
5449 int ret;
5450
5451 em = btrfs_get_chunk_map(fs_info, logical, len);
5452 if (IS_ERR(em))
5453 /*
5454 * We could return errors for these cases, but that could get
5455 * ugly and we'd probably do the same thing which is just not do
5456 * anything else and exit, so return 1 so the callers don't try
5457 * to use other copies.
5458 */
5459 return 1;
5460
5461 map = em->map_lookup;
5462 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5463 ret = map->num_stripes;
5464 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5465 ret = map->sub_stripes;
5466 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5467 ret = 2;
5468 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5469 /*
5470 * There could be two corrupted data stripes, we need
5471 * to loop retry in order to rebuild the correct data.
5472 *
5473 * Fail a stripe at a time on every retry except the
5474 * stripe under reconstruction.
5475 */
5476 ret = map->num_stripes;
5477 else
5478 ret = 1;
5479 free_extent_map(em);
5480
5481 down_read(&fs_info->dev_replace.rwsem);
5482 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5483 fs_info->dev_replace.tgtdev)
5484 ret++;
5485 up_read(&fs_info->dev_replace.rwsem);
5486
5487 return ret;
5488 }
5489
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5490 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5491 u64 logical)
5492 {
5493 struct extent_map *em;
5494 struct map_lookup *map;
5495 unsigned long len = fs_info->sectorsize;
5496
5497 em = btrfs_get_chunk_map(fs_info, logical, len);
5498
5499 if (!WARN_ON(IS_ERR(em))) {
5500 map = em->map_lookup;
5501 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5502 len = map->stripe_len * nr_data_stripes(map);
5503 free_extent_map(em);
5504 }
5505 return len;
5506 }
5507
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5508 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5509 {
5510 struct extent_map *em;
5511 struct map_lookup *map;
5512 int ret = 0;
5513
5514 em = btrfs_get_chunk_map(fs_info, logical, len);
5515
5516 if(!WARN_ON(IS_ERR(em))) {
5517 map = em->map_lookup;
5518 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5519 ret = 1;
5520 free_extent_map(em);
5521 }
5522 return ret;
5523 }
5524
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5525 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5526 struct map_lookup *map, int first,
5527 int dev_replace_is_ongoing)
5528 {
5529 int i;
5530 int num_stripes;
5531 int preferred_mirror;
5532 int tolerance;
5533 struct btrfs_device *srcdev;
5534
5535 ASSERT((map->type &
5536 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5537
5538 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5539 num_stripes = map->sub_stripes;
5540 else
5541 num_stripes = map->num_stripes;
5542
5543 preferred_mirror = first + current->pid % num_stripes;
5544
5545 if (dev_replace_is_ongoing &&
5546 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5547 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5548 srcdev = fs_info->dev_replace.srcdev;
5549 else
5550 srcdev = NULL;
5551
5552 /*
5553 * try to avoid the drive that is the source drive for a
5554 * dev-replace procedure, only choose it if no other non-missing
5555 * mirror is available
5556 */
5557 for (tolerance = 0; tolerance < 2; tolerance++) {
5558 if (map->stripes[preferred_mirror].dev->bdev &&
5559 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5560 return preferred_mirror;
5561 for (i = first; i < first + num_stripes; i++) {
5562 if (map->stripes[i].dev->bdev &&
5563 (tolerance || map->stripes[i].dev != srcdev))
5564 return i;
5565 }
5566 }
5567
5568 /* we couldn't find one that doesn't fail. Just return something
5569 * and the io error handling code will clean up eventually
5570 */
5571 return preferred_mirror;
5572 }
5573
5574 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5575 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5576 {
5577 int i;
5578 int again = 1;
5579
5580 while (again) {
5581 again = 0;
5582 for (i = 0; i < num_stripes - 1; i++) {
5583 /* Swap if parity is on a smaller index */
5584 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) {
5585 swap(bbio->stripes[i], bbio->stripes[i + 1]);
5586 swap(bbio->raid_map[i], bbio->raid_map[i + 1]);
5587 again = 1;
5588 }
5589 }
5590 }
5591 }
5592
alloc_btrfs_bio(int total_stripes,int real_stripes)5593 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5594 {
5595 struct btrfs_bio *bbio = kzalloc(
5596 /* the size of the btrfs_bio */
5597 sizeof(struct btrfs_bio) +
5598 /* plus the variable array for the stripes */
5599 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5600 /* plus the variable array for the tgt dev */
5601 sizeof(int) * (real_stripes) +
5602 /*
5603 * plus the raid_map, which includes both the tgt dev
5604 * and the stripes
5605 */
5606 sizeof(u64) * (total_stripes),
5607 GFP_NOFS|__GFP_NOFAIL);
5608
5609 atomic_set(&bbio->error, 0);
5610 refcount_set(&bbio->refs, 1);
5611
5612 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes);
5613 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes);
5614
5615 return bbio;
5616 }
5617
btrfs_get_bbio(struct btrfs_bio * bbio)5618 void btrfs_get_bbio(struct btrfs_bio *bbio)
5619 {
5620 WARN_ON(!refcount_read(&bbio->refs));
5621 refcount_inc(&bbio->refs);
5622 }
5623
btrfs_put_bbio(struct btrfs_bio * bbio)5624 void btrfs_put_bbio(struct btrfs_bio *bbio)
5625 {
5626 if (!bbio)
5627 return;
5628 if (refcount_dec_and_test(&bbio->refs))
5629 kfree(bbio);
5630 }
5631
5632 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5633 /*
5634 * Please note that, discard won't be sent to target device of device
5635 * replace.
5636 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_bio ** bbio_ret)5637 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5638 u64 logical, u64 *length_ret,
5639 struct btrfs_bio **bbio_ret)
5640 {
5641 struct extent_map *em;
5642 struct map_lookup *map;
5643 struct btrfs_bio *bbio;
5644 u64 length = *length_ret;
5645 u64 offset;
5646 u64 stripe_nr;
5647 u64 stripe_nr_end;
5648 u64 stripe_end_offset;
5649 u64 stripe_cnt;
5650 u64 stripe_len;
5651 u64 stripe_offset;
5652 u64 num_stripes;
5653 u32 stripe_index;
5654 u32 factor = 0;
5655 u32 sub_stripes = 0;
5656 u64 stripes_per_dev = 0;
5657 u32 remaining_stripes = 0;
5658 u32 last_stripe = 0;
5659 int ret = 0;
5660 int i;
5661
5662 /* discard always return a bbio */
5663 ASSERT(bbio_ret);
5664
5665 em = btrfs_get_chunk_map(fs_info, logical, length);
5666 if (IS_ERR(em))
5667 return PTR_ERR(em);
5668
5669 map = em->map_lookup;
5670 /* we don't discard raid56 yet */
5671 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5672 ret = -EOPNOTSUPP;
5673 goto out;
5674 }
5675
5676 offset = logical - em->start;
5677 length = min_t(u64, em->start + em->len - logical, length);
5678 *length_ret = length;
5679
5680 stripe_len = map->stripe_len;
5681 /*
5682 * stripe_nr counts the total number of stripes we have to stride
5683 * to get to this block
5684 */
5685 stripe_nr = div64_u64(offset, stripe_len);
5686
5687 /* stripe_offset is the offset of this block in its stripe */
5688 stripe_offset = offset - stripe_nr * stripe_len;
5689
5690 stripe_nr_end = round_up(offset + length, map->stripe_len);
5691 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5692 stripe_cnt = stripe_nr_end - stripe_nr;
5693 stripe_end_offset = stripe_nr_end * map->stripe_len -
5694 (offset + length);
5695 /*
5696 * after this, stripe_nr is the number of stripes on this
5697 * device we have to walk to find the data, and stripe_index is
5698 * the number of our device in the stripe array
5699 */
5700 num_stripes = 1;
5701 stripe_index = 0;
5702 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5703 BTRFS_BLOCK_GROUP_RAID10)) {
5704 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5705 sub_stripes = 1;
5706 else
5707 sub_stripes = map->sub_stripes;
5708
5709 factor = map->num_stripes / sub_stripes;
5710 num_stripes = min_t(u64, map->num_stripes,
5711 sub_stripes * stripe_cnt);
5712 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5713 stripe_index *= sub_stripes;
5714 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5715 &remaining_stripes);
5716 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5717 last_stripe *= sub_stripes;
5718 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5719 BTRFS_BLOCK_GROUP_DUP)) {
5720 num_stripes = map->num_stripes;
5721 } else {
5722 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5723 &stripe_index);
5724 }
5725
5726 bbio = alloc_btrfs_bio(num_stripes, 0);
5727 if (!bbio) {
5728 ret = -ENOMEM;
5729 goto out;
5730 }
5731
5732 for (i = 0; i < num_stripes; i++) {
5733 bbio->stripes[i].physical =
5734 map->stripes[stripe_index].physical +
5735 stripe_offset + stripe_nr * map->stripe_len;
5736 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5737
5738 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5739 BTRFS_BLOCK_GROUP_RAID10)) {
5740 bbio->stripes[i].length = stripes_per_dev *
5741 map->stripe_len;
5742
5743 if (i / sub_stripes < remaining_stripes)
5744 bbio->stripes[i].length +=
5745 map->stripe_len;
5746
5747 /*
5748 * Special for the first stripe and
5749 * the last stripe:
5750 *
5751 * |-------|...|-------|
5752 * |----------|
5753 * off end_off
5754 */
5755 if (i < sub_stripes)
5756 bbio->stripes[i].length -=
5757 stripe_offset;
5758
5759 if (stripe_index >= last_stripe &&
5760 stripe_index <= (last_stripe +
5761 sub_stripes - 1))
5762 bbio->stripes[i].length -=
5763 stripe_end_offset;
5764
5765 if (i == sub_stripes - 1)
5766 stripe_offset = 0;
5767 } else {
5768 bbio->stripes[i].length = length;
5769 }
5770
5771 stripe_index++;
5772 if (stripe_index == map->num_stripes) {
5773 stripe_index = 0;
5774 stripe_nr++;
5775 }
5776 }
5777
5778 *bbio_ret = bbio;
5779 bbio->map_type = map->type;
5780 bbio->num_stripes = num_stripes;
5781 out:
5782 free_extent_map(em);
5783 return ret;
5784 }
5785
5786 /*
5787 * In dev-replace case, for repair case (that's the only case where the mirror
5788 * is selected explicitly when calling btrfs_map_block), blocks left of the
5789 * left cursor can also be read from the target drive.
5790 *
5791 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5792 * array of stripes.
5793 * For READ, it also needs to be supported using the same mirror number.
5794 *
5795 * If the requested block is not left of the left cursor, EIO is returned. This
5796 * can happen because btrfs_num_copies() returns one more in the dev-replace
5797 * case.
5798 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5799 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5800 u64 logical, u64 length,
5801 u64 srcdev_devid, int *mirror_num,
5802 u64 *physical)
5803 {
5804 struct btrfs_bio *bbio = NULL;
5805 int num_stripes;
5806 int index_srcdev = 0;
5807 int found = 0;
5808 u64 physical_of_found = 0;
5809 int i;
5810 int ret = 0;
5811
5812 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5813 logical, &length, &bbio, 0, 0);
5814 if (ret) {
5815 ASSERT(bbio == NULL);
5816 return ret;
5817 }
5818
5819 num_stripes = bbio->num_stripes;
5820 if (*mirror_num > num_stripes) {
5821 /*
5822 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5823 * that means that the requested area is not left of the left
5824 * cursor
5825 */
5826 btrfs_put_bbio(bbio);
5827 return -EIO;
5828 }
5829
5830 /*
5831 * process the rest of the function using the mirror_num of the source
5832 * drive. Therefore look it up first. At the end, patch the device
5833 * pointer to the one of the target drive.
5834 */
5835 for (i = 0; i < num_stripes; i++) {
5836 if (bbio->stripes[i].dev->devid != srcdev_devid)
5837 continue;
5838
5839 /*
5840 * In case of DUP, in order to keep it simple, only add the
5841 * mirror with the lowest physical address
5842 */
5843 if (found &&
5844 physical_of_found <= bbio->stripes[i].physical)
5845 continue;
5846
5847 index_srcdev = i;
5848 found = 1;
5849 physical_of_found = bbio->stripes[i].physical;
5850 }
5851
5852 btrfs_put_bbio(bbio);
5853
5854 ASSERT(found);
5855 if (!found)
5856 return -EIO;
5857
5858 *mirror_num = index_srcdev + 1;
5859 *physical = physical_of_found;
5860 return ret;
5861 }
5862
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5863 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5864 struct btrfs_bio **bbio_ret,
5865 struct btrfs_dev_replace *dev_replace,
5866 int *num_stripes_ret, int *max_errors_ret)
5867 {
5868 struct btrfs_bio *bbio = *bbio_ret;
5869 u64 srcdev_devid = dev_replace->srcdev->devid;
5870 int tgtdev_indexes = 0;
5871 int num_stripes = *num_stripes_ret;
5872 int max_errors = *max_errors_ret;
5873 int i;
5874
5875 if (op == BTRFS_MAP_WRITE) {
5876 int index_where_to_add;
5877
5878 /*
5879 * duplicate the write operations while the dev replace
5880 * procedure is running. Since the copying of the old disk to
5881 * the new disk takes place at run time while the filesystem is
5882 * mounted writable, the regular write operations to the old
5883 * disk have to be duplicated to go to the new disk as well.
5884 *
5885 * Note that device->missing is handled by the caller, and that
5886 * the write to the old disk is already set up in the stripes
5887 * array.
5888 */
5889 index_where_to_add = num_stripes;
5890 for (i = 0; i < num_stripes; i++) {
5891 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5892 /* write to new disk, too */
5893 struct btrfs_bio_stripe *new =
5894 bbio->stripes + index_where_to_add;
5895 struct btrfs_bio_stripe *old =
5896 bbio->stripes + i;
5897
5898 new->physical = old->physical;
5899 new->length = old->length;
5900 new->dev = dev_replace->tgtdev;
5901 bbio->tgtdev_map[i] = index_where_to_add;
5902 index_where_to_add++;
5903 max_errors++;
5904 tgtdev_indexes++;
5905 }
5906 }
5907 num_stripes = index_where_to_add;
5908 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5909 int index_srcdev = 0;
5910 int found = 0;
5911 u64 physical_of_found = 0;
5912
5913 /*
5914 * During the dev-replace procedure, the target drive can also
5915 * be used to read data in case it is needed to repair a corrupt
5916 * block elsewhere. This is possible if the requested area is
5917 * left of the left cursor. In this area, the target drive is a
5918 * full copy of the source drive.
5919 */
5920 for (i = 0; i < num_stripes; i++) {
5921 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5922 /*
5923 * In case of DUP, in order to keep it simple,
5924 * only add the mirror with the lowest physical
5925 * address
5926 */
5927 if (found &&
5928 physical_of_found <=
5929 bbio->stripes[i].physical)
5930 continue;
5931 index_srcdev = i;
5932 found = 1;
5933 physical_of_found = bbio->stripes[i].physical;
5934 }
5935 }
5936 if (found) {
5937 struct btrfs_bio_stripe *tgtdev_stripe =
5938 bbio->stripes + num_stripes;
5939
5940 tgtdev_stripe->physical = physical_of_found;
5941 tgtdev_stripe->length =
5942 bbio->stripes[index_srcdev].length;
5943 tgtdev_stripe->dev = dev_replace->tgtdev;
5944 bbio->tgtdev_map[index_srcdev] = num_stripes;
5945
5946 tgtdev_indexes++;
5947 num_stripes++;
5948 }
5949 }
5950
5951 *num_stripes_ret = num_stripes;
5952 *max_errors_ret = max_errors;
5953 bbio->num_tgtdevs = tgtdev_indexes;
5954 *bbio_ret = bbio;
5955 }
5956
need_full_stripe(enum btrfs_map_op op)5957 static bool need_full_stripe(enum btrfs_map_op op)
5958 {
5959 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5960 }
5961
5962 /*
5963 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5964 * tuple. This information is used to calculate how big a
5965 * particular bio can get before it straddles a stripe.
5966 *
5967 * @fs_info - the filesystem
5968 * @logical - address that we want to figure out the geometry of
5969 * @len - the length of IO we are going to perform, starting at @logical
5970 * @op - type of operation - write or read
5971 * @io_geom - pointer used to return values
5972 *
5973 * Returns < 0 in case a chunk for the given logical address cannot be found,
5974 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5975 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 len,struct btrfs_io_geometry * io_geom)5976 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5977 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5978 {
5979 struct extent_map *em;
5980 struct map_lookup *map;
5981 u64 offset;
5982 u64 stripe_offset;
5983 u64 stripe_nr;
5984 u64 stripe_len;
5985 u64 raid56_full_stripe_start = (u64)-1;
5986 int data_stripes;
5987 int ret = 0;
5988
5989 ASSERT(op != BTRFS_MAP_DISCARD);
5990
5991 em = btrfs_get_chunk_map(fs_info, logical, len);
5992 if (IS_ERR(em))
5993 return PTR_ERR(em);
5994
5995 map = em->map_lookup;
5996 /* Offset of this logical address in the chunk */
5997 offset = logical - em->start;
5998 /* Len of a stripe in a chunk */
5999 stripe_len = map->stripe_len;
6000 /* Stripe wher this block falls in */
6001 stripe_nr = div64_u64(offset, stripe_len);
6002 /* Offset of stripe in the chunk */
6003 stripe_offset = stripe_nr * stripe_len;
6004 if (offset < stripe_offset) {
6005 btrfs_crit(fs_info,
6006 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6007 stripe_offset, offset, em->start, logical, stripe_len);
6008 ret = -EINVAL;
6009 goto out;
6010 }
6011
6012 /* stripe_offset is the offset of this block in its stripe */
6013 stripe_offset = offset - stripe_offset;
6014 data_stripes = nr_data_stripes(map);
6015
6016 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6017 u64 max_len = stripe_len - stripe_offset;
6018
6019 /*
6020 * In case of raid56, we need to know the stripe aligned start
6021 */
6022 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6023 unsigned long full_stripe_len = stripe_len * data_stripes;
6024 raid56_full_stripe_start = offset;
6025
6026 /*
6027 * Allow a write of a full stripe, but make sure we
6028 * don't allow straddling of stripes
6029 */
6030 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6031 full_stripe_len);
6032 raid56_full_stripe_start *= full_stripe_len;
6033
6034 /*
6035 * For writes to RAID[56], allow a full stripeset across
6036 * all disks. For other RAID types and for RAID[56]
6037 * reads, just allow a single stripe (on a single disk).
6038 */
6039 if (op == BTRFS_MAP_WRITE) {
6040 max_len = stripe_len * data_stripes -
6041 (offset - raid56_full_stripe_start);
6042 }
6043 }
6044 len = min_t(u64, em->len - offset, max_len);
6045 } else {
6046 len = em->len - offset;
6047 }
6048
6049 io_geom->len = len;
6050 io_geom->offset = offset;
6051 io_geom->stripe_len = stripe_len;
6052 io_geom->stripe_nr = stripe_nr;
6053 io_geom->stripe_offset = stripe_offset;
6054 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6055
6056 out:
6057 /* once for us */
6058 free_extent_map(em);
6059 return ret;
6060 }
6061
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6062 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6063 enum btrfs_map_op op,
6064 u64 logical, u64 *length,
6065 struct btrfs_bio **bbio_ret,
6066 int mirror_num, int need_raid_map)
6067 {
6068 struct extent_map *em;
6069 struct map_lookup *map;
6070 u64 stripe_offset;
6071 u64 stripe_nr;
6072 u64 stripe_len;
6073 u32 stripe_index;
6074 int data_stripes;
6075 int i;
6076 int ret = 0;
6077 int num_stripes;
6078 int max_errors = 0;
6079 int tgtdev_indexes = 0;
6080 struct btrfs_bio *bbio = NULL;
6081 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6082 int dev_replace_is_ongoing = 0;
6083 int num_alloc_stripes;
6084 int patch_the_first_stripe_for_dev_replace = 0;
6085 u64 physical_to_patch_in_first_stripe = 0;
6086 u64 raid56_full_stripe_start = (u64)-1;
6087 struct btrfs_io_geometry geom;
6088
6089 ASSERT(bbio_ret);
6090 ASSERT(op != BTRFS_MAP_DISCARD);
6091
6092 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6093 if (ret < 0)
6094 return ret;
6095
6096 em = btrfs_get_chunk_map(fs_info, logical, *length);
6097 ASSERT(!IS_ERR(em));
6098 map = em->map_lookup;
6099
6100 *length = geom.len;
6101 stripe_len = geom.stripe_len;
6102 stripe_nr = geom.stripe_nr;
6103 stripe_offset = geom.stripe_offset;
6104 raid56_full_stripe_start = geom.raid56_stripe_offset;
6105 data_stripes = nr_data_stripes(map);
6106
6107 down_read(&dev_replace->rwsem);
6108 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6109 /*
6110 * Hold the semaphore for read during the whole operation, write is
6111 * requested at commit time but must wait.
6112 */
6113 if (!dev_replace_is_ongoing)
6114 up_read(&dev_replace->rwsem);
6115
6116 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6117 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6118 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6119 dev_replace->srcdev->devid,
6120 &mirror_num,
6121 &physical_to_patch_in_first_stripe);
6122 if (ret)
6123 goto out;
6124 else
6125 patch_the_first_stripe_for_dev_replace = 1;
6126 } else if (mirror_num > map->num_stripes) {
6127 mirror_num = 0;
6128 }
6129
6130 num_stripes = 1;
6131 stripe_index = 0;
6132 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6133 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6134 &stripe_index);
6135 if (!need_full_stripe(op))
6136 mirror_num = 1;
6137 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6138 if (need_full_stripe(op))
6139 num_stripes = map->num_stripes;
6140 else if (mirror_num)
6141 stripe_index = mirror_num - 1;
6142 else {
6143 stripe_index = find_live_mirror(fs_info, map, 0,
6144 dev_replace_is_ongoing);
6145 mirror_num = stripe_index + 1;
6146 }
6147
6148 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6149 if (need_full_stripe(op)) {
6150 num_stripes = map->num_stripes;
6151 } else if (mirror_num) {
6152 stripe_index = mirror_num - 1;
6153 } else {
6154 mirror_num = 1;
6155 }
6156
6157 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6158 u32 factor = map->num_stripes / map->sub_stripes;
6159
6160 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6161 stripe_index *= map->sub_stripes;
6162
6163 if (need_full_stripe(op))
6164 num_stripes = map->sub_stripes;
6165 else if (mirror_num)
6166 stripe_index += mirror_num - 1;
6167 else {
6168 int old_stripe_index = stripe_index;
6169 stripe_index = find_live_mirror(fs_info, map,
6170 stripe_index,
6171 dev_replace_is_ongoing);
6172 mirror_num = stripe_index - old_stripe_index + 1;
6173 }
6174
6175 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6176 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6177 /* push stripe_nr back to the start of the full stripe */
6178 stripe_nr = div64_u64(raid56_full_stripe_start,
6179 stripe_len * data_stripes);
6180
6181 /* RAID[56] write or recovery. Return all stripes */
6182 num_stripes = map->num_stripes;
6183 max_errors = nr_parity_stripes(map);
6184
6185 *length = map->stripe_len;
6186 stripe_index = 0;
6187 stripe_offset = 0;
6188 } else {
6189 /*
6190 * Mirror #0 or #1 means the original data block.
6191 * Mirror #2 is RAID5 parity block.
6192 * Mirror #3 is RAID6 Q block.
6193 */
6194 stripe_nr = div_u64_rem(stripe_nr,
6195 data_stripes, &stripe_index);
6196 if (mirror_num > 1)
6197 stripe_index = data_stripes + mirror_num - 2;
6198
6199 /* We distribute the parity blocks across stripes */
6200 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6201 &stripe_index);
6202 if (!need_full_stripe(op) && mirror_num <= 1)
6203 mirror_num = 1;
6204 }
6205 } else {
6206 /*
6207 * after this, stripe_nr is the number of stripes on this
6208 * device we have to walk to find the data, and stripe_index is
6209 * the number of our device in the stripe array
6210 */
6211 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6212 &stripe_index);
6213 mirror_num = stripe_index + 1;
6214 }
6215 if (stripe_index >= map->num_stripes) {
6216 btrfs_crit(fs_info,
6217 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6218 stripe_index, map->num_stripes);
6219 ret = -EINVAL;
6220 goto out;
6221 }
6222
6223 num_alloc_stripes = num_stripes;
6224 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6225 if (op == BTRFS_MAP_WRITE)
6226 num_alloc_stripes <<= 1;
6227 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6228 num_alloc_stripes++;
6229 tgtdev_indexes = num_stripes;
6230 }
6231
6232 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6233 if (!bbio) {
6234 ret = -ENOMEM;
6235 goto out;
6236 }
6237
6238 for (i = 0; i < num_stripes; i++) {
6239 bbio->stripes[i].physical = map->stripes[stripe_index].physical +
6240 stripe_offset + stripe_nr * map->stripe_len;
6241 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
6242 stripe_index++;
6243 }
6244
6245 /* build raid_map */
6246 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6247 (need_full_stripe(op) || mirror_num > 1)) {
6248 u64 tmp;
6249 unsigned rot;
6250
6251 /* Work out the disk rotation on this stripe-set */
6252 div_u64_rem(stripe_nr, num_stripes, &rot);
6253
6254 /* Fill in the logical address of each stripe */
6255 tmp = stripe_nr * data_stripes;
6256 for (i = 0; i < data_stripes; i++)
6257 bbio->raid_map[(i+rot) % num_stripes] =
6258 em->start + (tmp + i) * map->stripe_len;
6259
6260 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6261 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6262 bbio->raid_map[(i+rot+1) % num_stripes] =
6263 RAID6_Q_STRIPE;
6264
6265 sort_parity_stripes(bbio, num_stripes);
6266 }
6267
6268 if (need_full_stripe(op))
6269 max_errors = btrfs_chunk_max_errors(map);
6270
6271 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6272 need_full_stripe(op)) {
6273 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6274 &max_errors);
6275 }
6276
6277 *bbio_ret = bbio;
6278 bbio->map_type = map->type;
6279 bbio->num_stripes = num_stripes;
6280 bbio->max_errors = max_errors;
6281 bbio->mirror_num = mirror_num;
6282
6283 /*
6284 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6285 * mirror_num == num_stripes + 1 && dev_replace target drive is
6286 * available as a mirror
6287 */
6288 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6289 WARN_ON(num_stripes > 1);
6290 bbio->stripes[0].dev = dev_replace->tgtdev;
6291 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6292 bbio->mirror_num = map->num_stripes + 1;
6293 }
6294 out:
6295 if (dev_replace_is_ongoing) {
6296 lockdep_assert_held(&dev_replace->rwsem);
6297 /* Unlock and let waiting writers proceed */
6298 up_read(&dev_replace->rwsem);
6299 }
6300 free_extent_map(em);
6301 return ret;
6302 }
6303
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6304 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6305 u64 logical, u64 *length,
6306 struct btrfs_bio **bbio_ret, int mirror_num)
6307 {
6308 if (op == BTRFS_MAP_DISCARD)
6309 return __btrfs_map_block_for_discard(fs_info, logical,
6310 length, bbio_ret);
6311
6312 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6313 mirror_num, 0);
6314 }
6315
6316 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6317 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6318 u64 logical, u64 *length,
6319 struct btrfs_bio **bbio_ret)
6320 {
6321 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6322 }
6323
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6324 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6325 {
6326 bio->bi_private = bbio->private;
6327 bio->bi_end_io = bbio->end_io;
6328 bio_endio(bio);
6329
6330 btrfs_put_bbio(bbio);
6331 }
6332
btrfs_end_bio(struct bio * bio)6333 static void btrfs_end_bio(struct bio *bio)
6334 {
6335 struct btrfs_bio *bbio = bio->bi_private;
6336 int is_orig_bio = 0;
6337
6338 if (bio->bi_status) {
6339 atomic_inc(&bbio->error);
6340 if (bio->bi_status == BLK_STS_IOERR ||
6341 bio->bi_status == BLK_STS_TARGET) {
6342 struct btrfs_device *dev = btrfs_io_bio(bio)->device;
6343
6344 ASSERT(dev->bdev);
6345 if (bio_op(bio) == REQ_OP_WRITE)
6346 btrfs_dev_stat_inc_and_print(dev,
6347 BTRFS_DEV_STAT_WRITE_ERRS);
6348 else if (!(bio->bi_opf & REQ_RAHEAD))
6349 btrfs_dev_stat_inc_and_print(dev,
6350 BTRFS_DEV_STAT_READ_ERRS);
6351 if (bio->bi_opf & REQ_PREFLUSH)
6352 btrfs_dev_stat_inc_and_print(dev,
6353 BTRFS_DEV_STAT_FLUSH_ERRS);
6354 }
6355 }
6356
6357 if (bio == bbio->orig_bio)
6358 is_orig_bio = 1;
6359
6360 btrfs_bio_counter_dec(bbio->fs_info);
6361
6362 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6363 if (!is_orig_bio) {
6364 bio_put(bio);
6365 bio = bbio->orig_bio;
6366 }
6367
6368 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6369 /* only send an error to the higher layers if it is
6370 * beyond the tolerance of the btrfs bio
6371 */
6372 if (atomic_read(&bbio->error) > bbio->max_errors) {
6373 bio->bi_status = BLK_STS_IOERR;
6374 } else {
6375 /*
6376 * this bio is actually up to date, we didn't
6377 * go over the max number of errors
6378 */
6379 bio->bi_status = BLK_STS_OK;
6380 }
6381
6382 btrfs_end_bbio(bbio, bio);
6383 } else if (!is_orig_bio) {
6384 bio_put(bio);
6385 }
6386 }
6387
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,struct btrfs_device * dev)6388 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6389 u64 physical, struct btrfs_device *dev)
6390 {
6391 struct btrfs_fs_info *fs_info = bbio->fs_info;
6392
6393 bio->bi_private = bbio;
6394 btrfs_io_bio(bio)->device = dev;
6395 bio->bi_end_io = btrfs_end_bio;
6396 bio->bi_iter.bi_sector = physical >> 9;
6397 btrfs_debug_in_rcu(fs_info,
6398 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6399 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6400 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6401 dev->devid, bio->bi_iter.bi_size);
6402 bio_set_dev(bio, dev->bdev);
6403
6404 btrfs_bio_counter_inc_noblocked(fs_info);
6405
6406 btrfsic_submit_bio(bio);
6407 }
6408
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6409 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6410 {
6411 atomic_inc(&bbio->error);
6412 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6413 /* Should be the original bio. */
6414 WARN_ON(bio != bbio->orig_bio);
6415
6416 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6417 bio->bi_iter.bi_sector = logical >> 9;
6418 if (atomic_read(&bbio->error) > bbio->max_errors)
6419 bio->bi_status = BLK_STS_IOERR;
6420 else
6421 bio->bi_status = BLK_STS_OK;
6422 btrfs_end_bbio(bbio, bio);
6423 }
6424 }
6425
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num)6426 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6427 int mirror_num)
6428 {
6429 struct btrfs_device *dev;
6430 struct bio *first_bio = bio;
6431 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6432 u64 length = 0;
6433 u64 map_length;
6434 int ret;
6435 int dev_nr;
6436 int total_devs;
6437 struct btrfs_bio *bbio = NULL;
6438
6439 length = bio->bi_iter.bi_size;
6440 map_length = length;
6441
6442 btrfs_bio_counter_inc_blocked(fs_info);
6443 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6444 &map_length, &bbio, mirror_num, 1);
6445 if (ret) {
6446 btrfs_bio_counter_dec(fs_info);
6447 return errno_to_blk_status(ret);
6448 }
6449
6450 total_devs = bbio->num_stripes;
6451 bbio->orig_bio = first_bio;
6452 bbio->private = first_bio->bi_private;
6453 bbio->end_io = first_bio->bi_end_io;
6454 bbio->fs_info = fs_info;
6455 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6456
6457 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6458 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6459 /* In this case, map_length has been set to the length of
6460 a single stripe; not the whole write */
6461 if (bio_op(bio) == REQ_OP_WRITE) {
6462 ret = raid56_parity_write(fs_info, bio, bbio,
6463 map_length);
6464 } else {
6465 ret = raid56_parity_recover(fs_info, bio, bbio,
6466 map_length, mirror_num, 1);
6467 }
6468
6469 btrfs_bio_counter_dec(fs_info);
6470 return errno_to_blk_status(ret);
6471 }
6472
6473 if (map_length < length) {
6474 btrfs_crit(fs_info,
6475 "mapping failed logical %llu bio len %llu len %llu",
6476 logical, length, map_length);
6477 BUG();
6478 }
6479
6480 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6481 dev = bbio->stripes[dev_nr].dev;
6482 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6483 &dev->dev_state) ||
6484 (bio_op(first_bio) == REQ_OP_WRITE &&
6485 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6486 bbio_error(bbio, first_bio, logical);
6487 continue;
6488 }
6489
6490 if (dev_nr < total_devs - 1)
6491 bio = btrfs_bio_clone(first_bio);
6492 else
6493 bio = first_bio;
6494
6495 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev);
6496 }
6497 btrfs_bio_counter_dec(fs_info);
6498 return BLK_STS_OK;
6499 }
6500
6501 /*
6502 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6503 * return NULL.
6504 *
6505 * If devid and uuid are both specified, the match must be exact, otherwise
6506 * only devid is used.
6507 *
6508 * If @seed is true, traverse through the seed devices.
6509 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6510 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6511 u64 devid, u8 *uuid, u8 *fsid,
6512 bool seed)
6513 {
6514 struct btrfs_device *device;
6515 struct btrfs_fs_devices *seed_devs;
6516
6517 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6518 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6519 if (device->devid == devid &&
6520 (!uuid || memcmp(device->uuid, uuid,
6521 BTRFS_UUID_SIZE) == 0))
6522 return device;
6523 }
6524 }
6525
6526 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6527 if (!fsid ||
6528 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6529 list_for_each_entry(device, &seed_devs->devices,
6530 dev_list) {
6531 if (device->devid == devid &&
6532 (!uuid || memcmp(device->uuid, uuid,
6533 BTRFS_UUID_SIZE) == 0))
6534 return device;
6535 }
6536 }
6537 }
6538
6539 return NULL;
6540 }
6541
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6542 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6543 u64 devid, u8 *dev_uuid)
6544 {
6545 struct btrfs_device *device;
6546 unsigned int nofs_flag;
6547
6548 /*
6549 * We call this under the chunk_mutex, so we want to use NOFS for this
6550 * allocation, however we don't want to change btrfs_alloc_device() to
6551 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6552 * places.
6553 */
6554 nofs_flag = memalloc_nofs_save();
6555 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6556 memalloc_nofs_restore(nofs_flag);
6557 if (IS_ERR(device))
6558 return device;
6559
6560 list_add(&device->dev_list, &fs_devices->devices);
6561 device->fs_devices = fs_devices;
6562 fs_devices->num_devices++;
6563
6564 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6565 fs_devices->missing_devices++;
6566
6567 return device;
6568 }
6569
6570 /**
6571 * btrfs_alloc_device - allocate struct btrfs_device
6572 * @fs_info: used only for generating a new devid, can be NULL if
6573 * devid is provided (i.e. @devid != NULL).
6574 * @devid: a pointer to devid for this device. If NULL a new devid
6575 * is generated.
6576 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6577 * is generated.
6578 *
6579 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6580 * on error. Returned struct is not linked onto any lists and must be
6581 * destroyed with btrfs_free_device.
6582 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6583 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6584 const u64 *devid,
6585 const u8 *uuid)
6586 {
6587 struct btrfs_device *dev;
6588 u64 tmp;
6589
6590 if (WARN_ON(!devid && !fs_info))
6591 return ERR_PTR(-EINVAL);
6592
6593 dev = __alloc_device(fs_info);
6594 if (IS_ERR(dev))
6595 return dev;
6596
6597 if (devid)
6598 tmp = *devid;
6599 else {
6600 int ret;
6601
6602 ret = find_next_devid(fs_info, &tmp);
6603 if (ret) {
6604 btrfs_free_device(dev);
6605 return ERR_PTR(ret);
6606 }
6607 }
6608 dev->devid = tmp;
6609
6610 if (uuid)
6611 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6612 else
6613 generate_random_uuid(dev->uuid);
6614
6615 return dev;
6616 }
6617
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6618 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6619 u64 devid, u8 *uuid, bool error)
6620 {
6621 if (error)
6622 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6623 devid, uuid);
6624 else
6625 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6626 devid, uuid);
6627 }
6628
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6629 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6630 {
6631 int index = btrfs_bg_flags_to_raid_index(type);
6632 int ncopies = btrfs_raid_array[index].ncopies;
6633 const int nparity = btrfs_raid_array[index].nparity;
6634 int data_stripes;
6635
6636 if (nparity)
6637 data_stripes = num_stripes - nparity;
6638 else
6639 data_stripes = num_stripes / ncopies;
6640
6641 return div_u64(chunk_len, data_stripes);
6642 }
6643
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6644 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6645 struct btrfs_chunk *chunk)
6646 {
6647 struct btrfs_fs_info *fs_info = leaf->fs_info;
6648 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6649 struct map_lookup *map;
6650 struct extent_map *em;
6651 u64 logical;
6652 u64 length;
6653 u64 devid;
6654 u8 uuid[BTRFS_UUID_SIZE];
6655 int num_stripes;
6656 int ret;
6657 int i;
6658
6659 logical = key->offset;
6660 length = btrfs_chunk_length(leaf, chunk);
6661 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6662
6663 /*
6664 * Only need to verify chunk item if we're reading from sys chunk array,
6665 * as chunk item in tree block is already verified by tree-checker.
6666 */
6667 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6668 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6669 if (ret)
6670 return ret;
6671 }
6672
6673 read_lock(&map_tree->lock);
6674 em = lookup_extent_mapping(map_tree, logical, 1);
6675 read_unlock(&map_tree->lock);
6676
6677 /* already mapped? */
6678 if (em && em->start <= logical && em->start + em->len > logical) {
6679 free_extent_map(em);
6680 return 0;
6681 } else if (em) {
6682 free_extent_map(em);
6683 }
6684
6685 em = alloc_extent_map();
6686 if (!em)
6687 return -ENOMEM;
6688 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6689 if (!map) {
6690 free_extent_map(em);
6691 return -ENOMEM;
6692 }
6693
6694 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6695 em->map_lookup = map;
6696 em->start = logical;
6697 em->len = length;
6698 em->orig_start = 0;
6699 em->block_start = 0;
6700 em->block_len = em->len;
6701
6702 map->num_stripes = num_stripes;
6703 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6704 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6705 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6706 map->type = btrfs_chunk_type(leaf, chunk);
6707 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6708 map->verified_stripes = 0;
6709 em->orig_block_len = calc_stripe_length(map->type, em->len,
6710 map->num_stripes);
6711 for (i = 0; i < num_stripes; i++) {
6712 map->stripes[i].physical =
6713 btrfs_stripe_offset_nr(leaf, chunk, i);
6714 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6715 read_extent_buffer(leaf, uuid, (unsigned long)
6716 btrfs_stripe_dev_uuid_nr(chunk, i),
6717 BTRFS_UUID_SIZE);
6718 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6719 devid, uuid, NULL, true);
6720 if (!map->stripes[i].dev &&
6721 !btrfs_test_opt(fs_info, DEGRADED)) {
6722 free_extent_map(em);
6723 btrfs_report_missing_device(fs_info, devid, uuid, true);
6724 return -ENOENT;
6725 }
6726 if (!map->stripes[i].dev) {
6727 map->stripes[i].dev =
6728 add_missing_dev(fs_info->fs_devices, devid,
6729 uuid);
6730 if (IS_ERR(map->stripes[i].dev)) {
6731 free_extent_map(em);
6732 btrfs_err(fs_info,
6733 "failed to init missing dev %llu: %ld",
6734 devid, PTR_ERR(map->stripes[i].dev));
6735 return PTR_ERR(map->stripes[i].dev);
6736 }
6737 btrfs_report_missing_device(fs_info, devid, uuid, false);
6738 }
6739 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6740 &(map->stripes[i].dev->dev_state));
6741
6742 }
6743
6744 write_lock(&map_tree->lock);
6745 ret = add_extent_mapping(map_tree, em, 0);
6746 write_unlock(&map_tree->lock);
6747 if (ret < 0) {
6748 btrfs_err(fs_info,
6749 "failed to add chunk map, start=%llu len=%llu: %d",
6750 em->start, em->len, ret);
6751 }
6752 free_extent_map(em);
6753
6754 return ret;
6755 }
6756
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6757 static void fill_device_from_item(struct extent_buffer *leaf,
6758 struct btrfs_dev_item *dev_item,
6759 struct btrfs_device *device)
6760 {
6761 unsigned long ptr;
6762
6763 device->devid = btrfs_device_id(leaf, dev_item);
6764 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6765 device->total_bytes = device->disk_total_bytes;
6766 device->commit_total_bytes = device->disk_total_bytes;
6767 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6768 device->commit_bytes_used = device->bytes_used;
6769 device->type = btrfs_device_type(leaf, dev_item);
6770 device->io_align = btrfs_device_io_align(leaf, dev_item);
6771 device->io_width = btrfs_device_io_width(leaf, dev_item);
6772 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6773 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6774 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6775
6776 ptr = btrfs_device_uuid(dev_item);
6777 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6778 }
6779
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)6780 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6781 u8 *fsid)
6782 {
6783 struct btrfs_fs_devices *fs_devices;
6784 int ret;
6785
6786 lockdep_assert_held(&uuid_mutex);
6787 ASSERT(fsid);
6788
6789 /* This will match only for multi-device seed fs */
6790 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6791 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6792 return fs_devices;
6793
6794
6795 fs_devices = find_fsid(fsid, NULL);
6796 if (!fs_devices) {
6797 if (!btrfs_test_opt(fs_info, DEGRADED))
6798 return ERR_PTR(-ENOENT);
6799
6800 fs_devices = alloc_fs_devices(fsid, NULL);
6801 if (IS_ERR(fs_devices))
6802 return fs_devices;
6803
6804 fs_devices->seeding = true;
6805 fs_devices->opened = 1;
6806 return fs_devices;
6807 }
6808
6809 /*
6810 * Upon first call for a seed fs fsid, just create a private copy of the
6811 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6812 */
6813 fs_devices = clone_fs_devices(fs_devices);
6814 if (IS_ERR(fs_devices))
6815 return fs_devices;
6816
6817 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6818 if (ret) {
6819 free_fs_devices(fs_devices);
6820 return ERR_PTR(ret);
6821 }
6822
6823 if (!fs_devices->seeding) {
6824 close_fs_devices(fs_devices);
6825 free_fs_devices(fs_devices);
6826 return ERR_PTR(-EINVAL);
6827 }
6828
6829 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
6830
6831 return fs_devices;
6832 }
6833
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6834 static int read_one_dev(struct extent_buffer *leaf,
6835 struct btrfs_dev_item *dev_item)
6836 {
6837 struct btrfs_fs_info *fs_info = leaf->fs_info;
6838 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6839 struct btrfs_device *device;
6840 u64 devid;
6841 int ret;
6842 u8 fs_uuid[BTRFS_FSID_SIZE];
6843 u8 dev_uuid[BTRFS_UUID_SIZE];
6844
6845 devid = btrfs_device_id(leaf, dev_item);
6846 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6847 BTRFS_UUID_SIZE);
6848 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6849 BTRFS_FSID_SIZE);
6850
6851 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6852 fs_devices = open_seed_devices(fs_info, fs_uuid);
6853 if (IS_ERR(fs_devices))
6854 return PTR_ERR(fs_devices);
6855 }
6856
6857 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6858 fs_uuid, true);
6859 if (!device) {
6860 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6861 btrfs_report_missing_device(fs_info, devid,
6862 dev_uuid, true);
6863 return -ENOENT;
6864 }
6865
6866 device = add_missing_dev(fs_devices, devid, dev_uuid);
6867 if (IS_ERR(device)) {
6868 btrfs_err(fs_info,
6869 "failed to add missing dev %llu: %ld",
6870 devid, PTR_ERR(device));
6871 return PTR_ERR(device);
6872 }
6873 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6874 } else {
6875 if (!device->bdev) {
6876 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6877 btrfs_report_missing_device(fs_info,
6878 devid, dev_uuid, true);
6879 return -ENOENT;
6880 }
6881 btrfs_report_missing_device(fs_info, devid,
6882 dev_uuid, false);
6883 }
6884
6885 if (!device->bdev &&
6886 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6887 /*
6888 * this happens when a device that was properly setup
6889 * in the device info lists suddenly goes bad.
6890 * device->bdev is NULL, and so we have to set
6891 * device->missing to one here
6892 */
6893 device->fs_devices->missing_devices++;
6894 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6895 }
6896
6897 /* Move the device to its own fs_devices */
6898 if (device->fs_devices != fs_devices) {
6899 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6900 &device->dev_state));
6901
6902 list_move(&device->dev_list, &fs_devices->devices);
6903 device->fs_devices->num_devices--;
6904 fs_devices->num_devices++;
6905
6906 device->fs_devices->missing_devices--;
6907 fs_devices->missing_devices++;
6908
6909 device->fs_devices = fs_devices;
6910 }
6911 }
6912
6913 if (device->fs_devices != fs_info->fs_devices) {
6914 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6915 if (device->generation !=
6916 btrfs_device_generation(leaf, dev_item))
6917 return -EINVAL;
6918 }
6919
6920 fill_device_from_item(leaf, dev_item, device);
6921 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6922 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6923 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6924 device->fs_devices->total_rw_bytes += device->total_bytes;
6925 atomic64_add(device->total_bytes - device->bytes_used,
6926 &fs_info->free_chunk_space);
6927 }
6928 ret = 0;
6929 return ret;
6930 }
6931
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)6932 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6933 {
6934 struct btrfs_root *root = fs_info->tree_root;
6935 struct btrfs_super_block *super_copy = fs_info->super_copy;
6936 struct extent_buffer *sb;
6937 struct btrfs_disk_key *disk_key;
6938 struct btrfs_chunk *chunk;
6939 u8 *array_ptr;
6940 unsigned long sb_array_offset;
6941 int ret = 0;
6942 u32 num_stripes;
6943 u32 array_size;
6944 u32 len = 0;
6945 u32 cur_offset;
6946 u64 type;
6947 struct btrfs_key key;
6948
6949 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6950 /*
6951 * This will create extent buffer of nodesize, superblock size is
6952 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6953 * overallocate but we can keep it as-is, only the first page is used.
6954 */
6955 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6956 if (IS_ERR(sb))
6957 return PTR_ERR(sb);
6958 set_extent_buffer_uptodate(sb);
6959 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6960 /*
6961 * The sb extent buffer is artificial and just used to read the system array.
6962 * set_extent_buffer_uptodate() call does not properly mark all it's
6963 * pages up-to-date when the page is larger: extent does not cover the
6964 * whole page and consequently check_page_uptodate does not find all
6965 * the page's extents up-to-date (the hole beyond sb),
6966 * write_extent_buffer then triggers a WARN_ON.
6967 *
6968 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6969 * but sb spans only this function. Add an explicit SetPageUptodate call
6970 * to silence the warning eg. on PowerPC 64.
6971 */
6972 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6973 SetPageUptodate(sb->pages[0]);
6974
6975 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6976 array_size = btrfs_super_sys_array_size(super_copy);
6977
6978 array_ptr = super_copy->sys_chunk_array;
6979 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6980 cur_offset = 0;
6981
6982 while (cur_offset < array_size) {
6983 disk_key = (struct btrfs_disk_key *)array_ptr;
6984 len = sizeof(*disk_key);
6985 if (cur_offset + len > array_size)
6986 goto out_short_read;
6987
6988 btrfs_disk_key_to_cpu(&key, disk_key);
6989
6990 array_ptr += len;
6991 sb_array_offset += len;
6992 cur_offset += len;
6993
6994 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6995 btrfs_err(fs_info,
6996 "unexpected item type %u in sys_array at offset %u",
6997 (u32)key.type, cur_offset);
6998 ret = -EIO;
6999 break;
7000 }
7001
7002 chunk = (struct btrfs_chunk *)sb_array_offset;
7003 /*
7004 * At least one btrfs_chunk with one stripe must be present,
7005 * exact stripe count check comes afterwards
7006 */
7007 len = btrfs_chunk_item_size(1);
7008 if (cur_offset + len > array_size)
7009 goto out_short_read;
7010
7011 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7012 if (!num_stripes) {
7013 btrfs_err(fs_info,
7014 "invalid number of stripes %u in sys_array at offset %u",
7015 num_stripes, cur_offset);
7016 ret = -EIO;
7017 break;
7018 }
7019
7020 type = btrfs_chunk_type(sb, chunk);
7021 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7022 btrfs_err(fs_info,
7023 "invalid chunk type %llu in sys_array at offset %u",
7024 type, cur_offset);
7025 ret = -EIO;
7026 break;
7027 }
7028
7029 len = btrfs_chunk_item_size(num_stripes);
7030 if (cur_offset + len > array_size)
7031 goto out_short_read;
7032
7033 ret = read_one_chunk(&key, sb, chunk);
7034 if (ret)
7035 break;
7036
7037 array_ptr += len;
7038 sb_array_offset += len;
7039 cur_offset += len;
7040 }
7041 clear_extent_buffer_uptodate(sb);
7042 free_extent_buffer_stale(sb);
7043 return ret;
7044
7045 out_short_read:
7046 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7047 len, cur_offset);
7048 clear_extent_buffer_uptodate(sb);
7049 free_extent_buffer_stale(sb);
7050 return -EIO;
7051 }
7052
7053 /*
7054 * Check if all chunks in the fs are OK for read-write degraded mount
7055 *
7056 * If the @failing_dev is specified, it's accounted as missing.
7057 *
7058 * Return true if all chunks meet the minimal RW mount requirements.
7059 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7060 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7061 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7062 struct btrfs_device *failing_dev)
7063 {
7064 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7065 struct extent_map *em;
7066 u64 next_start = 0;
7067 bool ret = true;
7068
7069 read_lock(&map_tree->lock);
7070 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7071 read_unlock(&map_tree->lock);
7072 /* No chunk at all? Return false anyway */
7073 if (!em) {
7074 ret = false;
7075 goto out;
7076 }
7077 while (em) {
7078 struct map_lookup *map;
7079 int missing = 0;
7080 int max_tolerated;
7081 int i;
7082
7083 map = em->map_lookup;
7084 max_tolerated =
7085 btrfs_get_num_tolerated_disk_barrier_failures(
7086 map->type);
7087 for (i = 0; i < map->num_stripes; i++) {
7088 struct btrfs_device *dev = map->stripes[i].dev;
7089
7090 if (!dev || !dev->bdev ||
7091 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7092 dev->last_flush_error)
7093 missing++;
7094 else if (failing_dev && failing_dev == dev)
7095 missing++;
7096 }
7097 if (missing > max_tolerated) {
7098 if (!failing_dev)
7099 btrfs_warn(fs_info,
7100 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7101 em->start, missing, max_tolerated);
7102 free_extent_map(em);
7103 ret = false;
7104 goto out;
7105 }
7106 next_start = extent_map_end(em);
7107 free_extent_map(em);
7108
7109 read_lock(&map_tree->lock);
7110 em = lookup_extent_mapping(map_tree, next_start,
7111 (u64)(-1) - next_start);
7112 read_unlock(&map_tree->lock);
7113 }
7114 out:
7115 return ret;
7116 }
7117
readahead_tree_node_children(struct extent_buffer * node)7118 static void readahead_tree_node_children(struct extent_buffer *node)
7119 {
7120 int i;
7121 const int nr_items = btrfs_header_nritems(node);
7122
7123 for (i = 0; i < nr_items; i++) {
7124 u64 start;
7125
7126 start = btrfs_node_blockptr(node, i);
7127 readahead_tree_block(node->fs_info, start);
7128 }
7129 }
7130
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7131 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7132 {
7133 struct btrfs_root *root = fs_info->chunk_root;
7134 struct btrfs_path *path;
7135 struct extent_buffer *leaf;
7136 struct btrfs_key key;
7137 struct btrfs_key found_key;
7138 int ret;
7139 int slot;
7140 u64 total_dev = 0;
7141 u64 last_ra_node = 0;
7142
7143 path = btrfs_alloc_path();
7144 if (!path)
7145 return -ENOMEM;
7146
7147 /*
7148 * uuid_mutex is needed only if we are mounting a sprout FS
7149 * otherwise we don't need it.
7150 */
7151 mutex_lock(&uuid_mutex);
7152
7153 /*
7154 * It is possible for mount and umount to race in such a way that
7155 * we execute this code path, but open_fs_devices failed to clear
7156 * total_rw_bytes. We certainly want it cleared before reading the
7157 * device items, so clear it here.
7158 */
7159 fs_info->fs_devices->total_rw_bytes = 0;
7160
7161 /*
7162 * Read all device items, and then all the chunk items. All
7163 * device items are found before any chunk item (their object id
7164 * is smaller than the lowest possible object id for a chunk
7165 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7166 */
7167 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7168 key.offset = 0;
7169 key.type = 0;
7170 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7171 if (ret < 0)
7172 goto error;
7173 while (1) {
7174 struct extent_buffer *node;
7175
7176 leaf = path->nodes[0];
7177 slot = path->slots[0];
7178 if (slot >= btrfs_header_nritems(leaf)) {
7179 ret = btrfs_next_leaf(root, path);
7180 if (ret == 0)
7181 continue;
7182 if (ret < 0)
7183 goto error;
7184 break;
7185 }
7186 /*
7187 * The nodes on level 1 are not locked but we don't need to do
7188 * that during mount time as nothing else can access the tree
7189 */
7190 node = path->nodes[1];
7191 if (node) {
7192 if (last_ra_node != node->start) {
7193 readahead_tree_node_children(node);
7194 last_ra_node = node->start;
7195 }
7196 }
7197 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7198 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7199 struct btrfs_dev_item *dev_item;
7200 dev_item = btrfs_item_ptr(leaf, slot,
7201 struct btrfs_dev_item);
7202 ret = read_one_dev(leaf, dev_item);
7203 if (ret)
7204 goto error;
7205 total_dev++;
7206 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7207 struct btrfs_chunk *chunk;
7208 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7209 mutex_lock(&fs_info->chunk_mutex);
7210 ret = read_one_chunk(&found_key, leaf, chunk);
7211 mutex_unlock(&fs_info->chunk_mutex);
7212 if (ret)
7213 goto error;
7214 }
7215 path->slots[0]++;
7216 }
7217
7218 /*
7219 * After loading chunk tree, we've got all device information,
7220 * do another round of validation checks.
7221 */
7222 if (total_dev != fs_info->fs_devices->total_devices) {
7223 btrfs_warn(fs_info,
7224 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7225 btrfs_super_num_devices(fs_info->super_copy),
7226 total_dev);
7227 fs_info->fs_devices->total_devices = total_dev;
7228 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7229 }
7230 if (btrfs_super_total_bytes(fs_info->super_copy) <
7231 fs_info->fs_devices->total_rw_bytes) {
7232 btrfs_err(fs_info,
7233 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7234 btrfs_super_total_bytes(fs_info->super_copy),
7235 fs_info->fs_devices->total_rw_bytes);
7236 ret = -EINVAL;
7237 goto error;
7238 }
7239 ret = 0;
7240 error:
7241 mutex_unlock(&uuid_mutex);
7242
7243 btrfs_free_path(path);
7244 return ret;
7245 }
7246
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7247 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7248 {
7249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7250 struct btrfs_device *device;
7251
7252 fs_devices->fs_info = fs_info;
7253
7254 mutex_lock(&fs_devices->device_list_mutex);
7255 list_for_each_entry(device, &fs_devices->devices, dev_list)
7256 device->fs_info = fs_info;
7257
7258 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7259 list_for_each_entry(device, &seed_devs->devices, dev_list)
7260 device->fs_info = fs_info;
7261
7262 seed_devs->fs_info = fs_info;
7263 }
7264 mutex_unlock(&fs_devices->device_list_mutex);
7265 }
7266
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7267 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7268 const struct btrfs_dev_stats_item *ptr,
7269 int index)
7270 {
7271 u64 val;
7272
7273 read_extent_buffer(eb, &val,
7274 offsetof(struct btrfs_dev_stats_item, values) +
7275 ((unsigned long)ptr) + (index * sizeof(u64)),
7276 sizeof(val));
7277 return val;
7278 }
7279
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7280 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7281 struct btrfs_dev_stats_item *ptr,
7282 int index, u64 val)
7283 {
7284 write_extent_buffer(eb, &val,
7285 offsetof(struct btrfs_dev_stats_item, values) +
7286 ((unsigned long)ptr) + (index * sizeof(u64)),
7287 sizeof(val));
7288 }
7289
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7290 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7291 struct btrfs_path *path)
7292 {
7293 struct btrfs_dev_stats_item *ptr;
7294 struct extent_buffer *eb;
7295 struct btrfs_key key;
7296 int item_size;
7297 int i, ret, slot;
7298
7299 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7300 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7301 key.offset = device->devid;
7302 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7303 if (ret) {
7304 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7305 btrfs_dev_stat_set(device, i, 0);
7306 device->dev_stats_valid = 1;
7307 btrfs_release_path(path);
7308 return ret < 0 ? ret : 0;
7309 }
7310 slot = path->slots[0];
7311 eb = path->nodes[0];
7312 item_size = btrfs_item_size_nr(eb, slot);
7313
7314 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7315
7316 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7317 if (item_size >= (1 + i) * sizeof(__le64))
7318 btrfs_dev_stat_set(device, i,
7319 btrfs_dev_stats_value(eb, ptr, i));
7320 else
7321 btrfs_dev_stat_set(device, i, 0);
7322 }
7323
7324 device->dev_stats_valid = 1;
7325 btrfs_dev_stat_print_on_load(device);
7326 btrfs_release_path(path);
7327
7328 return 0;
7329 }
7330
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7331 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7332 {
7333 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7334 struct btrfs_device *device;
7335 struct btrfs_path *path = NULL;
7336 int ret = 0;
7337
7338 path = btrfs_alloc_path();
7339 if (!path)
7340 return -ENOMEM;
7341
7342 mutex_lock(&fs_devices->device_list_mutex);
7343 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7344 ret = btrfs_device_init_dev_stats(device, path);
7345 if (ret)
7346 goto out;
7347 }
7348 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7349 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7350 ret = btrfs_device_init_dev_stats(device, path);
7351 if (ret)
7352 goto out;
7353 }
7354 }
7355 out:
7356 mutex_unlock(&fs_devices->device_list_mutex);
7357
7358 btrfs_free_path(path);
7359 return ret;
7360 }
7361
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7362 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7363 struct btrfs_device *device)
7364 {
7365 struct btrfs_fs_info *fs_info = trans->fs_info;
7366 struct btrfs_root *dev_root = fs_info->dev_root;
7367 struct btrfs_path *path;
7368 struct btrfs_key key;
7369 struct extent_buffer *eb;
7370 struct btrfs_dev_stats_item *ptr;
7371 int ret;
7372 int i;
7373
7374 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7375 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7376 key.offset = device->devid;
7377
7378 path = btrfs_alloc_path();
7379 if (!path)
7380 return -ENOMEM;
7381 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7382 if (ret < 0) {
7383 btrfs_warn_in_rcu(fs_info,
7384 "error %d while searching for dev_stats item for device %s",
7385 ret, rcu_str_deref(device->name));
7386 goto out;
7387 }
7388
7389 if (ret == 0 &&
7390 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7391 /* need to delete old one and insert a new one */
7392 ret = btrfs_del_item(trans, dev_root, path);
7393 if (ret != 0) {
7394 btrfs_warn_in_rcu(fs_info,
7395 "delete too small dev_stats item for device %s failed %d",
7396 rcu_str_deref(device->name), ret);
7397 goto out;
7398 }
7399 ret = 1;
7400 }
7401
7402 if (ret == 1) {
7403 /* need to insert a new item */
7404 btrfs_release_path(path);
7405 ret = btrfs_insert_empty_item(trans, dev_root, path,
7406 &key, sizeof(*ptr));
7407 if (ret < 0) {
7408 btrfs_warn_in_rcu(fs_info,
7409 "insert dev_stats item for device %s failed %d",
7410 rcu_str_deref(device->name), ret);
7411 goto out;
7412 }
7413 }
7414
7415 eb = path->nodes[0];
7416 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7417 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7418 btrfs_set_dev_stats_value(eb, ptr, i,
7419 btrfs_dev_stat_read(device, i));
7420 btrfs_mark_buffer_dirty(eb);
7421
7422 out:
7423 btrfs_free_path(path);
7424 return ret;
7425 }
7426
7427 /*
7428 * called from commit_transaction. Writes all changed device stats to disk.
7429 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7430 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7431 {
7432 struct btrfs_fs_info *fs_info = trans->fs_info;
7433 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7434 struct btrfs_device *device;
7435 int stats_cnt;
7436 int ret = 0;
7437
7438 mutex_lock(&fs_devices->device_list_mutex);
7439 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7440 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7441 if (!device->dev_stats_valid || stats_cnt == 0)
7442 continue;
7443
7444
7445 /*
7446 * There is a LOAD-LOAD control dependency between the value of
7447 * dev_stats_ccnt and updating the on-disk values which requires
7448 * reading the in-memory counters. Such control dependencies
7449 * require explicit read memory barriers.
7450 *
7451 * This memory barriers pairs with smp_mb__before_atomic in
7452 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7453 * barrier implied by atomic_xchg in
7454 * btrfs_dev_stats_read_and_reset
7455 */
7456 smp_rmb();
7457
7458 ret = update_dev_stat_item(trans, device);
7459 if (!ret)
7460 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7461 }
7462 mutex_unlock(&fs_devices->device_list_mutex);
7463
7464 return ret;
7465 }
7466
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7467 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7468 {
7469 btrfs_dev_stat_inc(dev, index);
7470 btrfs_dev_stat_print_on_error(dev);
7471 }
7472
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7473 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7474 {
7475 if (!dev->dev_stats_valid)
7476 return;
7477 btrfs_err_rl_in_rcu(dev->fs_info,
7478 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7479 rcu_str_deref(dev->name),
7480 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7481 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7482 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7483 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7484 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7485 }
7486
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7487 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7488 {
7489 int i;
7490
7491 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7492 if (btrfs_dev_stat_read(dev, i) != 0)
7493 break;
7494 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7495 return; /* all values == 0, suppress message */
7496
7497 btrfs_info_in_rcu(dev->fs_info,
7498 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7499 rcu_str_deref(dev->name),
7500 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7501 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7502 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7503 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7504 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7505 }
7506
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7507 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7508 struct btrfs_ioctl_get_dev_stats *stats)
7509 {
7510 struct btrfs_device *dev;
7511 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7512 int i;
7513
7514 mutex_lock(&fs_devices->device_list_mutex);
7515 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7516 true);
7517 mutex_unlock(&fs_devices->device_list_mutex);
7518
7519 if (!dev) {
7520 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7521 return -ENODEV;
7522 } else if (!dev->dev_stats_valid) {
7523 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7524 return -ENODEV;
7525 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7526 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7527 if (stats->nr_items > i)
7528 stats->values[i] =
7529 btrfs_dev_stat_read_and_reset(dev, i);
7530 else
7531 btrfs_dev_stat_set(dev, i, 0);
7532 }
7533 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7534 current->comm, task_pid_nr(current));
7535 } else {
7536 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7537 if (stats->nr_items > i)
7538 stats->values[i] = btrfs_dev_stat_read(dev, i);
7539 }
7540 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7541 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7542 return 0;
7543 }
7544
7545 /*
7546 * Update the size and bytes used for each device where it changed. This is
7547 * delayed since we would otherwise get errors while writing out the
7548 * superblocks.
7549 *
7550 * Must be invoked during transaction commit.
7551 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7552 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7553 {
7554 struct btrfs_device *curr, *next;
7555
7556 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7557
7558 if (list_empty(&trans->dev_update_list))
7559 return;
7560
7561 /*
7562 * We don't need the device_list_mutex here. This list is owned by the
7563 * transaction and the transaction must complete before the device is
7564 * released.
7565 */
7566 mutex_lock(&trans->fs_info->chunk_mutex);
7567 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7568 post_commit_list) {
7569 list_del_init(&curr->post_commit_list);
7570 curr->commit_total_bytes = curr->disk_total_bytes;
7571 curr->commit_bytes_used = curr->bytes_used;
7572 }
7573 mutex_unlock(&trans->fs_info->chunk_mutex);
7574 }
7575
7576 /*
7577 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7578 */
btrfs_bg_type_to_factor(u64 flags)7579 int btrfs_bg_type_to_factor(u64 flags)
7580 {
7581 const int index = btrfs_bg_flags_to_raid_index(flags);
7582
7583 return btrfs_raid_array[index].ncopies;
7584 }
7585
7586
7587
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7588 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7589 u64 chunk_offset, u64 devid,
7590 u64 physical_offset, u64 physical_len)
7591 {
7592 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7593 struct extent_map *em;
7594 struct map_lookup *map;
7595 struct btrfs_device *dev;
7596 u64 stripe_len;
7597 bool found = false;
7598 int ret = 0;
7599 int i;
7600
7601 read_lock(&em_tree->lock);
7602 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7603 read_unlock(&em_tree->lock);
7604
7605 if (!em) {
7606 btrfs_err(fs_info,
7607 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7608 physical_offset, devid);
7609 ret = -EUCLEAN;
7610 goto out;
7611 }
7612
7613 map = em->map_lookup;
7614 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7615 if (physical_len != stripe_len) {
7616 btrfs_err(fs_info,
7617 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7618 physical_offset, devid, em->start, physical_len,
7619 stripe_len);
7620 ret = -EUCLEAN;
7621 goto out;
7622 }
7623
7624 for (i = 0; i < map->num_stripes; i++) {
7625 if (map->stripes[i].dev->devid == devid &&
7626 map->stripes[i].physical == physical_offset) {
7627 found = true;
7628 if (map->verified_stripes >= map->num_stripes) {
7629 btrfs_err(fs_info,
7630 "too many dev extents for chunk %llu found",
7631 em->start);
7632 ret = -EUCLEAN;
7633 goto out;
7634 }
7635 map->verified_stripes++;
7636 break;
7637 }
7638 }
7639 if (!found) {
7640 btrfs_err(fs_info,
7641 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7642 physical_offset, devid);
7643 ret = -EUCLEAN;
7644 }
7645
7646 /* Make sure no dev extent is beyond device bondary */
7647 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7648 if (!dev) {
7649 btrfs_err(fs_info, "failed to find devid %llu", devid);
7650 ret = -EUCLEAN;
7651 goto out;
7652 }
7653
7654 /* It's possible this device is a dummy for seed device */
7655 if (dev->disk_total_bytes == 0) {
7656 struct btrfs_fs_devices *devs;
7657
7658 devs = list_first_entry(&fs_info->fs_devices->seed_list,
7659 struct btrfs_fs_devices, seed_list);
7660 dev = btrfs_find_device(devs, devid, NULL, NULL, false);
7661 if (!dev) {
7662 btrfs_err(fs_info, "failed to find seed devid %llu",
7663 devid);
7664 ret = -EUCLEAN;
7665 goto out;
7666 }
7667 }
7668
7669 if (physical_offset + physical_len > dev->disk_total_bytes) {
7670 btrfs_err(fs_info,
7671 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7672 devid, physical_offset, physical_len,
7673 dev->disk_total_bytes);
7674 ret = -EUCLEAN;
7675 goto out;
7676 }
7677 out:
7678 free_extent_map(em);
7679 return ret;
7680 }
7681
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7682 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7683 {
7684 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7685 struct extent_map *em;
7686 struct rb_node *node;
7687 int ret = 0;
7688
7689 read_lock(&em_tree->lock);
7690 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7691 em = rb_entry(node, struct extent_map, rb_node);
7692 if (em->map_lookup->num_stripes !=
7693 em->map_lookup->verified_stripes) {
7694 btrfs_err(fs_info,
7695 "chunk %llu has missing dev extent, have %d expect %d",
7696 em->start, em->map_lookup->verified_stripes,
7697 em->map_lookup->num_stripes);
7698 ret = -EUCLEAN;
7699 goto out;
7700 }
7701 }
7702 out:
7703 read_unlock(&em_tree->lock);
7704 return ret;
7705 }
7706
7707 /*
7708 * Ensure that all dev extents are mapped to correct chunk, otherwise
7709 * later chunk allocation/free would cause unexpected behavior.
7710 *
7711 * NOTE: This will iterate through the whole device tree, which should be of
7712 * the same size level as the chunk tree. This slightly increases mount time.
7713 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7714 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7715 {
7716 struct btrfs_path *path;
7717 struct btrfs_root *root = fs_info->dev_root;
7718 struct btrfs_key key;
7719 u64 prev_devid = 0;
7720 u64 prev_dev_ext_end = 0;
7721 int ret = 0;
7722
7723 key.objectid = 1;
7724 key.type = BTRFS_DEV_EXTENT_KEY;
7725 key.offset = 0;
7726
7727 path = btrfs_alloc_path();
7728 if (!path)
7729 return -ENOMEM;
7730
7731 path->reada = READA_FORWARD;
7732 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7733 if (ret < 0)
7734 goto out;
7735
7736 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7737 ret = btrfs_next_item(root, path);
7738 if (ret < 0)
7739 goto out;
7740 /* No dev extents at all? Not good */
7741 if (ret > 0) {
7742 ret = -EUCLEAN;
7743 goto out;
7744 }
7745 }
7746 while (1) {
7747 struct extent_buffer *leaf = path->nodes[0];
7748 struct btrfs_dev_extent *dext;
7749 int slot = path->slots[0];
7750 u64 chunk_offset;
7751 u64 physical_offset;
7752 u64 physical_len;
7753 u64 devid;
7754
7755 btrfs_item_key_to_cpu(leaf, &key, slot);
7756 if (key.type != BTRFS_DEV_EXTENT_KEY)
7757 break;
7758 devid = key.objectid;
7759 physical_offset = key.offset;
7760
7761 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7762 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7763 physical_len = btrfs_dev_extent_length(leaf, dext);
7764
7765 /* Check if this dev extent overlaps with the previous one */
7766 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7767 btrfs_err(fs_info,
7768 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7769 devid, physical_offset, prev_dev_ext_end);
7770 ret = -EUCLEAN;
7771 goto out;
7772 }
7773
7774 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7775 physical_offset, physical_len);
7776 if (ret < 0)
7777 goto out;
7778 prev_devid = devid;
7779 prev_dev_ext_end = physical_offset + physical_len;
7780
7781 ret = btrfs_next_item(root, path);
7782 if (ret < 0)
7783 goto out;
7784 if (ret > 0) {
7785 ret = 0;
7786 break;
7787 }
7788 }
7789
7790 /* Ensure all chunks have corresponding dev extents */
7791 ret = verify_chunk_dev_extent_mapping(fs_info);
7792 out:
7793 btrfs_free_path(path);
7794 return ret;
7795 }
7796
7797 /*
7798 * Check whether the given block group or device is pinned by any inode being
7799 * used as a swapfile.
7800 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)7801 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7802 {
7803 struct btrfs_swapfile_pin *sp;
7804 struct rb_node *node;
7805
7806 spin_lock(&fs_info->swapfile_pins_lock);
7807 node = fs_info->swapfile_pins.rb_node;
7808 while (node) {
7809 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7810 if (ptr < sp->ptr)
7811 node = node->rb_left;
7812 else if (ptr > sp->ptr)
7813 node = node->rb_right;
7814 else
7815 break;
7816 }
7817 spin_unlock(&fs_info->swapfile_pins_lock);
7818 return node != NULL;
7819 }
7820