1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC 0xcafe4a11
64 #endif
65
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69 * compilation if user enables corresponding warning. Disable it explicitly.
70 */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72
73 #define __printf(a, b) __attribute__((format(printf, a, b)))
74
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78
__base_pr(enum libbpf_print_level level,const char * format,va_list args)79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 va_list args)
81 {
82 if (level == LIBBPF_DEBUG)
83 return 0;
84
85 return vfprintf(stderr, format, args);
86 }
87
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89
libbpf_set_print(libbpf_print_fn_t fn)90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 libbpf_print_fn_t old_print_fn = __libbpf_pr;
93
94 __libbpf_pr = fn;
95 return old_print_fn;
96 }
97
98 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 va_list args;
102
103 if (!__libbpf_pr)
104 return;
105
106 va_start(args, format);
107 __libbpf_pr(level, format, args);
108 va_end(args);
109 }
110
pr_perm_msg(int err)111 static void pr_perm_msg(int err)
112 {
113 struct rlimit limit;
114 char buf[100];
115
116 if (err != -EPERM || geteuid() != 0)
117 return;
118
119 err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 if (err)
121 return;
122
123 if (limit.rlim_cur == RLIM_INFINITY)
124 return;
125
126 if (limit.rlim_cur < 1024)
127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 else if (limit.rlim_cur < 1024*1024)
129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 else
131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132
133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 buf);
135 }
136
137 #define STRERR_BUFSIZE 128
138
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143
144 #ifndef zclose
145 # define zclose(fd) ({ \
146 int ___err = 0; \
147 if ((fd) >= 0) \
148 ___err = close((fd)); \
149 fd = -1; \
150 ___err; })
151 #endif
152
ptr_to_u64(const void * ptr)153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 return (__u64) (unsigned long) ptr;
156 }
157
158 enum kern_feature_id {
159 /* v4.14: kernel support for program & map names. */
160 FEAT_PROG_NAME,
161 /* v5.2: kernel support for global data sections. */
162 FEAT_GLOBAL_DATA,
163 /* BTF support */
164 FEAT_BTF,
165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 FEAT_BTF_FUNC,
167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 FEAT_BTF_DATASEC,
169 /* BTF_FUNC_GLOBAL is supported */
170 FEAT_BTF_GLOBAL_FUNC,
171 /* BPF_F_MMAPABLE is supported for arrays */
172 FEAT_ARRAY_MMAP,
173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 FEAT_EXP_ATTACH_TYPE,
175 /* bpf_probe_read_{kernel,user}[_str] helpers */
176 FEAT_PROBE_READ_KERN,
177 /* BPF_PROG_BIND_MAP is supported */
178 FEAT_PROG_BIND_MAP,
179 __FEAT_CNT,
180 };
181
182 static bool kernel_supports(enum kern_feature_id feat_id);
183
184 enum reloc_type {
185 RELO_LD64,
186 RELO_CALL,
187 RELO_DATA,
188 RELO_EXTERN,
189 };
190
191 struct reloc_desc {
192 enum reloc_type type;
193 int insn_idx;
194 int map_idx;
195 int sym_off;
196 bool processed;
197 };
198
199 struct bpf_sec_def;
200
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202 struct bpf_program *prog);
203
204 struct bpf_sec_def {
205 const char *sec;
206 size_t len;
207 enum bpf_prog_type prog_type;
208 enum bpf_attach_type expected_attach_type;
209 bool is_exp_attach_type_optional;
210 bool is_attachable;
211 bool is_attach_btf;
212 bool is_sleepable;
213 attach_fn_t attach_fn;
214 };
215
216 /*
217 * bpf_prog should be a better name but it has been used in
218 * linux/filter.h.
219 */
220 struct bpf_program {
221 const struct bpf_sec_def *sec_def;
222 char *sec_name;
223 size_t sec_idx;
224 /* this program's instruction offset (in number of instructions)
225 * within its containing ELF section
226 */
227 size_t sec_insn_off;
228 /* number of original instructions in ELF section belonging to this
229 * program, not taking into account subprogram instructions possible
230 * appended later during relocation
231 */
232 size_t sec_insn_cnt;
233 /* Offset (in number of instructions) of the start of instruction
234 * belonging to this BPF program within its containing main BPF
235 * program. For the entry-point (main) BPF program, this is always
236 * zero. For a sub-program, this gets reset before each of main BPF
237 * programs are processed and relocated and is used to determined
238 * whether sub-program was already appended to the main program, and
239 * if yes, at which instruction offset.
240 */
241 size_t sub_insn_off;
242
243 char *name;
244 /* sec_name with / replaced by _; makes recursive pinning
245 * in bpf_object__pin_programs easier
246 */
247 char *pin_name;
248
249 /* instructions that belong to BPF program; insns[0] is located at
250 * sec_insn_off instruction within its ELF section in ELF file, so
251 * when mapping ELF file instruction index to the local instruction,
252 * one needs to subtract sec_insn_off; and vice versa.
253 */
254 struct bpf_insn *insns;
255 /* actual number of instruction in this BPF program's image; for
256 * entry-point BPF programs this includes the size of main program
257 * itself plus all the used sub-programs, appended at the end
258 */
259 size_t insns_cnt;
260
261 struct reloc_desc *reloc_desc;
262 int nr_reloc;
263 int log_level;
264
265 struct {
266 int nr;
267 int *fds;
268 } instances;
269 bpf_program_prep_t preprocessor;
270
271 struct bpf_object *obj;
272 void *priv;
273 bpf_program_clear_priv_t clear_priv;
274
275 bool load;
276 enum bpf_prog_type type;
277 enum bpf_attach_type expected_attach_type;
278 int prog_ifindex;
279 __u32 attach_btf_id;
280 __u32 attach_prog_fd;
281 void *func_info;
282 __u32 func_info_rec_size;
283 __u32 func_info_cnt;
284
285 void *line_info;
286 __u32 line_info_rec_size;
287 __u32 line_info_cnt;
288 __u32 prog_flags;
289 };
290
291 struct bpf_struct_ops {
292 const char *tname;
293 const struct btf_type *type;
294 struct bpf_program **progs;
295 __u32 *kern_func_off;
296 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
297 void *data;
298 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
299 * btf_vmlinux's format.
300 * struct bpf_struct_ops_tcp_congestion_ops {
301 * [... some other kernel fields ...]
302 * struct tcp_congestion_ops data;
303 * }
304 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
305 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
306 * from "data".
307 */
308 void *kern_vdata;
309 __u32 type_id;
310 };
311
312 #define DATA_SEC ".data"
313 #define BSS_SEC ".bss"
314 #define RODATA_SEC ".rodata"
315 #define KCONFIG_SEC ".kconfig"
316 #define KSYMS_SEC ".ksyms"
317 #define STRUCT_OPS_SEC ".struct_ops"
318
319 enum libbpf_map_type {
320 LIBBPF_MAP_UNSPEC,
321 LIBBPF_MAP_DATA,
322 LIBBPF_MAP_BSS,
323 LIBBPF_MAP_RODATA,
324 LIBBPF_MAP_KCONFIG,
325 };
326
327 static const char * const libbpf_type_to_btf_name[] = {
328 [LIBBPF_MAP_DATA] = DATA_SEC,
329 [LIBBPF_MAP_BSS] = BSS_SEC,
330 [LIBBPF_MAP_RODATA] = RODATA_SEC,
331 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC,
332 };
333
334 struct bpf_map {
335 char *name;
336 int fd;
337 int sec_idx;
338 size_t sec_offset;
339 int map_ifindex;
340 int inner_map_fd;
341 struct bpf_map_def def;
342 __u32 numa_node;
343 __u32 btf_var_idx;
344 __u32 btf_key_type_id;
345 __u32 btf_value_type_id;
346 __u32 btf_vmlinux_value_type_id;
347 void *priv;
348 bpf_map_clear_priv_t clear_priv;
349 enum libbpf_map_type libbpf_type;
350 void *mmaped;
351 struct bpf_struct_ops *st_ops;
352 struct bpf_map *inner_map;
353 void **init_slots;
354 int init_slots_sz;
355 char *pin_path;
356 bool pinned;
357 bool reused;
358 };
359
360 enum extern_type {
361 EXT_UNKNOWN,
362 EXT_KCFG,
363 EXT_KSYM,
364 };
365
366 enum kcfg_type {
367 KCFG_UNKNOWN,
368 KCFG_CHAR,
369 KCFG_BOOL,
370 KCFG_INT,
371 KCFG_TRISTATE,
372 KCFG_CHAR_ARR,
373 };
374
375 struct extern_desc {
376 enum extern_type type;
377 int sym_idx;
378 int btf_id;
379 int sec_btf_id;
380 const char *name;
381 bool is_set;
382 bool is_weak;
383 union {
384 struct {
385 enum kcfg_type type;
386 int sz;
387 int align;
388 int data_off;
389 bool is_signed;
390 } kcfg;
391 struct {
392 unsigned long long addr;
393
394 /* target btf_id of the corresponding kernel var. */
395 int vmlinux_btf_id;
396
397 /* local btf_id of the ksym extern's type. */
398 __u32 type_id;
399 } ksym;
400 };
401 };
402
403 static LIST_HEAD(bpf_objects_list);
404
405 struct bpf_object {
406 char name[BPF_OBJ_NAME_LEN];
407 char license[64];
408 __u32 kern_version;
409
410 struct bpf_program *programs;
411 size_t nr_programs;
412 struct bpf_map *maps;
413 size_t nr_maps;
414 size_t maps_cap;
415
416 char *kconfig;
417 struct extern_desc *externs;
418 int nr_extern;
419 int kconfig_map_idx;
420 int rodata_map_idx;
421
422 bool loaded;
423 bool has_subcalls;
424
425 /*
426 * Information when doing elf related work. Only valid if fd
427 * is valid.
428 */
429 struct {
430 int fd;
431 const void *obj_buf;
432 size_t obj_buf_sz;
433 Elf *elf;
434 GElf_Ehdr ehdr;
435 Elf_Data *symbols;
436 Elf_Data *data;
437 Elf_Data *rodata;
438 Elf_Data *bss;
439 Elf_Data *st_ops_data;
440 size_t shstrndx; /* section index for section name strings */
441 size_t strtabidx;
442 struct {
443 GElf_Shdr shdr;
444 Elf_Data *data;
445 } *reloc_sects;
446 int nr_reloc_sects;
447 int maps_shndx;
448 int btf_maps_shndx;
449 __u32 btf_maps_sec_btf_id;
450 int text_shndx;
451 int symbols_shndx;
452 int data_shndx;
453 int rodata_shndx;
454 int bss_shndx;
455 int st_ops_shndx;
456 } efile;
457 /*
458 * All loaded bpf_object is linked in a list, which is
459 * hidden to caller. bpf_objects__<func> handlers deal with
460 * all objects.
461 */
462 struct list_head list;
463
464 struct btf *btf;
465 /* Parse and load BTF vmlinux if any of the programs in the object need
466 * it at load time.
467 */
468 struct btf *btf_vmlinux;
469 struct btf_ext *btf_ext;
470
471 void *priv;
472 bpf_object_clear_priv_t clear_priv;
473
474 char path[];
475 };
476 #define obj_elf_valid(o) ((o)->efile.elf)
477
478 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
479 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
480 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
481 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
482 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
483 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
484 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
485 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
486 size_t off, __u32 sym_type, GElf_Sym *sym);
487
bpf_program__unload(struct bpf_program * prog)488 void bpf_program__unload(struct bpf_program *prog)
489 {
490 int i;
491
492 if (!prog)
493 return;
494
495 /*
496 * If the object is opened but the program was never loaded,
497 * it is possible that prog->instances.nr == -1.
498 */
499 if (prog->instances.nr > 0) {
500 for (i = 0; i < prog->instances.nr; i++)
501 zclose(prog->instances.fds[i]);
502 } else if (prog->instances.nr != -1) {
503 pr_warn("Internal error: instances.nr is %d\n",
504 prog->instances.nr);
505 }
506
507 prog->instances.nr = -1;
508 zfree(&prog->instances.fds);
509
510 zfree(&prog->func_info);
511 zfree(&prog->line_info);
512 }
513
bpf_program__exit(struct bpf_program * prog)514 static void bpf_program__exit(struct bpf_program *prog)
515 {
516 if (!prog)
517 return;
518
519 if (prog->clear_priv)
520 prog->clear_priv(prog, prog->priv);
521
522 prog->priv = NULL;
523 prog->clear_priv = NULL;
524
525 bpf_program__unload(prog);
526 zfree(&prog->name);
527 zfree(&prog->sec_name);
528 zfree(&prog->pin_name);
529 zfree(&prog->insns);
530 zfree(&prog->reloc_desc);
531
532 prog->nr_reloc = 0;
533 prog->insns_cnt = 0;
534 prog->sec_idx = -1;
535 }
536
__bpf_program__pin_name(struct bpf_program * prog)537 static char *__bpf_program__pin_name(struct bpf_program *prog)
538 {
539 char *name, *p;
540
541 name = p = strdup(prog->sec_name);
542 while ((p = strchr(p, '/')))
543 *p = '_';
544
545 return name;
546 }
547
insn_is_subprog_call(const struct bpf_insn * insn)548 static bool insn_is_subprog_call(const struct bpf_insn *insn)
549 {
550 return BPF_CLASS(insn->code) == BPF_JMP &&
551 BPF_OP(insn->code) == BPF_CALL &&
552 BPF_SRC(insn->code) == BPF_K &&
553 insn->src_reg == BPF_PSEUDO_CALL &&
554 insn->dst_reg == 0 &&
555 insn->off == 0;
556 }
557
558 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)559 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
560 const char *name, size_t sec_idx, const char *sec_name,
561 size_t sec_off, void *insn_data, size_t insn_data_sz)
562 {
563 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
564 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
565 sec_name, name, sec_off, insn_data_sz);
566 return -EINVAL;
567 }
568
569 memset(prog, 0, sizeof(*prog));
570 prog->obj = obj;
571
572 prog->sec_idx = sec_idx;
573 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
574 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
575 /* insns_cnt can later be increased by appending used subprograms */
576 prog->insns_cnt = prog->sec_insn_cnt;
577
578 prog->type = BPF_PROG_TYPE_UNSPEC;
579 prog->load = true;
580
581 prog->instances.fds = NULL;
582 prog->instances.nr = -1;
583
584 prog->sec_name = strdup(sec_name);
585 if (!prog->sec_name)
586 goto errout;
587
588 prog->name = strdup(name);
589 if (!prog->name)
590 goto errout;
591
592 prog->pin_name = __bpf_program__pin_name(prog);
593 if (!prog->pin_name)
594 goto errout;
595
596 prog->insns = malloc(insn_data_sz);
597 if (!prog->insns)
598 goto errout;
599 memcpy(prog->insns, insn_data, insn_data_sz);
600
601 return 0;
602 errout:
603 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
604 bpf_program__exit(prog);
605 return -ENOMEM;
606 }
607
608 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)609 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
610 const char *sec_name, int sec_idx)
611 {
612 struct bpf_program *prog, *progs;
613 void *data = sec_data->d_buf;
614 size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
615 int nr_progs, err;
616 const char *name;
617 GElf_Sym sym;
618
619 progs = obj->programs;
620 nr_progs = obj->nr_programs;
621 sec_off = 0;
622
623 while (sec_off < sec_sz) {
624 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
625 pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
626 sec_name, sec_off);
627 return -LIBBPF_ERRNO__FORMAT;
628 }
629
630 prog_sz = sym.st_size;
631
632 name = elf_sym_str(obj, sym.st_name);
633 if (!name) {
634 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
635 sec_name, sec_off);
636 return -LIBBPF_ERRNO__FORMAT;
637 }
638
639 if (sec_off + prog_sz > sec_sz) {
640 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
641 sec_name, sec_off);
642 return -LIBBPF_ERRNO__FORMAT;
643 }
644
645 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
646 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
647
648 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
649 if (!progs) {
650 /*
651 * In this case the original obj->programs
652 * is still valid, so don't need special treat for
653 * bpf_close_object().
654 */
655 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
656 sec_name, name);
657 return -ENOMEM;
658 }
659 obj->programs = progs;
660
661 prog = &progs[nr_progs];
662
663 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
664 sec_off, data + sec_off, prog_sz);
665 if (err)
666 return err;
667
668 nr_progs++;
669 obj->nr_programs = nr_progs;
670
671 sec_off += prog_sz;
672 }
673
674 return 0;
675 }
676
get_kernel_version(void)677 static __u32 get_kernel_version(void)
678 {
679 __u32 major, minor, patch;
680 struct utsname info;
681
682 uname(&info);
683 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
684 return 0;
685 return KERNEL_VERSION(major, minor, patch);
686 }
687
688 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)689 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
690 {
691 struct btf_member *m;
692 int i;
693
694 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
695 if (btf_member_bit_offset(t, i) == bit_offset)
696 return m;
697 }
698
699 return NULL;
700 }
701
702 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)703 find_member_by_name(const struct btf *btf, const struct btf_type *t,
704 const char *name)
705 {
706 struct btf_member *m;
707 int i;
708
709 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
710 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
711 return m;
712 }
713
714 return NULL;
715 }
716
717 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
718 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
719 const char *name, __u32 kind);
720
721 static int
find_struct_ops_kern_types(const struct btf * btf,const char * tname,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)722 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
723 const struct btf_type **type, __u32 *type_id,
724 const struct btf_type **vtype, __u32 *vtype_id,
725 const struct btf_member **data_member)
726 {
727 const struct btf_type *kern_type, *kern_vtype;
728 const struct btf_member *kern_data_member;
729 __s32 kern_vtype_id, kern_type_id;
730 __u32 i;
731
732 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
733 if (kern_type_id < 0) {
734 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
735 tname);
736 return kern_type_id;
737 }
738 kern_type = btf__type_by_id(btf, kern_type_id);
739
740 /* Find the corresponding "map_value" type that will be used
741 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
742 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
743 * btf_vmlinux.
744 */
745 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
746 tname, BTF_KIND_STRUCT);
747 if (kern_vtype_id < 0) {
748 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
749 STRUCT_OPS_VALUE_PREFIX, tname);
750 return kern_vtype_id;
751 }
752 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
753
754 /* Find "struct tcp_congestion_ops" from
755 * struct bpf_struct_ops_tcp_congestion_ops {
756 * [ ... ]
757 * struct tcp_congestion_ops data;
758 * }
759 */
760 kern_data_member = btf_members(kern_vtype);
761 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
762 if (kern_data_member->type == kern_type_id)
763 break;
764 }
765 if (i == btf_vlen(kern_vtype)) {
766 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
767 tname, STRUCT_OPS_VALUE_PREFIX, tname);
768 return -EINVAL;
769 }
770
771 *type = kern_type;
772 *type_id = kern_type_id;
773 *vtype = kern_vtype;
774 *vtype_id = kern_vtype_id;
775 *data_member = kern_data_member;
776
777 return 0;
778 }
779
bpf_map__is_struct_ops(const struct bpf_map * map)780 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
781 {
782 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
783 }
784
785 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map,const struct btf * btf,const struct btf * kern_btf)786 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
787 const struct btf *btf,
788 const struct btf *kern_btf)
789 {
790 const struct btf_member *member, *kern_member, *kern_data_member;
791 const struct btf_type *type, *kern_type, *kern_vtype;
792 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
793 struct bpf_struct_ops *st_ops;
794 void *data, *kern_data;
795 const char *tname;
796 int err;
797
798 st_ops = map->st_ops;
799 type = st_ops->type;
800 tname = st_ops->tname;
801 err = find_struct_ops_kern_types(kern_btf, tname,
802 &kern_type, &kern_type_id,
803 &kern_vtype, &kern_vtype_id,
804 &kern_data_member);
805 if (err)
806 return err;
807
808 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
809 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
810
811 map->def.value_size = kern_vtype->size;
812 map->btf_vmlinux_value_type_id = kern_vtype_id;
813
814 st_ops->kern_vdata = calloc(1, kern_vtype->size);
815 if (!st_ops->kern_vdata)
816 return -ENOMEM;
817
818 data = st_ops->data;
819 kern_data_off = kern_data_member->offset / 8;
820 kern_data = st_ops->kern_vdata + kern_data_off;
821
822 member = btf_members(type);
823 for (i = 0; i < btf_vlen(type); i++, member++) {
824 const struct btf_type *mtype, *kern_mtype;
825 __u32 mtype_id, kern_mtype_id;
826 void *mdata, *kern_mdata;
827 __s64 msize, kern_msize;
828 __u32 moff, kern_moff;
829 __u32 kern_member_idx;
830 const char *mname;
831
832 mname = btf__name_by_offset(btf, member->name_off);
833 kern_member = find_member_by_name(kern_btf, kern_type, mname);
834 if (!kern_member) {
835 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
836 map->name, mname);
837 return -ENOTSUP;
838 }
839
840 kern_member_idx = kern_member - btf_members(kern_type);
841 if (btf_member_bitfield_size(type, i) ||
842 btf_member_bitfield_size(kern_type, kern_member_idx)) {
843 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
844 map->name, mname);
845 return -ENOTSUP;
846 }
847
848 moff = member->offset / 8;
849 kern_moff = kern_member->offset / 8;
850
851 mdata = data + moff;
852 kern_mdata = kern_data + kern_moff;
853
854 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
855 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
856 &kern_mtype_id);
857 if (BTF_INFO_KIND(mtype->info) !=
858 BTF_INFO_KIND(kern_mtype->info)) {
859 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
860 map->name, mname, BTF_INFO_KIND(mtype->info),
861 BTF_INFO_KIND(kern_mtype->info));
862 return -ENOTSUP;
863 }
864
865 if (btf_is_ptr(mtype)) {
866 struct bpf_program *prog;
867
868 prog = st_ops->progs[i];
869 if (!prog)
870 continue;
871
872 kern_mtype = skip_mods_and_typedefs(kern_btf,
873 kern_mtype->type,
874 &kern_mtype_id);
875
876 /* mtype->type must be a func_proto which was
877 * guaranteed in bpf_object__collect_st_ops_relos(),
878 * so only check kern_mtype for func_proto here.
879 */
880 if (!btf_is_func_proto(kern_mtype)) {
881 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
882 map->name, mname);
883 return -ENOTSUP;
884 }
885
886 prog->attach_btf_id = kern_type_id;
887 prog->expected_attach_type = kern_member_idx;
888
889 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
890
891 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
892 map->name, mname, prog->name, moff,
893 kern_moff);
894
895 continue;
896 }
897
898 msize = btf__resolve_size(btf, mtype_id);
899 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
900 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
901 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
902 map->name, mname, (ssize_t)msize,
903 (ssize_t)kern_msize);
904 return -ENOTSUP;
905 }
906
907 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
908 map->name, mname, (unsigned int)msize,
909 moff, kern_moff);
910 memcpy(kern_mdata, mdata, msize);
911 }
912
913 return 0;
914 }
915
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)916 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
917 {
918 struct bpf_map *map;
919 size_t i;
920 int err;
921
922 for (i = 0; i < obj->nr_maps; i++) {
923 map = &obj->maps[i];
924
925 if (!bpf_map__is_struct_ops(map))
926 continue;
927
928 err = bpf_map__init_kern_struct_ops(map, obj->btf,
929 obj->btf_vmlinux);
930 if (err)
931 return err;
932 }
933
934 return 0;
935 }
936
bpf_object__init_struct_ops_maps(struct bpf_object * obj)937 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
938 {
939 const struct btf_type *type, *datasec;
940 const struct btf_var_secinfo *vsi;
941 struct bpf_struct_ops *st_ops;
942 const char *tname, *var_name;
943 __s32 type_id, datasec_id;
944 const struct btf *btf;
945 struct bpf_map *map;
946 __u32 i;
947
948 if (obj->efile.st_ops_shndx == -1)
949 return 0;
950
951 btf = obj->btf;
952 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
953 BTF_KIND_DATASEC);
954 if (datasec_id < 0) {
955 pr_warn("struct_ops init: DATASEC %s not found\n",
956 STRUCT_OPS_SEC);
957 return -EINVAL;
958 }
959
960 datasec = btf__type_by_id(btf, datasec_id);
961 vsi = btf_var_secinfos(datasec);
962 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
963 type = btf__type_by_id(obj->btf, vsi->type);
964 var_name = btf__name_by_offset(obj->btf, type->name_off);
965
966 type_id = btf__resolve_type(obj->btf, vsi->type);
967 if (type_id < 0) {
968 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
969 vsi->type, STRUCT_OPS_SEC);
970 return -EINVAL;
971 }
972
973 type = btf__type_by_id(obj->btf, type_id);
974 tname = btf__name_by_offset(obj->btf, type->name_off);
975 if (!tname[0]) {
976 pr_warn("struct_ops init: anonymous type is not supported\n");
977 return -ENOTSUP;
978 }
979 if (!btf_is_struct(type)) {
980 pr_warn("struct_ops init: %s is not a struct\n", tname);
981 return -EINVAL;
982 }
983
984 map = bpf_object__add_map(obj);
985 if (IS_ERR(map))
986 return PTR_ERR(map);
987
988 map->sec_idx = obj->efile.st_ops_shndx;
989 map->sec_offset = vsi->offset;
990 map->name = strdup(var_name);
991 if (!map->name)
992 return -ENOMEM;
993
994 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
995 map->def.key_size = sizeof(int);
996 map->def.value_size = type->size;
997 map->def.max_entries = 1;
998
999 map->st_ops = calloc(1, sizeof(*map->st_ops));
1000 if (!map->st_ops)
1001 return -ENOMEM;
1002 st_ops = map->st_ops;
1003 st_ops->data = malloc(type->size);
1004 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1005 st_ops->kern_func_off = malloc(btf_vlen(type) *
1006 sizeof(*st_ops->kern_func_off));
1007 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1008 return -ENOMEM;
1009
1010 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1011 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1012 var_name, STRUCT_OPS_SEC);
1013 return -EINVAL;
1014 }
1015
1016 memcpy(st_ops->data,
1017 obj->efile.st_ops_data->d_buf + vsi->offset,
1018 type->size);
1019 st_ops->tname = tname;
1020 st_ops->type = type;
1021 st_ops->type_id = type_id;
1022
1023 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1024 tname, type_id, var_name, vsi->offset);
1025 }
1026
1027 return 0;
1028 }
1029
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1030 static struct bpf_object *bpf_object__new(const char *path,
1031 const void *obj_buf,
1032 size_t obj_buf_sz,
1033 const char *obj_name)
1034 {
1035 struct bpf_object *obj;
1036 char *end;
1037
1038 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1039 if (!obj) {
1040 pr_warn("alloc memory failed for %s\n", path);
1041 return ERR_PTR(-ENOMEM);
1042 }
1043
1044 strcpy(obj->path, path);
1045 if (obj_name) {
1046 strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1047 obj->name[sizeof(obj->name) - 1] = 0;
1048 } else {
1049 /* Using basename() GNU version which doesn't modify arg. */
1050 strncpy(obj->name, basename((void *)path),
1051 sizeof(obj->name) - 1);
1052 end = strchr(obj->name, '.');
1053 if (end)
1054 *end = 0;
1055 }
1056
1057 obj->efile.fd = -1;
1058 /*
1059 * Caller of this function should also call
1060 * bpf_object__elf_finish() after data collection to return
1061 * obj_buf to user. If not, we should duplicate the buffer to
1062 * avoid user freeing them before elf finish.
1063 */
1064 obj->efile.obj_buf = obj_buf;
1065 obj->efile.obj_buf_sz = obj_buf_sz;
1066 obj->efile.maps_shndx = -1;
1067 obj->efile.btf_maps_shndx = -1;
1068 obj->efile.data_shndx = -1;
1069 obj->efile.rodata_shndx = -1;
1070 obj->efile.bss_shndx = -1;
1071 obj->efile.st_ops_shndx = -1;
1072 obj->kconfig_map_idx = -1;
1073 obj->rodata_map_idx = -1;
1074
1075 obj->kern_version = get_kernel_version();
1076 obj->loaded = false;
1077
1078 INIT_LIST_HEAD(&obj->list);
1079 list_add(&obj->list, &bpf_objects_list);
1080 return obj;
1081 }
1082
bpf_object__elf_finish(struct bpf_object * obj)1083 static void bpf_object__elf_finish(struct bpf_object *obj)
1084 {
1085 if (!obj_elf_valid(obj))
1086 return;
1087
1088 if (obj->efile.elf) {
1089 elf_end(obj->efile.elf);
1090 obj->efile.elf = NULL;
1091 }
1092 obj->efile.symbols = NULL;
1093 obj->efile.data = NULL;
1094 obj->efile.rodata = NULL;
1095 obj->efile.bss = NULL;
1096 obj->efile.st_ops_data = NULL;
1097
1098 zfree(&obj->efile.reloc_sects);
1099 obj->efile.nr_reloc_sects = 0;
1100 zclose(obj->efile.fd);
1101 obj->efile.obj_buf = NULL;
1102 obj->efile.obj_buf_sz = 0;
1103 }
1104
1105 /* if libelf is old and doesn't support mmap(), fall back to read() */
1106 #ifndef ELF_C_READ_MMAP
1107 #define ELF_C_READ_MMAP ELF_C_READ
1108 #endif
1109
bpf_object__elf_init(struct bpf_object * obj)1110 static int bpf_object__elf_init(struct bpf_object *obj)
1111 {
1112 int err = 0;
1113 GElf_Ehdr *ep;
1114
1115 if (obj_elf_valid(obj)) {
1116 pr_warn("elf: init internal error\n");
1117 return -LIBBPF_ERRNO__LIBELF;
1118 }
1119
1120 if (obj->efile.obj_buf_sz > 0) {
1121 /*
1122 * obj_buf should have been validated by
1123 * bpf_object__open_buffer().
1124 */
1125 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1126 obj->efile.obj_buf_sz);
1127 } else {
1128 obj->efile.fd = open(obj->path, O_RDONLY);
1129 if (obj->efile.fd < 0) {
1130 char errmsg[STRERR_BUFSIZE], *cp;
1131
1132 err = -errno;
1133 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1134 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1135 return err;
1136 }
1137
1138 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1139 }
1140
1141 if (!obj->efile.elf) {
1142 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1143 err = -LIBBPF_ERRNO__LIBELF;
1144 goto errout;
1145 }
1146
1147 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1148 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1149 err = -LIBBPF_ERRNO__FORMAT;
1150 goto errout;
1151 }
1152 ep = &obj->efile.ehdr;
1153
1154 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1155 pr_warn("elf: failed to get section names section index for %s: %s\n",
1156 obj->path, elf_errmsg(-1));
1157 err = -LIBBPF_ERRNO__FORMAT;
1158 goto errout;
1159 }
1160
1161 /* Elf is corrupted/truncated, avoid calling elf_strptr. */
1162 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1163 pr_warn("elf: failed to get section names strings from %s: %s\n",
1164 obj->path, elf_errmsg(-1));
1165 err = -LIBBPF_ERRNO__FORMAT;
1166 goto errout;
1167 }
1168
1169 /* Old LLVM set e_machine to EM_NONE */
1170 if (ep->e_type != ET_REL ||
1171 (ep->e_machine && ep->e_machine != EM_BPF)) {
1172 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1173 err = -LIBBPF_ERRNO__FORMAT;
1174 goto errout;
1175 }
1176
1177 return 0;
1178 errout:
1179 bpf_object__elf_finish(obj);
1180 return err;
1181 }
1182
bpf_object__check_endianness(struct bpf_object * obj)1183 static int bpf_object__check_endianness(struct bpf_object *obj)
1184 {
1185 #if __BYTE_ORDER == __LITTLE_ENDIAN
1186 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1187 return 0;
1188 #elif __BYTE_ORDER == __BIG_ENDIAN
1189 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1190 return 0;
1191 #else
1192 # error "Unrecognized __BYTE_ORDER__"
1193 #endif
1194 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1195 return -LIBBPF_ERRNO__ENDIAN;
1196 }
1197
1198 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1199 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1200 {
1201 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1202 pr_debug("license of %s is %s\n", obj->path, obj->license);
1203 return 0;
1204 }
1205
1206 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1207 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1208 {
1209 __u32 kver;
1210
1211 if (size != sizeof(kver)) {
1212 pr_warn("invalid kver section in %s\n", obj->path);
1213 return -LIBBPF_ERRNO__FORMAT;
1214 }
1215 memcpy(&kver, data, sizeof(kver));
1216 obj->kern_version = kver;
1217 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1218 return 0;
1219 }
1220
bpf_map_type__is_map_in_map(enum bpf_map_type type)1221 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1222 {
1223 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1224 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1225 return true;
1226 return false;
1227 }
1228
bpf_object__section_size(const struct bpf_object * obj,const char * name,__u32 * size)1229 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1230 __u32 *size)
1231 {
1232 int ret = -ENOENT;
1233
1234 *size = 0;
1235 if (!name) {
1236 return -EINVAL;
1237 } else if (!strcmp(name, DATA_SEC)) {
1238 if (obj->efile.data)
1239 *size = obj->efile.data->d_size;
1240 } else if (!strcmp(name, BSS_SEC)) {
1241 if (obj->efile.bss)
1242 *size = obj->efile.bss->d_size;
1243 } else if (!strcmp(name, RODATA_SEC)) {
1244 if (obj->efile.rodata)
1245 *size = obj->efile.rodata->d_size;
1246 } else if (!strcmp(name, STRUCT_OPS_SEC)) {
1247 if (obj->efile.st_ops_data)
1248 *size = obj->efile.st_ops_data->d_size;
1249 } else {
1250 Elf_Scn *scn = elf_sec_by_name(obj, name);
1251 Elf_Data *data = elf_sec_data(obj, scn);
1252
1253 if (data) {
1254 ret = 0; /* found it */
1255 *size = data->d_size;
1256 }
1257 }
1258
1259 return *size ? 0 : ret;
1260 }
1261
bpf_object__variable_offset(const struct bpf_object * obj,const char * name,__u32 * off)1262 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1263 __u32 *off)
1264 {
1265 Elf_Data *symbols = obj->efile.symbols;
1266 const char *sname;
1267 size_t si;
1268
1269 if (!name || !off)
1270 return -EINVAL;
1271
1272 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1273 GElf_Sym sym;
1274
1275 if (!gelf_getsym(symbols, si, &sym))
1276 continue;
1277 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1278 GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1279 continue;
1280
1281 sname = elf_sym_str(obj, sym.st_name);
1282 if (!sname) {
1283 pr_warn("failed to get sym name string for var %s\n",
1284 name);
1285 return -EIO;
1286 }
1287 if (strcmp(name, sname) == 0) {
1288 *off = sym.st_value;
1289 return 0;
1290 }
1291 }
1292
1293 return -ENOENT;
1294 }
1295
bpf_object__add_map(struct bpf_object * obj)1296 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1297 {
1298 struct bpf_map *new_maps;
1299 size_t new_cap;
1300 int i;
1301
1302 if (obj->nr_maps < obj->maps_cap)
1303 return &obj->maps[obj->nr_maps++];
1304
1305 new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1306 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1307 if (!new_maps) {
1308 pr_warn("alloc maps for object failed\n");
1309 return ERR_PTR(-ENOMEM);
1310 }
1311
1312 obj->maps_cap = new_cap;
1313 obj->maps = new_maps;
1314
1315 /* zero out new maps */
1316 memset(obj->maps + obj->nr_maps, 0,
1317 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1318 /*
1319 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1320 * when failure (zclose won't close negative fd)).
1321 */
1322 for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1323 obj->maps[i].fd = -1;
1324 obj->maps[i].inner_map_fd = -1;
1325 }
1326
1327 return &obj->maps[obj->nr_maps++];
1328 }
1329
bpf_map_mmap_sz(const struct bpf_map * map)1330 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1331 {
1332 long page_sz = sysconf(_SC_PAGE_SIZE);
1333 size_t map_sz;
1334
1335 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1336 map_sz = roundup(map_sz, page_sz);
1337 return map_sz;
1338 }
1339
internal_map_name(struct bpf_object * obj,enum libbpf_map_type type)1340 static char *internal_map_name(struct bpf_object *obj,
1341 enum libbpf_map_type type)
1342 {
1343 char map_name[BPF_OBJ_NAME_LEN], *p;
1344 const char *sfx = libbpf_type_to_btf_name[type];
1345 int sfx_len = max((size_t)7, strlen(sfx));
1346 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1347 strlen(obj->name));
1348
1349 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1350 sfx_len, libbpf_type_to_btf_name[type]);
1351
1352 /* sanitise map name to characters allowed by kernel */
1353 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1354 if (!isalnum(*p) && *p != '_' && *p != '.')
1355 *p = '_';
1356
1357 return strdup(map_name);
1358 }
1359
1360 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,int sec_idx,void * data,size_t data_sz)1361 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1362 int sec_idx, void *data, size_t data_sz)
1363 {
1364 struct bpf_map_def *def;
1365 struct bpf_map *map;
1366 int err;
1367
1368 map = bpf_object__add_map(obj);
1369 if (IS_ERR(map))
1370 return PTR_ERR(map);
1371
1372 map->libbpf_type = type;
1373 map->sec_idx = sec_idx;
1374 map->sec_offset = 0;
1375 map->name = internal_map_name(obj, type);
1376 if (!map->name) {
1377 pr_warn("failed to alloc map name\n");
1378 return -ENOMEM;
1379 }
1380
1381 def = &map->def;
1382 def->type = BPF_MAP_TYPE_ARRAY;
1383 def->key_size = sizeof(int);
1384 def->value_size = data_sz;
1385 def->max_entries = 1;
1386 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1387 ? BPF_F_RDONLY_PROG : 0;
1388 def->map_flags |= BPF_F_MMAPABLE;
1389
1390 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1391 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1392
1393 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1394 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1395 if (map->mmaped == MAP_FAILED) {
1396 err = -errno;
1397 map->mmaped = NULL;
1398 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1399 map->name, err);
1400 zfree(&map->name);
1401 return err;
1402 }
1403
1404 if (data)
1405 memcpy(map->mmaped, data, data_sz);
1406
1407 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1408 return 0;
1409 }
1410
bpf_object__init_global_data_maps(struct bpf_object * obj)1411 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1412 {
1413 int err;
1414
1415 /*
1416 * Populate obj->maps with libbpf internal maps.
1417 */
1418 if (obj->efile.data_shndx >= 0) {
1419 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1420 obj->efile.data_shndx,
1421 obj->efile.data->d_buf,
1422 obj->efile.data->d_size);
1423 if (err)
1424 return err;
1425 }
1426 if (obj->efile.rodata_shndx >= 0) {
1427 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1428 obj->efile.rodata_shndx,
1429 obj->efile.rodata->d_buf,
1430 obj->efile.rodata->d_size);
1431 if (err)
1432 return err;
1433
1434 obj->rodata_map_idx = obj->nr_maps - 1;
1435 }
1436 if (obj->efile.bss_shndx >= 0) {
1437 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1438 obj->efile.bss_shndx,
1439 NULL,
1440 obj->efile.bss->d_size);
1441 if (err)
1442 return err;
1443 }
1444 return 0;
1445 }
1446
1447
find_extern_by_name(const struct bpf_object * obj,const void * name)1448 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1449 const void *name)
1450 {
1451 int i;
1452
1453 for (i = 0; i < obj->nr_extern; i++) {
1454 if (strcmp(obj->externs[i].name, name) == 0)
1455 return &obj->externs[i];
1456 }
1457 return NULL;
1458 }
1459
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)1460 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1461 char value)
1462 {
1463 switch (ext->kcfg.type) {
1464 case KCFG_BOOL:
1465 if (value == 'm') {
1466 pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1467 ext->name, value);
1468 return -EINVAL;
1469 }
1470 *(bool *)ext_val = value == 'y' ? true : false;
1471 break;
1472 case KCFG_TRISTATE:
1473 if (value == 'y')
1474 *(enum libbpf_tristate *)ext_val = TRI_YES;
1475 else if (value == 'm')
1476 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1477 else /* value == 'n' */
1478 *(enum libbpf_tristate *)ext_val = TRI_NO;
1479 break;
1480 case KCFG_CHAR:
1481 *(char *)ext_val = value;
1482 break;
1483 case KCFG_UNKNOWN:
1484 case KCFG_INT:
1485 case KCFG_CHAR_ARR:
1486 default:
1487 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1488 ext->name, value);
1489 return -EINVAL;
1490 }
1491 ext->is_set = true;
1492 return 0;
1493 }
1494
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)1495 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1496 const char *value)
1497 {
1498 size_t len;
1499
1500 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1501 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1502 return -EINVAL;
1503 }
1504
1505 len = strlen(value);
1506 if (value[len - 1] != '"') {
1507 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1508 ext->name, value);
1509 return -EINVAL;
1510 }
1511
1512 /* strip quotes */
1513 len -= 2;
1514 if (len >= ext->kcfg.sz) {
1515 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1516 ext->name, value, len, ext->kcfg.sz - 1);
1517 len = ext->kcfg.sz - 1;
1518 }
1519 memcpy(ext_val, value + 1, len);
1520 ext_val[len] = '\0';
1521 ext->is_set = true;
1522 return 0;
1523 }
1524
parse_u64(const char * value,__u64 * res)1525 static int parse_u64(const char *value, __u64 *res)
1526 {
1527 char *value_end;
1528 int err;
1529
1530 errno = 0;
1531 *res = strtoull(value, &value_end, 0);
1532 if (errno) {
1533 err = -errno;
1534 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1535 return err;
1536 }
1537 if (*value_end) {
1538 pr_warn("failed to parse '%s' as integer completely\n", value);
1539 return -EINVAL;
1540 }
1541 return 0;
1542 }
1543
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)1544 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1545 {
1546 int bit_sz = ext->kcfg.sz * 8;
1547
1548 if (ext->kcfg.sz == 8)
1549 return true;
1550
1551 /* Validate that value stored in u64 fits in integer of `ext->sz`
1552 * bytes size without any loss of information. If the target integer
1553 * is signed, we rely on the following limits of integer type of
1554 * Y bits and subsequent transformation:
1555 *
1556 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1557 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1558 * 0 <= X + 2^(Y-1) < 2^Y
1559 *
1560 * For unsigned target integer, check that all the (64 - Y) bits are
1561 * zero.
1562 */
1563 if (ext->kcfg.is_signed)
1564 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1565 else
1566 return (v >> bit_sz) == 0;
1567 }
1568
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)1569 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1570 __u64 value)
1571 {
1572 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1573 pr_warn("extern (kcfg) %s=%llu should be integer\n",
1574 ext->name, (unsigned long long)value);
1575 return -EINVAL;
1576 }
1577 if (!is_kcfg_value_in_range(ext, value)) {
1578 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1579 ext->name, (unsigned long long)value, ext->kcfg.sz);
1580 return -ERANGE;
1581 }
1582 switch (ext->kcfg.sz) {
1583 case 1: *(__u8 *)ext_val = value; break;
1584 case 2: *(__u16 *)ext_val = value; break;
1585 case 4: *(__u32 *)ext_val = value; break;
1586 case 8: *(__u64 *)ext_val = value; break;
1587 default:
1588 return -EINVAL;
1589 }
1590 ext->is_set = true;
1591 return 0;
1592 }
1593
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)1594 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1595 char *buf, void *data)
1596 {
1597 struct extern_desc *ext;
1598 char *sep, *value;
1599 int len, err = 0;
1600 void *ext_val;
1601 __u64 num;
1602
1603 if (strncmp(buf, "CONFIG_", 7))
1604 return 0;
1605
1606 sep = strchr(buf, '=');
1607 if (!sep) {
1608 pr_warn("failed to parse '%s': no separator\n", buf);
1609 return -EINVAL;
1610 }
1611
1612 /* Trim ending '\n' */
1613 len = strlen(buf);
1614 if (buf[len - 1] == '\n')
1615 buf[len - 1] = '\0';
1616 /* Split on '=' and ensure that a value is present. */
1617 *sep = '\0';
1618 if (!sep[1]) {
1619 *sep = '=';
1620 pr_warn("failed to parse '%s': no value\n", buf);
1621 return -EINVAL;
1622 }
1623
1624 ext = find_extern_by_name(obj, buf);
1625 if (!ext || ext->is_set)
1626 return 0;
1627
1628 ext_val = data + ext->kcfg.data_off;
1629 value = sep + 1;
1630
1631 switch (*value) {
1632 case 'y': case 'n': case 'm':
1633 err = set_kcfg_value_tri(ext, ext_val, *value);
1634 break;
1635 case '"':
1636 err = set_kcfg_value_str(ext, ext_val, value);
1637 break;
1638 default:
1639 /* assume integer */
1640 err = parse_u64(value, &num);
1641 if (err) {
1642 pr_warn("extern (kcfg) %s=%s should be integer\n",
1643 ext->name, value);
1644 return err;
1645 }
1646 err = set_kcfg_value_num(ext, ext_val, num);
1647 break;
1648 }
1649 if (err)
1650 return err;
1651 pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1652 return 0;
1653 }
1654
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)1655 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1656 {
1657 char buf[PATH_MAX];
1658 struct utsname uts;
1659 int len, err = 0;
1660 gzFile file;
1661
1662 uname(&uts);
1663 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1664 if (len < 0)
1665 return -EINVAL;
1666 else if (len >= PATH_MAX)
1667 return -ENAMETOOLONG;
1668
1669 /* gzopen also accepts uncompressed files. */
1670 file = gzopen(buf, "r");
1671 if (!file)
1672 file = gzopen("/proc/config.gz", "r");
1673
1674 if (!file) {
1675 pr_warn("failed to open system Kconfig\n");
1676 return -ENOENT;
1677 }
1678
1679 while (gzgets(file, buf, sizeof(buf))) {
1680 err = bpf_object__process_kconfig_line(obj, buf, data);
1681 if (err) {
1682 pr_warn("error parsing system Kconfig line '%s': %d\n",
1683 buf, err);
1684 goto out;
1685 }
1686 }
1687
1688 out:
1689 gzclose(file);
1690 return err;
1691 }
1692
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)1693 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1694 const char *config, void *data)
1695 {
1696 char buf[PATH_MAX];
1697 int err = 0;
1698 FILE *file;
1699
1700 file = fmemopen((void *)config, strlen(config), "r");
1701 if (!file) {
1702 err = -errno;
1703 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1704 return err;
1705 }
1706
1707 while (fgets(buf, sizeof(buf), file)) {
1708 err = bpf_object__process_kconfig_line(obj, buf, data);
1709 if (err) {
1710 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1711 buf, err);
1712 break;
1713 }
1714 }
1715
1716 fclose(file);
1717 return err;
1718 }
1719
bpf_object__init_kconfig_map(struct bpf_object * obj)1720 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1721 {
1722 struct extern_desc *last_ext = NULL, *ext;
1723 size_t map_sz;
1724 int i, err;
1725
1726 for (i = 0; i < obj->nr_extern; i++) {
1727 ext = &obj->externs[i];
1728 if (ext->type == EXT_KCFG)
1729 last_ext = ext;
1730 }
1731
1732 if (!last_ext)
1733 return 0;
1734
1735 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1736 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1737 obj->efile.symbols_shndx,
1738 NULL, map_sz);
1739 if (err)
1740 return err;
1741
1742 obj->kconfig_map_idx = obj->nr_maps - 1;
1743
1744 return 0;
1745 }
1746
bpf_object__init_user_maps(struct bpf_object * obj,bool strict)1747 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1748 {
1749 Elf_Data *symbols = obj->efile.symbols;
1750 int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1751 Elf_Data *data = NULL;
1752 Elf_Scn *scn;
1753
1754 if (obj->efile.maps_shndx < 0)
1755 return 0;
1756
1757 if (!symbols)
1758 return -EINVAL;
1759
1760
1761 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1762 data = elf_sec_data(obj, scn);
1763 if (!scn || !data) {
1764 pr_warn("elf: failed to get legacy map definitions for %s\n",
1765 obj->path);
1766 return -EINVAL;
1767 }
1768
1769 /*
1770 * Count number of maps. Each map has a name.
1771 * Array of maps is not supported: only the first element is
1772 * considered.
1773 *
1774 * TODO: Detect array of map and report error.
1775 */
1776 nr_syms = symbols->d_size / sizeof(GElf_Sym);
1777 for (i = 0; i < nr_syms; i++) {
1778 GElf_Sym sym;
1779
1780 if (!gelf_getsym(symbols, i, &sym))
1781 continue;
1782 if (sym.st_shndx != obj->efile.maps_shndx)
1783 continue;
1784 nr_maps++;
1785 }
1786 /* Assume equally sized map definitions */
1787 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1788 nr_maps, data->d_size, obj->path);
1789
1790 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1791 pr_warn("elf: unable to determine legacy map definition size in %s\n",
1792 obj->path);
1793 return -EINVAL;
1794 }
1795 map_def_sz = data->d_size / nr_maps;
1796
1797 /* Fill obj->maps using data in "maps" section. */
1798 for (i = 0; i < nr_syms; i++) {
1799 GElf_Sym sym;
1800 const char *map_name;
1801 struct bpf_map_def *def;
1802 struct bpf_map *map;
1803
1804 if (!gelf_getsym(symbols, i, &sym))
1805 continue;
1806 if (sym.st_shndx != obj->efile.maps_shndx)
1807 continue;
1808
1809 map = bpf_object__add_map(obj);
1810 if (IS_ERR(map))
1811 return PTR_ERR(map);
1812
1813 map_name = elf_sym_str(obj, sym.st_name);
1814 if (!map_name) {
1815 pr_warn("failed to get map #%d name sym string for obj %s\n",
1816 i, obj->path);
1817 return -LIBBPF_ERRNO__FORMAT;
1818 }
1819
1820 map->libbpf_type = LIBBPF_MAP_UNSPEC;
1821 map->sec_idx = sym.st_shndx;
1822 map->sec_offset = sym.st_value;
1823 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1824 map_name, map->sec_idx, map->sec_offset);
1825 if (sym.st_value + map_def_sz > data->d_size) {
1826 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1827 obj->path, map_name);
1828 return -EINVAL;
1829 }
1830
1831 map->name = strdup(map_name);
1832 if (!map->name) {
1833 pr_warn("failed to alloc map name\n");
1834 return -ENOMEM;
1835 }
1836 pr_debug("map %d is \"%s\"\n", i, map->name);
1837 def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1838 /*
1839 * If the definition of the map in the object file fits in
1840 * bpf_map_def, copy it. Any extra fields in our version
1841 * of bpf_map_def will default to zero as a result of the
1842 * calloc above.
1843 */
1844 if (map_def_sz <= sizeof(struct bpf_map_def)) {
1845 memcpy(&map->def, def, map_def_sz);
1846 } else {
1847 /*
1848 * Here the map structure being read is bigger than what
1849 * we expect, truncate if the excess bits are all zero.
1850 * If they are not zero, reject this map as
1851 * incompatible.
1852 */
1853 char *b;
1854
1855 for (b = ((char *)def) + sizeof(struct bpf_map_def);
1856 b < ((char *)def) + map_def_sz; b++) {
1857 if (*b != 0) {
1858 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1859 obj->path, map_name);
1860 if (strict)
1861 return -EINVAL;
1862 }
1863 }
1864 memcpy(&map->def, def, sizeof(struct bpf_map_def));
1865 }
1866 }
1867 return 0;
1868 }
1869
1870 static const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)1871 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1872 {
1873 const struct btf_type *t = btf__type_by_id(btf, id);
1874
1875 if (res_id)
1876 *res_id = id;
1877
1878 while (btf_is_mod(t) || btf_is_typedef(t)) {
1879 if (res_id)
1880 *res_id = t->type;
1881 t = btf__type_by_id(btf, t->type);
1882 }
1883
1884 return t;
1885 }
1886
1887 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)1888 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1889 {
1890 const struct btf_type *t;
1891
1892 t = skip_mods_and_typedefs(btf, id, NULL);
1893 if (!btf_is_ptr(t))
1894 return NULL;
1895
1896 t = skip_mods_and_typedefs(btf, t->type, res_id);
1897
1898 return btf_is_func_proto(t) ? t : NULL;
1899 }
1900
btf_kind_str(const struct btf_type * t)1901 static const char *btf_kind_str(const struct btf_type *t)
1902 {
1903 switch (btf_kind(t)) {
1904 case BTF_KIND_UNKN: return "void";
1905 case BTF_KIND_INT: return "int";
1906 case BTF_KIND_PTR: return "ptr";
1907 case BTF_KIND_ARRAY: return "array";
1908 case BTF_KIND_STRUCT: return "struct";
1909 case BTF_KIND_UNION: return "union";
1910 case BTF_KIND_ENUM: return "enum";
1911 case BTF_KIND_FWD: return "fwd";
1912 case BTF_KIND_TYPEDEF: return "typedef";
1913 case BTF_KIND_VOLATILE: return "volatile";
1914 case BTF_KIND_CONST: return "const";
1915 case BTF_KIND_RESTRICT: return "restrict";
1916 case BTF_KIND_FUNC: return "func";
1917 case BTF_KIND_FUNC_PROTO: return "func_proto";
1918 case BTF_KIND_VAR: return "var";
1919 case BTF_KIND_DATASEC: return "datasec";
1920 default: return "unknown";
1921 }
1922 }
1923
1924 /*
1925 * Fetch integer attribute of BTF map definition. Such attributes are
1926 * represented using a pointer to an array, in which dimensionality of array
1927 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1928 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1929 * type definition, while using only sizeof(void *) space in ELF data section.
1930 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)1931 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1932 const struct btf_member *m, __u32 *res)
1933 {
1934 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1935 const char *name = btf__name_by_offset(btf, m->name_off);
1936 const struct btf_array *arr_info;
1937 const struct btf_type *arr_t;
1938
1939 if (!btf_is_ptr(t)) {
1940 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1941 map_name, name, btf_kind_str(t));
1942 return false;
1943 }
1944
1945 arr_t = btf__type_by_id(btf, t->type);
1946 if (!arr_t) {
1947 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1948 map_name, name, t->type);
1949 return false;
1950 }
1951 if (!btf_is_array(arr_t)) {
1952 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1953 map_name, name, btf_kind_str(arr_t));
1954 return false;
1955 }
1956 arr_info = btf_array(arr_t);
1957 *res = arr_info->nelems;
1958 return true;
1959 }
1960
build_map_pin_path(struct bpf_map * map,const char * path)1961 static int build_map_pin_path(struct bpf_map *map, const char *path)
1962 {
1963 char buf[PATH_MAX];
1964 int len;
1965
1966 if (!path)
1967 path = "/sys/fs/bpf";
1968
1969 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
1970 if (len < 0)
1971 return -EINVAL;
1972 else if (len >= PATH_MAX)
1973 return -ENAMETOOLONG;
1974
1975 return bpf_map__set_pin_path(map, buf);
1976 }
1977
1978
parse_btf_map_def(struct bpf_object * obj,struct bpf_map * map,const struct btf_type * def,bool strict,bool is_inner,const char * pin_root_path)1979 static int parse_btf_map_def(struct bpf_object *obj,
1980 struct bpf_map *map,
1981 const struct btf_type *def,
1982 bool strict, bool is_inner,
1983 const char *pin_root_path)
1984 {
1985 const struct btf_type *t;
1986 const struct btf_member *m;
1987 int vlen, i;
1988
1989 vlen = btf_vlen(def);
1990 m = btf_members(def);
1991 for (i = 0; i < vlen; i++, m++) {
1992 const char *name = btf__name_by_offset(obj->btf, m->name_off);
1993
1994 if (!name) {
1995 pr_warn("map '%s': invalid field #%d.\n", map->name, i);
1996 return -EINVAL;
1997 }
1998 if (strcmp(name, "type") == 0) {
1999 if (!get_map_field_int(map->name, obj->btf, m,
2000 &map->def.type))
2001 return -EINVAL;
2002 pr_debug("map '%s': found type = %u.\n",
2003 map->name, map->def.type);
2004 } else if (strcmp(name, "max_entries") == 0) {
2005 if (!get_map_field_int(map->name, obj->btf, m,
2006 &map->def.max_entries))
2007 return -EINVAL;
2008 pr_debug("map '%s': found max_entries = %u.\n",
2009 map->name, map->def.max_entries);
2010 } else if (strcmp(name, "map_flags") == 0) {
2011 if (!get_map_field_int(map->name, obj->btf, m,
2012 &map->def.map_flags))
2013 return -EINVAL;
2014 pr_debug("map '%s': found map_flags = %u.\n",
2015 map->name, map->def.map_flags);
2016 } else if (strcmp(name, "numa_node") == 0) {
2017 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2018 return -EINVAL;
2019 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2020 } else if (strcmp(name, "key_size") == 0) {
2021 __u32 sz;
2022
2023 if (!get_map_field_int(map->name, obj->btf, m, &sz))
2024 return -EINVAL;
2025 pr_debug("map '%s': found key_size = %u.\n",
2026 map->name, sz);
2027 if (map->def.key_size && map->def.key_size != sz) {
2028 pr_warn("map '%s': conflicting key size %u != %u.\n",
2029 map->name, map->def.key_size, sz);
2030 return -EINVAL;
2031 }
2032 map->def.key_size = sz;
2033 } else if (strcmp(name, "key") == 0) {
2034 __s64 sz;
2035
2036 t = btf__type_by_id(obj->btf, m->type);
2037 if (!t) {
2038 pr_warn("map '%s': key type [%d] not found.\n",
2039 map->name, m->type);
2040 return -EINVAL;
2041 }
2042 if (!btf_is_ptr(t)) {
2043 pr_warn("map '%s': key spec is not PTR: %s.\n",
2044 map->name, btf_kind_str(t));
2045 return -EINVAL;
2046 }
2047 sz = btf__resolve_size(obj->btf, t->type);
2048 if (sz < 0) {
2049 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2050 map->name, t->type, (ssize_t)sz);
2051 return sz;
2052 }
2053 pr_debug("map '%s': found key [%u], sz = %zd.\n",
2054 map->name, t->type, (ssize_t)sz);
2055 if (map->def.key_size && map->def.key_size != sz) {
2056 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2057 map->name, map->def.key_size, (ssize_t)sz);
2058 return -EINVAL;
2059 }
2060 map->def.key_size = sz;
2061 map->btf_key_type_id = t->type;
2062 } else if (strcmp(name, "value_size") == 0) {
2063 __u32 sz;
2064
2065 if (!get_map_field_int(map->name, obj->btf, m, &sz))
2066 return -EINVAL;
2067 pr_debug("map '%s': found value_size = %u.\n",
2068 map->name, sz);
2069 if (map->def.value_size && map->def.value_size != sz) {
2070 pr_warn("map '%s': conflicting value size %u != %u.\n",
2071 map->name, map->def.value_size, sz);
2072 return -EINVAL;
2073 }
2074 map->def.value_size = sz;
2075 } else if (strcmp(name, "value") == 0) {
2076 __s64 sz;
2077
2078 t = btf__type_by_id(obj->btf, m->type);
2079 if (!t) {
2080 pr_warn("map '%s': value type [%d] not found.\n",
2081 map->name, m->type);
2082 return -EINVAL;
2083 }
2084 if (!btf_is_ptr(t)) {
2085 pr_warn("map '%s': value spec is not PTR: %s.\n",
2086 map->name, btf_kind_str(t));
2087 return -EINVAL;
2088 }
2089 sz = btf__resolve_size(obj->btf, t->type);
2090 if (sz < 0) {
2091 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2092 map->name, t->type, (ssize_t)sz);
2093 return sz;
2094 }
2095 pr_debug("map '%s': found value [%u], sz = %zd.\n",
2096 map->name, t->type, (ssize_t)sz);
2097 if (map->def.value_size && map->def.value_size != sz) {
2098 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2099 map->name, map->def.value_size, (ssize_t)sz);
2100 return -EINVAL;
2101 }
2102 map->def.value_size = sz;
2103 map->btf_value_type_id = t->type;
2104 }
2105 else if (strcmp(name, "values") == 0) {
2106 int err;
2107
2108 if (is_inner) {
2109 pr_warn("map '%s': multi-level inner maps not supported.\n",
2110 map->name);
2111 return -ENOTSUP;
2112 }
2113 if (i != vlen - 1) {
2114 pr_warn("map '%s': '%s' member should be last.\n",
2115 map->name, name);
2116 return -EINVAL;
2117 }
2118 if (!bpf_map_type__is_map_in_map(map->def.type)) {
2119 pr_warn("map '%s': should be map-in-map.\n",
2120 map->name);
2121 return -ENOTSUP;
2122 }
2123 if (map->def.value_size && map->def.value_size != 4) {
2124 pr_warn("map '%s': conflicting value size %u != 4.\n",
2125 map->name, map->def.value_size);
2126 return -EINVAL;
2127 }
2128 map->def.value_size = 4;
2129 t = btf__type_by_id(obj->btf, m->type);
2130 if (!t) {
2131 pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2132 map->name, m->type);
2133 return -EINVAL;
2134 }
2135 if (!btf_is_array(t) || btf_array(t)->nelems) {
2136 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2137 map->name);
2138 return -EINVAL;
2139 }
2140 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2141 NULL);
2142 if (!btf_is_ptr(t)) {
2143 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2144 map->name, btf_kind_str(t));
2145 return -EINVAL;
2146 }
2147 t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2148 if (!btf_is_struct(t)) {
2149 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2150 map->name, btf_kind_str(t));
2151 return -EINVAL;
2152 }
2153
2154 map->inner_map = calloc(1, sizeof(*map->inner_map));
2155 if (!map->inner_map)
2156 return -ENOMEM;
2157 map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2158 map->inner_map->name = malloc(strlen(map->name) +
2159 sizeof(".inner") + 1);
2160 if (!map->inner_map->name)
2161 return -ENOMEM;
2162 sprintf(map->inner_map->name, "%s.inner", map->name);
2163
2164 err = parse_btf_map_def(obj, map->inner_map, t, strict,
2165 true /* is_inner */, NULL);
2166 if (err)
2167 return err;
2168 } else if (strcmp(name, "pinning") == 0) {
2169 __u32 val;
2170 int err;
2171
2172 if (is_inner) {
2173 pr_debug("map '%s': inner def can't be pinned.\n",
2174 map->name);
2175 return -EINVAL;
2176 }
2177 if (!get_map_field_int(map->name, obj->btf, m, &val))
2178 return -EINVAL;
2179 pr_debug("map '%s': found pinning = %u.\n",
2180 map->name, val);
2181
2182 if (val != LIBBPF_PIN_NONE &&
2183 val != LIBBPF_PIN_BY_NAME) {
2184 pr_warn("map '%s': invalid pinning value %u.\n",
2185 map->name, val);
2186 return -EINVAL;
2187 }
2188 if (val == LIBBPF_PIN_BY_NAME) {
2189 err = build_map_pin_path(map, pin_root_path);
2190 if (err) {
2191 pr_warn("map '%s': couldn't build pin path.\n",
2192 map->name);
2193 return err;
2194 }
2195 }
2196 } else {
2197 if (strict) {
2198 pr_warn("map '%s': unknown field '%s'.\n",
2199 map->name, name);
2200 return -ENOTSUP;
2201 }
2202 pr_debug("map '%s': ignoring unknown field '%s'.\n",
2203 map->name, name);
2204 }
2205 }
2206
2207 if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2208 pr_warn("map '%s': map type isn't specified.\n", map->name);
2209 return -EINVAL;
2210 }
2211
2212 return 0;
2213 }
2214
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2215 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2216 const struct btf_type *sec,
2217 int var_idx, int sec_idx,
2218 const Elf_Data *data, bool strict,
2219 const char *pin_root_path)
2220 {
2221 const struct btf_type *var, *def;
2222 const struct btf_var_secinfo *vi;
2223 const struct btf_var *var_extra;
2224 const char *map_name;
2225 struct bpf_map *map;
2226
2227 vi = btf_var_secinfos(sec) + var_idx;
2228 var = btf__type_by_id(obj->btf, vi->type);
2229 var_extra = btf_var(var);
2230 map_name = btf__name_by_offset(obj->btf, var->name_off);
2231
2232 if (map_name == NULL || map_name[0] == '\0') {
2233 pr_warn("map #%d: empty name.\n", var_idx);
2234 return -EINVAL;
2235 }
2236 if ((__u64)vi->offset + vi->size > data->d_size) {
2237 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2238 return -EINVAL;
2239 }
2240 if (!btf_is_var(var)) {
2241 pr_warn("map '%s': unexpected var kind %s.\n",
2242 map_name, btf_kind_str(var));
2243 return -EINVAL;
2244 }
2245 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2246 var_extra->linkage != BTF_VAR_STATIC) {
2247 pr_warn("map '%s': unsupported var linkage %u.\n",
2248 map_name, var_extra->linkage);
2249 return -EOPNOTSUPP;
2250 }
2251
2252 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2253 if (!btf_is_struct(def)) {
2254 pr_warn("map '%s': unexpected def kind %s.\n",
2255 map_name, btf_kind_str(var));
2256 return -EINVAL;
2257 }
2258 if (def->size > vi->size) {
2259 pr_warn("map '%s': invalid def size.\n", map_name);
2260 return -EINVAL;
2261 }
2262
2263 map = bpf_object__add_map(obj);
2264 if (IS_ERR(map))
2265 return PTR_ERR(map);
2266 map->name = strdup(map_name);
2267 if (!map->name) {
2268 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2269 return -ENOMEM;
2270 }
2271 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2272 map->def.type = BPF_MAP_TYPE_UNSPEC;
2273 map->sec_idx = sec_idx;
2274 map->sec_offset = vi->offset;
2275 map->btf_var_idx = var_idx;
2276 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2277 map_name, map->sec_idx, map->sec_offset);
2278
2279 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2280 }
2281
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2282 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2283 const char *pin_root_path)
2284 {
2285 const struct btf_type *sec = NULL;
2286 int nr_types, i, vlen, err;
2287 const struct btf_type *t;
2288 const char *name;
2289 Elf_Data *data;
2290 Elf_Scn *scn;
2291
2292 if (obj->efile.btf_maps_shndx < 0)
2293 return 0;
2294
2295 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2296 data = elf_sec_data(obj, scn);
2297 if (!scn || !data) {
2298 pr_warn("elf: failed to get %s map definitions for %s\n",
2299 MAPS_ELF_SEC, obj->path);
2300 return -EINVAL;
2301 }
2302
2303 nr_types = btf__get_nr_types(obj->btf);
2304 for (i = 1; i <= nr_types; i++) {
2305 t = btf__type_by_id(obj->btf, i);
2306 if (!btf_is_datasec(t))
2307 continue;
2308 name = btf__name_by_offset(obj->btf, t->name_off);
2309 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2310 sec = t;
2311 obj->efile.btf_maps_sec_btf_id = i;
2312 break;
2313 }
2314 }
2315
2316 if (!sec) {
2317 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2318 return -ENOENT;
2319 }
2320
2321 vlen = btf_vlen(sec);
2322 for (i = 0; i < vlen; i++) {
2323 err = bpf_object__init_user_btf_map(obj, sec, i,
2324 obj->efile.btf_maps_shndx,
2325 data, strict,
2326 pin_root_path);
2327 if (err)
2328 return err;
2329 }
2330
2331 return 0;
2332 }
2333
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)2334 static int bpf_object__init_maps(struct bpf_object *obj,
2335 const struct bpf_object_open_opts *opts)
2336 {
2337 const char *pin_root_path;
2338 bool strict;
2339 int err;
2340
2341 strict = !OPTS_GET(opts, relaxed_maps, false);
2342 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2343
2344 err = bpf_object__init_user_maps(obj, strict);
2345 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2346 err = err ?: bpf_object__init_global_data_maps(obj);
2347 err = err ?: bpf_object__init_kconfig_map(obj);
2348 err = err ?: bpf_object__init_struct_ops_maps(obj);
2349 if (err)
2350 return err;
2351
2352 return 0;
2353 }
2354
section_have_execinstr(struct bpf_object * obj,int idx)2355 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2356 {
2357 GElf_Shdr sh;
2358
2359 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2360 return false;
2361
2362 return sh.sh_flags & SHF_EXECINSTR;
2363 }
2364
btf_needs_sanitization(struct bpf_object * obj)2365 static bool btf_needs_sanitization(struct bpf_object *obj)
2366 {
2367 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2368 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2369 bool has_func = kernel_supports(FEAT_BTF_FUNC);
2370
2371 return !has_func || !has_datasec || !has_func_global;
2372 }
2373
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)2374 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2375 {
2376 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2377 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2378 bool has_func = kernel_supports(FEAT_BTF_FUNC);
2379 struct btf_type *t;
2380 int i, j, vlen;
2381
2382 for (i = 1; i <= btf__get_nr_types(btf); i++) {
2383 t = (struct btf_type *)btf__type_by_id(btf, i);
2384
2385 if (!has_datasec && btf_is_var(t)) {
2386 /* replace VAR with INT */
2387 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2388 /*
2389 * using size = 1 is the safest choice, 4 will be too
2390 * big and cause kernel BTF validation failure if
2391 * original variable took less than 4 bytes
2392 */
2393 t->size = 1;
2394 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2395 } else if (!has_datasec && btf_is_datasec(t)) {
2396 /* replace DATASEC with STRUCT */
2397 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2398 struct btf_member *m = btf_members(t);
2399 struct btf_type *vt;
2400 char *name;
2401
2402 name = (char *)btf__name_by_offset(btf, t->name_off);
2403 while (*name) {
2404 if (*name == '.')
2405 *name = '_';
2406 name++;
2407 }
2408
2409 vlen = btf_vlen(t);
2410 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2411 for (j = 0; j < vlen; j++, v++, m++) {
2412 /* order of field assignments is important */
2413 m->offset = v->offset * 8;
2414 m->type = v->type;
2415 /* preserve variable name as member name */
2416 vt = (void *)btf__type_by_id(btf, v->type);
2417 m->name_off = vt->name_off;
2418 }
2419 } else if (!has_func && btf_is_func_proto(t)) {
2420 /* replace FUNC_PROTO with ENUM */
2421 vlen = btf_vlen(t);
2422 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2423 t->size = sizeof(__u32); /* kernel enforced */
2424 } else if (!has_func && btf_is_func(t)) {
2425 /* replace FUNC with TYPEDEF */
2426 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2427 } else if (!has_func_global && btf_is_func(t)) {
2428 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2429 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2430 }
2431 }
2432 }
2433
libbpf_needs_btf(const struct bpf_object * obj)2434 static bool libbpf_needs_btf(const struct bpf_object *obj)
2435 {
2436 return obj->efile.btf_maps_shndx >= 0 ||
2437 obj->efile.st_ops_shndx >= 0 ||
2438 obj->nr_extern > 0;
2439 }
2440
kernel_needs_btf(const struct bpf_object * obj)2441 static bool kernel_needs_btf(const struct bpf_object *obj)
2442 {
2443 return obj->efile.st_ops_shndx >= 0;
2444 }
2445
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)2446 static int bpf_object__init_btf(struct bpf_object *obj,
2447 Elf_Data *btf_data,
2448 Elf_Data *btf_ext_data)
2449 {
2450 int err = -ENOENT;
2451
2452 if (btf_data) {
2453 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2454 if (IS_ERR(obj->btf)) {
2455 err = PTR_ERR(obj->btf);
2456 obj->btf = NULL;
2457 pr_warn("Error loading ELF section %s: %d.\n",
2458 BTF_ELF_SEC, err);
2459 goto out;
2460 }
2461 /* enforce 8-byte pointers for BPF-targeted BTFs */
2462 btf__set_pointer_size(obj->btf, 8);
2463 err = 0;
2464 }
2465 if (btf_ext_data) {
2466 if (!obj->btf) {
2467 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2468 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2469 goto out;
2470 }
2471 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2472 btf_ext_data->d_size);
2473 if (IS_ERR(obj->btf_ext)) {
2474 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2475 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2476 obj->btf_ext = NULL;
2477 goto out;
2478 }
2479 }
2480 out:
2481 if (err && libbpf_needs_btf(obj)) {
2482 pr_warn("BTF is required, but is missing or corrupted.\n");
2483 return err;
2484 }
2485 return 0;
2486 }
2487
bpf_object__finalize_btf(struct bpf_object * obj)2488 static int bpf_object__finalize_btf(struct bpf_object *obj)
2489 {
2490 int err;
2491
2492 if (!obj->btf)
2493 return 0;
2494
2495 err = btf__finalize_data(obj, obj->btf);
2496 if (err) {
2497 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2498 return err;
2499 }
2500
2501 return 0;
2502 }
2503
libbpf_prog_needs_vmlinux_btf(struct bpf_program * prog)2504 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog)
2505 {
2506 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2507 prog->type == BPF_PROG_TYPE_LSM)
2508 return true;
2509
2510 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2511 * also need vmlinux BTF
2512 */
2513 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2514 return true;
2515
2516 return false;
2517 }
2518
bpf_object__load_vmlinux_btf(struct bpf_object * obj)2519 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj)
2520 {
2521 bool need_vmlinux_btf = false;
2522 struct bpf_program *prog;
2523 int i, err;
2524
2525 /* CO-RE relocations need kernel BTF */
2526 if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2527 need_vmlinux_btf = true;
2528
2529 /* Support for typed ksyms needs kernel BTF */
2530 for (i = 0; i < obj->nr_extern; i++) {
2531 const struct extern_desc *ext;
2532
2533 ext = &obj->externs[i];
2534 if (ext->type == EXT_KSYM && ext->ksym.type_id) {
2535 need_vmlinux_btf = true;
2536 break;
2537 }
2538 }
2539
2540 bpf_object__for_each_program(prog, obj) {
2541 if (!prog->load)
2542 continue;
2543 if (libbpf_prog_needs_vmlinux_btf(prog)) {
2544 need_vmlinux_btf = true;
2545 break;
2546 }
2547 }
2548
2549 if (!need_vmlinux_btf)
2550 return 0;
2551
2552 obj->btf_vmlinux = libbpf_find_kernel_btf();
2553 if (IS_ERR(obj->btf_vmlinux)) {
2554 err = PTR_ERR(obj->btf_vmlinux);
2555 pr_warn("Error loading vmlinux BTF: %d\n", err);
2556 obj->btf_vmlinux = NULL;
2557 return err;
2558 }
2559 return 0;
2560 }
2561
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)2562 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2563 {
2564 struct btf *kern_btf = obj->btf;
2565 bool btf_mandatory, sanitize;
2566 int err = 0;
2567
2568 if (!obj->btf)
2569 return 0;
2570
2571 if (!kernel_supports(FEAT_BTF)) {
2572 if (kernel_needs_btf(obj)) {
2573 err = -EOPNOTSUPP;
2574 goto report;
2575 }
2576 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2577 return 0;
2578 }
2579
2580 sanitize = btf_needs_sanitization(obj);
2581 if (sanitize) {
2582 const void *raw_data;
2583 __u32 sz;
2584
2585 /* clone BTF to sanitize a copy and leave the original intact */
2586 raw_data = btf__get_raw_data(obj->btf, &sz);
2587 kern_btf = btf__new(raw_data, sz);
2588 if (IS_ERR(kern_btf))
2589 return PTR_ERR(kern_btf);
2590
2591 /* enforce 8-byte pointers for BPF-targeted BTFs */
2592 btf__set_pointer_size(obj->btf, 8);
2593 bpf_object__sanitize_btf(obj, kern_btf);
2594 }
2595
2596 err = btf__load(kern_btf);
2597 if (sanitize) {
2598 if (!err) {
2599 /* move fd to libbpf's BTF */
2600 btf__set_fd(obj->btf, btf__fd(kern_btf));
2601 btf__set_fd(kern_btf, -1);
2602 }
2603 btf__free(kern_btf);
2604 }
2605 report:
2606 if (err) {
2607 btf_mandatory = kernel_needs_btf(obj);
2608 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2609 btf_mandatory ? "BTF is mandatory, can't proceed."
2610 : "BTF is optional, ignoring.");
2611 if (!btf_mandatory)
2612 err = 0;
2613 }
2614 return err;
2615 }
2616
elf_sym_str(const struct bpf_object * obj,size_t off)2617 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2618 {
2619 const char *name;
2620
2621 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2622 if (!name) {
2623 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2624 off, obj->path, elf_errmsg(-1));
2625 return NULL;
2626 }
2627
2628 return name;
2629 }
2630
elf_sec_str(const struct bpf_object * obj,size_t off)2631 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2632 {
2633 const char *name;
2634
2635 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2636 if (!name) {
2637 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2638 off, obj->path, elf_errmsg(-1));
2639 return NULL;
2640 }
2641
2642 return name;
2643 }
2644
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)2645 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2646 {
2647 Elf_Scn *scn;
2648
2649 scn = elf_getscn(obj->efile.elf, idx);
2650 if (!scn) {
2651 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2652 idx, obj->path, elf_errmsg(-1));
2653 return NULL;
2654 }
2655 return scn;
2656 }
2657
elf_sec_by_name(const struct bpf_object * obj,const char * name)2658 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2659 {
2660 Elf_Scn *scn = NULL;
2661 Elf *elf = obj->efile.elf;
2662 const char *sec_name;
2663
2664 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2665 sec_name = elf_sec_name(obj, scn);
2666 if (!sec_name)
2667 return NULL;
2668
2669 if (strcmp(sec_name, name) != 0)
2670 continue;
2671
2672 return scn;
2673 }
2674 return NULL;
2675 }
2676
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn,GElf_Shdr * hdr)2677 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2678 {
2679 if (!scn)
2680 return -EINVAL;
2681
2682 if (gelf_getshdr(scn, hdr) != hdr) {
2683 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2684 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2685 return -EINVAL;
2686 }
2687
2688 return 0;
2689 }
2690
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)2691 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2692 {
2693 const char *name;
2694 GElf_Shdr sh;
2695
2696 if (!scn)
2697 return NULL;
2698
2699 if (elf_sec_hdr(obj, scn, &sh))
2700 return NULL;
2701
2702 name = elf_sec_str(obj, sh.sh_name);
2703 if (!name) {
2704 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2705 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2706 return NULL;
2707 }
2708
2709 return name;
2710 }
2711
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)2712 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2713 {
2714 Elf_Data *data;
2715
2716 if (!scn)
2717 return NULL;
2718
2719 data = elf_getdata(scn, 0);
2720 if (!data) {
2721 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2722 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2723 obj->path, elf_errmsg(-1));
2724 return NULL;
2725 }
2726
2727 return data;
2728 }
2729
elf_sym_by_sec_off(const struct bpf_object * obj,size_t sec_idx,size_t off,__u32 sym_type,GElf_Sym * sym)2730 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2731 size_t off, __u32 sym_type, GElf_Sym *sym)
2732 {
2733 Elf_Data *symbols = obj->efile.symbols;
2734 size_t n = symbols->d_size / sizeof(GElf_Sym);
2735 int i;
2736
2737 for (i = 0; i < n; i++) {
2738 if (!gelf_getsym(symbols, i, sym))
2739 continue;
2740 if (sym->st_shndx != sec_idx || sym->st_value != off)
2741 continue;
2742 if (GELF_ST_TYPE(sym->st_info) != sym_type)
2743 continue;
2744 return 0;
2745 }
2746
2747 return -ENOENT;
2748 }
2749
is_sec_name_dwarf(const char * name)2750 static bool is_sec_name_dwarf(const char *name)
2751 {
2752 /* approximation, but the actual list is too long */
2753 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2754 }
2755
ignore_elf_section(GElf_Shdr * hdr,const char * name)2756 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2757 {
2758 /* no special handling of .strtab */
2759 if (hdr->sh_type == SHT_STRTAB)
2760 return true;
2761
2762 /* ignore .llvm_addrsig section as well */
2763 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2764 return true;
2765
2766 /* no subprograms will lead to an empty .text section, ignore it */
2767 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2768 strcmp(name, ".text") == 0)
2769 return true;
2770
2771 /* DWARF sections */
2772 if (is_sec_name_dwarf(name))
2773 return true;
2774
2775 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2776 name += sizeof(".rel") - 1;
2777 /* DWARF section relocations */
2778 if (is_sec_name_dwarf(name))
2779 return true;
2780
2781 /* .BTF and .BTF.ext don't need relocations */
2782 if (strcmp(name, BTF_ELF_SEC) == 0 ||
2783 strcmp(name, BTF_EXT_ELF_SEC) == 0)
2784 return true;
2785 }
2786
2787 return false;
2788 }
2789
cmp_progs(const void * _a,const void * _b)2790 static int cmp_progs(const void *_a, const void *_b)
2791 {
2792 const struct bpf_program *a = _a;
2793 const struct bpf_program *b = _b;
2794
2795 if (a->sec_idx != b->sec_idx)
2796 return a->sec_idx < b->sec_idx ? -1 : 1;
2797
2798 /* sec_insn_off can't be the same within the section */
2799 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2800 }
2801
bpf_object__elf_collect(struct bpf_object * obj)2802 static int bpf_object__elf_collect(struct bpf_object *obj)
2803 {
2804 Elf *elf = obj->efile.elf;
2805 Elf_Data *btf_ext_data = NULL;
2806 Elf_Data *btf_data = NULL;
2807 int idx = 0, err = 0;
2808 const char *name;
2809 Elf_Data *data;
2810 Elf_Scn *scn;
2811 GElf_Shdr sh;
2812
2813 /* a bunch of ELF parsing functionality depends on processing symbols,
2814 * so do the first pass and find the symbol table
2815 */
2816 scn = NULL;
2817 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2818 if (elf_sec_hdr(obj, scn, &sh))
2819 return -LIBBPF_ERRNO__FORMAT;
2820
2821 if (sh.sh_type == SHT_SYMTAB) {
2822 if (obj->efile.symbols) {
2823 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2824 return -LIBBPF_ERRNO__FORMAT;
2825 }
2826
2827 data = elf_sec_data(obj, scn);
2828 if (!data)
2829 return -LIBBPF_ERRNO__FORMAT;
2830
2831 obj->efile.symbols = data;
2832 obj->efile.symbols_shndx = elf_ndxscn(scn);
2833 obj->efile.strtabidx = sh.sh_link;
2834 }
2835 }
2836
2837 scn = NULL;
2838 while ((scn = elf_nextscn(elf, scn)) != NULL) {
2839 idx++;
2840
2841 if (elf_sec_hdr(obj, scn, &sh))
2842 return -LIBBPF_ERRNO__FORMAT;
2843
2844 name = elf_sec_str(obj, sh.sh_name);
2845 if (!name)
2846 return -LIBBPF_ERRNO__FORMAT;
2847
2848 if (ignore_elf_section(&sh, name))
2849 continue;
2850
2851 data = elf_sec_data(obj, scn);
2852 if (!data)
2853 return -LIBBPF_ERRNO__FORMAT;
2854
2855 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2856 idx, name, (unsigned long)data->d_size,
2857 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2858 (int)sh.sh_type);
2859
2860 if (strcmp(name, "license") == 0) {
2861 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2862 if (err)
2863 return err;
2864 } else if (strcmp(name, "version") == 0) {
2865 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2866 if (err)
2867 return err;
2868 } else if (strcmp(name, "maps") == 0) {
2869 obj->efile.maps_shndx = idx;
2870 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2871 obj->efile.btf_maps_shndx = idx;
2872 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
2873 btf_data = data;
2874 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2875 btf_ext_data = data;
2876 } else if (sh.sh_type == SHT_SYMTAB) {
2877 /* already processed during the first pass above */
2878 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2879 if (sh.sh_flags & SHF_EXECINSTR) {
2880 if (strcmp(name, ".text") == 0)
2881 obj->efile.text_shndx = idx;
2882 err = bpf_object__add_programs(obj, data, name, idx);
2883 if (err)
2884 return err;
2885 } else if (strcmp(name, DATA_SEC) == 0) {
2886 obj->efile.data = data;
2887 obj->efile.data_shndx = idx;
2888 } else if (strcmp(name, RODATA_SEC) == 0) {
2889 obj->efile.rodata = data;
2890 obj->efile.rodata_shndx = idx;
2891 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2892 obj->efile.st_ops_data = data;
2893 obj->efile.st_ops_shndx = idx;
2894 } else {
2895 pr_info("elf: skipping unrecognized data section(%d) %s\n",
2896 idx, name);
2897 }
2898 } else if (sh.sh_type == SHT_REL) {
2899 int nr_sects = obj->efile.nr_reloc_sects;
2900 void *sects = obj->efile.reloc_sects;
2901 int sec = sh.sh_info; /* points to other section */
2902
2903 /* Only do relo for section with exec instructions */
2904 if (!section_have_execinstr(obj, sec) &&
2905 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2906 strcmp(name, ".rel" MAPS_ELF_SEC)) {
2907 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2908 idx, name, sec,
2909 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2910 continue;
2911 }
2912
2913 sects = libbpf_reallocarray(sects, nr_sects + 1,
2914 sizeof(*obj->efile.reloc_sects));
2915 if (!sects)
2916 return -ENOMEM;
2917
2918 obj->efile.reloc_sects = sects;
2919 obj->efile.nr_reloc_sects++;
2920
2921 obj->efile.reloc_sects[nr_sects].shdr = sh;
2922 obj->efile.reloc_sects[nr_sects].data = data;
2923 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2924 obj->efile.bss = data;
2925 obj->efile.bss_shndx = idx;
2926 } else {
2927 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2928 (size_t)sh.sh_size);
2929 }
2930 }
2931
2932 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2933 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2934 return -LIBBPF_ERRNO__FORMAT;
2935 }
2936
2937 /* sort BPF programs by section name and in-section instruction offset
2938 * for faster search */
2939 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2940
2941 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2942 }
2943
sym_is_extern(const GElf_Sym * sym)2944 static bool sym_is_extern(const GElf_Sym *sym)
2945 {
2946 int bind = GELF_ST_BIND(sym->st_info);
2947 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2948 return sym->st_shndx == SHN_UNDEF &&
2949 (bind == STB_GLOBAL || bind == STB_WEAK) &&
2950 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2951 }
2952
find_extern_btf_id(const struct btf * btf,const char * ext_name)2953 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
2954 {
2955 const struct btf_type *t;
2956 const char *var_name;
2957 int i, n;
2958
2959 if (!btf)
2960 return -ESRCH;
2961
2962 n = btf__get_nr_types(btf);
2963 for (i = 1; i <= n; i++) {
2964 t = btf__type_by_id(btf, i);
2965
2966 if (!btf_is_var(t))
2967 continue;
2968
2969 var_name = btf__name_by_offset(btf, t->name_off);
2970 if (strcmp(var_name, ext_name))
2971 continue;
2972
2973 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
2974 return -EINVAL;
2975
2976 return i;
2977 }
2978
2979 return -ENOENT;
2980 }
2981
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)2982 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
2983 const struct btf_var_secinfo *vs;
2984 const struct btf_type *t;
2985 int i, j, n;
2986
2987 if (!btf)
2988 return -ESRCH;
2989
2990 n = btf__get_nr_types(btf);
2991 for (i = 1; i <= n; i++) {
2992 t = btf__type_by_id(btf, i);
2993
2994 if (!btf_is_datasec(t))
2995 continue;
2996
2997 vs = btf_var_secinfos(t);
2998 for (j = 0; j < btf_vlen(t); j++, vs++) {
2999 if (vs->type == ext_btf_id)
3000 return i;
3001 }
3002 }
3003
3004 return -ENOENT;
3005 }
3006
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)3007 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3008 bool *is_signed)
3009 {
3010 const struct btf_type *t;
3011 const char *name;
3012
3013 t = skip_mods_and_typedefs(btf, id, NULL);
3014 name = btf__name_by_offset(btf, t->name_off);
3015
3016 if (is_signed)
3017 *is_signed = false;
3018 switch (btf_kind(t)) {
3019 case BTF_KIND_INT: {
3020 int enc = btf_int_encoding(t);
3021
3022 if (enc & BTF_INT_BOOL)
3023 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3024 if (is_signed)
3025 *is_signed = enc & BTF_INT_SIGNED;
3026 if (t->size == 1)
3027 return KCFG_CHAR;
3028 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3029 return KCFG_UNKNOWN;
3030 return KCFG_INT;
3031 }
3032 case BTF_KIND_ENUM:
3033 if (t->size != 4)
3034 return KCFG_UNKNOWN;
3035 if (strcmp(name, "libbpf_tristate"))
3036 return KCFG_UNKNOWN;
3037 return KCFG_TRISTATE;
3038 case BTF_KIND_ARRAY:
3039 if (btf_array(t)->nelems == 0)
3040 return KCFG_UNKNOWN;
3041 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3042 return KCFG_UNKNOWN;
3043 return KCFG_CHAR_ARR;
3044 default:
3045 return KCFG_UNKNOWN;
3046 }
3047 }
3048
cmp_externs(const void * _a,const void * _b)3049 static int cmp_externs(const void *_a, const void *_b)
3050 {
3051 const struct extern_desc *a = _a;
3052 const struct extern_desc *b = _b;
3053
3054 if (a->type != b->type)
3055 return a->type < b->type ? -1 : 1;
3056
3057 if (a->type == EXT_KCFG) {
3058 /* descending order by alignment requirements */
3059 if (a->kcfg.align != b->kcfg.align)
3060 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3061 /* ascending order by size, within same alignment class */
3062 if (a->kcfg.sz != b->kcfg.sz)
3063 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3064 }
3065
3066 /* resolve ties by name */
3067 return strcmp(a->name, b->name);
3068 }
3069
find_int_btf_id(const struct btf * btf)3070 static int find_int_btf_id(const struct btf *btf)
3071 {
3072 const struct btf_type *t;
3073 int i, n;
3074
3075 n = btf__get_nr_types(btf);
3076 for (i = 1; i <= n; i++) {
3077 t = btf__type_by_id(btf, i);
3078
3079 if (btf_is_int(t) && btf_int_bits(t) == 32)
3080 return i;
3081 }
3082
3083 return 0;
3084 }
3085
bpf_object__collect_externs(struct bpf_object * obj)3086 static int bpf_object__collect_externs(struct bpf_object *obj)
3087 {
3088 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3089 const struct btf_type *t;
3090 struct extern_desc *ext;
3091 int i, n, off;
3092 const char *ext_name, *sec_name;
3093 Elf_Scn *scn;
3094 GElf_Shdr sh;
3095
3096 if (!obj->efile.symbols)
3097 return 0;
3098
3099 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3100 if (elf_sec_hdr(obj, scn, &sh))
3101 return -LIBBPF_ERRNO__FORMAT;
3102
3103 n = sh.sh_size / sh.sh_entsize;
3104 pr_debug("looking for externs among %d symbols...\n", n);
3105
3106 for (i = 0; i < n; i++) {
3107 GElf_Sym sym;
3108
3109 if (!gelf_getsym(obj->efile.symbols, i, &sym))
3110 return -LIBBPF_ERRNO__FORMAT;
3111 if (!sym_is_extern(&sym))
3112 continue;
3113 ext_name = elf_sym_str(obj, sym.st_name);
3114 if (!ext_name || !ext_name[0])
3115 continue;
3116
3117 ext = obj->externs;
3118 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3119 if (!ext)
3120 return -ENOMEM;
3121 obj->externs = ext;
3122 ext = &ext[obj->nr_extern];
3123 memset(ext, 0, sizeof(*ext));
3124 obj->nr_extern++;
3125
3126 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3127 if (ext->btf_id <= 0) {
3128 pr_warn("failed to find BTF for extern '%s': %d\n",
3129 ext_name, ext->btf_id);
3130 return ext->btf_id;
3131 }
3132 t = btf__type_by_id(obj->btf, ext->btf_id);
3133 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3134 ext->sym_idx = i;
3135 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3136
3137 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3138 if (ext->sec_btf_id <= 0) {
3139 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3140 ext_name, ext->btf_id, ext->sec_btf_id);
3141 return ext->sec_btf_id;
3142 }
3143 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3144 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3145
3146 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3147 kcfg_sec = sec;
3148 ext->type = EXT_KCFG;
3149 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3150 if (ext->kcfg.sz <= 0) {
3151 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3152 ext_name, ext->kcfg.sz);
3153 return ext->kcfg.sz;
3154 }
3155 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3156 if (ext->kcfg.align <= 0) {
3157 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3158 ext_name, ext->kcfg.align);
3159 return -EINVAL;
3160 }
3161 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3162 &ext->kcfg.is_signed);
3163 if (ext->kcfg.type == KCFG_UNKNOWN) {
3164 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3165 return -ENOTSUP;
3166 }
3167 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3168 ksym_sec = sec;
3169 ext->type = EXT_KSYM;
3170 skip_mods_and_typedefs(obj->btf, t->type,
3171 &ext->ksym.type_id);
3172 } else {
3173 pr_warn("unrecognized extern section '%s'\n", sec_name);
3174 return -ENOTSUP;
3175 }
3176 }
3177 pr_debug("collected %d externs total\n", obj->nr_extern);
3178
3179 if (!obj->nr_extern)
3180 return 0;
3181
3182 /* sort externs by type, for kcfg ones also by (align, size, name) */
3183 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3184
3185 /* for .ksyms section, we need to turn all externs into allocated
3186 * variables in BTF to pass kernel verification; we do this by
3187 * pretending that each extern is a 8-byte variable
3188 */
3189 if (ksym_sec) {
3190 /* find existing 4-byte integer type in BTF to use for fake
3191 * extern variables in DATASEC
3192 */
3193 int int_btf_id = find_int_btf_id(obj->btf);
3194
3195 for (i = 0; i < obj->nr_extern; i++) {
3196 ext = &obj->externs[i];
3197 if (ext->type != EXT_KSYM)
3198 continue;
3199 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3200 i, ext->sym_idx, ext->name);
3201 }
3202
3203 sec = ksym_sec;
3204 n = btf_vlen(sec);
3205 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3206 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3207 struct btf_type *vt;
3208
3209 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3210 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3211 ext = find_extern_by_name(obj, ext_name);
3212 if (!ext) {
3213 pr_warn("failed to find extern definition for BTF var '%s'\n",
3214 ext_name);
3215 return -ESRCH;
3216 }
3217 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3218 vt->type = int_btf_id;
3219 vs->offset = off;
3220 vs->size = sizeof(int);
3221 }
3222 sec->size = off;
3223 }
3224
3225 if (kcfg_sec) {
3226 sec = kcfg_sec;
3227 /* for kcfg externs calculate their offsets within a .kconfig map */
3228 off = 0;
3229 for (i = 0; i < obj->nr_extern; i++) {
3230 ext = &obj->externs[i];
3231 if (ext->type != EXT_KCFG)
3232 continue;
3233
3234 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3235 off = ext->kcfg.data_off + ext->kcfg.sz;
3236 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3237 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3238 }
3239 sec->size = off;
3240 n = btf_vlen(sec);
3241 for (i = 0; i < n; i++) {
3242 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3243
3244 t = btf__type_by_id(obj->btf, vs->type);
3245 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3246 ext = find_extern_by_name(obj, ext_name);
3247 if (!ext) {
3248 pr_warn("failed to find extern definition for BTF var '%s'\n",
3249 ext_name);
3250 return -ESRCH;
3251 }
3252 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3253 vs->offset = ext->kcfg.data_off;
3254 }
3255 }
3256 return 0;
3257 }
3258
3259 struct bpf_program *
bpf_object__find_program_by_title(const struct bpf_object * obj,const char * title)3260 bpf_object__find_program_by_title(const struct bpf_object *obj,
3261 const char *title)
3262 {
3263 struct bpf_program *pos;
3264
3265 bpf_object__for_each_program(pos, obj) {
3266 if (pos->sec_name && !strcmp(pos->sec_name, title))
3267 return pos;
3268 }
3269 return NULL;
3270 }
3271
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)3272 static bool prog_is_subprog(const struct bpf_object *obj,
3273 const struct bpf_program *prog)
3274 {
3275 /* For legacy reasons, libbpf supports an entry-point BPF programs
3276 * without SEC() attribute, i.e., those in the .text section. But if
3277 * there are 2 or more such programs in the .text section, they all
3278 * must be subprograms called from entry-point BPF programs in
3279 * designated SEC()'tions, otherwise there is no way to distinguish
3280 * which of those programs should be loaded vs which are a subprogram.
3281 * Similarly, if there is a function/program in .text and at least one
3282 * other BPF program with custom SEC() attribute, then we just assume
3283 * .text programs are subprograms (even if they are not called from
3284 * other programs), because libbpf never explicitly supported mixing
3285 * SEC()-designated BPF programs and .text entry-point BPF programs.
3286 */
3287 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3288 }
3289
3290 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)3291 bpf_object__find_program_by_name(const struct bpf_object *obj,
3292 const char *name)
3293 {
3294 struct bpf_program *prog;
3295
3296 bpf_object__for_each_program(prog, obj) {
3297 if (prog_is_subprog(obj, prog))
3298 continue;
3299 if (!strcmp(prog->name, name))
3300 return prog;
3301 }
3302 return NULL;
3303 }
3304
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)3305 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3306 int shndx)
3307 {
3308 return shndx == obj->efile.data_shndx ||
3309 shndx == obj->efile.bss_shndx ||
3310 shndx == obj->efile.rodata_shndx;
3311 }
3312
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)3313 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3314 int shndx)
3315 {
3316 return shndx == obj->efile.maps_shndx ||
3317 shndx == obj->efile.btf_maps_shndx;
3318 }
3319
3320 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)3321 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3322 {
3323 if (shndx == obj->efile.data_shndx)
3324 return LIBBPF_MAP_DATA;
3325 else if (shndx == obj->efile.bss_shndx)
3326 return LIBBPF_MAP_BSS;
3327 else if (shndx == obj->efile.rodata_shndx)
3328 return LIBBPF_MAP_RODATA;
3329 else if (shndx == obj->efile.symbols_shndx)
3330 return LIBBPF_MAP_KCONFIG;
3331 else
3332 return LIBBPF_MAP_UNSPEC;
3333 }
3334
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const GElf_Sym * sym,const GElf_Rel * rel)3335 static int bpf_program__record_reloc(struct bpf_program *prog,
3336 struct reloc_desc *reloc_desc,
3337 __u32 insn_idx, const char *sym_name,
3338 const GElf_Sym *sym, const GElf_Rel *rel)
3339 {
3340 struct bpf_insn *insn = &prog->insns[insn_idx];
3341 size_t map_idx, nr_maps = prog->obj->nr_maps;
3342 struct bpf_object *obj = prog->obj;
3343 __u32 shdr_idx = sym->st_shndx;
3344 enum libbpf_map_type type;
3345 const char *sym_sec_name;
3346 struct bpf_map *map;
3347
3348 reloc_desc->processed = false;
3349
3350 /* sub-program call relocation */
3351 if (insn->code == (BPF_JMP | BPF_CALL)) {
3352 if (insn->src_reg != BPF_PSEUDO_CALL) {
3353 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3354 return -LIBBPF_ERRNO__RELOC;
3355 }
3356 /* text_shndx can be 0, if no default "main" program exists */
3357 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3358 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3359 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3360 prog->name, sym_name, sym_sec_name);
3361 return -LIBBPF_ERRNO__RELOC;
3362 }
3363 if (sym->st_value % BPF_INSN_SZ) {
3364 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3365 prog->name, sym_name, (size_t)sym->st_value);
3366 return -LIBBPF_ERRNO__RELOC;
3367 }
3368 reloc_desc->type = RELO_CALL;
3369 reloc_desc->insn_idx = insn_idx;
3370 reloc_desc->sym_off = sym->st_value;
3371 return 0;
3372 }
3373
3374 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) {
3375 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3376 prog->name, sym_name, insn_idx, insn->code);
3377 return -LIBBPF_ERRNO__RELOC;
3378 }
3379
3380 if (sym_is_extern(sym)) {
3381 int sym_idx = GELF_R_SYM(rel->r_info);
3382 int i, n = obj->nr_extern;
3383 struct extern_desc *ext;
3384
3385 for (i = 0; i < n; i++) {
3386 ext = &obj->externs[i];
3387 if (ext->sym_idx == sym_idx)
3388 break;
3389 }
3390 if (i >= n) {
3391 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3392 prog->name, sym_name, sym_idx);
3393 return -LIBBPF_ERRNO__RELOC;
3394 }
3395 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3396 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3397 reloc_desc->type = RELO_EXTERN;
3398 reloc_desc->insn_idx = insn_idx;
3399 reloc_desc->sym_off = i; /* sym_off stores extern index */
3400 return 0;
3401 }
3402
3403 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3404 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3405 prog->name, sym_name, shdr_idx);
3406 return -LIBBPF_ERRNO__RELOC;
3407 }
3408
3409 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3410 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3411
3412 /* generic map reference relocation */
3413 if (type == LIBBPF_MAP_UNSPEC) {
3414 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3415 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3416 prog->name, sym_name, sym_sec_name);
3417 return -LIBBPF_ERRNO__RELOC;
3418 }
3419 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3420 map = &obj->maps[map_idx];
3421 if (map->libbpf_type != type ||
3422 map->sec_idx != sym->st_shndx ||
3423 map->sec_offset != sym->st_value)
3424 continue;
3425 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3426 prog->name, map_idx, map->name, map->sec_idx,
3427 map->sec_offset, insn_idx);
3428 break;
3429 }
3430 if (map_idx >= nr_maps) {
3431 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3432 prog->name, sym_sec_name, (size_t)sym->st_value);
3433 return -LIBBPF_ERRNO__RELOC;
3434 }
3435 reloc_desc->type = RELO_LD64;
3436 reloc_desc->insn_idx = insn_idx;
3437 reloc_desc->map_idx = map_idx;
3438 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3439 return 0;
3440 }
3441
3442 /* global data map relocation */
3443 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3444 pr_warn("prog '%s': bad data relo against section '%s'\n",
3445 prog->name, sym_sec_name);
3446 return -LIBBPF_ERRNO__RELOC;
3447 }
3448 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3449 map = &obj->maps[map_idx];
3450 if (map->libbpf_type != type)
3451 continue;
3452 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3453 prog->name, map_idx, map->name, map->sec_idx,
3454 map->sec_offset, insn_idx);
3455 break;
3456 }
3457 if (map_idx >= nr_maps) {
3458 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3459 prog->name, sym_sec_name);
3460 return -LIBBPF_ERRNO__RELOC;
3461 }
3462
3463 reloc_desc->type = RELO_DATA;
3464 reloc_desc->insn_idx = insn_idx;
3465 reloc_desc->map_idx = map_idx;
3466 reloc_desc->sym_off = sym->st_value;
3467 return 0;
3468 }
3469
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)3470 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3471 {
3472 return insn_idx >= prog->sec_insn_off &&
3473 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3474 }
3475
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)3476 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3477 size_t sec_idx, size_t insn_idx)
3478 {
3479 int l = 0, r = obj->nr_programs - 1, m;
3480 struct bpf_program *prog;
3481
3482 while (l < r) {
3483 m = l + (r - l + 1) / 2;
3484 prog = &obj->programs[m];
3485
3486 if (prog->sec_idx < sec_idx ||
3487 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3488 l = m;
3489 else
3490 r = m - 1;
3491 }
3492 /* matching program could be at index l, but it still might be the
3493 * wrong one, so we need to double check conditions for the last time
3494 */
3495 prog = &obj->programs[l];
3496 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3497 return prog;
3498 return NULL;
3499 }
3500
3501 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,GElf_Shdr * shdr,Elf_Data * data)3502 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3503 {
3504 Elf_Data *symbols = obj->efile.symbols;
3505 const char *relo_sec_name, *sec_name;
3506 size_t sec_idx = shdr->sh_info;
3507 struct bpf_program *prog;
3508 struct reloc_desc *relos;
3509 int err, i, nrels;
3510 const char *sym_name;
3511 __u32 insn_idx;
3512 GElf_Sym sym;
3513 GElf_Rel rel;
3514
3515 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3516 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3517 if (!relo_sec_name || !sec_name)
3518 return -EINVAL;
3519
3520 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3521 relo_sec_name, sec_idx, sec_name);
3522 nrels = shdr->sh_size / shdr->sh_entsize;
3523
3524 for (i = 0; i < nrels; i++) {
3525 if (!gelf_getrel(data, i, &rel)) {
3526 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3527 return -LIBBPF_ERRNO__FORMAT;
3528 }
3529 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3530 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3531 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3532 return -LIBBPF_ERRNO__FORMAT;
3533 }
3534 if (rel.r_offset % BPF_INSN_SZ) {
3535 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3536 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3537 return -LIBBPF_ERRNO__FORMAT;
3538 }
3539
3540 insn_idx = rel.r_offset / BPF_INSN_SZ;
3541 /* relocations against static functions are recorded as
3542 * relocations against the section that contains a function;
3543 * in such case, symbol will be STT_SECTION and sym.st_name
3544 * will point to empty string (0), so fetch section name
3545 * instead
3546 */
3547 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3548 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3549 else
3550 sym_name = elf_sym_str(obj, sym.st_name);
3551 sym_name = sym_name ?: "<?";
3552
3553 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3554 relo_sec_name, i, insn_idx, sym_name);
3555
3556 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3557 if (!prog) {
3558 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3559 relo_sec_name, i, sec_name, insn_idx);
3560 return -LIBBPF_ERRNO__RELOC;
3561 }
3562
3563 relos = libbpf_reallocarray(prog->reloc_desc,
3564 prog->nr_reloc + 1, sizeof(*relos));
3565 if (!relos)
3566 return -ENOMEM;
3567 prog->reloc_desc = relos;
3568
3569 /* adjust insn_idx to local BPF program frame of reference */
3570 insn_idx -= prog->sec_insn_off;
3571 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3572 insn_idx, sym_name, &sym, &rel);
3573 if (err)
3574 return err;
3575
3576 prog->nr_reloc++;
3577 }
3578 return 0;
3579 }
3580
bpf_map_find_btf_info(struct bpf_object * obj,struct bpf_map * map)3581 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3582 {
3583 struct bpf_map_def *def = &map->def;
3584 __u32 key_type_id = 0, value_type_id = 0;
3585 int ret;
3586
3587 /* if it's BTF-defined map, we don't need to search for type IDs.
3588 * For struct_ops map, it does not need btf_key_type_id and
3589 * btf_value_type_id.
3590 */
3591 if (map->sec_idx == obj->efile.btf_maps_shndx ||
3592 bpf_map__is_struct_ops(map))
3593 return 0;
3594
3595 if (!bpf_map__is_internal(map)) {
3596 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3597 def->value_size, &key_type_id,
3598 &value_type_id);
3599 } else {
3600 /*
3601 * LLVM annotates global data differently in BTF, that is,
3602 * only as '.data', '.bss' or '.rodata'.
3603 */
3604 ret = btf__find_by_name(obj->btf,
3605 libbpf_type_to_btf_name[map->libbpf_type]);
3606 }
3607 if (ret < 0)
3608 return ret;
3609
3610 map->btf_key_type_id = key_type_id;
3611 map->btf_value_type_id = bpf_map__is_internal(map) ?
3612 ret : value_type_id;
3613 return 0;
3614 }
3615
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)3616 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
3617 {
3618 char file[PATH_MAX], buff[4096];
3619 FILE *fp;
3620 __u32 val;
3621 int err;
3622
3623 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
3624 memset(info, 0, sizeof(*info));
3625
3626 fp = fopen(file, "r");
3627 if (!fp) {
3628 err = -errno;
3629 pr_warn("failed to open %s: %d. No procfs support?\n", file,
3630 err);
3631 return err;
3632 }
3633
3634 while (fgets(buff, sizeof(buff), fp)) {
3635 if (sscanf(buff, "map_type:\t%u", &val) == 1)
3636 info->type = val;
3637 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
3638 info->key_size = val;
3639 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
3640 info->value_size = val;
3641 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
3642 info->max_entries = val;
3643 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
3644 info->map_flags = val;
3645 }
3646
3647 fclose(fp);
3648
3649 return 0;
3650 }
3651
bpf_map__reuse_fd(struct bpf_map * map,int fd)3652 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3653 {
3654 struct bpf_map_info info = {};
3655 __u32 len = sizeof(info), name_len;
3656 int new_fd, err;
3657 char *new_name;
3658
3659 err = bpf_obj_get_info_by_fd(fd, &info, &len);
3660 if (err && errno == EINVAL)
3661 err = bpf_get_map_info_from_fdinfo(fd, &info);
3662 if (err)
3663 return err;
3664
3665 name_len = strlen(info.name);
3666 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
3667 new_name = strdup(map->name);
3668 else
3669 new_name = strdup(info.name);
3670
3671 if (!new_name)
3672 return -errno;
3673
3674 new_fd = open("/", O_RDONLY | O_CLOEXEC);
3675 if (new_fd < 0) {
3676 err = -errno;
3677 goto err_free_new_name;
3678 }
3679
3680 new_fd = dup3(fd, new_fd, O_CLOEXEC);
3681 if (new_fd < 0) {
3682 err = -errno;
3683 goto err_close_new_fd;
3684 }
3685
3686 err = zclose(map->fd);
3687 if (err) {
3688 err = -errno;
3689 goto err_close_new_fd;
3690 }
3691 free(map->name);
3692
3693 map->fd = new_fd;
3694 map->name = new_name;
3695 map->def.type = info.type;
3696 map->def.key_size = info.key_size;
3697 map->def.value_size = info.value_size;
3698 map->def.max_entries = info.max_entries;
3699 map->def.map_flags = info.map_flags;
3700 map->btf_key_type_id = info.btf_key_type_id;
3701 map->btf_value_type_id = info.btf_value_type_id;
3702 map->reused = true;
3703
3704 return 0;
3705
3706 err_close_new_fd:
3707 close(new_fd);
3708 err_free_new_name:
3709 free(new_name);
3710 return err;
3711 }
3712
bpf_map__max_entries(const struct bpf_map * map)3713 __u32 bpf_map__max_entries(const struct bpf_map *map)
3714 {
3715 return map->def.max_entries;
3716 }
3717
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)3718 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3719 {
3720 if (map->fd >= 0)
3721 return -EBUSY;
3722 map->def.max_entries = max_entries;
3723 return 0;
3724 }
3725
bpf_map__resize(struct bpf_map * map,__u32 max_entries)3726 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3727 {
3728 if (!map || !max_entries)
3729 return -EINVAL;
3730
3731 return bpf_map__set_max_entries(map, max_entries);
3732 }
3733
3734 static int
bpf_object__probe_loading(struct bpf_object * obj)3735 bpf_object__probe_loading(struct bpf_object *obj)
3736 {
3737 struct bpf_load_program_attr attr;
3738 char *cp, errmsg[STRERR_BUFSIZE];
3739 struct bpf_insn insns[] = {
3740 BPF_MOV64_IMM(BPF_REG_0, 0),
3741 BPF_EXIT_INSN(),
3742 };
3743 int ret;
3744
3745 /* make sure basic loading works */
3746
3747 memset(&attr, 0, sizeof(attr));
3748 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3749 attr.insns = insns;
3750 attr.insns_cnt = ARRAY_SIZE(insns);
3751 attr.license = "GPL";
3752
3753 ret = bpf_load_program_xattr(&attr, NULL, 0);
3754 if (ret < 0) {
3755 ret = errno;
3756 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3757 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3758 "program. Make sure your kernel supports BPF "
3759 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3760 "set to big enough value.\n", __func__, cp, ret);
3761 return -ret;
3762 }
3763 close(ret);
3764
3765 return 0;
3766 }
3767
probe_fd(int fd)3768 static int probe_fd(int fd)
3769 {
3770 if (fd >= 0)
3771 close(fd);
3772 return fd >= 0;
3773 }
3774
probe_kern_prog_name(void)3775 static int probe_kern_prog_name(void)
3776 {
3777 struct bpf_load_program_attr attr;
3778 struct bpf_insn insns[] = {
3779 BPF_MOV64_IMM(BPF_REG_0, 0),
3780 BPF_EXIT_INSN(),
3781 };
3782 int ret;
3783
3784 /* make sure loading with name works */
3785
3786 memset(&attr, 0, sizeof(attr));
3787 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3788 attr.insns = insns;
3789 attr.insns_cnt = ARRAY_SIZE(insns);
3790 attr.license = "GPL";
3791 attr.name = "test";
3792 ret = bpf_load_program_xattr(&attr, NULL, 0);
3793 return probe_fd(ret);
3794 }
3795
probe_kern_global_data(void)3796 static int probe_kern_global_data(void)
3797 {
3798 struct bpf_load_program_attr prg_attr;
3799 struct bpf_create_map_attr map_attr;
3800 char *cp, errmsg[STRERR_BUFSIZE];
3801 struct bpf_insn insns[] = {
3802 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3803 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3804 BPF_MOV64_IMM(BPF_REG_0, 0),
3805 BPF_EXIT_INSN(),
3806 };
3807 int ret, map;
3808
3809 memset(&map_attr, 0, sizeof(map_attr));
3810 map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3811 map_attr.key_size = sizeof(int);
3812 map_attr.value_size = 32;
3813 map_attr.max_entries = 1;
3814
3815 map = bpf_create_map_xattr(&map_attr);
3816 if (map < 0) {
3817 ret = -errno;
3818 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3819 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3820 __func__, cp, -ret);
3821 return ret;
3822 }
3823
3824 insns[0].imm = map;
3825
3826 memset(&prg_attr, 0, sizeof(prg_attr));
3827 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3828 prg_attr.insns = insns;
3829 prg_attr.insns_cnt = ARRAY_SIZE(insns);
3830 prg_attr.license = "GPL";
3831
3832 ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3833 close(map);
3834 return probe_fd(ret);
3835 }
3836
probe_kern_btf(void)3837 static int probe_kern_btf(void)
3838 {
3839 static const char strs[] = "\0int";
3840 __u32 types[] = {
3841 /* int */
3842 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3843 };
3844
3845 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3846 strs, sizeof(strs)));
3847 }
3848
probe_kern_btf_func(void)3849 static int probe_kern_btf_func(void)
3850 {
3851 static const char strs[] = "\0int\0x\0a";
3852 /* void x(int a) {} */
3853 __u32 types[] = {
3854 /* int */
3855 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
3856 /* FUNC_PROTO */ /* [2] */
3857 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3858 BTF_PARAM_ENC(7, 1),
3859 /* FUNC x */ /* [3] */
3860 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3861 };
3862
3863 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3864 strs, sizeof(strs)));
3865 }
3866
probe_kern_btf_func_global(void)3867 static int probe_kern_btf_func_global(void)
3868 {
3869 static const char strs[] = "\0int\0x\0a";
3870 /* static void x(int a) {} */
3871 __u32 types[] = {
3872 /* int */
3873 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
3874 /* FUNC_PROTO */ /* [2] */
3875 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3876 BTF_PARAM_ENC(7, 1),
3877 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
3878 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3879 };
3880
3881 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3882 strs, sizeof(strs)));
3883 }
3884
probe_kern_btf_datasec(void)3885 static int probe_kern_btf_datasec(void)
3886 {
3887 static const char strs[] = "\0x\0.data";
3888 /* static int a; */
3889 __u32 types[] = {
3890 /* int */
3891 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
3892 /* VAR x */ /* [2] */
3893 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3894 BTF_VAR_STATIC,
3895 /* DATASEC val */ /* [3] */
3896 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3897 BTF_VAR_SECINFO_ENC(2, 0, 4),
3898 };
3899
3900 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3901 strs, sizeof(strs)));
3902 }
3903
probe_kern_array_mmap(void)3904 static int probe_kern_array_mmap(void)
3905 {
3906 struct bpf_create_map_attr attr = {
3907 .map_type = BPF_MAP_TYPE_ARRAY,
3908 .map_flags = BPF_F_MMAPABLE,
3909 .key_size = sizeof(int),
3910 .value_size = sizeof(int),
3911 .max_entries = 1,
3912 };
3913
3914 return probe_fd(bpf_create_map_xattr(&attr));
3915 }
3916
probe_kern_exp_attach_type(void)3917 static int probe_kern_exp_attach_type(void)
3918 {
3919 struct bpf_load_program_attr attr;
3920 struct bpf_insn insns[] = {
3921 BPF_MOV64_IMM(BPF_REG_0, 0),
3922 BPF_EXIT_INSN(),
3923 };
3924
3925 memset(&attr, 0, sizeof(attr));
3926 /* use any valid combination of program type and (optional)
3927 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3928 * to see if kernel supports expected_attach_type field for
3929 * BPF_PROG_LOAD command
3930 */
3931 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3932 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3933 attr.insns = insns;
3934 attr.insns_cnt = ARRAY_SIZE(insns);
3935 attr.license = "GPL";
3936
3937 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3938 }
3939
probe_kern_probe_read_kernel(void)3940 static int probe_kern_probe_read_kernel(void)
3941 {
3942 struct bpf_load_program_attr attr;
3943 struct bpf_insn insns[] = {
3944 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
3945 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
3946 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
3947 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
3948 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3949 BPF_EXIT_INSN(),
3950 };
3951
3952 memset(&attr, 0, sizeof(attr));
3953 attr.prog_type = BPF_PROG_TYPE_KPROBE;
3954 attr.insns = insns;
3955 attr.insns_cnt = ARRAY_SIZE(insns);
3956 attr.license = "GPL";
3957
3958 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3959 }
3960
probe_prog_bind_map(void)3961 static int probe_prog_bind_map(void)
3962 {
3963 struct bpf_load_program_attr prg_attr;
3964 struct bpf_create_map_attr map_attr;
3965 char *cp, errmsg[STRERR_BUFSIZE];
3966 struct bpf_insn insns[] = {
3967 BPF_MOV64_IMM(BPF_REG_0, 0),
3968 BPF_EXIT_INSN(),
3969 };
3970 int ret, map, prog;
3971
3972 memset(&map_attr, 0, sizeof(map_attr));
3973 map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3974 map_attr.key_size = sizeof(int);
3975 map_attr.value_size = 32;
3976 map_attr.max_entries = 1;
3977
3978 map = bpf_create_map_xattr(&map_attr);
3979 if (map < 0) {
3980 ret = -errno;
3981 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3982 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3983 __func__, cp, -ret);
3984 return ret;
3985 }
3986
3987 memset(&prg_attr, 0, sizeof(prg_attr));
3988 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3989 prg_attr.insns = insns;
3990 prg_attr.insns_cnt = ARRAY_SIZE(insns);
3991 prg_attr.license = "GPL";
3992
3993 prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
3994 if (prog < 0) {
3995 close(map);
3996 return 0;
3997 }
3998
3999 ret = bpf_prog_bind_map(prog, map, NULL);
4000
4001 close(map);
4002 close(prog);
4003
4004 return ret >= 0;
4005 }
4006
4007 enum kern_feature_result {
4008 FEAT_UNKNOWN = 0,
4009 FEAT_SUPPORTED = 1,
4010 FEAT_MISSING = 2,
4011 };
4012
4013 typedef int (*feature_probe_fn)(void);
4014
4015 static struct kern_feature_desc {
4016 const char *desc;
4017 feature_probe_fn probe;
4018 enum kern_feature_result res;
4019 } feature_probes[__FEAT_CNT] = {
4020 [FEAT_PROG_NAME] = {
4021 "BPF program name", probe_kern_prog_name,
4022 },
4023 [FEAT_GLOBAL_DATA] = {
4024 "global variables", probe_kern_global_data,
4025 },
4026 [FEAT_BTF] = {
4027 "minimal BTF", probe_kern_btf,
4028 },
4029 [FEAT_BTF_FUNC] = {
4030 "BTF functions", probe_kern_btf_func,
4031 },
4032 [FEAT_BTF_GLOBAL_FUNC] = {
4033 "BTF global function", probe_kern_btf_func_global,
4034 },
4035 [FEAT_BTF_DATASEC] = {
4036 "BTF data section and variable", probe_kern_btf_datasec,
4037 },
4038 [FEAT_ARRAY_MMAP] = {
4039 "ARRAY map mmap()", probe_kern_array_mmap,
4040 },
4041 [FEAT_EXP_ATTACH_TYPE] = {
4042 "BPF_PROG_LOAD expected_attach_type attribute",
4043 probe_kern_exp_attach_type,
4044 },
4045 [FEAT_PROBE_READ_KERN] = {
4046 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4047 },
4048 [FEAT_PROG_BIND_MAP] = {
4049 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4050 }
4051 };
4052
kernel_supports(enum kern_feature_id feat_id)4053 static bool kernel_supports(enum kern_feature_id feat_id)
4054 {
4055 struct kern_feature_desc *feat = &feature_probes[feat_id];
4056 int ret;
4057
4058 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4059 ret = feat->probe();
4060 if (ret > 0) {
4061 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4062 } else if (ret == 0) {
4063 WRITE_ONCE(feat->res, FEAT_MISSING);
4064 } else {
4065 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4066 WRITE_ONCE(feat->res, FEAT_MISSING);
4067 }
4068 }
4069
4070 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4071 }
4072
map_is_reuse_compat(const struct bpf_map * map,int map_fd)4073 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4074 {
4075 struct bpf_map_info map_info = {};
4076 char msg[STRERR_BUFSIZE];
4077 __u32 map_info_len;
4078 int err;
4079
4080 map_info_len = sizeof(map_info);
4081
4082 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len);
4083 if (err && errno == EINVAL)
4084 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4085 if (err) {
4086 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4087 libbpf_strerror_r(errno, msg, sizeof(msg)));
4088 return false;
4089 }
4090
4091 return (map_info.type == map->def.type &&
4092 map_info.key_size == map->def.key_size &&
4093 map_info.value_size == map->def.value_size &&
4094 map_info.max_entries == map->def.max_entries &&
4095 map_info.map_flags == map->def.map_flags);
4096 }
4097
4098 static int
bpf_object__reuse_map(struct bpf_map * map)4099 bpf_object__reuse_map(struct bpf_map *map)
4100 {
4101 char *cp, errmsg[STRERR_BUFSIZE];
4102 int err, pin_fd;
4103
4104 pin_fd = bpf_obj_get(map->pin_path);
4105 if (pin_fd < 0) {
4106 err = -errno;
4107 if (err == -ENOENT) {
4108 pr_debug("found no pinned map to reuse at '%s'\n",
4109 map->pin_path);
4110 return 0;
4111 }
4112
4113 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4114 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4115 map->pin_path, cp);
4116 return err;
4117 }
4118
4119 if (!map_is_reuse_compat(map, pin_fd)) {
4120 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4121 map->pin_path);
4122 close(pin_fd);
4123 return -EINVAL;
4124 }
4125
4126 err = bpf_map__reuse_fd(map, pin_fd);
4127 if (err) {
4128 close(pin_fd);
4129 return err;
4130 }
4131 map->pinned = true;
4132 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4133
4134 return 0;
4135 }
4136
4137 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)4138 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4139 {
4140 enum libbpf_map_type map_type = map->libbpf_type;
4141 char *cp, errmsg[STRERR_BUFSIZE];
4142 int err, zero = 0;
4143
4144 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4145 if (err) {
4146 err = -errno;
4147 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4148 pr_warn("Error setting initial map(%s) contents: %s\n",
4149 map->name, cp);
4150 return err;
4151 }
4152
4153 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
4154 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4155 err = bpf_map_freeze(map->fd);
4156 if (err) {
4157 err = -errno;
4158 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4159 pr_warn("Error freezing map(%s) as read-only: %s\n",
4160 map->name, cp);
4161 return err;
4162 }
4163 }
4164 return 0;
4165 }
4166
4167 static void bpf_map__destroy(struct bpf_map *map);
4168
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map)4169 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4170 {
4171 struct bpf_create_map_attr create_attr;
4172 struct bpf_map_def *def = &map->def;
4173 int err = 0;
4174
4175 memset(&create_attr, 0, sizeof(create_attr));
4176
4177 if (kernel_supports(FEAT_PROG_NAME))
4178 create_attr.name = map->name;
4179 create_attr.map_ifindex = map->map_ifindex;
4180 create_attr.map_type = def->type;
4181 create_attr.map_flags = def->map_flags;
4182 create_attr.key_size = def->key_size;
4183 create_attr.value_size = def->value_size;
4184 create_attr.numa_node = map->numa_node;
4185
4186 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4187 int nr_cpus;
4188
4189 nr_cpus = libbpf_num_possible_cpus();
4190 if (nr_cpus < 0) {
4191 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4192 map->name, nr_cpus);
4193 return nr_cpus;
4194 }
4195 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4196 create_attr.max_entries = nr_cpus;
4197 } else {
4198 create_attr.max_entries = def->max_entries;
4199 }
4200
4201 if (bpf_map__is_struct_ops(map))
4202 create_attr.btf_vmlinux_value_type_id =
4203 map->btf_vmlinux_value_type_id;
4204
4205 create_attr.btf_fd = 0;
4206 create_attr.btf_key_type_id = 0;
4207 create_attr.btf_value_type_id = 0;
4208 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4209 create_attr.btf_fd = btf__fd(obj->btf);
4210 create_attr.btf_key_type_id = map->btf_key_type_id;
4211 create_attr.btf_value_type_id = map->btf_value_type_id;
4212 }
4213
4214 if (bpf_map_type__is_map_in_map(def->type)) {
4215 if (map->inner_map) {
4216 err = bpf_object__create_map(obj, map->inner_map);
4217 if (err) {
4218 pr_warn("map '%s': failed to create inner map: %d\n",
4219 map->name, err);
4220 return err;
4221 }
4222 map->inner_map_fd = bpf_map__fd(map->inner_map);
4223 }
4224 if (map->inner_map_fd >= 0)
4225 create_attr.inner_map_fd = map->inner_map_fd;
4226 }
4227
4228 map->fd = bpf_create_map_xattr(&create_attr);
4229 if (map->fd < 0 && (create_attr.btf_key_type_id ||
4230 create_attr.btf_value_type_id)) {
4231 char *cp, errmsg[STRERR_BUFSIZE];
4232
4233 err = -errno;
4234 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4235 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4236 map->name, cp, err);
4237 create_attr.btf_fd = 0;
4238 create_attr.btf_key_type_id = 0;
4239 create_attr.btf_value_type_id = 0;
4240 map->btf_key_type_id = 0;
4241 map->btf_value_type_id = 0;
4242 map->fd = bpf_create_map_xattr(&create_attr);
4243 }
4244
4245 err = map->fd < 0 ? -errno : 0;
4246
4247 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4248 bpf_map__destroy(map->inner_map);
4249 zfree(&map->inner_map);
4250 }
4251
4252 return err;
4253 }
4254
init_map_slots(struct bpf_map * map)4255 static int init_map_slots(struct bpf_map *map)
4256 {
4257 const struct bpf_map *targ_map;
4258 unsigned int i;
4259 int fd, err;
4260
4261 for (i = 0; i < map->init_slots_sz; i++) {
4262 if (!map->init_slots[i])
4263 continue;
4264
4265 targ_map = map->init_slots[i];
4266 fd = bpf_map__fd(targ_map);
4267 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4268 if (err) {
4269 err = -errno;
4270 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4271 map->name, i, targ_map->name,
4272 fd, err);
4273 return err;
4274 }
4275 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4276 map->name, i, targ_map->name, fd);
4277 }
4278
4279 zfree(&map->init_slots);
4280 map->init_slots_sz = 0;
4281
4282 return 0;
4283 }
4284
4285 static int
bpf_object__create_maps(struct bpf_object * obj)4286 bpf_object__create_maps(struct bpf_object *obj)
4287 {
4288 struct bpf_map *map;
4289 char *cp, errmsg[STRERR_BUFSIZE];
4290 unsigned int i, j;
4291 int err;
4292 bool retried;
4293
4294 for (i = 0; i < obj->nr_maps; i++) {
4295 map = &obj->maps[i];
4296
4297 retried = false;
4298 retry:
4299 if (map->pin_path) {
4300 err = bpf_object__reuse_map(map);
4301 if (err) {
4302 pr_warn("map '%s': error reusing pinned map\n",
4303 map->name);
4304 goto err_out;
4305 }
4306 if (retried && map->fd < 0) {
4307 pr_warn("map '%s': cannot find pinned map\n",
4308 map->name);
4309 err = -ENOENT;
4310 goto err_out;
4311 }
4312 }
4313
4314 if (map->fd >= 0) {
4315 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4316 map->name, map->fd);
4317 } else {
4318 err = bpf_object__create_map(obj, map);
4319 if (err)
4320 goto err_out;
4321
4322 pr_debug("map '%s': created successfully, fd=%d\n",
4323 map->name, map->fd);
4324
4325 if (bpf_map__is_internal(map)) {
4326 err = bpf_object__populate_internal_map(obj, map);
4327 if (err < 0) {
4328 zclose(map->fd);
4329 goto err_out;
4330 }
4331 }
4332
4333 if (map->init_slots_sz) {
4334 err = init_map_slots(map);
4335 if (err < 0) {
4336 zclose(map->fd);
4337 goto err_out;
4338 }
4339 }
4340 }
4341
4342 if (map->pin_path && !map->pinned) {
4343 err = bpf_map__pin(map, NULL);
4344 if (err) {
4345 zclose(map->fd);
4346 if (!retried && err == -EEXIST) {
4347 retried = true;
4348 goto retry;
4349 }
4350 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4351 map->name, map->pin_path, err);
4352 goto err_out;
4353 }
4354 }
4355 }
4356
4357 return 0;
4358
4359 err_out:
4360 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4361 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4362 pr_perm_msg(err);
4363 for (j = 0; j < i; j++)
4364 zclose(obj->maps[j].fd);
4365 return err;
4366 }
4367
4368 #define BPF_CORE_SPEC_MAX_LEN 64
4369
4370 /* represents BPF CO-RE field or array element accessor */
4371 struct bpf_core_accessor {
4372 __u32 type_id; /* struct/union type or array element type */
4373 __u32 idx; /* field index or array index */
4374 const char *name; /* field name or NULL for array accessor */
4375 };
4376
4377 struct bpf_core_spec {
4378 const struct btf *btf;
4379 /* high-level spec: named fields and array indices only */
4380 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4381 /* original unresolved (no skip_mods_or_typedefs) root type ID */
4382 __u32 root_type_id;
4383 /* CO-RE relocation kind */
4384 enum bpf_core_relo_kind relo_kind;
4385 /* high-level spec length */
4386 int len;
4387 /* raw, low-level spec: 1-to-1 with accessor spec string */
4388 int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4389 /* raw spec length */
4390 int raw_len;
4391 /* field bit offset represented by spec */
4392 __u32 bit_offset;
4393 };
4394
str_is_empty(const char * s)4395 static bool str_is_empty(const char *s)
4396 {
4397 return !s || !s[0];
4398 }
4399
is_flex_arr(const struct btf * btf,const struct bpf_core_accessor * acc,const struct btf_array * arr)4400 static bool is_flex_arr(const struct btf *btf,
4401 const struct bpf_core_accessor *acc,
4402 const struct btf_array *arr)
4403 {
4404 const struct btf_type *t;
4405
4406 /* not a flexible array, if not inside a struct or has non-zero size */
4407 if (!acc->name || arr->nelems > 0)
4408 return false;
4409
4410 /* has to be the last member of enclosing struct */
4411 t = btf__type_by_id(btf, acc->type_id);
4412 return acc->idx == btf_vlen(t) - 1;
4413 }
4414
core_relo_kind_str(enum bpf_core_relo_kind kind)4415 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4416 {
4417 switch (kind) {
4418 case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4419 case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4420 case BPF_FIELD_EXISTS: return "field_exists";
4421 case BPF_FIELD_SIGNED: return "signed";
4422 case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4423 case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4424 case BPF_TYPE_ID_LOCAL: return "local_type_id";
4425 case BPF_TYPE_ID_TARGET: return "target_type_id";
4426 case BPF_TYPE_EXISTS: return "type_exists";
4427 case BPF_TYPE_SIZE: return "type_size";
4428 case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4429 case BPF_ENUMVAL_VALUE: return "enumval_value";
4430 default: return "unknown";
4431 }
4432 }
4433
core_relo_is_field_based(enum bpf_core_relo_kind kind)4434 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4435 {
4436 switch (kind) {
4437 case BPF_FIELD_BYTE_OFFSET:
4438 case BPF_FIELD_BYTE_SIZE:
4439 case BPF_FIELD_EXISTS:
4440 case BPF_FIELD_SIGNED:
4441 case BPF_FIELD_LSHIFT_U64:
4442 case BPF_FIELD_RSHIFT_U64:
4443 return true;
4444 default:
4445 return false;
4446 }
4447 }
4448
core_relo_is_type_based(enum bpf_core_relo_kind kind)4449 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4450 {
4451 switch (kind) {
4452 case BPF_TYPE_ID_LOCAL:
4453 case BPF_TYPE_ID_TARGET:
4454 case BPF_TYPE_EXISTS:
4455 case BPF_TYPE_SIZE:
4456 return true;
4457 default:
4458 return false;
4459 }
4460 }
4461
core_relo_is_enumval_based(enum bpf_core_relo_kind kind)4462 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4463 {
4464 switch (kind) {
4465 case BPF_ENUMVAL_EXISTS:
4466 case BPF_ENUMVAL_VALUE:
4467 return true;
4468 default:
4469 return false;
4470 }
4471 }
4472
4473 /*
4474 * Turn bpf_core_relo into a low- and high-level spec representation,
4475 * validating correctness along the way, as well as calculating resulting
4476 * field bit offset, specified by accessor string. Low-level spec captures
4477 * every single level of nestedness, including traversing anonymous
4478 * struct/union members. High-level one only captures semantically meaningful
4479 * "turning points": named fields and array indicies.
4480 * E.g., for this case:
4481 *
4482 * struct sample {
4483 * int __unimportant;
4484 * struct {
4485 * int __1;
4486 * int __2;
4487 * int a[7];
4488 * };
4489 * };
4490 *
4491 * struct sample *s = ...;
4492 *
4493 * int x = &s->a[3]; // access string = '0:1:2:3'
4494 *
4495 * Low-level spec has 1:1 mapping with each element of access string (it's
4496 * just a parsed access string representation): [0, 1, 2, 3].
4497 *
4498 * High-level spec will capture only 3 points:
4499 * - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4500 * - field 'a' access (corresponds to '2' in low-level spec);
4501 * - array element #3 access (corresponds to '3' in low-level spec).
4502 *
4503 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4504 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4505 * spec and raw_spec are kept empty.
4506 *
4507 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4508 * string to specify enumerator's value index that need to be relocated.
4509 */
bpf_core_parse_spec(const struct btf * btf,__u32 type_id,const char * spec_str,enum bpf_core_relo_kind relo_kind,struct bpf_core_spec * spec)4510 static int bpf_core_parse_spec(const struct btf *btf,
4511 __u32 type_id,
4512 const char *spec_str,
4513 enum bpf_core_relo_kind relo_kind,
4514 struct bpf_core_spec *spec)
4515 {
4516 int access_idx, parsed_len, i;
4517 struct bpf_core_accessor *acc;
4518 const struct btf_type *t;
4519 const char *name;
4520 __u32 id;
4521 __s64 sz;
4522
4523 if (str_is_empty(spec_str) || *spec_str == ':')
4524 return -EINVAL;
4525
4526 memset(spec, 0, sizeof(*spec));
4527 spec->btf = btf;
4528 spec->root_type_id = type_id;
4529 spec->relo_kind = relo_kind;
4530
4531 /* type-based relocations don't have a field access string */
4532 if (core_relo_is_type_based(relo_kind)) {
4533 if (strcmp(spec_str, "0"))
4534 return -EINVAL;
4535 return 0;
4536 }
4537
4538 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4539 while (*spec_str) {
4540 if (*spec_str == ':')
4541 ++spec_str;
4542 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4543 return -EINVAL;
4544 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4545 return -E2BIG;
4546 spec_str += parsed_len;
4547 spec->raw_spec[spec->raw_len++] = access_idx;
4548 }
4549
4550 if (spec->raw_len == 0)
4551 return -EINVAL;
4552
4553 t = skip_mods_and_typedefs(btf, type_id, &id);
4554 if (!t)
4555 return -EINVAL;
4556
4557 access_idx = spec->raw_spec[0];
4558 acc = &spec->spec[0];
4559 acc->type_id = id;
4560 acc->idx = access_idx;
4561 spec->len++;
4562
4563 if (core_relo_is_enumval_based(relo_kind)) {
4564 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4565 return -EINVAL;
4566
4567 /* record enumerator name in a first accessor */
4568 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4569 return 0;
4570 }
4571
4572 if (!core_relo_is_field_based(relo_kind))
4573 return -EINVAL;
4574
4575 sz = btf__resolve_size(btf, id);
4576 if (sz < 0)
4577 return sz;
4578 spec->bit_offset = access_idx * sz * 8;
4579
4580 for (i = 1; i < spec->raw_len; i++) {
4581 t = skip_mods_and_typedefs(btf, id, &id);
4582 if (!t)
4583 return -EINVAL;
4584
4585 access_idx = spec->raw_spec[i];
4586 acc = &spec->spec[spec->len];
4587
4588 if (btf_is_composite(t)) {
4589 const struct btf_member *m;
4590 __u32 bit_offset;
4591
4592 if (access_idx >= btf_vlen(t))
4593 return -EINVAL;
4594
4595 bit_offset = btf_member_bit_offset(t, access_idx);
4596 spec->bit_offset += bit_offset;
4597
4598 m = btf_members(t) + access_idx;
4599 if (m->name_off) {
4600 name = btf__name_by_offset(btf, m->name_off);
4601 if (str_is_empty(name))
4602 return -EINVAL;
4603
4604 acc->type_id = id;
4605 acc->idx = access_idx;
4606 acc->name = name;
4607 spec->len++;
4608 }
4609
4610 id = m->type;
4611 } else if (btf_is_array(t)) {
4612 const struct btf_array *a = btf_array(t);
4613 bool flex;
4614
4615 t = skip_mods_and_typedefs(btf, a->type, &id);
4616 if (!t)
4617 return -EINVAL;
4618
4619 flex = is_flex_arr(btf, acc - 1, a);
4620 if (!flex && access_idx >= a->nelems)
4621 return -EINVAL;
4622
4623 spec->spec[spec->len].type_id = id;
4624 spec->spec[spec->len].idx = access_idx;
4625 spec->len++;
4626
4627 sz = btf__resolve_size(btf, id);
4628 if (sz < 0)
4629 return sz;
4630 spec->bit_offset += access_idx * sz * 8;
4631 } else {
4632 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4633 type_id, spec_str, i, id, btf_kind_str(t));
4634 return -EINVAL;
4635 }
4636 }
4637
4638 return 0;
4639 }
4640
bpf_core_is_flavor_sep(const char * s)4641 static bool bpf_core_is_flavor_sep(const char *s)
4642 {
4643 /* check X___Y name pattern, where X and Y are not underscores */
4644 return s[0] != '_' && /* X */
4645 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
4646 s[4] != '_'; /* Y */
4647 }
4648
4649 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4650 * before last triple underscore. Struct name part after last triple
4651 * underscore is ignored by BPF CO-RE relocation during relocation matching.
4652 */
bpf_core_essential_name_len(const char * name)4653 static size_t bpf_core_essential_name_len(const char *name)
4654 {
4655 size_t n = strlen(name);
4656 int i;
4657
4658 for (i = n - 5; i >= 0; i--) {
4659 if (bpf_core_is_flavor_sep(name + i))
4660 return i + 1;
4661 }
4662 return n;
4663 }
4664
4665 /* dynamically sized list of type IDs */
4666 struct ids_vec {
4667 __u32 *data;
4668 int len;
4669 };
4670
bpf_core_free_cands(struct ids_vec * cand_ids)4671 static void bpf_core_free_cands(struct ids_vec *cand_ids)
4672 {
4673 free(cand_ids->data);
4674 free(cand_ids);
4675 }
4676
bpf_core_find_cands(const struct btf * local_btf,__u32 local_type_id,const struct btf * targ_btf)4677 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf,
4678 __u32 local_type_id,
4679 const struct btf *targ_btf)
4680 {
4681 size_t local_essent_len, targ_essent_len;
4682 const char *local_name, *targ_name;
4683 const struct btf_type *t, *local_t;
4684 struct ids_vec *cand_ids;
4685 __u32 *new_ids;
4686 int i, err, n;
4687
4688 local_t = btf__type_by_id(local_btf, local_type_id);
4689 if (!local_t)
4690 return ERR_PTR(-EINVAL);
4691
4692 local_name = btf__name_by_offset(local_btf, local_t->name_off);
4693 if (str_is_empty(local_name))
4694 return ERR_PTR(-EINVAL);
4695 local_essent_len = bpf_core_essential_name_len(local_name);
4696
4697 cand_ids = calloc(1, sizeof(*cand_ids));
4698 if (!cand_ids)
4699 return ERR_PTR(-ENOMEM);
4700
4701 n = btf__get_nr_types(targ_btf);
4702 for (i = 1; i <= n; i++) {
4703 t = btf__type_by_id(targ_btf, i);
4704 if (btf_kind(t) != btf_kind(local_t))
4705 continue;
4706
4707 targ_name = btf__name_by_offset(targ_btf, t->name_off);
4708 if (str_is_empty(targ_name))
4709 continue;
4710
4711 targ_essent_len = bpf_core_essential_name_len(targ_name);
4712 if (targ_essent_len != local_essent_len)
4713 continue;
4714
4715 if (strncmp(local_name, targ_name, local_essent_len) == 0) {
4716 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s\n",
4717 local_type_id, btf_kind_str(local_t),
4718 local_name, i, btf_kind_str(t), targ_name);
4719 new_ids = libbpf_reallocarray(cand_ids->data,
4720 cand_ids->len + 1,
4721 sizeof(*cand_ids->data));
4722 if (!new_ids) {
4723 err = -ENOMEM;
4724 goto err_out;
4725 }
4726 cand_ids->data = new_ids;
4727 cand_ids->data[cand_ids->len++] = i;
4728 }
4729 }
4730 return cand_ids;
4731 err_out:
4732 bpf_core_free_cands(cand_ids);
4733 return ERR_PTR(err);
4734 }
4735
4736 /* Check two types for compatibility for the purpose of field access
4737 * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4738 * are relocating semantically compatible entities:
4739 * - any two STRUCTs/UNIONs are compatible and can be mixed;
4740 * - any two FWDs are compatible, if their names match (modulo flavor suffix);
4741 * - any two PTRs are always compatible;
4742 * - for ENUMs, names should be the same (ignoring flavor suffix) or at
4743 * least one of enums should be anonymous;
4744 * - for ENUMs, check sizes, names are ignored;
4745 * - for INT, size and signedness are ignored;
4746 * - for ARRAY, dimensionality is ignored, element types are checked for
4747 * compatibility recursively;
4748 * - everything else shouldn't be ever a target of relocation.
4749 * These rules are not set in stone and probably will be adjusted as we get
4750 * more experience with using BPF CO-RE relocations.
4751 */
bpf_core_fields_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)4752 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4753 __u32 local_id,
4754 const struct btf *targ_btf,
4755 __u32 targ_id)
4756 {
4757 const struct btf_type *local_type, *targ_type;
4758
4759 recur:
4760 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4761 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4762 if (!local_type || !targ_type)
4763 return -EINVAL;
4764
4765 if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4766 return 1;
4767 if (btf_kind(local_type) != btf_kind(targ_type))
4768 return 0;
4769
4770 switch (btf_kind(local_type)) {
4771 case BTF_KIND_PTR:
4772 return 1;
4773 case BTF_KIND_FWD:
4774 case BTF_KIND_ENUM: {
4775 const char *local_name, *targ_name;
4776 size_t local_len, targ_len;
4777
4778 local_name = btf__name_by_offset(local_btf,
4779 local_type->name_off);
4780 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4781 local_len = bpf_core_essential_name_len(local_name);
4782 targ_len = bpf_core_essential_name_len(targ_name);
4783 /* one of them is anonymous or both w/ same flavor-less names */
4784 return local_len == 0 || targ_len == 0 ||
4785 (local_len == targ_len &&
4786 strncmp(local_name, targ_name, local_len) == 0);
4787 }
4788 case BTF_KIND_INT:
4789 /* just reject deprecated bitfield-like integers; all other
4790 * integers are by default compatible between each other
4791 */
4792 return btf_int_offset(local_type) == 0 &&
4793 btf_int_offset(targ_type) == 0;
4794 case BTF_KIND_ARRAY:
4795 local_id = btf_array(local_type)->type;
4796 targ_id = btf_array(targ_type)->type;
4797 goto recur;
4798 default:
4799 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
4800 btf_kind(local_type), local_id, targ_id);
4801 return 0;
4802 }
4803 }
4804
4805 /*
4806 * Given single high-level named field accessor in local type, find
4807 * corresponding high-level accessor for a target type. Along the way,
4808 * maintain low-level spec for target as well. Also keep updating target
4809 * bit offset.
4810 *
4811 * Searching is performed through recursive exhaustive enumeration of all
4812 * fields of a struct/union. If there are any anonymous (embedded)
4813 * structs/unions, they are recursively searched as well. If field with
4814 * desired name is found, check compatibility between local and target types,
4815 * before returning result.
4816 *
4817 * 1 is returned, if field is found.
4818 * 0 is returned if no compatible field is found.
4819 * <0 is returned on error.
4820 */
bpf_core_match_member(const struct btf * local_btf,const struct bpf_core_accessor * local_acc,const struct btf * targ_btf,__u32 targ_id,struct bpf_core_spec * spec,__u32 * next_targ_id)4821 static int bpf_core_match_member(const struct btf *local_btf,
4822 const struct bpf_core_accessor *local_acc,
4823 const struct btf *targ_btf,
4824 __u32 targ_id,
4825 struct bpf_core_spec *spec,
4826 __u32 *next_targ_id)
4827 {
4828 const struct btf_type *local_type, *targ_type;
4829 const struct btf_member *local_member, *m;
4830 const char *local_name, *targ_name;
4831 __u32 local_id;
4832 int i, n, found;
4833
4834 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4835 if (!targ_type)
4836 return -EINVAL;
4837 if (!btf_is_composite(targ_type))
4838 return 0;
4839
4840 local_id = local_acc->type_id;
4841 local_type = btf__type_by_id(local_btf, local_id);
4842 local_member = btf_members(local_type) + local_acc->idx;
4843 local_name = btf__name_by_offset(local_btf, local_member->name_off);
4844
4845 n = btf_vlen(targ_type);
4846 m = btf_members(targ_type);
4847 for (i = 0; i < n; i++, m++) {
4848 __u32 bit_offset;
4849
4850 bit_offset = btf_member_bit_offset(targ_type, i);
4851
4852 /* too deep struct/union/array nesting */
4853 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4854 return -E2BIG;
4855
4856 /* speculate this member will be the good one */
4857 spec->bit_offset += bit_offset;
4858 spec->raw_spec[spec->raw_len++] = i;
4859
4860 targ_name = btf__name_by_offset(targ_btf, m->name_off);
4861 if (str_is_empty(targ_name)) {
4862 /* embedded struct/union, we need to go deeper */
4863 found = bpf_core_match_member(local_btf, local_acc,
4864 targ_btf, m->type,
4865 spec, next_targ_id);
4866 if (found) /* either found or error */
4867 return found;
4868 } else if (strcmp(local_name, targ_name) == 0) {
4869 /* matching named field */
4870 struct bpf_core_accessor *targ_acc;
4871
4872 targ_acc = &spec->spec[spec->len++];
4873 targ_acc->type_id = targ_id;
4874 targ_acc->idx = i;
4875 targ_acc->name = targ_name;
4876
4877 *next_targ_id = m->type;
4878 found = bpf_core_fields_are_compat(local_btf,
4879 local_member->type,
4880 targ_btf, m->type);
4881 if (!found)
4882 spec->len--; /* pop accessor */
4883 return found;
4884 }
4885 /* member turned out not to be what we looked for */
4886 spec->bit_offset -= bit_offset;
4887 spec->raw_len--;
4888 }
4889
4890 return 0;
4891 }
4892
4893 /* Check local and target types for compatibility. This check is used for
4894 * type-based CO-RE relocations and follow slightly different rules than
4895 * field-based relocations. This function assumes that root types were already
4896 * checked for name match. Beyond that initial root-level name check, names
4897 * are completely ignored. Compatibility rules are as follows:
4898 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
4899 * kind should match for local and target types (i.e., STRUCT is not
4900 * compatible with UNION);
4901 * - for ENUMs, the size is ignored;
4902 * - for INT, size and signedness are ignored;
4903 * - for ARRAY, dimensionality is ignored, element types are checked for
4904 * compatibility recursively;
4905 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
4906 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
4907 * - FUNC_PROTOs are compatible if they have compatible signature: same
4908 * number of input args and compatible return and argument types.
4909 * These rules are not set in stone and probably will be adjusted as we get
4910 * more experience with using BPF CO-RE relocations.
4911 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)4912 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
4913 const struct btf *targ_btf, __u32 targ_id)
4914 {
4915 const struct btf_type *local_type, *targ_type;
4916 int depth = 32; /* max recursion depth */
4917
4918 /* caller made sure that names match (ignoring flavor suffix) */
4919 local_type = btf__type_by_id(local_btf, local_id);
4920 targ_type = btf__type_by_id(targ_btf, targ_id);
4921 if (btf_kind(local_type) != btf_kind(targ_type))
4922 return 0;
4923
4924 recur:
4925 depth--;
4926 if (depth < 0)
4927 return -EINVAL;
4928
4929 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4930 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4931 if (!local_type || !targ_type)
4932 return -EINVAL;
4933
4934 if (btf_kind(local_type) != btf_kind(targ_type))
4935 return 0;
4936
4937 switch (btf_kind(local_type)) {
4938 case BTF_KIND_UNKN:
4939 case BTF_KIND_STRUCT:
4940 case BTF_KIND_UNION:
4941 case BTF_KIND_ENUM:
4942 case BTF_KIND_FWD:
4943 return 1;
4944 case BTF_KIND_INT:
4945 /* just reject deprecated bitfield-like integers; all other
4946 * integers are by default compatible between each other
4947 */
4948 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
4949 case BTF_KIND_PTR:
4950 local_id = local_type->type;
4951 targ_id = targ_type->type;
4952 goto recur;
4953 case BTF_KIND_ARRAY:
4954 local_id = btf_array(local_type)->type;
4955 targ_id = btf_array(targ_type)->type;
4956 goto recur;
4957 case BTF_KIND_FUNC_PROTO: {
4958 struct btf_param *local_p = btf_params(local_type);
4959 struct btf_param *targ_p = btf_params(targ_type);
4960 __u16 local_vlen = btf_vlen(local_type);
4961 __u16 targ_vlen = btf_vlen(targ_type);
4962 int i, err;
4963
4964 if (local_vlen != targ_vlen)
4965 return 0;
4966
4967 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
4968 skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
4969 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
4970 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
4971 if (err <= 0)
4972 return err;
4973 }
4974
4975 /* tail recurse for return type check */
4976 skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
4977 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
4978 goto recur;
4979 }
4980 default:
4981 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
4982 btf_kind_str(local_type), local_id, targ_id);
4983 return 0;
4984 }
4985 }
4986
4987 /*
4988 * Try to match local spec to a target type and, if successful, produce full
4989 * target spec (high-level, low-level + bit offset).
4990 */
bpf_core_spec_match(struct bpf_core_spec * local_spec,const struct btf * targ_btf,__u32 targ_id,struct bpf_core_spec * targ_spec)4991 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
4992 const struct btf *targ_btf, __u32 targ_id,
4993 struct bpf_core_spec *targ_spec)
4994 {
4995 const struct btf_type *targ_type;
4996 const struct bpf_core_accessor *local_acc;
4997 struct bpf_core_accessor *targ_acc;
4998 int i, sz, matched;
4999
5000 memset(targ_spec, 0, sizeof(*targ_spec));
5001 targ_spec->btf = targ_btf;
5002 targ_spec->root_type_id = targ_id;
5003 targ_spec->relo_kind = local_spec->relo_kind;
5004
5005 if (core_relo_is_type_based(local_spec->relo_kind)) {
5006 return bpf_core_types_are_compat(local_spec->btf,
5007 local_spec->root_type_id,
5008 targ_btf, targ_id);
5009 }
5010
5011 local_acc = &local_spec->spec[0];
5012 targ_acc = &targ_spec->spec[0];
5013
5014 if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5015 size_t local_essent_len, targ_essent_len;
5016 const struct btf_enum *e;
5017 const char *targ_name;
5018
5019 /* has to resolve to an enum */
5020 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5021 if (!btf_is_enum(targ_type))
5022 return 0;
5023
5024 local_essent_len = bpf_core_essential_name_len(local_acc->name);
5025
5026 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5027 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5028 targ_essent_len = bpf_core_essential_name_len(targ_name);
5029 if (targ_essent_len != local_essent_len)
5030 continue;
5031 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5032 targ_acc->type_id = targ_id;
5033 targ_acc->idx = i;
5034 targ_acc->name = targ_name;
5035 targ_spec->len++;
5036 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5037 targ_spec->raw_len++;
5038 return 1;
5039 }
5040 }
5041 return 0;
5042 }
5043
5044 if (!core_relo_is_field_based(local_spec->relo_kind))
5045 return -EINVAL;
5046
5047 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5048 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5049 &targ_id);
5050 if (!targ_type)
5051 return -EINVAL;
5052
5053 if (local_acc->name) {
5054 matched = bpf_core_match_member(local_spec->btf,
5055 local_acc,
5056 targ_btf, targ_id,
5057 targ_spec, &targ_id);
5058 if (matched <= 0)
5059 return matched;
5060 } else {
5061 /* for i=0, targ_id is already treated as array element
5062 * type (because it's the original struct), for others
5063 * we should find array element type first
5064 */
5065 if (i > 0) {
5066 const struct btf_array *a;
5067 bool flex;
5068
5069 if (!btf_is_array(targ_type))
5070 return 0;
5071
5072 a = btf_array(targ_type);
5073 flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5074 if (!flex && local_acc->idx >= a->nelems)
5075 return 0;
5076 if (!skip_mods_and_typedefs(targ_btf, a->type,
5077 &targ_id))
5078 return -EINVAL;
5079 }
5080
5081 /* too deep struct/union/array nesting */
5082 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5083 return -E2BIG;
5084
5085 targ_acc->type_id = targ_id;
5086 targ_acc->idx = local_acc->idx;
5087 targ_acc->name = NULL;
5088 targ_spec->len++;
5089 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5090 targ_spec->raw_len++;
5091
5092 sz = btf__resolve_size(targ_btf, targ_id);
5093 if (sz < 0)
5094 return sz;
5095 targ_spec->bit_offset += local_acc->idx * sz * 8;
5096 }
5097 }
5098
5099 return 1;
5100 }
5101
bpf_core_calc_field_relo(const struct bpf_program * prog,const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u32 * val,__u32 * field_sz,__u32 * type_id,bool * validate)5102 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5103 const struct bpf_core_relo *relo,
5104 const struct bpf_core_spec *spec,
5105 __u32 *val, __u32 *field_sz, __u32 *type_id,
5106 bool *validate)
5107 {
5108 const struct bpf_core_accessor *acc;
5109 const struct btf_type *t;
5110 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5111 const struct btf_member *m;
5112 const struct btf_type *mt;
5113 bool bitfield;
5114 __s64 sz;
5115
5116 *field_sz = 0;
5117
5118 if (relo->kind == BPF_FIELD_EXISTS) {
5119 *val = spec ? 1 : 0;
5120 return 0;
5121 }
5122
5123 if (!spec)
5124 return -EUCLEAN; /* request instruction poisoning */
5125
5126 acc = &spec->spec[spec->len - 1];
5127 t = btf__type_by_id(spec->btf, acc->type_id);
5128
5129 /* a[n] accessor needs special handling */
5130 if (!acc->name) {
5131 if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5132 *val = spec->bit_offset / 8;
5133 /* remember field size for load/store mem size */
5134 sz = btf__resolve_size(spec->btf, acc->type_id);
5135 if (sz < 0)
5136 return -EINVAL;
5137 *field_sz = sz;
5138 *type_id = acc->type_id;
5139 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5140 sz = btf__resolve_size(spec->btf, acc->type_id);
5141 if (sz < 0)
5142 return -EINVAL;
5143 *val = sz;
5144 } else {
5145 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5146 prog->name, relo->kind, relo->insn_off / 8);
5147 return -EINVAL;
5148 }
5149 if (validate)
5150 *validate = true;
5151 return 0;
5152 }
5153
5154 m = btf_members(t) + acc->idx;
5155 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5156 bit_off = spec->bit_offset;
5157 bit_sz = btf_member_bitfield_size(t, acc->idx);
5158
5159 bitfield = bit_sz > 0;
5160 if (bitfield) {
5161 byte_sz = mt->size;
5162 byte_off = bit_off / 8 / byte_sz * byte_sz;
5163 /* figure out smallest int size necessary for bitfield load */
5164 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5165 if (byte_sz >= 8) {
5166 /* bitfield can't be read with 64-bit read */
5167 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5168 prog->name, relo->kind, relo->insn_off / 8);
5169 return -E2BIG;
5170 }
5171 byte_sz *= 2;
5172 byte_off = bit_off / 8 / byte_sz * byte_sz;
5173 }
5174 } else {
5175 sz = btf__resolve_size(spec->btf, field_type_id);
5176 if (sz < 0)
5177 return -EINVAL;
5178 byte_sz = sz;
5179 byte_off = spec->bit_offset / 8;
5180 bit_sz = byte_sz * 8;
5181 }
5182
5183 /* for bitfields, all the relocatable aspects are ambiguous and we
5184 * might disagree with compiler, so turn off validation of expected
5185 * value, except for signedness
5186 */
5187 if (validate)
5188 *validate = !bitfield;
5189
5190 switch (relo->kind) {
5191 case BPF_FIELD_BYTE_OFFSET:
5192 *val = byte_off;
5193 if (!bitfield) {
5194 *field_sz = byte_sz;
5195 *type_id = field_type_id;
5196 }
5197 break;
5198 case BPF_FIELD_BYTE_SIZE:
5199 *val = byte_sz;
5200 break;
5201 case BPF_FIELD_SIGNED:
5202 /* enums will be assumed unsigned */
5203 *val = btf_is_enum(mt) ||
5204 (btf_int_encoding(mt) & BTF_INT_SIGNED);
5205 if (validate)
5206 *validate = true; /* signedness is never ambiguous */
5207 break;
5208 case BPF_FIELD_LSHIFT_U64:
5209 #if __BYTE_ORDER == __LITTLE_ENDIAN
5210 *val = 64 - (bit_off + bit_sz - byte_off * 8);
5211 #else
5212 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5213 #endif
5214 break;
5215 case BPF_FIELD_RSHIFT_U64:
5216 *val = 64 - bit_sz;
5217 if (validate)
5218 *validate = true; /* right shift is never ambiguous */
5219 break;
5220 case BPF_FIELD_EXISTS:
5221 default:
5222 return -EOPNOTSUPP;
5223 }
5224
5225 return 0;
5226 }
5227
bpf_core_calc_type_relo(const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u32 * val)5228 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5229 const struct bpf_core_spec *spec,
5230 __u32 *val)
5231 {
5232 __s64 sz;
5233
5234 /* type-based relos return zero when target type is not found */
5235 if (!spec) {
5236 *val = 0;
5237 return 0;
5238 }
5239
5240 switch (relo->kind) {
5241 case BPF_TYPE_ID_TARGET:
5242 *val = spec->root_type_id;
5243 break;
5244 case BPF_TYPE_EXISTS:
5245 *val = 1;
5246 break;
5247 case BPF_TYPE_SIZE:
5248 sz = btf__resolve_size(spec->btf, spec->root_type_id);
5249 if (sz < 0)
5250 return -EINVAL;
5251 *val = sz;
5252 break;
5253 case BPF_TYPE_ID_LOCAL:
5254 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5255 default:
5256 return -EOPNOTSUPP;
5257 }
5258
5259 return 0;
5260 }
5261
bpf_core_calc_enumval_relo(const struct bpf_core_relo * relo,const struct bpf_core_spec * spec,__u32 * val)5262 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5263 const struct bpf_core_spec *spec,
5264 __u32 *val)
5265 {
5266 const struct btf_type *t;
5267 const struct btf_enum *e;
5268
5269 switch (relo->kind) {
5270 case BPF_ENUMVAL_EXISTS:
5271 *val = spec ? 1 : 0;
5272 break;
5273 case BPF_ENUMVAL_VALUE:
5274 if (!spec)
5275 return -EUCLEAN; /* request instruction poisoning */
5276 t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5277 e = btf_enum(t) + spec->spec[0].idx;
5278 *val = e->val;
5279 break;
5280 default:
5281 return -EOPNOTSUPP;
5282 }
5283
5284 return 0;
5285 }
5286
5287 struct bpf_core_relo_res
5288 {
5289 /* expected value in the instruction, unless validate == false */
5290 __u32 orig_val;
5291 /* new value that needs to be patched up to */
5292 __u32 new_val;
5293 /* relocation unsuccessful, poison instruction, but don't fail load */
5294 bool poison;
5295 /* some relocations can't be validated against orig_val */
5296 bool validate;
5297 /* for field byte offset relocations or the forms:
5298 * *(T *)(rX + <off>) = rY
5299 * rX = *(T *)(rY + <off>),
5300 * we remember original and resolved field size to adjust direct
5301 * memory loads of pointers and integers; this is necessary for 32-bit
5302 * host kernel architectures, but also allows to automatically
5303 * relocate fields that were resized from, e.g., u32 to u64, etc.
5304 */
5305 bool fail_memsz_adjust;
5306 __u32 orig_sz;
5307 __u32 orig_type_id;
5308 __u32 new_sz;
5309 __u32 new_type_id;
5310 };
5311
5312 /* Calculate original and target relocation values, given local and target
5313 * specs and relocation kind. These values are calculated for each candidate.
5314 * If there are multiple candidates, resulting values should all be consistent
5315 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5316 * If instruction has to be poisoned, *poison will be set to true.
5317 */
bpf_core_calc_relo(const struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct bpf_core_spec * local_spec,const struct bpf_core_spec * targ_spec,struct bpf_core_relo_res * res)5318 static int bpf_core_calc_relo(const struct bpf_program *prog,
5319 const struct bpf_core_relo *relo,
5320 int relo_idx,
5321 const struct bpf_core_spec *local_spec,
5322 const struct bpf_core_spec *targ_spec,
5323 struct bpf_core_relo_res *res)
5324 {
5325 int err = -EOPNOTSUPP;
5326
5327 res->orig_val = 0;
5328 res->new_val = 0;
5329 res->poison = false;
5330 res->validate = true;
5331 res->fail_memsz_adjust = false;
5332 res->orig_sz = res->new_sz = 0;
5333 res->orig_type_id = res->new_type_id = 0;
5334
5335 if (core_relo_is_field_based(relo->kind)) {
5336 err = bpf_core_calc_field_relo(prog, relo, local_spec,
5337 &res->orig_val, &res->orig_sz,
5338 &res->orig_type_id, &res->validate);
5339 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5340 &res->new_val, &res->new_sz,
5341 &res->new_type_id, NULL);
5342 if (err)
5343 goto done;
5344 /* Validate if it's safe to adjust load/store memory size.
5345 * Adjustments are performed only if original and new memory
5346 * sizes differ.
5347 */
5348 res->fail_memsz_adjust = false;
5349 if (res->orig_sz != res->new_sz) {
5350 const struct btf_type *orig_t, *new_t;
5351
5352 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5353 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5354
5355 /* There are two use cases in which it's safe to
5356 * adjust load/store's mem size:
5357 * - reading a 32-bit kernel pointer, while on BPF
5358 * size pointers are always 64-bit; in this case
5359 * it's safe to "downsize" instruction size due to
5360 * pointer being treated as unsigned integer with
5361 * zero-extended upper 32-bits;
5362 * - reading unsigned integers, again due to
5363 * zero-extension is preserving the value correctly.
5364 *
5365 * In all other cases it's incorrect to attempt to
5366 * load/store field because read value will be
5367 * incorrect, so we poison relocated instruction.
5368 */
5369 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5370 goto done;
5371 if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5372 btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5373 btf_int_encoding(new_t) != BTF_INT_SIGNED)
5374 goto done;
5375
5376 /* mark as invalid mem size adjustment, but this will
5377 * only be checked for LDX/STX/ST insns
5378 */
5379 res->fail_memsz_adjust = true;
5380 }
5381 } else if (core_relo_is_type_based(relo->kind)) {
5382 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5383 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5384 } else if (core_relo_is_enumval_based(relo->kind)) {
5385 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5386 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5387 }
5388
5389 done:
5390 if (err == -EUCLEAN) {
5391 /* EUCLEAN is used to signal instruction poisoning request */
5392 res->poison = true;
5393 err = 0;
5394 } else if (err == -EOPNOTSUPP) {
5395 /* EOPNOTSUPP means unknown/unsupported relocation */
5396 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5397 prog->name, relo_idx, core_relo_kind_str(relo->kind),
5398 relo->kind, relo->insn_off / 8);
5399 }
5400
5401 return err;
5402 }
5403
5404 /*
5405 * Turn instruction for which CO_RE relocation failed into invalid one with
5406 * distinct signature.
5407 */
bpf_core_poison_insn(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn)5408 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5409 int insn_idx, struct bpf_insn *insn)
5410 {
5411 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5412 prog->name, relo_idx, insn_idx);
5413 insn->code = BPF_JMP | BPF_CALL;
5414 insn->dst_reg = 0;
5415 insn->src_reg = 0;
5416 insn->off = 0;
5417 /* if this instruction is reachable (not a dead code),
5418 * verifier will complain with the following message:
5419 * invalid func unknown#195896080
5420 */
5421 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5422 }
5423
is_ldimm64(struct bpf_insn * insn)5424 static bool is_ldimm64(struct bpf_insn *insn)
5425 {
5426 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
5427 }
5428
insn_bpf_size_to_bytes(struct bpf_insn * insn)5429 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5430 {
5431 switch (BPF_SIZE(insn->code)) {
5432 case BPF_DW: return 8;
5433 case BPF_W: return 4;
5434 case BPF_H: return 2;
5435 case BPF_B: return 1;
5436 default: return -1;
5437 }
5438 }
5439
insn_bytes_to_bpf_size(__u32 sz)5440 static int insn_bytes_to_bpf_size(__u32 sz)
5441 {
5442 switch (sz) {
5443 case 8: return BPF_DW;
5444 case 4: return BPF_W;
5445 case 2: return BPF_H;
5446 case 1: return BPF_B;
5447 default: return -1;
5448 }
5449 }
5450
5451 /*
5452 * Patch relocatable BPF instruction.
5453 *
5454 * Patched value is determined by relocation kind and target specification.
5455 * For existence relocations target spec will be NULL if field/type is not found.
5456 * Expected insn->imm value is determined using relocation kind and local
5457 * spec, and is checked before patching instruction. If actual insn->imm value
5458 * is wrong, bail out with error.
5459 *
5460 * Currently supported classes of BPF instruction are:
5461 * 1. rX = <imm> (assignment with immediate operand);
5462 * 2. rX += <imm> (arithmetic operations with immediate operand);
5463 * 3. rX = <imm64> (load with 64-bit immediate value);
5464 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5465 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5466 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5467 */
bpf_core_patch_insn(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct bpf_core_relo_res * res)5468 static int bpf_core_patch_insn(struct bpf_program *prog,
5469 const struct bpf_core_relo *relo,
5470 int relo_idx,
5471 const struct bpf_core_relo_res *res)
5472 {
5473 __u32 orig_val, new_val;
5474 struct bpf_insn *insn;
5475 int insn_idx;
5476 __u8 class;
5477
5478 if (relo->insn_off % BPF_INSN_SZ)
5479 return -EINVAL;
5480 insn_idx = relo->insn_off / BPF_INSN_SZ;
5481 /* adjust insn_idx from section frame of reference to the local
5482 * program's frame of reference; (sub-)program code is not yet
5483 * relocated, so it's enough to just subtract in-section offset
5484 */
5485 insn_idx = insn_idx - prog->sec_insn_off;
5486 insn = &prog->insns[insn_idx];
5487 class = BPF_CLASS(insn->code);
5488
5489 if (res->poison) {
5490 poison:
5491 /* poison second part of ldimm64 to avoid confusing error from
5492 * verifier about "unknown opcode 00"
5493 */
5494 if (is_ldimm64(insn))
5495 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5496 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5497 return 0;
5498 }
5499
5500 orig_val = res->orig_val;
5501 new_val = res->new_val;
5502
5503 switch (class) {
5504 case BPF_ALU:
5505 case BPF_ALU64:
5506 if (BPF_SRC(insn->code) != BPF_K)
5507 return -EINVAL;
5508 if (res->validate && insn->imm != orig_val) {
5509 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5510 prog->name, relo_idx,
5511 insn_idx, insn->imm, orig_val, new_val);
5512 return -EINVAL;
5513 }
5514 orig_val = insn->imm;
5515 insn->imm = new_val;
5516 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5517 prog->name, relo_idx, insn_idx,
5518 orig_val, new_val);
5519 break;
5520 case BPF_LDX:
5521 case BPF_ST:
5522 case BPF_STX:
5523 if (res->validate && insn->off != orig_val) {
5524 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5525 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5526 return -EINVAL;
5527 }
5528 if (new_val > SHRT_MAX) {
5529 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5530 prog->name, relo_idx, insn_idx, new_val);
5531 return -ERANGE;
5532 }
5533 if (res->fail_memsz_adjust) {
5534 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5535 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5536 prog->name, relo_idx, insn_idx);
5537 goto poison;
5538 }
5539
5540 orig_val = insn->off;
5541 insn->off = new_val;
5542 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5543 prog->name, relo_idx, insn_idx, orig_val, new_val);
5544
5545 if (res->new_sz != res->orig_sz) {
5546 int insn_bytes_sz, insn_bpf_sz;
5547
5548 insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5549 if (insn_bytes_sz != res->orig_sz) {
5550 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5551 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5552 return -EINVAL;
5553 }
5554
5555 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5556 if (insn_bpf_sz < 0) {
5557 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5558 prog->name, relo_idx, insn_idx, res->new_sz);
5559 return -EINVAL;
5560 }
5561
5562 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5563 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5564 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5565 }
5566 break;
5567 case BPF_LD: {
5568 __u64 imm;
5569
5570 if (!is_ldimm64(insn) ||
5571 insn[0].src_reg != 0 || insn[0].off != 0 ||
5572 insn_idx + 1 >= prog->insns_cnt ||
5573 insn[1].code != 0 || insn[1].dst_reg != 0 ||
5574 insn[1].src_reg != 0 || insn[1].off != 0) {
5575 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5576 prog->name, relo_idx, insn_idx);
5577 return -EINVAL;
5578 }
5579
5580 imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5581 if (res->validate && imm != orig_val) {
5582 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5583 prog->name, relo_idx,
5584 insn_idx, (unsigned long long)imm,
5585 orig_val, new_val);
5586 return -EINVAL;
5587 }
5588
5589 insn[0].imm = new_val;
5590 insn[1].imm = 0; /* currently only 32-bit values are supported */
5591 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5592 prog->name, relo_idx, insn_idx,
5593 (unsigned long long)imm, new_val);
5594 break;
5595 }
5596 default:
5597 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5598 prog->name, relo_idx, insn_idx, insn->code,
5599 insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5600 return -EINVAL;
5601 }
5602
5603 return 0;
5604 }
5605
5606 /* Output spec definition in the format:
5607 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5608 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5609 */
bpf_core_dump_spec(int level,const struct bpf_core_spec * spec)5610 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5611 {
5612 const struct btf_type *t;
5613 const struct btf_enum *e;
5614 const char *s;
5615 __u32 type_id;
5616 int i;
5617
5618 type_id = spec->root_type_id;
5619 t = btf__type_by_id(spec->btf, type_id);
5620 s = btf__name_by_offset(spec->btf, t->name_off);
5621
5622 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5623
5624 if (core_relo_is_type_based(spec->relo_kind))
5625 return;
5626
5627 if (core_relo_is_enumval_based(spec->relo_kind)) {
5628 t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5629 e = btf_enum(t) + spec->raw_spec[0];
5630 s = btf__name_by_offset(spec->btf, e->name_off);
5631
5632 libbpf_print(level, "::%s = %u", s, e->val);
5633 return;
5634 }
5635
5636 if (core_relo_is_field_based(spec->relo_kind)) {
5637 for (i = 0; i < spec->len; i++) {
5638 if (spec->spec[i].name)
5639 libbpf_print(level, ".%s", spec->spec[i].name);
5640 else if (i > 0 || spec->spec[i].idx > 0)
5641 libbpf_print(level, "[%u]", spec->spec[i].idx);
5642 }
5643
5644 libbpf_print(level, " (");
5645 for (i = 0; i < spec->raw_len; i++)
5646 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5647
5648 if (spec->bit_offset % 8)
5649 libbpf_print(level, " @ offset %u.%u)",
5650 spec->bit_offset / 8, spec->bit_offset % 8);
5651 else
5652 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5653 return;
5654 }
5655 }
5656
bpf_core_hash_fn(const void * key,void * ctx)5657 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5658 {
5659 return (size_t)key;
5660 }
5661
bpf_core_equal_fn(const void * k1,const void * k2,void * ctx)5662 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5663 {
5664 return k1 == k2;
5665 }
5666
u32_as_hash_key(__u32 x)5667 static void *u32_as_hash_key(__u32 x)
5668 {
5669 return (void *)(uintptr_t)x;
5670 }
5671
5672 /*
5673 * CO-RE relocate single instruction.
5674 *
5675 * The outline and important points of the algorithm:
5676 * 1. For given local type, find corresponding candidate target types.
5677 * Candidate type is a type with the same "essential" name, ignoring
5678 * everything after last triple underscore (___). E.g., `sample`,
5679 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5680 * for each other. Names with triple underscore are referred to as
5681 * "flavors" and are useful, among other things, to allow to
5682 * specify/support incompatible variations of the same kernel struct, which
5683 * might differ between different kernel versions and/or build
5684 * configurations.
5685 *
5686 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5687 * converter, when deduplicated BTF of a kernel still contains more than
5688 * one different types with the same name. In that case, ___2, ___3, etc
5689 * are appended starting from second name conflict. But start flavors are
5690 * also useful to be defined "locally", in BPF program, to extract same
5691 * data from incompatible changes between different kernel
5692 * versions/configurations. For instance, to handle field renames between
5693 * kernel versions, one can use two flavors of the struct name with the
5694 * same common name and use conditional relocations to extract that field,
5695 * depending on target kernel version.
5696 * 2. For each candidate type, try to match local specification to this
5697 * candidate target type. Matching involves finding corresponding
5698 * high-level spec accessors, meaning that all named fields should match,
5699 * as well as all array accesses should be within the actual bounds. Also,
5700 * types should be compatible (see bpf_core_fields_are_compat for details).
5701 * 3. It is supported and expected that there might be multiple flavors
5702 * matching the spec. As long as all the specs resolve to the same set of
5703 * offsets across all candidates, there is no error. If there is any
5704 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5705 * imprefection of BTF deduplication, which can cause slight duplication of
5706 * the same BTF type, if some directly or indirectly referenced (by
5707 * pointer) type gets resolved to different actual types in different
5708 * object files. If such situation occurs, deduplicated BTF will end up
5709 * with two (or more) structurally identical types, which differ only in
5710 * types they refer to through pointer. This should be OK in most cases and
5711 * is not an error.
5712 * 4. Candidate types search is performed by linearly scanning through all
5713 * types in target BTF. It is anticipated that this is overall more
5714 * efficient memory-wise and not significantly worse (if not better)
5715 * CPU-wise compared to prebuilding a map from all local type names to
5716 * a list of candidate type names. It's also sped up by caching resolved
5717 * list of matching candidates per each local "root" type ID, that has at
5718 * least one bpf_core_relo associated with it. This list is shared
5719 * between multiple relocations for the same type ID and is updated as some
5720 * of the candidates are pruned due to structural incompatibility.
5721 */
bpf_core_apply_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,const struct btf * targ_btf,struct hashmap * cand_cache)5722 static int bpf_core_apply_relo(struct bpf_program *prog,
5723 const struct bpf_core_relo *relo,
5724 int relo_idx,
5725 const struct btf *local_btf,
5726 const struct btf *targ_btf,
5727 struct hashmap *cand_cache)
5728 {
5729 struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5730 const void *type_key = u32_as_hash_key(relo->type_id);
5731 struct bpf_core_relo_res cand_res, targ_res;
5732 const struct btf_type *local_type;
5733 const char *local_name;
5734 struct ids_vec *cand_ids;
5735 __u32 local_id, cand_id;
5736 const char *spec_str;
5737 int i, j, err;
5738
5739 local_id = relo->type_id;
5740 local_type = btf__type_by_id(local_btf, local_id);
5741 if (!local_type)
5742 return -EINVAL;
5743
5744 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5745 if (!local_name)
5746 return -EINVAL;
5747
5748 spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5749 if (str_is_empty(spec_str))
5750 return -EINVAL;
5751
5752 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5753 if (err) {
5754 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5755 prog->name, relo_idx, local_id, btf_kind_str(local_type),
5756 str_is_empty(local_name) ? "<anon>" : local_name,
5757 spec_str, err);
5758 return -EINVAL;
5759 }
5760
5761 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5762 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5763 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5764 libbpf_print(LIBBPF_DEBUG, "\n");
5765
5766 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5767 if (relo->kind == BPF_TYPE_ID_LOCAL) {
5768 targ_res.validate = true;
5769 targ_res.poison = false;
5770 targ_res.orig_val = local_spec.root_type_id;
5771 targ_res.new_val = local_spec.root_type_id;
5772 goto patch_insn;
5773 }
5774
5775 /* libbpf doesn't support candidate search for anonymous types */
5776 if (str_is_empty(spec_str)) {
5777 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5778 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5779 return -EOPNOTSUPP;
5780 }
5781
5782 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) {
5783 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf);
5784 if (IS_ERR(cand_ids)) {
5785 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld",
5786 prog->name, relo_idx, local_id, btf_kind_str(local_type),
5787 local_name, PTR_ERR(cand_ids));
5788 return PTR_ERR(cand_ids);
5789 }
5790 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL);
5791 if (err) {
5792 bpf_core_free_cands(cand_ids);
5793 return err;
5794 }
5795 }
5796
5797 for (i = 0, j = 0; i < cand_ids->len; i++) {
5798 cand_id = cand_ids->data[i];
5799 err = bpf_core_spec_match(&local_spec, targ_btf, cand_id, &cand_spec);
5800 if (err < 0) {
5801 pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
5802 prog->name, relo_idx, i);
5803 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
5804 libbpf_print(LIBBPF_WARN, ": %d\n", err);
5805 return err;
5806 }
5807
5808 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
5809 relo_idx, err == 0 ? "non-matching" : "matching", i);
5810 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
5811 libbpf_print(LIBBPF_DEBUG, "\n");
5812
5813 if (err == 0)
5814 continue;
5815
5816 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
5817 if (err)
5818 return err;
5819
5820 if (j == 0) {
5821 targ_res = cand_res;
5822 targ_spec = cand_spec;
5823 } else if (cand_spec.bit_offset != targ_spec.bit_offset) {
5824 /* if there are many field relo candidates, they
5825 * should all resolve to the same bit offset
5826 */
5827 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
5828 prog->name, relo_idx, cand_spec.bit_offset,
5829 targ_spec.bit_offset);
5830 return -EINVAL;
5831 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
5832 /* all candidates should result in the same relocation
5833 * decision and value, otherwise it's dangerous to
5834 * proceed due to ambiguity
5835 */
5836 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
5837 prog->name, relo_idx,
5838 cand_res.poison ? "failure" : "success", cand_res.new_val,
5839 targ_res.poison ? "failure" : "success", targ_res.new_val);
5840 return -EINVAL;
5841 }
5842
5843 cand_ids->data[j++] = cand_spec.root_type_id;
5844 }
5845
5846 /*
5847 * For BPF_FIELD_EXISTS relo or when used BPF program has field
5848 * existence checks or kernel version/config checks, it's expected
5849 * that we might not find any candidates. In this case, if field
5850 * wasn't found in any candidate, the list of candidates shouldn't
5851 * change at all, we'll just handle relocating appropriately,
5852 * depending on relo's kind.
5853 */
5854 if (j > 0)
5855 cand_ids->len = j;
5856
5857 /*
5858 * If no candidates were found, it might be both a programmer error,
5859 * as well as expected case, depending whether instruction w/
5860 * relocation is guarded in some way that makes it unreachable (dead
5861 * code) if relocation can't be resolved. This is handled in
5862 * bpf_core_patch_insn() uniformly by replacing that instruction with
5863 * BPF helper call insn (using invalid helper ID). If that instruction
5864 * is indeed unreachable, then it will be ignored and eliminated by
5865 * verifier. If it was an error, then verifier will complain and point
5866 * to a specific instruction number in its log.
5867 */
5868 if (j == 0) {
5869 pr_debug("prog '%s': relo #%d: no matching targets found\n",
5870 prog->name, relo_idx);
5871
5872 /* calculate single target relo result explicitly */
5873 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
5874 if (err)
5875 return err;
5876 }
5877
5878 patch_insn:
5879 /* bpf_core_patch_insn() should know how to handle missing targ_spec */
5880 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
5881 if (err) {
5882 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
5883 prog->name, relo_idx, relo->insn_off, err);
5884 return -EINVAL;
5885 }
5886
5887 return 0;
5888 }
5889
5890 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5891 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5892 {
5893 const struct btf_ext_info_sec *sec;
5894 const struct bpf_core_relo *rec;
5895 const struct btf_ext_info *seg;
5896 struct hashmap_entry *entry;
5897 struct hashmap *cand_cache = NULL;
5898 struct bpf_program *prog;
5899 struct btf *targ_btf;
5900 const char *sec_name;
5901 int i, err = 0, insn_idx, sec_idx;
5902
5903 if (obj->btf_ext->core_relo_info.len == 0)
5904 return 0;
5905
5906 if (targ_btf_path)
5907 targ_btf = btf__parse(targ_btf_path, NULL);
5908 else
5909 targ_btf = obj->btf_vmlinux;
5910 if (IS_ERR_OR_NULL(targ_btf)) {
5911 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf));
5912 return PTR_ERR(targ_btf);
5913 }
5914
5915 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5916 if (IS_ERR(cand_cache)) {
5917 err = PTR_ERR(cand_cache);
5918 goto out;
5919 }
5920
5921 seg = &obj->btf_ext->core_relo_info;
5922 for_each_btf_ext_sec(seg, sec) {
5923 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5924 if (str_is_empty(sec_name)) {
5925 err = -EINVAL;
5926 goto out;
5927 }
5928 /* bpf_object's ELF is gone by now so it's not easy to find
5929 * section index by section name, but we can find *any*
5930 * bpf_program within desired section name and use it's
5931 * prog->sec_idx to do a proper search by section index and
5932 * instruction offset
5933 */
5934 prog = NULL;
5935 for (i = 0; i < obj->nr_programs; i++) {
5936 if (strcmp(obj->programs[i].sec_name, sec_name) == 0) {
5937 prog = &obj->programs[i];
5938 break;
5939 }
5940 }
5941 if (!prog) {
5942 pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
5943 return -ENOENT;
5944 }
5945 sec_idx = prog->sec_idx;
5946
5947 pr_debug("sec '%s': found %d CO-RE relocations\n",
5948 sec_name, sec->num_info);
5949
5950 for_each_btf_ext_rec(seg, sec, i, rec) {
5951 insn_idx = rec->insn_off / BPF_INSN_SZ;
5952 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5953 if (!prog) {
5954 /* When __weak subprog is "overridden" by another instance
5955 * of the subprog from a different object file, linker still
5956 * appends all the .BTF.ext info that used to belong to that
5957 * eliminated subprogram.
5958 * This is similar to what x86-64 linker does for relocations.
5959 * So just ignore such relocations just like we ignore
5960 * subprog instructions when discovering subprograms.
5961 */
5962 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5963 sec_name, i, insn_idx);
5964 continue;
5965 }
5966 /* no need to apply CO-RE relocation if the program is
5967 * not going to be loaded
5968 */
5969 if (!prog->load)
5970 continue;
5971
5972 err = bpf_core_apply_relo(prog, rec, i, obj->btf,
5973 targ_btf, cand_cache);
5974 if (err) {
5975 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5976 prog->name, i, err);
5977 goto out;
5978 }
5979 }
5980 }
5981
5982 out:
5983 /* obj->btf_vmlinux is freed at the end of object load phase */
5984 if (targ_btf != obj->btf_vmlinux)
5985 btf__free(targ_btf);
5986 if (!IS_ERR_OR_NULL(cand_cache)) {
5987 hashmap__for_each_entry(cand_cache, entry, i) {
5988 bpf_core_free_cands(entry->value);
5989 }
5990 hashmap__free(cand_cache);
5991 }
5992 return err;
5993 }
5994
5995 /* Relocate data references within program code:
5996 * - map references;
5997 * - global variable references;
5998 * - extern references.
5999 */
6000 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6001 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6002 {
6003 int i;
6004
6005 for (i = 0; i < prog->nr_reloc; i++) {
6006 struct reloc_desc *relo = &prog->reloc_desc[i];
6007 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6008 struct extern_desc *ext;
6009
6010 switch (relo->type) {
6011 case RELO_LD64:
6012 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6013 insn[0].imm = obj->maps[relo->map_idx].fd;
6014 relo->processed = true;
6015 break;
6016 case RELO_DATA:
6017 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6018 insn[1].imm = insn[0].imm + relo->sym_off;
6019 insn[0].imm = obj->maps[relo->map_idx].fd;
6020 relo->processed = true;
6021 break;
6022 case RELO_EXTERN:
6023 ext = &obj->externs[relo->sym_off];
6024 if (ext->type == EXT_KCFG) {
6025 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6026 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6027 insn[1].imm = ext->kcfg.data_off;
6028 } else /* EXT_KSYM */ {
6029 if (ext->ksym.type_id) { /* typed ksyms */
6030 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6031 insn[0].imm = ext->ksym.vmlinux_btf_id;
6032 } else { /* typeless ksyms */
6033 insn[0].imm = (__u32)ext->ksym.addr;
6034 insn[1].imm = ext->ksym.addr >> 32;
6035 }
6036 }
6037 relo->processed = true;
6038 break;
6039 case RELO_CALL:
6040 /* will be handled as a follow up pass */
6041 break;
6042 default:
6043 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6044 prog->name, i, relo->type);
6045 return -EINVAL;
6046 }
6047 }
6048
6049 return 0;
6050 }
6051
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6052 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6053 const struct bpf_program *prog,
6054 const struct btf_ext_info *ext_info,
6055 void **prog_info, __u32 *prog_rec_cnt,
6056 __u32 *prog_rec_sz)
6057 {
6058 void *copy_start = NULL, *copy_end = NULL;
6059 void *rec, *rec_end, *new_prog_info;
6060 const struct btf_ext_info_sec *sec;
6061 size_t old_sz, new_sz;
6062 const char *sec_name;
6063 int i, off_adj;
6064
6065 for_each_btf_ext_sec(ext_info, sec) {
6066 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6067 if (!sec_name)
6068 return -EINVAL;
6069 if (strcmp(sec_name, prog->sec_name) != 0)
6070 continue;
6071
6072 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6073 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6074
6075 if (insn_off < prog->sec_insn_off)
6076 continue;
6077 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6078 break;
6079
6080 if (!copy_start)
6081 copy_start = rec;
6082 copy_end = rec + ext_info->rec_size;
6083 }
6084
6085 if (!copy_start)
6086 return -ENOENT;
6087
6088 /* append func/line info of a given (sub-)program to the main
6089 * program func/line info
6090 */
6091 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6092 new_sz = old_sz + (copy_end - copy_start);
6093 new_prog_info = realloc(*prog_info, new_sz);
6094 if (!new_prog_info)
6095 return -ENOMEM;
6096 *prog_info = new_prog_info;
6097 *prog_rec_cnt = new_sz / ext_info->rec_size;
6098 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6099
6100 /* Kernel instruction offsets are in units of 8-byte
6101 * instructions, while .BTF.ext instruction offsets generated
6102 * by Clang are in units of bytes. So convert Clang offsets
6103 * into kernel offsets and adjust offset according to program
6104 * relocated position.
6105 */
6106 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6107 rec = new_prog_info + old_sz;
6108 rec_end = new_prog_info + new_sz;
6109 for (; rec < rec_end; rec += ext_info->rec_size) {
6110 __u32 *insn_off = rec;
6111
6112 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6113 }
6114 *prog_rec_sz = ext_info->rec_size;
6115 return 0;
6116 }
6117
6118 return -ENOENT;
6119 }
6120
6121 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6122 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6123 struct bpf_program *main_prog,
6124 const struct bpf_program *prog)
6125 {
6126 int err;
6127
6128 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6129 * supprot func/line info
6130 */
6131 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6132 return 0;
6133
6134 /* only attempt func info relocation if main program's func_info
6135 * relocation was successful
6136 */
6137 if (main_prog != prog && !main_prog->func_info)
6138 goto line_info;
6139
6140 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6141 &main_prog->func_info,
6142 &main_prog->func_info_cnt,
6143 &main_prog->func_info_rec_size);
6144 if (err) {
6145 if (err != -ENOENT) {
6146 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6147 prog->name, err);
6148 return err;
6149 }
6150 if (main_prog->func_info) {
6151 /*
6152 * Some info has already been found but has problem
6153 * in the last btf_ext reloc. Must have to error out.
6154 */
6155 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6156 return err;
6157 }
6158 /* Have problem loading the very first info. Ignore the rest. */
6159 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6160 prog->name);
6161 }
6162
6163 line_info:
6164 /* don't relocate line info if main program's relocation failed */
6165 if (main_prog != prog && !main_prog->line_info)
6166 return 0;
6167
6168 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6169 &main_prog->line_info,
6170 &main_prog->line_info_cnt,
6171 &main_prog->line_info_rec_size);
6172 if (err) {
6173 if (err != -ENOENT) {
6174 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6175 prog->name, err);
6176 return err;
6177 }
6178 if (main_prog->line_info) {
6179 /*
6180 * Some info has already been found but has problem
6181 * in the last btf_ext reloc. Must have to error out.
6182 */
6183 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6184 return err;
6185 }
6186 /* Have problem loading the very first info. Ignore the rest. */
6187 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6188 prog->name);
6189 }
6190 return 0;
6191 }
6192
cmp_relo_by_insn_idx(const void * key,const void * elem)6193 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6194 {
6195 size_t insn_idx = *(const size_t *)key;
6196 const struct reloc_desc *relo = elem;
6197
6198 if (insn_idx == relo->insn_idx)
6199 return 0;
6200 return insn_idx < relo->insn_idx ? -1 : 1;
6201 }
6202
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6203 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6204 {
6205 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6206 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6207 }
6208
6209 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6210 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6211 struct bpf_program *prog)
6212 {
6213 size_t sub_insn_idx, insn_idx, new_cnt;
6214 struct bpf_program *subprog;
6215 struct bpf_insn *insns, *insn;
6216 struct reloc_desc *relo;
6217 int err;
6218
6219 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6220 if (err)
6221 return err;
6222
6223 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6224 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6225 if (!insn_is_subprog_call(insn))
6226 continue;
6227
6228 relo = find_prog_insn_relo(prog, insn_idx);
6229 if (relo && relo->type != RELO_CALL) {
6230 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6231 prog->name, insn_idx, relo->type);
6232 return -LIBBPF_ERRNO__RELOC;
6233 }
6234 if (relo) {
6235 /* sub-program instruction index is a combination of
6236 * an offset of a symbol pointed to by relocation and
6237 * call instruction's imm field; for global functions,
6238 * call always has imm = -1, but for static functions
6239 * relocation is against STT_SECTION and insn->imm
6240 * points to a start of a static function
6241 */
6242 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6243 } else {
6244 /* if subprogram call is to a static function within
6245 * the same ELF section, there won't be any relocation
6246 * emitted, but it also means there is no additional
6247 * offset necessary, insns->imm is relative to
6248 * instruction's original position within the section
6249 */
6250 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6251 }
6252
6253 /* we enforce that sub-programs should be in .text section */
6254 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6255 if (!subprog) {
6256 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6257 prog->name);
6258 return -LIBBPF_ERRNO__RELOC;
6259 }
6260
6261 /* if it's the first call instruction calling into this
6262 * subprogram (meaning this subprog hasn't been processed
6263 * yet) within the context of current main program:
6264 * - append it at the end of main program's instructions blog;
6265 * - process is recursively, while current program is put on hold;
6266 * - if that subprogram calls some other not yet processes
6267 * subprogram, same thing will happen recursively until
6268 * there are no more unprocesses subprograms left to append
6269 * and relocate.
6270 */
6271 if (subprog->sub_insn_off == 0) {
6272 subprog->sub_insn_off = main_prog->insns_cnt;
6273
6274 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6275 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6276 if (!insns) {
6277 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6278 return -ENOMEM;
6279 }
6280 main_prog->insns = insns;
6281 main_prog->insns_cnt = new_cnt;
6282
6283 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6284 subprog->insns_cnt * sizeof(*insns));
6285
6286 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6287 main_prog->name, subprog->insns_cnt, subprog->name);
6288
6289 err = bpf_object__reloc_code(obj, main_prog, subprog);
6290 if (err)
6291 return err;
6292 }
6293
6294 /* main_prog->insns memory could have been re-allocated, so
6295 * calculate pointer again
6296 */
6297 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6298 /* calculate correct instruction position within current main
6299 * prog; each main prog can have a different set of
6300 * subprograms appended (potentially in different order as
6301 * well), so position of any subprog can be different for
6302 * different main programs */
6303 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6304
6305 if (relo)
6306 relo->processed = true;
6307
6308 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6309 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6310 }
6311
6312 return 0;
6313 }
6314
6315 /*
6316 * Relocate sub-program calls.
6317 *
6318 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6319 * main prog) is processed separately. For each subprog (non-entry functions,
6320 * that can be called from either entry progs or other subprogs) gets their
6321 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6322 * hasn't been yet appended and relocated within current main prog. Once its
6323 * relocated, sub_insn_off will point at the position within current main prog
6324 * where given subprog was appended. This will further be used to relocate all
6325 * the call instructions jumping into this subprog.
6326 *
6327 * We start with main program and process all call instructions. If the call
6328 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6329 * is zero), subprog instructions are appended at the end of main program's
6330 * instruction array. Then main program is "put on hold" while we recursively
6331 * process newly appended subprogram. If that subprogram calls into another
6332 * subprogram that hasn't been appended, new subprogram is appended again to
6333 * the *main* prog's instructions (subprog's instructions are always left
6334 * untouched, as they need to be in unmodified state for subsequent main progs
6335 * and subprog instructions are always sent only as part of a main prog) and
6336 * the process continues recursively. Once all the subprogs called from a main
6337 * prog or any of its subprogs are appended (and relocated), all their
6338 * positions within finalized instructions array are known, so it's easy to
6339 * rewrite call instructions with correct relative offsets, corresponding to
6340 * desired target subprog.
6341 *
6342 * Its important to realize that some subprogs might not be called from some
6343 * main prog and any of its called/used subprogs. Those will keep their
6344 * subprog->sub_insn_off as zero at all times and won't be appended to current
6345 * main prog and won't be relocated within the context of current main prog.
6346 * They might still be used from other main progs later.
6347 *
6348 * Visually this process can be shown as below. Suppose we have two main
6349 * programs mainA and mainB and BPF object contains three subprogs: subA,
6350 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6351 * subC both call subB:
6352 *
6353 * +--------+ +-------+
6354 * | v v |
6355 * +--+---+ +--+-+-+ +---+--+
6356 * | subA | | subB | | subC |
6357 * +--+---+ +------+ +---+--+
6358 * ^ ^
6359 * | |
6360 * +---+-------+ +------+----+
6361 * | mainA | | mainB |
6362 * +-----------+ +-----------+
6363 *
6364 * We'll start relocating mainA, will find subA, append it and start
6365 * processing sub A recursively:
6366 *
6367 * +-----------+------+
6368 * | mainA | subA |
6369 * +-----------+------+
6370 *
6371 * At this point we notice that subB is used from subA, so we append it and
6372 * relocate (there are no further subcalls from subB):
6373 *
6374 * +-----------+------+------+
6375 * | mainA | subA | subB |
6376 * +-----------+------+------+
6377 *
6378 * At this point, we relocate subA calls, then go one level up and finish with
6379 * relocatin mainA calls. mainA is done.
6380 *
6381 * For mainB process is similar but results in different order. We start with
6382 * mainB and skip subA and subB, as mainB never calls them (at least
6383 * directly), but we see subC is needed, so we append and start processing it:
6384 *
6385 * +-----------+------+
6386 * | mainB | subC |
6387 * +-----------+------+
6388 * Now we see subC needs subB, so we go back to it, append and relocate it:
6389 *
6390 * +-----------+------+------+
6391 * | mainB | subC | subB |
6392 * +-----------+------+------+
6393 *
6394 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6395 */
6396 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6397 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6398 {
6399 struct bpf_program *subprog;
6400 int i, j, err;
6401
6402 /* mark all subprogs as not relocated (yet) within the context of
6403 * current main program
6404 */
6405 for (i = 0; i < obj->nr_programs; i++) {
6406 subprog = &obj->programs[i];
6407 if (!prog_is_subprog(obj, subprog))
6408 continue;
6409
6410 subprog->sub_insn_off = 0;
6411 for (j = 0; j < subprog->nr_reloc; j++)
6412 if (subprog->reloc_desc[j].type == RELO_CALL)
6413 subprog->reloc_desc[j].processed = false;
6414 }
6415
6416 err = bpf_object__reloc_code(obj, prog, prog);
6417 if (err)
6418 return err;
6419
6420
6421 return 0;
6422 }
6423
6424 static int
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)6425 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6426 {
6427 struct bpf_program *prog;
6428 size_t i;
6429 int err;
6430
6431 if (obj->btf_ext) {
6432 err = bpf_object__relocate_core(obj, targ_btf_path);
6433 if (err) {
6434 pr_warn("failed to perform CO-RE relocations: %d\n",
6435 err);
6436 return err;
6437 }
6438 }
6439 /* relocate data references first for all programs and sub-programs,
6440 * as they don't change relative to code locations, so subsequent
6441 * subprogram processing won't need to re-calculate any of them
6442 */
6443 for (i = 0; i < obj->nr_programs; i++) {
6444 prog = &obj->programs[i];
6445 err = bpf_object__relocate_data(obj, prog);
6446 if (err) {
6447 pr_warn("prog '%s': failed to relocate data references: %d\n",
6448 prog->name, err);
6449 return err;
6450 }
6451 }
6452 /* now relocate subprogram calls and append used subprograms to main
6453 * programs; each copy of subprogram code needs to be relocated
6454 * differently for each main program, because its code location might
6455 * have changed
6456 */
6457 for (i = 0; i < obj->nr_programs; i++) {
6458 prog = &obj->programs[i];
6459 /* sub-program's sub-calls are relocated within the context of
6460 * its main program only
6461 */
6462 if (prog_is_subprog(obj, prog))
6463 continue;
6464
6465 err = bpf_object__relocate_calls(obj, prog);
6466 if (err) {
6467 pr_warn("prog '%s': failed to relocate calls: %d\n",
6468 prog->name, err);
6469 return err;
6470 }
6471 }
6472 /* free up relocation descriptors */
6473 for (i = 0; i < obj->nr_programs; i++) {
6474 prog = &obj->programs[i];
6475 zfree(&prog->reloc_desc);
6476 prog->nr_reloc = 0;
6477 }
6478 return 0;
6479 }
6480
6481 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6482 GElf_Shdr *shdr, Elf_Data *data);
6483
bpf_object__collect_map_relos(struct bpf_object * obj,GElf_Shdr * shdr,Elf_Data * data)6484 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6485 GElf_Shdr *shdr, Elf_Data *data)
6486 {
6487 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6488 int i, j, nrels, new_sz;
6489 const struct btf_var_secinfo *vi = NULL;
6490 const struct btf_type *sec, *var, *def;
6491 struct bpf_map *map = NULL, *targ_map;
6492 const struct btf_member *member;
6493 const char *name, *mname;
6494 Elf_Data *symbols;
6495 unsigned int moff;
6496 GElf_Sym sym;
6497 GElf_Rel rel;
6498 void *tmp;
6499
6500 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6501 return -EINVAL;
6502 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6503 if (!sec)
6504 return -EINVAL;
6505
6506 symbols = obj->efile.symbols;
6507 nrels = shdr->sh_size / shdr->sh_entsize;
6508 for (i = 0; i < nrels; i++) {
6509 if (!gelf_getrel(data, i, &rel)) {
6510 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6511 return -LIBBPF_ERRNO__FORMAT;
6512 }
6513 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6514 pr_warn(".maps relo #%d: symbol %zx not found\n",
6515 i, (size_t)GELF_R_SYM(rel.r_info));
6516 return -LIBBPF_ERRNO__FORMAT;
6517 }
6518 name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6519 if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6520 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6521 i, name);
6522 return -LIBBPF_ERRNO__RELOC;
6523 }
6524
6525 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6526 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6527 (size_t)rel.r_offset, sym.st_name, name);
6528
6529 for (j = 0; j < obj->nr_maps; j++) {
6530 map = &obj->maps[j];
6531 if (map->sec_idx != obj->efile.btf_maps_shndx)
6532 continue;
6533
6534 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6535 if (vi->offset <= rel.r_offset &&
6536 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6537 break;
6538 }
6539 if (j == obj->nr_maps) {
6540 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6541 i, name, (size_t)rel.r_offset);
6542 return -EINVAL;
6543 }
6544
6545 if (!bpf_map_type__is_map_in_map(map->def.type))
6546 return -EINVAL;
6547 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6548 map->def.key_size != sizeof(int)) {
6549 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6550 i, map->name, sizeof(int));
6551 return -EINVAL;
6552 }
6553
6554 targ_map = bpf_object__find_map_by_name(obj, name);
6555 if (!targ_map)
6556 return -ESRCH;
6557
6558 var = btf__type_by_id(obj->btf, vi->type);
6559 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6560 if (btf_vlen(def) == 0)
6561 return -EINVAL;
6562 member = btf_members(def) + btf_vlen(def) - 1;
6563 mname = btf__name_by_offset(obj->btf, member->name_off);
6564 if (strcmp(mname, "values"))
6565 return -EINVAL;
6566
6567 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6568 if (rel.r_offset - vi->offset < moff)
6569 return -EINVAL;
6570
6571 moff = rel.r_offset - vi->offset - moff;
6572 /* here we use BPF pointer size, which is always 64 bit, as we
6573 * are parsing ELF that was built for BPF target
6574 */
6575 if (moff % bpf_ptr_sz)
6576 return -EINVAL;
6577 moff /= bpf_ptr_sz;
6578 if (moff >= map->init_slots_sz) {
6579 new_sz = moff + 1;
6580 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6581 if (!tmp)
6582 return -ENOMEM;
6583 map->init_slots = tmp;
6584 memset(map->init_slots + map->init_slots_sz, 0,
6585 (new_sz - map->init_slots_sz) * host_ptr_sz);
6586 map->init_slots_sz = new_sz;
6587 }
6588 map->init_slots[moff] = targ_map;
6589
6590 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6591 i, map->name, moff, name);
6592 }
6593
6594 return 0;
6595 }
6596
cmp_relocs(const void * _a,const void * _b)6597 static int cmp_relocs(const void *_a, const void *_b)
6598 {
6599 const struct reloc_desc *a = _a;
6600 const struct reloc_desc *b = _b;
6601
6602 if (a->insn_idx != b->insn_idx)
6603 return a->insn_idx < b->insn_idx ? -1 : 1;
6604
6605 /* no two relocations should have the same insn_idx, but ... */
6606 if (a->type != b->type)
6607 return a->type < b->type ? -1 : 1;
6608
6609 return 0;
6610 }
6611
bpf_object__collect_relos(struct bpf_object * obj)6612 static int bpf_object__collect_relos(struct bpf_object *obj)
6613 {
6614 int i, err;
6615
6616 for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6617 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6618 Elf_Data *data = obj->efile.reloc_sects[i].data;
6619 int idx = shdr->sh_info;
6620
6621 if (shdr->sh_type != SHT_REL) {
6622 pr_warn("internal error at %d\n", __LINE__);
6623 return -LIBBPF_ERRNO__INTERNAL;
6624 }
6625
6626 if (idx == obj->efile.st_ops_shndx)
6627 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6628 else if (idx == obj->efile.btf_maps_shndx)
6629 err = bpf_object__collect_map_relos(obj, shdr, data);
6630 else
6631 err = bpf_object__collect_prog_relos(obj, shdr, data);
6632 if (err)
6633 return err;
6634 }
6635
6636 for (i = 0; i < obj->nr_programs; i++) {
6637 struct bpf_program *p = &obj->programs[i];
6638
6639 if (!p->nr_reloc)
6640 continue;
6641
6642 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6643 }
6644 return 0;
6645 }
6646
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)6647 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6648 {
6649 if (BPF_CLASS(insn->code) == BPF_JMP &&
6650 BPF_OP(insn->code) == BPF_CALL &&
6651 BPF_SRC(insn->code) == BPF_K &&
6652 insn->src_reg == 0 &&
6653 insn->dst_reg == 0) {
6654 *func_id = insn->imm;
6655 return true;
6656 }
6657 return false;
6658 }
6659
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)6660 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6661 {
6662 struct bpf_insn *insn = prog->insns;
6663 enum bpf_func_id func_id;
6664 int i;
6665
6666 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6667 if (!insn_is_helper_call(insn, &func_id))
6668 continue;
6669
6670 /* on kernels that don't yet support
6671 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6672 * to bpf_probe_read() which works well for old kernels
6673 */
6674 switch (func_id) {
6675 case BPF_FUNC_probe_read_kernel:
6676 case BPF_FUNC_probe_read_user:
6677 if (!kernel_supports(FEAT_PROBE_READ_KERN))
6678 insn->imm = BPF_FUNC_probe_read;
6679 break;
6680 case BPF_FUNC_probe_read_kernel_str:
6681 case BPF_FUNC_probe_read_user_str:
6682 if (!kernel_supports(FEAT_PROBE_READ_KERN))
6683 insn->imm = BPF_FUNC_probe_read_str;
6684 break;
6685 default:
6686 break;
6687 }
6688 }
6689 return 0;
6690 }
6691
6692 static int
load_program(struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,char * license,__u32 kern_version,int * pfd)6693 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6694 char *license, __u32 kern_version, int *pfd)
6695 {
6696 struct bpf_load_program_attr load_attr;
6697 char *cp, errmsg[STRERR_BUFSIZE];
6698 size_t log_buf_size = 0;
6699 char *log_buf = NULL;
6700 int btf_fd, ret;
6701
6702 if (!insns || !insns_cnt)
6703 return -EINVAL;
6704
6705 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr));
6706 load_attr.prog_type = prog->type;
6707 /* old kernels might not support specifying expected_attach_type */
6708 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6709 prog->sec_def->is_exp_attach_type_optional)
6710 load_attr.expected_attach_type = 0;
6711 else
6712 load_attr.expected_attach_type = prog->expected_attach_type;
6713 if (kernel_supports(FEAT_PROG_NAME))
6714 load_attr.name = prog->name;
6715 load_attr.insns = insns;
6716 load_attr.insns_cnt = insns_cnt;
6717 load_attr.license = license;
6718 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
6719 prog->type == BPF_PROG_TYPE_LSM) {
6720 load_attr.attach_btf_id = prog->attach_btf_id;
6721 } else if (prog->type == BPF_PROG_TYPE_TRACING ||
6722 prog->type == BPF_PROG_TYPE_EXT) {
6723 load_attr.attach_prog_fd = prog->attach_prog_fd;
6724 load_attr.attach_btf_id = prog->attach_btf_id;
6725 } else {
6726 load_attr.kern_version = kern_version;
6727 load_attr.prog_ifindex = prog->prog_ifindex;
6728 }
6729 /* specify func_info/line_info only if kernel supports them */
6730 btf_fd = bpf_object__btf_fd(prog->obj);
6731 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6732 load_attr.prog_btf_fd = btf_fd;
6733 load_attr.func_info = prog->func_info;
6734 load_attr.func_info_rec_size = prog->func_info_rec_size;
6735 load_attr.func_info_cnt = prog->func_info_cnt;
6736 load_attr.line_info = prog->line_info;
6737 load_attr.line_info_rec_size = prog->line_info_rec_size;
6738 load_attr.line_info_cnt = prog->line_info_cnt;
6739 }
6740 load_attr.log_level = prog->log_level;
6741 load_attr.prog_flags = prog->prog_flags;
6742
6743 retry_load:
6744 if (log_buf_size) {
6745 log_buf = malloc(log_buf_size);
6746 if (!log_buf)
6747 return -ENOMEM;
6748
6749 *log_buf = 0;
6750 }
6751
6752 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size);
6753
6754 if (ret >= 0) {
6755 if (log_buf && load_attr.log_level)
6756 pr_debug("verifier log:\n%s", log_buf);
6757
6758 if (prog->obj->rodata_map_idx >= 0 &&
6759 kernel_supports(FEAT_PROG_BIND_MAP)) {
6760 struct bpf_map *rodata_map =
6761 &prog->obj->maps[prog->obj->rodata_map_idx];
6762
6763 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6764 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6765 pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6766 prog->name, cp);
6767 /* Don't fail hard if can't bind rodata. */
6768 }
6769 }
6770
6771 *pfd = ret;
6772 ret = 0;
6773 goto out;
6774 }
6775
6776 if (!log_buf || errno == ENOSPC) {
6777 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
6778 log_buf_size << 1);
6779
6780 free(log_buf);
6781 goto retry_load;
6782 }
6783 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
6784 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6785 pr_warn("load bpf program failed: %s\n", cp);
6786 pr_perm_msg(ret);
6787
6788 if (log_buf && log_buf[0] != '\0') {
6789 ret = -LIBBPF_ERRNO__VERIFY;
6790 pr_warn("-- BEGIN DUMP LOG ---\n");
6791 pr_warn("\n%s\n", log_buf);
6792 pr_warn("-- END LOG --\n");
6793 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) {
6794 pr_warn("Program too large (%zu insns), at most %d insns\n",
6795 load_attr.insns_cnt, BPF_MAXINSNS);
6796 ret = -LIBBPF_ERRNO__PROG2BIG;
6797 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
6798 /* Wrong program type? */
6799 int fd;
6800
6801 load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
6802 load_attr.expected_attach_type = 0;
6803 fd = bpf_load_program_xattr(&load_attr, NULL, 0);
6804 if (fd >= 0) {
6805 close(fd);
6806 ret = -LIBBPF_ERRNO__PROGTYPE;
6807 goto out;
6808 }
6809 }
6810
6811 out:
6812 free(log_buf);
6813 return ret;
6814 }
6815
6816 static int libbpf_find_attach_btf_id(struct bpf_program *prog);
6817
bpf_program__load(struct bpf_program * prog,char * license,__u32 kern_ver)6818 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
6819 {
6820 int err = 0, fd, i, btf_id;
6821
6822 if (prog->obj->loaded) {
6823 pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
6824 return -EINVAL;
6825 }
6826
6827 if ((prog->type == BPF_PROG_TYPE_TRACING ||
6828 prog->type == BPF_PROG_TYPE_LSM ||
6829 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
6830 btf_id = libbpf_find_attach_btf_id(prog);
6831 if (btf_id <= 0)
6832 return btf_id;
6833 prog->attach_btf_id = btf_id;
6834 }
6835
6836 if (prog->instances.nr < 0 || !prog->instances.fds) {
6837 if (prog->preprocessor) {
6838 pr_warn("Internal error: can't load program '%s'\n",
6839 prog->name);
6840 return -LIBBPF_ERRNO__INTERNAL;
6841 }
6842
6843 prog->instances.fds = malloc(sizeof(int));
6844 if (!prog->instances.fds) {
6845 pr_warn("Not enough memory for BPF fds\n");
6846 return -ENOMEM;
6847 }
6848 prog->instances.nr = 1;
6849 prog->instances.fds[0] = -1;
6850 }
6851
6852 if (!prog->preprocessor) {
6853 if (prog->instances.nr != 1) {
6854 pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
6855 prog->name, prog->instances.nr);
6856 }
6857 err = load_program(prog, prog->insns, prog->insns_cnt,
6858 license, kern_ver, &fd);
6859 if (!err)
6860 prog->instances.fds[0] = fd;
6861 goto out;
6862 }
6863
6864 for (i = 0; i < prog->instances.nr; i++) {
6865 struct bpf_prog_prep_result result;
6866 bpf_program_prep_t preprocessor = prog->preprocessor;
6867
6868 memset(&result, 0, sizeof(result));
6869 err = preprocessor(prog, i, prog->insns,
6870 prog->insns_cnt, &result);
6871 if (err) {
6872 pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
6873 i, prog->name);
6874 goto out;
6875 }
6876
6877 if (!result.new_insn_ptr || !result.new_insn_cnt) {
6878 pr_debug("Skip loading the %dth instance of program '%s'\n",
6879 i, prog->name);
6880 prog->instances.fds[i] = -1;
6881 if (result.pfd)
6882 *result.pfd = -1;
6883 continue;
6884 }
6885
6886 err = load_program(prog, result.new_insn_ptr,
6887 result.new_insn_cnt, license, kern_ver, &fd);
6888 if (err) {
6889 pr_warn("Loading the %dth instance of program '%s' failed\n",
6890 i, prog->name);
6891 goto out;
6892 }
6893
6894 if (result.pfd)
6895 *result.pfd = fd;
6896 prog->instances.fds[i] = fd;
6897 }
6898 out:
6899 if (err)
6900 pr_warn("failed to load program '%s'\n", prog->name);
6901 zfree(&prog->insns);
6902 prog->insns_cnt = 0;
6903 return err;
6904 }
6905
6906 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)6907 bpf_object__load_progs(struct bpf_object *obj, int log_level)
6908 {
6909 struct bpf_program *prog;
6910 size_t i;
6911 int err;
6912
6913 for (i = 0; i < obj->nr_programs; i++) {
6914 prog = &obj->programs[i];
6915 err = bpf_object__sanitize_prog(obj, prog);
6916 if (err)
6917 return err;
6918 }
6919
6920 for (i = 0; i < obj->nr_programs; i++) {
6921 prog = &obj->programs[i];
6922 if (prog_is_subprog(obj, prog))
6923 continue;
6924 if (!prog->load) {
6925 pr_debug("prog '%s': skipped loading\n", prog->name);
6926 continue;
6927 }
6928 prog->log_level |= log_level;
6929 err = bpf_program__load(prog, obj->license, obj->kern_version);
6930 if (err)
6931 return err;
6932 }
6933 return 0;
6934 }
6935
6936 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
6937
6938 static struct bpf_object *
__bpf_object__open(const char * path,const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)6939 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
6940 const struct bpf_object_open_opts *opts)
6941 {
6942 const char *obj_name, *kconfig;
6943 struct bpf_program *prog;
6944 struct bpf_object *obj;
6945 char tmp_name[64];
6946 int err;
6947
6948 if (elf_version(EV_CURRENT) == EV_NONE) {
6949 pr_warn("failed to init libelf for %s\n",
6950 path ? : "(mem buf)");
6951 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
6952 }
6953
6954 if (!OPTS_VALID(opts, bpf_object_open_opts))
6955 return ERR_PTR(-EINVAL);
6956
6957 obj_name = OPTS_GET(opts, object_name, NULL);
6958 if (obj_buf) {
6959 if (!obj_name) {
6960 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
6961 (unsigned long)obj_buf,
6962 (unsigned long)obj_buf_sz);
6963 obj_name = tmp_name;
6964 }
6965 path = obj_name;
6966 pr_debug("loading object '%s' from buffer\n", obj_name);
6967 }
6968
6969 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
6970 if (IS_ERR(obj))
6971 return obj;
6972
6973 kconfig = OPTS_GET(opts, kconfig, NULL);
6974 if (kconfig) {
6975 obj->kconfig = strdup(kconfig);
6976 if (!obj->kconfig) {
6977 err = -ENOMEM;
6978 goto out;
6979 }
6980 }
6981
6982 err = bpf_object__elf_init(obj);
6983 err = err ? : bpf_object__check_endianness(obj);
6984 err = err ? : bpf_object__elf_collect(obj);
6985 err = err ? : bpf_object__collect_externs(obj);
6986 err = err ? : bpf_object__finalize_btf(obj);
6987 err = err ? : bpf_object__init_maps(obj, opts);
6988 err = err ? : bpf_object__collect_relos(obj);
6989 if (err)
6990 goto out;
6991 bpf_object__elf_finish(obj);
6992
6993 bpf_object__for_each_program(prog, obj) {
6994 prog->sec_def = find_sec_def(prog->sec_name);
6995 if (!prog->sec_def)
6996 /* couldn't guess, but user might manually specify */
6997 continue;
6998
6999 if (prog->sec_def->is_sleepable)
7000 prog->prog_flags |= BPF_F_SLEEPABLE;
7001 bpf_program__set_type(prog, prog->sec_def->prog_type);
7002 bpf_program__set_expected_attach_type(prog,
7003 prog->sec_def->expected_attach_type);
7004
7005 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7006 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7007 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7008 }
7009
7010 return obj;
7011 out:
7012 bpf_object__close(obj);
7013 return ERR_PTR(err);
7014 }
7015
7016 static struct bpf_object *
__bpf_object__open_xattr(struct bpf_object_open_attr * attr,int flags)7017 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7018 {
7019 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7020 .relaxed_maps = flags & MAPS_RELAX_COMPAT,
7021 );
7022
7023 /* param validation */
7024 if (!attr->file)
7025 return NULL;
7026
7027 pr_debug("loading %s\n", attr->file);
7028 return __bpf_object__open(attr->file, NULL, 0, &opts);
7029 }
7030
bpf_object__open_xattr(struct bpf_object_open_attr * attr)7031 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7032 {
7033 return __bpf_object__open_xattr(attr, 0);
7034 }
7035
bpf_object__open(const char * path)7036 struct bpf_object *bpf_object__open(const char *path)
7037 {
7038 struct bpf_object_open_attr attr = {
7039 .file = path,
7040 .prog_type = BPF_PROG_TYPE_UNSPEC,
7041 };
7042
7043 return bpf_object__open_xattr(&attr);
7044 }
7045
7046 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)7047 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7048 {
7049 if (!path)
7050 return ERR_PTR(-EINVAL);
7051
7052 pr_debug("loading %s\n", path);
7053
7054 return __bpf_object__open(path, NULL, 0, opts);
7055 }
7056
7057 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)7058 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7059 const struct bpf_object_open_opts *opts)
7060 {
7061 if (!obj_buf || obj_buf_sz == 0)
7062 return ERR_PTR(-EINVAL);
7063
7064 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7065 }
7066
7067 struct bpf_object *
bpf_object__open_buffer(const void * obj_buf,size_t obj_buf_sz,const char * name)7068 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7069 const char *name)
7070 {
7071 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7072 .object_name = name,
7073 /* wrong default, but backwards-compatible */
7074 .relaxed_maps = true,
7075 );
7076
7077 /* returning NULL is wrong, but backwards-compatible */
7078 if (!obj_buf || obj_buf_sz == 0)
7079 return NULL;
7080
7081 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7082 }
7083
bpf_object__unload(struct bpf_object * obj)7084 int bpf_object__unload(struct bpf_object *obj)
7085 {
7086 size_t i;
7087
7088 if (!obj)
7089 return -EINVAL;
7090
7091 for (i = 0; i < obj->nr_maps; i++) {
7092 zclose(obj->maps[i].fd);
7093 if (obj->maps[i].st_ops)
7094 zfree(&obj->maps[i].st_ops->kern_vdata);
7095 }
7096
7097 for (i = 0; i < obj->nr_programs; i++)
7098 bpf_program__unload(&obj->programs[i]);
7099
7100 return 0;
7101 }
7102
bpf_object__sanitize_maps(struct bpf_object * obj)7103 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7104 {
7105 struct bpf_map *m;
7106
7107 bpf_object__for_each_map(m, obj) {
7108 if (!bpf_map__is_internal(m))
7109 continue;
7110 if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7111 pr_warn("kernel doesn't support global data\n");
7112 return -ENOTSUP;
7113 }
7114 if (!kernel_supports(FEAT_ARRAY_MMAP))
7115 m->def.map_flags ^= BPF_F_MMAPABLE;
7116 }
7117
7118 return 0;
7119 }
7120
bpf_object__read_kallsyms_file(struct bpf_object * obj)7121 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7122 {
7123 char sym_type, sym_name[500];
7124 unsigned long long sym_addr;
7125 struct extern_desc *ext;
7126 int ret, err = 0;
7127 FILE *f;
7128
7129 f = fopen("/proc/kallsyms", "r");
7130 if (!f) {
7131 err = -errno;
7132 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7133 return err;
7134 }
7135
7136 while (true) {
7137 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7138 &sym_addr, &sym_type, sym_name);
7139 if (ret == EOF && feof(f))
7140 break;
7141 if (ret != 3) {
7142 pr_warn("failed to read kallsyms entry: %d\n", ret);
7143 err = -EINVAL;
7144 goto out;
7145 }
7146
7147 ext = find_extern_by_name(obj, sym_name);
7148 if (!ext || ext->type != EXT_KSYM)
7149 continue;
7150
7151 if (ext->is_set && ext->ksym.addr != sym_addr) {
7152 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7153 sym_name, ext->ksym.addr, sym_addr);
7154 err = -EINVAL;
7155 goto out;
7156 }
7157 if (!ext->is_set) {
7158 ext->is_set = true;
7159 ext->ksym.addr = sym_addr;
7160 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7161 }
7162 }
7163
7164 out:
7165 fclose(f);
7166 return err;
7167 }
7168
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)7169 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7170 {
7171 struct extern_desc *ext;
7172 int i, id;
7173
7174 for (i = 0; i < obj->nr_extern; i++) {
7175 const struct btf_type *targ_var, *targ_type;
7176 __u32 targ_type_id, local_type_id;
7177 const char *targ_var_name;
7178 int ret;
7179
7180 ext = &obj->externs[i];
7181 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7182 continue;
7183
7184 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name,
7185 BTF_KIND_VAR);
7186 if (id <= 0) {
7187 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n",
7188 ext->name);
7189 return -ESRCH;
7190 }
7191
7192 /* find local type_id */
7193 local_type_id = ext->ksym.type_id;
7194
7195 /* find target type_id */
7196 targ_var = btf__type_by_id(obj->btf_vmlinux, id);
7197 targ_var_name = btf__name_by_offset(obj->btf_vmlinux,
7198 targ_var->name_off);
7199 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux,
7200 targ_var->type,
7201 &targ_type_id);
7202
7203 ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7204 obj->btf_vmlinux, targ_type_id);
7205 if (ret <= 0) {
7206 const struct btf_type *local_type;
7207 const char *targ_name, *local_name;
7208
7209 local_type = btf__type_by_id(obj->btf, local_type_id);
7210 local_name = btf__name_by_offset(obj->btf,
7211 local_type->name_off);
7212 targ_name = btf__name_by_offset(obj->btf_vmlinux,
7213 targ_type->name_off);
7214
7215 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7216 ext->name, local_type_id,
7217 btf_kind_str(local_type), local_name, targ_type_id,
7218 btf_kind_str(targ_type), targ_name);
7219 return -EINVAL;
7220 }
7221
7222 ext->is_set = true;
7223 ext->ksym.vmlinux_btf_id = id;
7224 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7225 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7226 }
7227 return 0;
7228 }
7229
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)7230 static int bpf_object__resolve_externs(struct bpf_object *obj,
7231 const char *extra_kconfig)
7232 {
7233 bool need_config = false, need_kallsyms = false;
7234 bool need_vmlinux_btf = false;
7235 struct extern_desc *ext;
7236 void *kcfg_data = NULL;
7237 int err, i;
7238
7239 if (obj->nr_extern == 0)
7240 return 0;
7241
7242 if (obj->kconfig_map_idx >= 0)
7243 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7244
7245 for (i = 0; i < obj->nr_extern; i++) {
7246 ext = &obj->externs[i];
7247
7248 if (ext->type == EXT_KCFG &&
7249 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7250 void *ext_val = kcfg_data + ext->kcfg.data_off;
7251 __u32 kver = get_kernel_version();
7252
7253 if (!kver) {
7254 pr_warn("failed to get kernel version\n");
7255 return -EINVAL;
7256 }
7257 err = set_kcfg_value_num(ext, ext_val, kver);
7258 if (err)
7259 return err;
7260 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7261 } else if (ext->type == EXT_KCFG &&
7262 strncmp(ext->name, "CONFIG_", 7) == 0) {
7263 need_config = true;
7264 } else if (ext->type == EXT_KSYM) {
7265 if (ext->ksym.type_id)
7266 need_vmlinux_btf = true;
7267 else
7268 need_kallsyms = true;
7269 } else {
7270 pr_warn("unrecognized extern '%s'\n", ext->name);
7271 return -EINVAL;
7272 }
7273 }
7274 if (need_config && extra_kconfig) {
7275 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7276 if (err)
7277 return -EINVAL;
7278 need_config = false;
7279 for (i = 0; i < obj->nr_extern; i++) {
7280 ext = &obj->externs[i];
7281 if (ext->type == EXT_KCFG && !ext->is_set) {
7282 need_config = true;
7283 break;
7284 }
7285 }
7286 }
7287 if (need_config) {
7288 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7289 if (err)
7290 return -EINVAL;
7291 }
7292 if (need_kallsyms) {
7293 err = bpf_object__read_kallsyms_file(obj);
7294 if (err)
7295 return -EINVAL;
7296 }
7297 if (need_vmlinux_btf) {
7298 err = bpf_object__resolve_ksyms_btf_id(obj);
7299 if (err)
7300 return -EINVAL;
7301 }
7302 for (i = 0; i < obj->nr_extern; i++) {
7303 ext = &obj->externs[i];
7304
7305 if (!ext->is_set && !ext->is_weak) {
7306 pr_warn("extern %s (strong) not resolved\n", ext->name);
7307 return -ESRCH;
7308 } else if (!ext->is_set) {
7309 pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7310 ext->name);
7311 }
7312 }
7313
7314 return 0;
7315 }
7316
bpf_object__load_xattr(struct bpf_object_load_attr * attr)7317 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7318 {
7319 struct bpf_object *obj;
7320 int err, i;
7321
7322 if (!attr)
7323 return -EINVAL;
7324 obj = attr->obj;
7325 if (!obj)
7326 return -EINVAL;
7327
7328 if (obj->loaded) {
7329 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7330 return -EINVAL;
7331 }
7332
7333 err = bpf_object__probe_loading(obj);
7334 err = err ? : bpf_object__load_vmlinux_btf(obj);
7335 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7336 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7337 err = err ? : bpf_object__sanitize_maps(obj);
7338 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7339 err = err ? : bpf_object__create_maps(obj);
7340 err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7341 err = err ? : bpf_object__load_progs(obj, attr->log_level);
7342
7343 btf__free(obj->btf_vmlinux);
7344 obj->btf_vmlinux = NULL;
7345
7346 obj->loaded = true; /* doesn't matter if successfully or not */
7347
7348 if (err)
7349 goto out;
7350
7351 return 0;
7352 out:
7353 /* unpin any maps that were auto-pinned during load */
7354 for (i = 0; i < obj->nr_maps; i++)
7355 if (obj->maps[i].pinned && !obj->maps[i].reused)
7356 bpf_map__unpin(&obj->maps[i], NULL);
7357
7358 bpf_object__unload(obj);
7359 pr_warn("failed to load object '%s'\n", obj->path);
7360 return err;
7361 }
7362
bpf_object__load(struct bpf_object * obj)7363 int bpf_object__load(struct bpf_object *obj)
7364 {
7365 struct bpf_object_load_attr attr = {
7366 .obj = obj,
7367 };
7368
7369 return bpf_object__load_xattr(&attr);
7370 }
7371
make_parent_dir(const char * path)7372 static int make_parent_dir(const char *path)
7373 {
7374 char *cp, errmsg[STRERR_BUFSIZE];
7375 char *dname, *dir;
7376 int err = 0;
7377
7378 dname = strdup(path);
7379 if (dname == NULL)
7380 return -ENOMEM;
7381
7382 dir = dirname(dname);
7383 if (mkdir(dir, 0700) && errno != EEXIST)
7384 err = -errno;
7385
7386 free(dname);
7387 if (err) {
7388 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7389 pr_warn("failed to mkdir %s: %s\n", path, cp);
7390 }
7391 return err;
7392 }
7393
check_path(const char * path)7394 static int check_path(const char *path)
7395 {
7396 char *cp, errmsg[STRERR_BUFSIZE];
7397 struct statfs st_fs;
7398 char *dname, *dir;
7399 int err = 0;
7400
7401 if (path == NULL)
7402 return -EINVAL;
7403
7404 dname = strdup(path);
7405 if (dname == NULL)
7406 return -ENOMEM;
7407
7408 dir = dirname(dname);
7409 if (statfs(dir, &st_fs)) {
7410 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7411 pr_warn("failed to statfs %s: %s\n", dir, cp);
7412 err = -errno;
7413 }
7414 free(dname);
7415
7416 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7417 pr_warn("specified path %s is not on BPF FS\n", path);
7418 err = -EINVAL;
7419 }
7420
7421 return err;
7422 }
7423
bpf_program__pin_instance(struct bpf_program * prog,const char * path,int instance)7424 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7425 int instance)
7426 {
7427 char *cp, errmsg[STRERR_BUFSIZE];
7428 int err;
7429
7430 err = make_parent_dir(path);
7431 if (err)
7432 return err;
7433
7434 err = check_path(path);
7435 if (err)
7436 return err;
7437
7438 if (prog == NULL) {
7439 pr_warn("invalid program pointer\n");
7440 return -EINVAL;
7441 }
7442
7443 if (instance < 0 || instance >= prog->instances.nr) {
7444 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7445 instance, prog->name, prog->instances.nr);
7446 return -EINVAL;
7447 }
7448
7449 if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7450 err = -errno;
7451 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7452 pr_warn("failed to pin program: %s\n", cp);
7453 return err;
7454 }
7455 pr_debug("pinned program '%s'\n", path);
7456
7457 return 0;
7458 }
7459
bpf_program__unpin_instance(struct bpf_program * prog,const char * path,int instance)7460 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7461 int instance)
7462 {
7463 int err;
7464
7465 err = check_path(path);
7466 if (err)
7467 return err;
7468
7469 if (prog == NULL) {
7470 pr_warn("invalid program pointer\n");
7471 return -EINVAL;
7472 }
7473
7474 if (instance < 0 || instance >= prog->instances.nr) {
7475 pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7476 instance, prog->name, prog->instances.nr);
7477 return -EINVAL;
7478 }
7479
7480 err = unlink(path);
7481 if (err != 0)
7482 return -errno;
7483 pr_debug("unpinned program '%s'\n", path);
7484
7485 return 0;
7486 }
7487
bpf_program__pin(struct bpf_program * prog,const char * path)7488 int bpf_program__pin(struct bpf_program *prog, const char *path)
7489 {
7490 int i, err;
7491
7492 err = make_parent_dir(path);
7493 if (err)
7494 return err;
7495
7496 err = check_path(path);
7497 if (err)
7498 return err;
7499
7500 if (prog == NULL) {
7501 pr_warn("invalid program pointer\n");
7502 return -EINVAL;
7503 }
7504
7505 if (prog->instances.nr <= 0) {
7506 pr_warn("no instances of prog %s to pin\n", prog->name);
7507 return -EINVAL;
7508 }
7509
7510 if (prog->instances.nr == 1) {
7511 /* don't create subdirs when pinning single instance */
7512 return bpf_program__pin_instance(prog, path, 0);
7513 }
7514
7515 for (i = 0; i < prog->instances.nr; i++) {
7516 char buf[PATH_MAX];
7517 int len;
7518
7519 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7520 if (len < 0) {
7521 err = -EINVAL;
7522 goto err_unpin;
7523 } else if (len >= PATH_MAX) {
7524 err = -ENAMETOOLONG;
7525 goto err_unpin;
7526 }
7527
7528 err = bpf_program__pin_instance(prog, buf, i);
7529 if (err)
7530 goto err_unpin;
7531 }
7532
7533 return 0;
7534
7535 err_unpin:
7536 for (i = i - 1; i >= 0; i--) {
7537 char buf[PATH_MAX];
7538 int len;
7539
7540 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7541 if (len < 0)
7542 continue;
7543 else if (len >= PATH_MAX)
7544 continue;
7545
7546 bpf_program__unpin_instance(prog, buf, i);
7547 }
7548
7549 rmdir(path);
7550
7551 return err;
7552 }
7553
bpf_program__unpin(struct bpf_program * prog,const char * path)7554 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7555 {
7556 int i, err;
7557
7558 err = check_path(path);
7559 if (err)
7560 return err;
7561
7562 if (prog == NULL) {
7563 pr_warn("invalid program pointer\n");
7564 return -EINVAL;
7565 }
7566
7567 if (prog->instances.nr <= 0) {
7568 pr_warn("no instances of prog %s to pin\n", prog->name);
7569 return -EINVAL;
7570 }
7571
7572 if (prog->instances.nr == 1) {
7573 /* don't create subdirs when pinning single instance */
7574 return bpf_program__unpin_instance(prog, path, 0);
7575 }
7576
7577 for (i = 0; i < prog->instances.nr; i++) {
7578 char buf[PATH_MAX];
7579 int len;
7580
7581 len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7582 if (len < 0)
7583 return -EINVAL;
7584 else if (len >= PATH_MAX)
7585 return -ENAMETOOLONG;
7586
7587 err = bpf_program__unpin_instance(prog, buf, i);
7588 if (err)
7589 return err;
7590 }
7591
7592 err = rmdir(path);
7593 if (err)
7594 return -errno;
7595
7596 return 0;
7597 }
7598
bpf_map__pin(struct bpf_map * map,const char * path)7599 int bpf_map__pin(struct bpf_map *map, const char *path)
7600 {
7601 char *cp, errmsg[STRERR_BUFSIZE];
7602 int err;
7603
7604 if (map == NULL) {
7605 pr_warn("invalid map pointer\n");
7606 return -EINVAL;
7607 }
7608
7609 if (map->pin_path) {
7610 if (path && strcmp(path, map->pin_path)) {
7611 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7612 bpf_map__name(map), map->pin_path, path);
7613 return -EINVAL;
7614 } else if (map->pinned) {
7615 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7616 bpf_map__name(map), map->pin_path);
7617 return 0;
7618 }
7619 } else {
7620 if (!path) {
7621 pr_warn("missing a path to pin map '%s' at\n",
7622 bpf_map__name(map));
7623 return -EINVAL;
7624 } else if (map->pinned) {
7625 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7626 return -EEXIST;
7627 }
7628
7629 map->pin_path = strdup(path);
7630 if (!map->pin_path) {
7631 err = -errno;
7632 goto out_err;
7633 }
7634 }
7635
7636 err = make_parent_dir(map->pin_path);
7637 if (err)
7638 return err;
7639
7640 err = check_path(map->pin_path);
7641 if (err)
7642 return err;
7643
7644 if (bpf_obj_pin(map->fd, map->pin_path)) {
7645 err = -errno;
7646 goto out_err;
7647 }
7648
7649 map->pinned = true;
7650 pr_debug("pinned map '%s'\n", map->pin_path);
7651
7652 return 0;
7653
7654 out_err:
7655 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7656 pr_warn("failed to pin map: %s\n", cp);
7657 return err;
7658 }
7659
bpf_map__unpin(struct bpf_map * map,const char * path)7660 int bpf_map__unpin(struct bpf_map *map, const char *path)
7661 {
7662 int err;
7663
7664 if (map == NULL) {
7665 pr_warn("invalid map pointer\n");
7666 return -EINVAL;
7667 }
7668
7669 if (map->pin_path) {
7670 if (path && strcmp(path, map->pin_path)) {
7671 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7672 bpf_map__name(map), map->pin_path, path);
7673 return -EINVAL;
7674 }
7675 path = map->pin_path;
7676 } else if (!path) {
7677 pr_warn("no path to unpin map '%s' from\n",
7678 bpf_map__name(map));
7679 return -EINVAL;
7680 }
7681
7682 err = check_path(path);
7683 if (err)
7684 return err;
7685
7686 err = unlink(path);
7687 if (err != 0)
7688 return -errno;
7689
7690 map->pinned = false;
7691 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7692
7693 return 0;
7694 }
7695
bpf_map__set_pin_path(struct bpf_map * map,const char * path)7696 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7697 {
7698 char *new = NULL;
7699
7700 if (path) {
7701 new = strdup(path);
7702 if (!new)
7703 return -errno;
7704 }
7705
7706 free(map->pin_path);
7707 map->pin_path = new;
7708 return 0;
7709 }
7710
bpf_map__get_pin_path(const struct bpf_map * map)7711 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7712 {
7713 return map->pin_path;
7714 }
7715
bpf_map__is_pinned(const struct bpf_map * map)7716 bool bpf_map__is_pinned(const struct bpf_map *map)
7717 {
7718 return map->pinned;
7719 }
7720
sanitize_pin_path(char * s)7721 static void sanitize_pin_path(char *s)
7722 {
7723 /* bpffs disallows periods in path names */
7724 while (*s) {
7725 if (*s == '.')
7726 *s = '_';
7727 s++;
7728 }
7729 }
7730
bpf_object__pin_maps(struct bpf_object * obj,const char * path)7731 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7732 {
7733 struct bpf_map *map;
7734 int err;
7735
7736 if (!obj)
7737 return -ENOENT;
7738
7739 if (!obj->loaded) {
7740 pr_warn("object not yet loaded; load it first\n");
7741 return -ENOENT;
7742 }
7743
7744 bpf_object__for_each_map(map, obj) {
7745 char *pin_path = NULL;
7746 char buf[PATH_MAX];
7747
7748 if (path) {
7749 int len;
7750
7751 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7752 bpf_map__name(map));
7753 if (len < 0) {
7754 err = -EINVAL;
7755 goto err_unpin_maps;
7756 } else if (len >= PATH_MAX) {
7757 err = -ENAMETOOLONG;
7758 goto err_unpin_maps;
7759 }
7760 sanitize_pin_path(buf);
7761 pin_path = buf;
7762 } else if (!map->pin_path) {
7763 continue;
7764 }
7765
7766 err = bpf_map__pin(map, pin_path);
7767 if (err)
7768 goto err_unpin_maps;
7769 }
7770
7771 return 0;
7772
7773 err_unpin_maps:
7774 while ((map = bpf_map__prev(map, obj))) {
7775 if (!map->pin_path)
7776 continue;
7777
7778 bpf_map__unpin(map, NULL);
7779 }
7780
7781 return err;
7782 }
7783
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)7784 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
7785 {
7786 struct bpf_map *map;
7787 int err;
7788
7789 if (!obj)
7790 return -ENOENT;
7791
7792 bpf_object__for_each_map(map, obj) {
7793 char *pin_path = NULL;
7794 char buf[PATH_MAX];
7795
7796 if (path) {
7797 int len;
7798
7799 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7800 bpf_map__name(map));
7801 if (len < 0)
7802 return -EINVAL;
7803 else if (len >= PATH_MAX)
7804 return -ENAMETOOLONG;
7805 sanitize_pin_path(buf);
7806 pin_path = buf;
7807 } else if (!map->pin_path) {
7808 continue;
7809 }
7810
7811 err = bpf_map__unpin(map, pin_path);
7812 if (err)
7813 return err;
7814 }
7815
7816 return 0;
7817 }
7818
bpf_object__pin_programs(struct bpf_object * obj,const char * path)7819 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
7820 {
7821 struct bpf_program *prog;
7822 int err;
7823
7824 if (!obj)
7825 return -ENOENT;
7826
7827 if (!obj->loaded) {
7828 pr_warn("object not yet loaded; load it first\n");
7829 return -ENOENT;
7830 }
7831
7832 bpf_object__for_each_program(prog, obj) {
7833 char buf[PATH_MAX];
7834 int len;
7835
7836 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7837 prog->pin_name);
7838 if (len < 0) {
7839 err = -EINVAL;
7840 goto err_unpin_programs;
7841 } else if (len >= PATH_MAX) {
7842 err = -ENAMETOOLONG;
7843 goto err_unpin_programs;
7844 }
7845
7846 err = bpf_program__pin(prog, buf);
7847 if (err)
7848 goto err_unpin_programs;
7849 }
7850
7851 return 0;
7852
7853 err_unpin_programs:
7854 while ((prog = bpf_program__prev(prog, obj))) {
7855 char buf[PATH_MAX];
7856 int len;
7857
7858 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7859 prog->pin_name);
7860 if (len < 0)
7861 continue;
7862 else if (len >= PATH_MAX)
7863 continue;
7864
7865 bpf_program__unpin(prog, buf);
7866 }
7867
7868 return err;
7869 }
7870
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)7871 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
7872 {
7873 struct bpf_program *prog;
7874 int err;
7875
7876 if (!obj)
7877 return -ENOENT;
7878
7879 bpf_object__for_each_program(prog, obj) {
7880 char buf[PATH_MAX];
7881 int len;
7882
7883 len = snprintf(buf, PATH_MAX, "%s/%s", path,
7884 prog->pin_name);
7885 if (len < 0)
7886 return -EINVAL;
7887 else if (len >= PATH_MAX)
7888 return -ENAMETOOLONG;
7889
7890 err = bpf_program__unpin(prog, buf);
7891 if (err)
7892 return err;
7893 }
7894
7895 return 0;
7896 }
7897
bpf_object__pin(struct bpf_object * obj,const char * path)7898 int bpf_object__pin(struct bpf_object *obj, const char *path)
7899 {
7900 int err;
7901
7902 err = bpf_object__pin_maps(obj, path);
7903 if (err)
7904 return err;
7905
7906 err = bpf_object__pin_programs(obj, path);
7907 if (err) {
7908 bpf_object__unpin_maps(obj, path);
7909 return err;
7910 }
7911
7912 return 0;
7913 }
7914
bpf_map__destroy(struct bpf_map * map)7915 static void bpf_map__destroy(struct bpf_map *map)
7916 {
7917 if (map->clear_priv)
7918 map->clear_priv(map, map->priv);
7919 map->priv = NULL;
7920 map->clear_priv = NULL;
7921
7922 if (map->inner_map) {
7923 bpf_map__destroy(map->inner_map);
7924 zfree(&map->inner_map);
7925 }
7926
7927 zfree(&map->init_slots);
7928 map->init_slots_sz = 0;
7929
7930 if (map->mmaped) {
7931 munmap(map->mmaped, bpf_map_mmap_sz(map));
7932 map->mmaped = NULL;
7933 }
7934
7935 if (map->st_ops) {
7936 zfree(&map->st_ops->data);
7937 zfree(&map->st_ops->progs);
7938 zfree(&map->st_ops->kern_func_off);
7939 zfree(&map->st_ops);
7940 }
7941
7942 zfree(&map->name);
7943 zfree(&map->pin_path);
7944
7945 if (map->fd >= 0)
7946 zclose(map->fd);
7947 }
7948
bpf_object__close(struct bpf_object * obj)7949 void bpf_object__close(struct bpf_object *obj)
7950 {
7951 size_t i;
7952
7953 if (IS_ERR_OR_NULL(obj))
7954 return;
7955
7956 if (obj->clear_priv)
7957 obj->clear_priv(obj, obj->priv);
7958
7959 bpf_object__elf_finish(obj);
7960 bpf_object__unload(obj);
7961 btf__free(obj->btf);
7962 btf_ext__free(obj->btf_ext);
7963
7964 for (i = 0; i < obj->nr_maps; i++)
7965 bpf_map__destroy(&obj->maps[i]);
7966
7967 zfree(&obj->kconfig);
7968 zfree(&obj->externs);
7969 obj->nr_extern = 0;
7970
7971 zfree(&obj->maps);
7972 obj->nr_maps = 0;
7973
7974 if (obj->programs && obj->nr_programs) {
7975 for (i = 0; i < obj->nr_programs; i++)
7976 bpf_program__exit(&obj->programs[i]);
7977 }
7978 zfree(&obj->programs);
7979
7980 list_del(&obj->list);
7981 free(obj);
7982 }
7983
7984 struct bpf_object *
bpf_object__next(struct bpf_object * prev)7985 bpf_object__next(struct bpf_object *prev)
7986 {
7987 struct bpf_object *next;
7988
7989 if (!prev)
7990 next = list_first_entry(&bpf_objects_list,
7991 struct bpf_object,
7992 list);
7993 else
7994 next = list_next_entry(prev, list);
7995
7996 /* Empty list is noticed here so don't need checking on entry. */
7997 if (&next->list == &bpf_objects_list)
7998 return NULL;
7999
8000 return next;
8001 }
8002
bpf_object__name(const struct bpf_object * obj)8003 const char *bpf_object__name(const struct bpf_object *obj)
8004 {
8005 return obj ? obj->name : ERR_PTR(-EINVAL);
8006 }
8007
bpf_object__kversion(const struct bpf_object * obj)8008 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8009 {
8010 return obj ? obj->kern_version : 0;
8011 }
8012
bpf_object__btf(const struct bpf_object * obj)8013 struct btf *bpf_object__btf(const struct bpf_object *obj)
8014 {
8015 return obj ? obj->btf : NULL;
8016 }
8017
bpf_object__btf_fd(const struct bpf_object * obj)8018 int bpf_object__btf_fd(const struct bpf_object *obj)
8019 {
8020 return obj->btf ? btf__fd(obj->btf) : -1;
8021 }
8022
bpf_object__set_priv(struct bpf_object * obj,void * priv,bpf_object_clear_priv_t clear_priv)8023 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8024 bpf_object_clear_priv_t clear_priv)
8025 {
8026 if (obj->priv && obj->clear_priv)
8027 obj->clear_priv(obj, obj->priv);
8028
8029 obj->priv = priv;
8030 obj->clear_priv = clear_priv;
8031 return 0;
8032 }
8033
bpf_object__priv(const struct bpf_object * obj)8034 void *bpf_object__priv(const struct bpf_object *obj)
8035 {
8036 return obj ? obj->priv : ERR_PTR(-EINVAL);
8037 }
8038
8039 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)8040 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8041 bool forward)
8042 {
8043 size_t nr_programs = obj->nr_programs;
8044 ssize_t idx;
8045
8046 if (!nr_programs)
8047 return NULL;
8048
8049 if (!p)
8050 /* Iter from the beginning */
8051 return forward ? &obj->programs[0] :
8052 &obj->programs[nr_programs - 1];
8053
8054 if (p->obj != obj) {
8055 pr_warn("error: program handler doesn't match object\n");
8056 return NULL;
8057 }
8058
8059 idx = (p - obj->programs) + (forward ? 1 : -1);
8060 if (idx >= obj->nr_programs || idx < 0)
8061 return NULL;
8062 return &obj->programs[idx];
8063 }
8064
8065 struct bpf_program *
bpf_program__next(struct bpf_program * prev,const struct bpf_object * obj)8066 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8067 {
8068 struct bpf_program *prog = prev;
8069
8070 do {
8071 prog = __bpf_program__iter(prog, obj, true);
8072 } while (prog && prog_is_subprog(obj, prog));
8073
8074 return prog;
8075 }
8076
8077 struct bpf_program *
bpf_program__prev(struct bpf_program * next,const struct bpf_object * obj)8078 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8079 {
8080 struct bpf_program *prog = next;
8081
8082 do {
8083 prog = __bpf_program__iter(prog, obj, false);
8084 } while (prog && prog_is_subprog(obj, prog));
8085
8086 return prog;
8087 }
8088
bpf_program__set_priv(struct bpf_program * prog,void * priv,bpf_program_clear_priv_t clear_priv)8089 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8090 bpf_program_clear_priv_t clear_priv)
8091 {
8092 if (prog->priv && prog->clear_priv)
8093 prog->clear_priv(prog, prog->priv);
8094
8095 prog->priv = priv;
8096 prog->clear_priv = clear_priv;
8097 return 0;
8098 }
8099
bpf_program__priv(const struct bpf_program * prog)8100 void *bpf_program__priv(const struct bpf_program *prog)
8101 {
8102 return prog ? prog->priv : ERR_PTR(-EINVAL);
8103 }
8104
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)8105 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8106 {
8107 prog->prog_ifindex = ifindex;
8108 }
8109
bpf_program__name(const struct bpf_program * prog)8110 const char *bpf_program__name(const struct bpf_program *prog)
8111 {
8112 return prog->name;
8113 }
8114
bpf_program__section_name(const struct bpf_program * prog)8115 const char *bpf_program__section_name(const struct bpf_program *prog)
8116 {
8117 return prog->sec_name;
8118 }
8119
bpf_program__title(const struct bpf_program * prog,bool needs_copy)8120 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8121 {
8122 const char *title;
8123
8124 title = prog->sec_name;
8125 if (needs_copy) {
8126 title = strdup(title);
8127 if (!title) {
8128 pr_warn("failed to strdup program title\n");
8129 return ERR_PTR(-ENOMEM);
8130 }
8131 }
8132
8133 return title;
8134 }
8135
bpf_program__autoload(const struct bpf_program * prog)8136 bool bpf_program__autoload(const struct bpf_program *prog)
8137 {
8138 return prog->load;
8139 }
8140
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)8141 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8142 {
8143 if (prog->obj->loaded)
8144 return -EINVAL;
8145
8146 prog->load = autoload;
8147 return 0;
8148 }
8149
bpf_program__fd(const struct bpf_program * prog)8150 int bpf_program__fd(const struct bpf_program *prog)
8151 {
8152 return bpf_program__nth_fd(prog, 0);
8153 }
8154
bpf_program__size(const struct bpf_program * prog)8155 size_t bpf_program__size(const struct bpf_program *prog)
8156 {
8157 return prog->insns_cnt * BPF_INSN_SZ;
8158 }
8159
bpf_program__set_prep(struct bpf_program * prog,int nr_instances,bpf_program_prep_t prep)8160 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8161 bpf_program_prep_t prep)
8162 {
8163 int *instances_fds;
8164
8165 if (nr_instances <= 0 || !prep)
8166 return -EINVAL;
8167
8168 if (prog->instances.nr > 0 || prog->instances.fds) {
8169 pr_warn("Can't set pre-processor after loading\n");
8170 return -EINVAL;
8171 }
8172
8173 instances_fds = malloc(sizeof(int) * nr_instances);
8174 if (!instances_fds) {
8175 pr_warn("alloc memory failed for fds\n");
8176 return -ENOMEM;
8177 }
8178
8179 /* fill all fd with -1 */
8180 memset(instances_fds, -1, sizeof(int) * nr_instances);
8181
8182 prog->instances.nr = nr_instances;
8183 prog->instances.fds = instances_fds;
8184 prog->preprocessor = prep;
8185 return 0;
8186 }
8187
bpf_program__nth_fd(const struct bpf_program * prog,int n)8188 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8189 {
8190 int fd;
8191
8192 if (!prog)
8193 return -EINVAL;
8194
8195 if (n >= prog->instances.nr || n < 0) {
8196 pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8197 n, prog->name, prog->instances.nr);
8198 return -EINVAL;
8199 }
8200
8201 fd = prog->instances.fds[n];
8202 if (fd < 0) {
8203 pr_warn("%dth instance of program '%s' is invalid\n",
8204 n, prog->name);
8205 return -ENOENT;
8206 }
8207
8208 return fd;
8209 }
8210
bpf_program__get_type(struct bpf_program * prog)8211 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8212 {
8213 return prog->type;
8214 }
8215
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)8216 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8217 {
8218 prog->type = type;
8219 }
8220
bpf_program__is_type(const struct bpf_program * prog,enum bpf_prog_type type)8221 static bool bpf_program__is_type(const struct bpf_program *prog,
8222 enum bpf_prog_type type)
8223 {
8224 return prog ? (prog->type == type) : false;
8225 }
8226
8227 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \
8228 int bpf_program__set_##NAME(struct bpf_program *prog) \
8229 { \
8230 if (!prog) \
8231 return -EINVAL; \
8232 bpf_program__set_type(prog, TYPE); \
8233 return 0; \
8234 } \
8235 \
8236 bool bpf_program__is_##NAME(const struct bpf_program *prog) \
8237 { \
8238 return bpf_program__is_type(prog, TYPE); \
8239 } \
8240
8241 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8242 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8243 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8244 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8245 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8246 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8247 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8248 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8249 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8250 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8251 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8252 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8253 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8254
8255 enum bpf_attach_type
bpf_program__get_expected_attach_type(struct bpf_program * prog)8256 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8257 {
8258 return prog->expected_attach_type;
8259 }
8260
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)8261 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8262 enum bpf_attach_type type)
8263 {
8264 prog->expected_attach_type = type;
8265 }
8266
8267 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \
8268 attachable, attach_btf) \
8269 { \
8270 .sec = string, \
8271 .len = sizeof(string) - 1, \
8272 .prog_type = ptype, \
8273 .expected_attach_type = eatype, \
8274 .is_exp_attach_type_optional = eatype_optional, \
8275 .is_attachable = attachable, \
8276 .is_attach_btf = attach_btf, \
8277 }
8278
8279 /* Programs that can NOT be attached. */
8280 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8281
8282 /* Programs that can be attached. */
8283 #define BPF_APROG_SEC(string, ptype, atype) \
8284 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8285
8286 /* Programs that must specify expected attach type at load time. */
8287 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8288 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8289
8290 /* Programs that use BTF to identify attach point */
8291 #define BPF_PROG_BTF(string, ptype, eatype) \
8292 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8293
8294 /* Programs that can be attached but attach type can't be identified by section
8295 * name. Kept for backward compatibility.
8296 */
8297 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8298
8299 #define SEC_DEF(sec_pfx, ptype, ...) { \
8300 .sec = sec_pfx, \
8301 .len = sizeof(sec_pfx) - 1, \
8302 .prog_type = BPF_PROG_TYPE_##ptype, \
8303 __VA_ARGS__ \
8304 }
8305
8306 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8307 struct bpf_program *prog);
8308 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8309 struct bpf_program *prog);
8310 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8311 struct bpf_program *prog);
8312 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8313 struct bpf_program *prog);
8314 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8315 struct bpf_program *prog);
8316 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8317 struct bpf_program *prog);
8318
8319 static const struct bpf_sec_def section_defs[] = {
8320 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER),
8321 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT),
8322 SEC_DEF("kprobe/", KPROBE,
8323 .attach_fn = attach_kprobe),
8324 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE),
8325 SEC_DEF("kretprobe/", KPROBE,
8326 .attach_fn = attach_kprobe),
8327 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE),
8328 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS),
8329 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT),
8330 SEC_DEF("tracepoint/", TRACEPOINT,
8331 .attach_fn = attach_tp),
8332 SEC_DEF("tp/", TRACEPOINT,
8333 .attach_fn = attach_tp),
8334 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8335 .attach_fn = attach_raw_tp),
8336 SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8337 .attach_fn = attach_raw_tp),
8338 SEC_DEF("tp_btf/", TRACING,
8339 .expected_attach_type = BPF_TRACE_RAW_TP,
8340 .is_attach_btf = true,
8341 .attach_fn = attach_trace),
8342 SEC_DEF("fentry/", TRACING,
8343 .expected_attach_type = BPF_TRACE_FENTRY,
8344 .is_attach_btf = true,
8345 .attach_fn = attach_trace),
8346 SEC_DEF("fmod_ret/", TRACING,
8347 .expected_attach_type = BPF_MODIFY_RETURN,
8348 .is_attach_btf = true,
8349 .attach_fn = attach_trace),
8350 SEC_DEF("fexit/", TRACING,
8351 .expected_attach_type = BPF_TRACE_FEXIT,
8352 .is_attach_btf = true,
8353 .attach_fn = attach_trace),
8354 SEC_DEF("fentry.s/", TRACING,
8355 .expected_attach_type = BPF_TRACE_FENTRY,
8356 .is_attach_btf = true,
8357 .is_sleepable = true,
8358 .attach_fn = attach_trace),
8359 SEC_DEF("fmod_ret.s/", TRACING,
8360 .expected_attach_type = BPF_MODIFY_RETURN,
8361 .is_attach_btf = true,
8362 .is_sleepable = true,
8363 .attach_fn = attach_trace),
8364 SEC_DEF("fexit.s/", TRACING,
8365 .expected_attach_type = BPF_TRACE_FEXIT,
8366 .is_attach_btf = true,
8367 .is_sleepable = true,
8368 .attach_fn = attach_trace),
8369 SEC_DEF("freplace/", EXT,
8370 .is_attach_btf = true,
8371 .attach_fn = attach_trace),
8372 SEC_DEF("lsm/", LSM,
8373 .is_attach_btf = true,
8374 .expected_attach_type = BPF_LSM_MAC,
8375 .attach_fn = attach_lsm),
8376 SEC_DEF("lsm.s/", LSM,
8377 .is_attach_btf = true,
8378 .is_sleepable = true,
8379 .expected_attach_type = BPF_LSM_MAC,
8380 .attach_fn = attach_lsm),
8381 SEC_DEF("iter/", TRACING,
8382 .expected_attach_type = BPF_TRACE_ITER,
8383 .is_attach_btf = true,
8384 .attach_fn = attach_iter),
8385 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP,
8386 BPF_XDP_DEVMAP),
8387 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP,
8388 BPF_XDP_CPUMAP),
8389 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP,
8390 BPF_XDP),
8391 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT),
8392 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN),
8393 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT),
8394 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT),
8395 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL),
8396 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB,
8397 BPF_CGROUP_INET_INGRESS),
8398 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB,
8399 BPF_CGROUP_INET_EGRESS),
8400 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB),
8401 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK,
8402 BPF_CGROUP_INET_SOCK_CREATE),
8403 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK,
8404 BPF_CGROUP_INET_SOCK_RELEASE),
8405 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK,
8406 BPF_CGROUP_INET_SOCK_CREATE),
8407 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK,
8408 BPF_CGROUP_INET4_POST_BIND),
8409 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK,
8410 BPF_CGROUP_INET6_POST_BIND),
8411 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE,
8412 BPF_CGROUP_DEVICE),
8413 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS,
8414 BPF_CGROUP_SOCK_OPS),
8415 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB,
8416 BPF_SK_SKB_STREAM_PARSER),
8417 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB,
8418 BPF_SK_SKB_STREAM_VERDICT),
8419 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB),
8420 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG,
8421 BPF_SK_MSG_VERDICT),
8422 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2,
8423 BPF_LIRC_MODE2),
8424 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR,
8425 BPF_FLOW_DISSECTOR),
8426 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8427 BPF_CGROUP_INET4_BIND),
8428 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8429 BPF_CGROUP_INET6_BIND),
8430 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8431 BPF_CGROUP_INET4_CONNECT),
8432 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8433 BPF_CGROUP_INET6_CONNECT),
8434 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8435 BPF_CGROUP_UDP4_SENDMSG),
8436 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8437 BPF_CGROUP_UDP6_SENDMSG),
8438 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8439 BPF_CGROUP_UDP4_RECVMSG),
8440 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8441 BPF_CGROUP_UDP6_RECVMSG),
8442 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8443 BPF_CGROUP_INET4_GETPEERNAME),
8444 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8445 BPF_CGROUP_INET6_GETPEERNAME),
8446 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8447 BPF_CGROUP_INET4_GETSOCKNAME),
8448 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8449 BPF_CGROUP_INET6_GETSOCKNAME),
8450 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL,
8451 BPF_CGROUP_SYSCTL),
8452 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT,
8453 BPF_CGROUP_GETSOCKOPT),
8454 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT,
8455 BPF_CGROUP_SETSOCKOPT),
8456 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS),
8457 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP,
8458 BPF_SK_LOOKUP),
8459 };
8460
8461 #undef BPF_PROG_SEC_IMPL
8462 #undef BPF_PROG_SEC
8463 #undef BPF_APROG_SEC
8464 #undef BPF_EAPROG_SEC
8465 #undef BPF_APROG_COMPAT
8466 #undef SEC_DEF
8467
8468 #define MAX_TYPE_NAME_SIZE 32
8469
find_sec_def(const char * sec_name)8470 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8471 {
8472 int i, n = ARRAY_SIZE(section_defs);
8473
8474 for (i = 0; i < n; i++) {
8475 if (strncmp(sec_name,
8476 section_defs[i].sec, section_defs[i].len))
8477 continue;
8478 return §ion_defs[i];
8479 }
8480 return NULL;
8481 }
8482
libbpf_get_type_names(bool attach_type)8483 static char *libbpf_get_type_names(bool attach_type)
8484 {
8485 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8486 char *buf;
8487
8488 buf = malloc(len);
8489 if (!buf)
8490 return NULL;
8491
8492 buf[0] = '\0';
8493 /* Forge string buf with all available names */
8494 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8495 if (attach_type && !section_defs[i].is_attachable)
8496 continue;
8497
8498 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8499 free(buf);
8500 return NULL;
8501 }
8502 strcat(buf, " ");
8503 strcat(buf, section_defs[i].sec);
8504 }
8505
8506 return buf;
8507 }
8508
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)8509 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8510 enum bpf_attach_type *expected_attach_type)
8511 {
8512 const struct bpf_sec_def *sec_def;
8513 char *type_names;
8514
8515 if (!name)
8516 return -EINVAL;
8517
8518 sec_def = find_sec_def(name);
8519 if (sec_def) {
8520 *prog_type = sec_def->prog_type;
8521 *expected_attach_type = sec_def->expected_attach_type;
8522 return 0;
8523 }
8524
8525 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8526 type_names = libbpf_get_type_names(false);
8527 if (type_names != NULL) {
8528 pr_debug("supported section(type) names are:%s\n", type_names);
8529 free(type_names);
8530 }
8531
8532 return -ESRCH;
8533 }
8534
find_struct_ops_map_by_offset(struct bpf_object * obj,size_t offset)8535 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8536 size_t offset)
8537 {
8538 struct bpf_map *map;
8539 size_t i;
8540
8541 for (i = 0; i < obj->nr_maps; i++) {
8542 map = &obj->maps[i];
8543 if (!bpf_map__is_struct_ops(map))
8544 continue;
8545 if (map->sec_offset <= offset &&
8546 offset - map->sec_offset < map->def.value_size)
8547 return map;
8548 }
8549
8550 return NULL;
8551 }
8552
8553 /* Collect the reloc from ELF and populate the st_ops->progs[] */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,GElf_Shdr * shdr,Elf_Data * data)8554 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8555 GElf_Shdr *shdr, Elf_Data *data)
8556 {
8557 const struct btf_member *member;
8558 struct bpf_struct_ops *st_ops;
8559 struct bpf_program *prog;
8560 unsigned int shdr_idx;
8561 const struct btf *btf;
8562 struct bpf_map *map;
8563 Elf_Data *symbols;
8564 unsigned int moff, insn_idx;
8565 const char *name;
8566 __u32 member_idx;
8567 GElf_Sym sym;
8568 GElf_Rel rel;
8569 int i, nrels;
8570
8571 symbols = obj->efile.symbols;
8572 btf = obj->btf;
8573 nrels = shdr->sh_size / shdr->sh_entsize;
8574 for (i = 0; i < nrels; i++) {
8575 if (!gelf_getrel(data, i, &rel)) {
8576 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8577 return -LIBBPF_ERRNO__FORMAT;
8578 }
8579
8580 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8581 pr_warn("struct_ops reloc: symbol %zx not found\n",
8582 (size_t)GELF_R_SYM(rel.r_info));
8583 return -LIBBPF_ERRNO__FORMAT;
8584 }
8585
8586 name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8587 map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8588 if (!map) {
8589 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8590 (size_t)rel.r_offset);
8591 return -EINVAL;
8592 }
8593
8594 moff = rel.r_offset - map->sec_offset;
8595 shdr_idx = sym.st_shndx;
8596 st_ops = map->st_ops;
8597 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8598 map->name,
8599 (long long)(rel.r_info >> 32),
8600 (long long)sym.st_value,
8601 shdr_idx, (size_t)rel.r_offset,
8602 map->sec_offset, sym.st_name, name);
8603
8604 if (shdr_idx >= SHN_LORESERVE) {
8605 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8606 map->name, (size_t)rel.r_offset, shdr_idx);
8607 return -LIBBPF_ERRNO__RELOC;
8608 }
8609 if (sym.st_value % BPF_INSN_SZ) {
8610 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8611 map->name, (unsigned long long)sym.st_value);
8612 return -LIBBPF_ERRNO__FORMAT;
8613 }
8614 insn_idx = sym.st_value / BPF_INSN_SZ;
8615
8616 member = find_member_by_offset(st_ops->type, moff * 8);
8617 if (!member) {
8618 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8619 map->name, moff);
8620 return -EINVAL;
8621 }
8622 member_idx = member - btf_members(st_ops->type);
8623 name = btf__name_by_offset(btf, member->name_off);
8624
8625 if (!resolve_func_ptr(btf, member->type, NULL)) {
8626 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8627 map->name, name);
8628 return -EINVAL;
8629 }
8630
8631 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8632 if (!prog) {
8633 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8634 map->name, shdr_idx, name);
8635 return -EINVAL;
8636 }
8637
8638 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8639 const struct bpf_sec_def *sec_def;
8640
8641 sec_def = find_sec_def(prog->sec_name);
8642 if (sec_def &&
8643 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8644 /* for pr_warn */
8645 prog->type = sec_def->prog_type;
8646 goto invalid_prog;
8647 }
8648
8649 prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8650 prog->attach_btf_id = st_ops->type_id;
8651 prog->expected_attach_type = member_idx;
8652 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8653 prog->attach_btf_id != st_ops->type_id ||
8654 prog->expected_attach_type != member_idx) {
8655 goto invalid_prog;
8656 }
8657 st_ops->progs[member_idx] = prog;
8658 }
8659
8660 return 0;
8661
8662 invalid_prog:
8663 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8664 map->name, prog->name, prog->sec_name, prog->type,
8665 prog->attach_btf_id, prog->expected_attach_type, name);
8666 return -EINVAL;
8667 }
8668
8669 #define BTF_TRACE_PREFIX "btf_trace_"
8670 #define BTF_LSM_PREFIX "bpf_lsm_"
8671 #define BTF_ITER_PREFIX "bpf_iter_"
8672 #define BTF_MAX_NAME_SIZE 128
8673
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)8674 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8675 const char *name, __u32 kind)
8676 {
8677 char btf_type_name[BTF_MAX_NAME_SIZE];
8678 int ret;
8679
8680 ret = snprintf(btf_type_name, sizeof(btf_type_name),
8681 "%s%s", prefix, name);
8682 /* snprintf returns the number of characters written excluding the
8683 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8684 * indicates truncation.
8685 */
8686 if (ret < 0 || ret >= sizeof(btf_type_name))
8687 return -ENAMETOOLONG;
8688 return btf__find_by_name_kind(btf, btf_type_name, kind);
8689 }
8690
__find_vmlinux_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)8691 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name,
8692 enum bpf_attach_type attach_type)
8693 {
8694 int err;
8695
8696 if (attach_type == BPF_TRACE_RAW_TP)
8697 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8698 BTF_KIND_TYPEDEF);
8699 else if (attach_type == BPF_LSM_MAC)
8700 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8701 BTF_KIND_FUNC);
8702 else if (attach_type == BPF_TRACE_ITER)
8703 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8704 BTF_KIND_FUNC);
8705 else
8706 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8707
8708 if (err <= 0)
8709 pr_warn("%s is not found in vmlinux BTF\n", name);
8710
8711 return err;
8712 }
8713
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)8714 int libbpf_find_vmlinux_btf_id(const char *name,
8715 enum bpf_attach_type attach_type)
8716 {
8717 struct btf *btf;
8718 int err;
8719
8720 btf = libbpf_find_kernel_btf();
8721 if (IS_ERR(btf)) {
8722 pr_warn("vmlinux BTF is not found\n");
8723 return -EINVAL;
8724 }
8725
8726 err = __find_vmlinux_btf_id(btf, name, attach_type);
8727 btf__free(btf);
8728 return err;
8729 }
8730
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd)8731 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8732 {
8733 struct bpf_prog_info_linear *info_linear;
8734 struct bpf_prog_info *info;
8735 struct btf *btf = NULL;
8736 int err = -EINVAL;
8737
8738 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8739 if (IS_ERR_OR_NULL(info_linear)) {
8740 pr_warn("failed get_prog_info_linear for FD %d\n",
8741 attach_prog_fd);
8742 return -EINVAL;
8743 }
8744 info = &info_linear->info;
8745 if (!info->btf_id) {
8746 pr_warn("The target program doesn't have BTF\n");
8747 goto out;
8748 }
8749 if (btf__get_from_id(info->btf_id, &btf)) {
8750 pr_warn("Failed to get BTF of the program\n");
8751 goto out;
8752 }
8753 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8754 btf__free(btf);
8755 if (err <= 0) {
8756 pr_warn("%s is not found in prog's BTF\n", name);
8757 goto out;
8758 }
8759 out:
8760 free(info_linear);
8761 return err;
8762 }
8763
libbpf_find_attach_btf_id(struct bpf_program * prog)8764 static int libbpf_find_attach_btf_id(struct bpf_program *prog)
8765 {
8766 enum bpf_attach_type attach_type = prog->expected_attach_type;
8767 __u32 attach_prog_fd = prog->attach_prog_fd;
8768 const char *name = prog->sec_name;
8769 int i, err;
8770
8771 if (!name)
8772 return -EINVAL;
8773
8774 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8775 if (!section_defs[i].is_attach_btf)
8776 continue;
8777 if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8778 continue;
8779 if (attach_prog_fd)
8780 err = libbpf_find_prog_btf_id(name + section_defs[i].len,
8781 attach_prog_fd);
8782 else
8783 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux,
8784 name + section_defs[i].len,
8785 attach_type);
8786 return err;
8787 }
8788 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name);
8789 return -ESRCH;
8790 }
8791
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)8792 int libbpf_attach_type_by_name(const char *name,
8793 enum bpf_attach_type *attach_type)
8794 {
8795 char *type_names;
8796 int i;
8797
8798 if (!name)
8799 return -EINVAL;
8800
8801 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8802 if (strncmp(name, section_defs[i].sec, section_defs[i].len))
8803 continue;
8804 if (!section_defs[i].is_attachable)
8805 return -EINVAL;
8806 *attach_type = section_defs[i].expected_attach_type;
8807 return 0;
8808 }
8809 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
8810 type_names = libbpf_get_type_names(true);
8811 if (type_names != NULL) {
8812 pr_debug("attachable section(type) names are:%s\n", type_names);
8813 free(type_names);
8814 }
8815
8816 return -EINVAL;
8817 }
8818
bpf_map__fd(const struct bpf_map * map)8819 int bpf_map__fd(const struct bpf_map *map)
8820 {
8821 return map ? map->fd : -EINVAL;
8822 }
8823
bpf_map__def(const struct bpf_map * map)8824 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
8825 {
8826 return map ? &map->def : ERR_PTR(-EINVAL);
8827 }
8828
bpf_map__name(const struct bpf_map * map)8829 const char *bpf_map__name(const struct bpf_map *map)
8830 {
8831 return map ? map->name : NULL;
8832 }
8833
bpf_map__type(const struct bpf_map * map)8834 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
8835 {
8836 return map->def.type;
8837 }
8838
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)8839 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
8840 {
8841 if (map->fd >= 0)
8842 return -EBUSY;
8843 map->def.type = type;
8844 return 0;
8845 }
8846
bpf_map__map_flags(const struct bpf_map * map)8847 __u32 bpf_map__map_flags(const struct bpf_map *map)
8848 {
8849 return map->def.map_flags;
8850 }
8851
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)8852 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
8853 {
8854 if (map->fd >= 0)
8855 return -EBUSY;
8856 map->def.map_flags = flags;
8857 return 0;
8858 }
8859
bpf_map__numa_node(const struct bpf_map * map)8860 __u32 bpf_map__numa_node(const struct bpf_map *map)
8861 {
8862 return map->numa_node;
8863 }
8864
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)8865 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
8866 {
8867 if (map->fd >= 0)
8868 return -EBUSY;
8869 map->numa_node = numa_node;
8870 return 0;
8871 }
8872
bpf_map__key_size(const struct bpf_map * map)8873 __u32 bpf_map__key_size(const struct bpf_map *map)
8874 {
8875 return map->def.key_size;
8876 }
8877
bpf_map__set_key_size(struct bpf_map * map,__u32 size)8878 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
8879 {
8880 if (map->fd >= 0)
8881 return -EBUSY;
8882 map->def.key_size = size;
8883 return 0;
8884 }
8885
bpf_map__value_size(const struct bpf_map * map)8886 __u32 bpf_map__value_size(const struct bpf_map *map)
8887 {
8888 return map->def.value_size;
8889 }
8890
bpf_map__set_value_size(struct bpf_map * map,__u32 size)8891 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
8892 {
8893 if (map->fd >= 0)
8894 return -EBUSY;
8895 map->def.value_size = size;
8896 return 0;
8897 }
8898
bpf_map__btf_key_type_id(const struct bpf_map * map)8899 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
8900 {
8901 return map ? map->btf_key_type_id : 0;
8902 }
8903
bpf_map__btf_value_type_id(const struct bpf_map * map)8904 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
8905 {
8906 return map ? map->btf_value_type_id : 0;
8907 }
8908
bpf_map__set_priv(struct bpf_map * map,void * priv,bpf_map_clear_priv_t clear_priv)8909 int bpf_map__set_priv(struct bpf_map *map, void *priv,
8910 bpf_map_clear_priv_t clear_priv)
8911 {
8912 if (!map)
8913 return -EINVAL;
8914
8915 if (map->priv) {
8916 if (map->clear_priv)
8917 map->clear_priv(map, map->priv);
8918 }
8919
8920 map->priv = priv;
8921 map->clear_priv = clear_priv;
8922 return 0;
8923 }
8924
bpf_map__priv(const struct bpf_map * map)8925 void *bpf_map__priv(const struct bpf_map *map)
8926 {
8927 return map ? map->priv : ERR_PTR(-EINVAL);
8928 }
8929
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)8930 int bpf_map__set_initial_value(struct bpf_map *map,
8931 const void *data, size_t size)
8932 {
8933 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
8934 size != map->def.value_size || map->fd >= 0)
8935 return -EINVAL;
8936
8937 memcpy(map->mmaped, data, size);
8938 return 0;
8939 }
8940
bpf_map__is_offload_neutral(const struct bpf_map * map)8941 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
8942 {
8943 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
8944 }
8945
bpf_map__is_internal(const struct bpf_map * map)8946 bool bpf_map__is_internal(const struct bpf_map *map)
8947 {
8948 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
8949 }
8950
bpf_map__ifindex(const struct bpf_map * map)8951 __u32 bpf_map__ifindex(const struct bpf_map *map)
8952 {
8953 return map->map_ifindex;
8954 }
8955
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)8956 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
8957 {
8958 if (map->fd >= 0)
8959 return -EBUSY;
8960 map->map_ifindex = ifindex;
8961 return 0;
8962 }
8963
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)8964 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
8965 {
8966 if (!bpf_map_type__is_map_in_map(map->def.type)) {
8967 pr_warn("error: unsupported map type\n");
8968 return -EINVAL;
8969 }
8970 if (map->inner_map_fd != -1) {
8971 pr_warn("error: inner_map_fd already specified\n");
8972 return -EINVAL;
8973 }
8974 map->inner_map_fd = fd;
8975 return 0;
8976 }
8977
8978 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)8979 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
8980 {
8981 ssize_t idx;
8982 struct bpf_map *s, *e;
8983
8984 if (!obj || !obj->maps)
8985 return NULL;
8986
8987 s = obj->maps;
8988 e = obj->maps + obj->nr_maps;
8989
8990 if ((m < s) || (m >= e)) {
8991 pr_warn("error in %s: map handler doesn't belong to object\n",
8992 __func__);
8993 return NULL;
8994 }
8995
8996 idx = (m - obj->maps) + i;
8997 if (idx >= obj->nr_maps || idx < 0)
8998 return NULL;
8999 return &obj->maps[idx];
9000 }
9001
9002 struct bpf_map *
bpf_map__next(const struct bpf_map * prev,const struct bpf_object * obj)9003 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9004 {
9005 if (prev == NULL)
9006 return obj->maps;
9007
9008 return __bpf_map__iter(prev, obj, 1);
9009 }
9010
9011 struct bpf_map *
bpf_map__prev(const struct bpf_map * next,const struct bpf_object * obj)9012 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9013 {
9014 if (next == NULL) {
9015 if (!obj->nr_maps)
9016 return NULL;
9017 return obj->maps + obj->nr_maps - 1;
9018 }
9019
9020 return __bpf_map__iter(next, obj, -1);
9021 }
9022
9023 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)9024 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9025 {
9026 struct bpf_map *pos;
9027
9028 bpf_object__for_each_map(pos, obj) {
9029 if (pos->name && !strcmp(pos->name, name))
9030 return pos;
9031 }
9032 return NULL;
9033 }
9034
9035 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)9036 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9037 {
9038 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9039 }
9040
9041 struct bpf_map *
bpf_object__find_map_by_offset(struct bpf_object * obj,size_t offset)9042 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9043 {
9044 return ERR_PTR(-ENOTSUP);
9045 }
9046
libbpf_get_error(const void * ptr)9047 long libbpf_get_error(const void *ptr)
9048 {
9049 return PTR_ERR_OR_ZERO(ptr);
9050 }
9051
bpf_prog_load(const char * file,enum bpf_prog_type type,struct bpf_object ** pobj,int * prog_fd)9052 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9053 struct bpf_object **pobj, int *prog_fd)
9054 {
9055 struct bpf_prog_load_attr attr;
9056
9057 memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9058 attr.file = file;
9059 attr.prog_type = type;
9060 attr.expected_attach_type = 0;
9061
9062 return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9063 }
9064
bpf_prog_load_xattr(const struct bpf_prog_load_attr * attr,struct bpf_object ** pobj,int * prog_fd)9065 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9066 struct bpf_object **pobj, int *prog_fd)
9067 {
9068 struct bpf_object_open_attr open_attr = {};
9069 struct bpf_program *prog, *first_prog = NULL;
9070 struct bpf_object *obj;
9071 struct bpf_map *map;
9072 int err;
9073
9074 if (!attr)
9075 return -EINVAL;
9076 if (!attr->file)
9077 return -EINVAL;
9078
9079 open_attr.file = attr->file;
9080 open_attr.prog_type = attr->prog_type;
9081
9082 obj = bpf_object__open_xattr(&open_attr);
9083 if (IS_ERR_OR_NULL(obj))
9084 return -ENOENT;
9085
9086 bpf_object__for_each_program(prog, obj) {
9087 enum bpf_attach_type attach_type = attr->expected_attach_type;
9088 /*
9089 * to preserve backwards compatibility, bpf_prog_load treats
9090 * attr->prog_type, if specified, as an override to whatever
9091 * bpf_object__open guessed
9092 */
9093 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9094 bpf_program__set_type(prog, attr->prog_type);
9095 bpf_program__set_expected_attach_type(prog,
9096 attach_type);
9097 }
9098 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9099 /*
9100 * we haven't guessed from section name and user
9101 * didn't provide a fallback type, too bad...
9102 */
9103 bpf_object__close(obj);
9104 return -EINVAL;
9105 }
9106
9107 prog->prog_ifindex = attr->ifindex;
9108 prog->log_level = attr->log_level;
9109 prog->prog_flags |= attr->prog_flags;
9110 if (!first_prog)
9111 first_prog = prog;
9112 }
9113
9114 bpf_object__for_each_map(map, obj) {
9115 if (!bpf_map__is_offload_neutral(map))
9116 map->map_ifindex = attr->ifindex;
9117 }
9118
9119 if (!first_prog) {
9120 pr_warn("object file doesn't contain bpf program\n");
9121 bpf_object__close(obj);
9122 return -ENOENT;
9123 }
9124
9125 err = bpf_object__load(obj);
9126 if (err) {
9127 bpf_object__close(obj);
9128 return err;
9129 }
9130
9131 *pobj = obj;
9132 *prog_fd = bpf_program__fd(first_prog);
9133 return 0;
9134 }
9135
9136 struct bpf_link {
9137 int (*detach)(struct bpf_link *link);
9138 int (*destroy)(struct bpf_link *link);
9139 char *pin_path; /* NULL, if not pinned */
9140 int fd; /* hook FD, -1 if not applicable */
9141 bool disconnected;
9142 };
9143
9144 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)9145 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9146 {
9147 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9148 }
9149
9150 /* Release "ownership" of underlying BPF resource (typically, BPF program
9151 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9152 * link, when destructed through bpf_link__destroy() call won't attempt to
9153 * detach/unregisted that BPF resource. This is useful in situations where,
9154 * say, attached BPF program has to outlive userspace program that attached it
9155 * in the system. Depending on type of BPF program, though, there might be
9156 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9157 * exit of userspace program doesn't trigger automatic detachment and clean up
9158 * inside the kernel.
9159 */
bpf_link__disconnect(struct bpf_link * link)9160 void bpf_link__disconnect(struct bpf_link *link)
9161 {
9162 link->disconnected = true;
9163 }
9164
bpf_link__destroy(struct bpf_link * link)9165 int bpf_link__destroy(struct bpf_link *link)
9166 {
9167 int err = 0;
9168
9169 if (IS_ERR_OR_NULL(link))
9170 return 0;
9171
9172 if (!link->disconnected && link->detach)
9173 err = link->detach(link);
9174 if (link->destroy)
9175 link->destroy(link);
9176 if (link->pin_path)
9177 free(link->pin_path);
9178 free(link);
9179
9180 return err;
9181 }
9182
bpf_link__fd(const struct bpf_link * link)9183 int bpf_link__fd(const struct bpf_link *link)
9184 {
9185 return link->fd;
9186 }
9187
bpf_link__pin_path(const struct bpf_link * link)9188 const char *bpf_link__pin_path(const struct bpf_link *link)
9189 {
9190 return link->pin_path;
9191 }
9192
bpf_link__detach_fd(struct bpf_link * link)9193 static int bpf_link__detach_fd(struct bpf_link *link)
9194 {
9195 return close(link->fd);
9196 }
9197
bpf_link__open(const char * path)9198 struct bpf_link *bpf_link__open(const char *path)
9199 {
9200 struct bpf_link *link;
9201 int fd;
9202
9203 fd = bpf_obj_get(path);
9204 if (fd < 0) {
9205 fd = -errno;
9206 pr_warn("failed to open link at %s: %d\n", path, fd);
9207 return ERR_PTR(fd);
9208 }
9209
9210 link = calloc(1, sizeof(*link));
9211 if (!link) {
9212 close(fd);
9213 return ERR_PTR(-ENOMEM);
9214 }
9215 link->detach = &bpf_link__detach_fd;
9216 link->fd = fd;
9217
9218 link->pin_path = strdup(path);
9219 if (!link->pin_path) {
9220 bpf_link__destroy(link);
9221 return ERR_PTR(-ENOMEM);
9222 }
9223
9224 return link;
9225 }
9226
bpf_link__detach(struct bpf_link * link)9227 int bpf_link__detach(struct bpf_link *link)
9228 {
9229 return bpf_link_detach(link->fd) ? -errno : 0;
9230 }
9231
bpf_link__pin(struct bpf_link * link,const char * path)9232 int bpf_link__pin(struct bpf_link *link, const char *path)
9233 {
9234 int err;
9235
9236 if (link->pin_path)
9237 return -EBUSY;
9238 err = make_parent_dir(path);
9239 if (err)
9240 return err;
9241 err = check_path(path);
9242 if (err)
9243 return err;
9244
9245 link->pin_path = strdup(path);
9246 if (!link->pin_path)
9247 return -ENOMEM;
9248
9249 if (bpf_obj_pin(link->fd, link->pin_path)) {
9250 err = -errno;
9251 zfree(&link->pin_path);
9252 return err;
9253 }
9254
9255 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9256 return 0;
9257 }
9258
bpf_link__unpin(struct bpf_link * link)9259 int bpf_link__unpin(struct bpf_link *link)
9260 {
9261 int err;
9262
9263 if (!link->pin_path)
9264 return -EINVAL;
9265
9266 err = unlink(link->pin_path);
9267 if (err != 0)
9268 return -errno;
9269
9270 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9271 zfree(&link->pin_path);
9272 return 0;
9273 }
9274
bpf_link__detach_perf_event(struct bpf_link * link)9275 static int bpf_link__detach_perf_event(struct bpf_link *link)
9276 {
9277 int err;
9278
9279 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9280 if (err)
9281 err = -errno;
9282
9283 close(link->fd);
9284 return err;
9285 }
9286
bpf_program__attach_perf_event(struct bpf_program * prog,int pfd)9287 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9288 int pfd)
9289 {
9290 char errmsg[STRERR_BUFSIZE];
9291 struct bpf_link *link;
9292 int prog_fd, err;
9293
9294 if (pfd < 0) {
9295 pr_warn("prog '%s': invalid perf event FD %d\n",
9296 prog->name, pfd);
9297 return ERR_PTR(-EINVAL);
9298 }
9299 prog_fd = bpf_program__fd(prog);
9300 if (prog_fd < 0) {
9301 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9302 prog->name);
9303 return ERR_PTR(-EINVAL);
9304 }
9305
9306 link = calloc(1, sizeof(*link));
9307 if (!link)
9308 return ERR_PTR(-ENOMEM);
9309 link->detach = &bpf_link__detach_perf_event;
9310 link->fd = pfd;
9311
9312 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9313 err = -errno;
9314 free(link);
9315 pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9316 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9317 if (err == -EPROTO)
9318 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9319 prog->name, pfd);
9320 return ERR_PTR(err);
9321 }
9322 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9323 err = -errno;
9324 free(link);
9325 pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9326 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9327 return ERR_PTR(err);
9328 }
9329 return link;
9330 }
9331
9332 /*
9333 * this function is expected to parse integer in the range of [0, 2^31-1] from
9334 * given file using scanf format string fmt. If actual parsed value is
9335 * negative, the result might be indistinguishable from error
9336 */
parse_uint_from_file(const char * file,const char * fmt)9337 static int parse_uint_from_file(const char *file, const char *fmt)
9338 {
9339 char buf[STRERR_BUFSIZE];
9340 int err, ret;
9341 FILE *f;
9342
9343 f = fopen(file, "r");
9344 if (!f) {
9345 err = -errno;
9346 pr_debug("failed to open '%s': %s\n", file,
9347 libbpf_strerror_r(err, buf, sizeof(buf)));
9348 return err;
9349 }
9350 err = fscanf(f, fmt, &ret);
9351 if (err != 1) {
9352 err = err == EOF ? -EIO : -errno;
9353 pr_debug("failed to parse '%s': %s\n", file,
9354 libbpf_strerror_r(err, buf, sizeof(buf)));
9355 fclose(f);
9356 return err;
9357 }
9358 fclose(f);
9359 return ret;
9360 }
9361
determine_kprobe_perf_type(void)9362 static int determine_kprobe_perf_type(void)
9363 {
9364 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9365
9366 return parse_uint_from_file(file, "%d\n");
9367 }
9368
determine_uprobe_perf_type(void)9369 static int determine_uprobe_perf_type(void)
9370 {
9371 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9372
9373 return parse_uint_from_file(file, "%d\n");
9374 }
9375
determine_kprobe_retprobe_bit(void)9376 static int determine_kprobe_retprobe_bit(void)
9377 {
9378 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9379
9380 return parse_uint_from_file(file, "config:%d\n");
9381 }
9382
determine_uprobe_retprobe_bit(void)9383 static int determine_uprobe_retprobe_bit(void)
9384 {
9385 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9386
9387 return parse_uint_from_file(file, "config:%d\n");
9388 }
9389
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid)9390 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9391 uint64_t offset, int pid)
9392 {
9393 struct perf_event_attr attr = {};
9394 char errmsg[STRERR_BUFSIZE];
9395 int type, pfd, err;
9396
9397 type = uprobe ? determine_uprobe_perf_type()
9398 : determine_kprobe_perf_type();
9399 if (type < 0) {
9400 pr_warn("failed to determine %s perf type: %s\n",
9401 uprobe ? "uprobe" : "kprobe",
9402 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9403 return type;
9404 }
9405 if (retprobe) {
9406 int bit = uprobe ? determine_uprobe_retprobe_bit()
9407 : determine_kprobe_retprobe_bit();
9408
9409 if (bit < 0) {
9410 pr_warn("failed to determine %s retprobe bit: %s\n",
9411 uprobe ? "uprobe" : "kprobe",
9412 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9413 return bit;
9414 }
9415 attr.config |= 1 << bit;
9416 }
9417 attr.size = sizeof(attr);
9418 attr.type = type;
9419 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9420 attr.config2 = offset; /* kprobe_addr or probe_offset */
9421
9422 /* pid filter is meaningful only for uprobes */
9423 pfd = syscall(__NR_perf_event_open, &attr,
9424 pid < 0 ? -1 : pid /* pid */,
9425 pid == -1 ? 0 : -1 /* cpu */,
9426 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9427 if (pfd < 0) {
9428 err = -errno;
9429 pr_warn("%s perf_event_open() failed: %s\n",
9430 uprobe ? "uprobe" : "kprobe",
9431 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9432 return err;
9433 }
9434 return pfd;
9435 }
9436
bpf_program__attach_kprobe(struct bpf_program * prog,bool retprobe,const char * func_name)9437 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9438 bool retprobe,
9439 const char *func_name)
9440 {
9441 char errmsg[STRERR_BUFSIZE];
9442 struct bpf_link *link;
9443 int pfd, err;
9444
9445 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9446 0 /* offset */, -1 /* pid */);
9447 if (pfd < 0) {
9448 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9449 prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9450 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9451 return ERR_PTR(pfd);
9452 }
9453 link = bpf_program__attach_perf_event(prog, pfd);
9454 if (IS_ERR(link)) {
9455 close(pfd);
9456 err = PTR_ERR(link);
9457 pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9458 prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9459 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9460 return link;
9461 }
9462 return link;
9463 }
9464
attach_kprobe(const struct bpf_sec_def * sec,struct bpf_program * prog)9465 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9466 struct bpf_program *prog)
9467 {
9468 const char *func_name;
9469 bool retprobe;
9470
9471 func_name = prog->sec_name + sec->len;
9472 retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9473
9474 return bpf_program__attach_kprobe(prog, retprobe, func_name);
9475 }
9476
bpf_program__attach_uprobe(struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)9477 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9478 bool retprobe, pid_t pid,
9479 const char *binary_path,
9480 size_t func_offset)
9481 {
9482 char errmsg[STRERR_BUFSIZE];
9483 struct bpf_link *link;
9484 int pfd, err;
9485
9486 pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9487 binary_path, func_offset, pid);
9488 if (pfd < 0) {
9489 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9490 prog->name, retprobe ? "uretprobe" : "uprobe",
9491 binary_path, func_offset,
9492 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9493 return ERR_PTR(pfd);
9494 }
9495 link = bpf_program__attach_perf_event(prog, pfd);
9496 if (IS_ERR(link)) {
9497 close(pfd);
9498 err = PTR_ERR(link);
9499 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9500 prog->name, retprobe ? "uretprobe" : "uprobe",
9501 binary_path, func_offset,
9502 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9503 return link;
9504 }
9505 return link;
9506 }
9507
determine_tracepoint_id(const char * tp_category,const char * tp_name)9508 static int determine_tracepoint_id(const char *tp_category,
9509 const char *tp_name)
9510 {
9511 char file[PATH_MAX];
9512 int ret;
9513
9514 ret = snprintf(file, sizeof(file),
9515 "/sys/kernel/debug/tracing/events/%s/%s/id",
9516 tp_category, tp_name);
9517 if (ret < 0)
9518 return -errno;
9519 if (ret >= sizeof(file)) {
9520 pr_debug("tracepoint %s/%s path is too long\n",
9521 tp_category, tp_name);
9522 return -E2BIG;
9523 }
9524 return parse_uint_from_file(file, "%d\n");
9525 }
9526
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)9527 static int perf_event_open_tracepoint(const char *tp_category,
9528 const char *tp_name)
9529 {
9530 struct perf_event_attr attr = {};
9531 char errmsg[STRERR_BUFSIZE];
9532 int tp_id, pfd, err;
9533
9534 tp_id = determine_tracepoint_id(tp_category, tp_name);
9535 if (tp_id < 0) {
9536 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9537 tp_category, tp_name,
9538 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9539 return tp_id;
9540 }
9541
9542 attr.type = PERF_TYPE_TRACEPOINT;
9543 attr.size = sizeof(attr);
9544 attr.config = tp_id;
9545
9546 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9547 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9548 if (pfd < 0) {
9549 err = -errno;
9550 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9551 tp_category, tp_name,
9552 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9553 return err;
9554 }
9555 return pfd;
9556 }
9557
bpf_program__attach_tracepoint(struct bpf_program * prog,const char * tp_category,const char * tp_name)9558 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9559 const char *tp_category,
9560 const char *tp_name)
9561 {
9562 char errmsg[STRERR_BUFSIZE];
9563 struct bpf_link *link;
9564 int pfd, err;
9565
9566 pfd = perf_event_open_tracepoint(tp_category, tp_name);
9567 if (pfd < 0) {
9568 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9569 prog->name, tp_category, tp_name,
9570 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9571 return ERR_PTR(pfd);
9572 }
9573 link = bpf_program__attach_perf_event(prog, pfd);
9574 if (IS_ERR(link)) {
9575 close(pfd);
9576 err = PTR_ERR(link);
9577 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9578 prog->name, tp_category, tp_name,
9579 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9580 return link;
9581 }
9582 return link;
9583 }
9584
attach_tp(const struct bpf_sec_def * sec,struct bpf_program * prog)9585 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9586 struct bpf_program *prog)
9587 {
9588 char *sec_name, *tp_cat, *tp_name;
9589 struct bpf_link *link;
9590
9591 sec_name = strdup(prog->sec_name);
9592 if (!sec_name)
9593 return ERR_PTR(-ENOMEM);
9594
9595 /* extract "tp/<category>/<name>" */
9596 tp_cat = sec_name + sec->len;
9597 tp_name = strchr(tp_cat, '/');
9598 if (!tp_name) {
9599 link = ERR_PTR(-EINVAL);
9600 goto out;
9601 }
9602 *tp_name = '\0';
9603 tp_name++;
9604
9605 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9606 out:
9607 free(sec_name);
9608 return link;
9609 }
9610
bpf_program__attach_raw_tracepoint(struct bpf_program * prog,const char * tp_name)9611 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9612 const char *tp_name)
9613 {
9614 char errmsg[STRERR_BUFSIZE];
9615 struct bpf_link *link;
9616 int prog_fd, pfd;
9617
9618 prog_fd = bpf_program__fd(prog);
9619 if (prog_fd < 0) {
9620 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9621 return ERR_PTR(-EINVAL);
9622 }
9623
9624 link = calloc(1, sizeof(*link));
9625 if (!link)
9626 return ERR_PTR(-ENOMEM);
9627 link->detach = &bpf_link__detach_fd;
9628
9629 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9630 if (pfd < 0) {
9631 pfd = -errno;
9632 free(link);
9633 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9634 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9635 return ERR_PTR(pfd);
9636 }
9637 link->fd = pfd;
9638 return link;
9639 }
9640
attach_raw_tp(const struct bpf_sec_def * sec,struct bpf_program * prog)9641 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9642 struct bpf_program *prog)
9643 {
9644 const char *tp_name = prog->sec_name + sec->len;
9645
9646 return bpf_program__attach_raw_tracepoint(prog, tp_name);
9647 }
9648
9649 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(struct bpf_program * prog)9650 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9651 {
9652 char errmsg[STRERR_BUFSIZE];
9653 struct bpf_link *link;
9654 int prog_fd, pfd;
9655
9656 prog_fd = bpf_program__fd(prog);
9657 if (prog_fd < 0) {
9658 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9659 return ERR_PTR(-EINVAL);
9660 }
9661
9662 link = calloc(1, sizeof(*link));
9663 if (!link)
9664 return ERR_PTR(-ENOMEM);
9665 link->detach = &bpf_link__detach_fd;
9666
9667 pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9668 if (pfd < 0) {
9669 pfd = -errno;
9670 free(link);
9671 pr_warn("prog '%s': failed to attach: %s\n",
9672 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9673 return ERR_PTR(pfd);
9674 }
9675 link->fd = pfd;
9676 return (struct bpf_link *)link;
9677 }
9678
bpf_program__attach_trace(struct bpf_program * prog)9679 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9680 {
9681 return bpf_program__attach_btf_id(prog);
9682 }
9683
bpf_program__attach_lsm(struct bpf_program * prog)9684 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
9685 {
9686 return bpf_program__attach_btf_id(prog);
9687 }
9688
attach_trace(const struct bpf_sec_def * sec,struct bpf_program * prog)9689 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
9690 struct bpf_program *prog)
9691 {
9692 return bpf_program__attach_trace(prog);
9693 }
9694
attach_lsm(const struct bpf_sec_def * sec,struct bpf_program * prog)9695 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
9696 struct bpf_program *prog)
9697 {
9698 return bpf_program__attach_lsm(prog);
9699 }
9700
attach_iter(const struct bpf_sec_def * sec,struct bpf_program * prog)9701 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
9702 struct bpf_program *prog)
9703 {
9704 return bpf_program__attach_iter(prog, NULL);
9705 }
9706
9707 static struct bpf_link *
bpf_program__attach_fd(struct bpf_program * prog,int target_fd,int btf_id,const char * target_name)9708 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
9709 const char *target_name)
9710 {
9711 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
9712 .target_btf_id = btf_id);
9713 enum bpf_attach_type attach_type;
9714 char errmsg[STRERR_BUFSIZE];
9715 struct bpf_link *link;
9716 int prog_fd, link_fd;
9717
9718 prog_fd = bpf_program__fd(prog);
9719 if (prog_fd < 0) {
9720 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9721 return ERR_PTR(-EINVAL);
9722 }
9723
9724 link = calloc(1, sizeof(*link));
9725 if (!link)
9726 return ERR_PTR(-ENOMEM);
9727 link->detach = &bpf_link__detach_fd;
9728
9729 attach_type = bpf_program__get_expected_attach_type(prog);
9730 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
9731 if (link_fd < 0) {
9732 link_fd = -errno;
9733 free(link);
9734 pr_warn("prog '%s': failed to attach to %s: %s\n",
9735 prog->name, target_name,
9736 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9737 return ERR_PTR(link_fd);
9738 }
9739 link->fd = link_fd;
9740 return link;
9741 }
9742
9743 struct bpf_link *
bpf_program__attach_cgroup(struct bpf_program * prog,int cgroup_fd)9744 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
9745 {
9746 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
9747 }
9748
9749 struct bpf_link *
bpf_program__attach_netns(struct bpf_program * prog,int netns_fd)9750 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
9751 {
9752 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
9753 }
9754
bpf_program__attach_xdp(struct bpf_program * prog,int ifindex)9755 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
9756 {
9757 /* target_fd/target_ifindex use the same field in LINK_CREATE */
9758 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
9759 }
9760
bpf_program__attach_freplace(struct bpf_program * prog,int target_fd,const char * attach_func_name)9761 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
9762 int target_fd,
9763 const char *attach_func_name)
9764 {
9765 int btf_id;
9766
9767 if (!!target_fd != !!attach_func_name) {
9768 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
9769 prog->name);
9770 return ERR_PTR(-EINVAL);
9771 }
9772
9773 if (prog->type != BPF_PROG_TYPE_EXT) {
9774 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
9775 prog->name);
9776 return ERR_PTR(-EINVAL);
9777 }
9778
9779 if (target_fd) {
9780 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
9781 if (btf_id < 0)
9782 return ERR_PTR(btf_id);
9783
9784 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
9785 } else {
9786 /* no target, so use raw_tracepoint_open for compatibility
9787 * with old kernels
9788 */
9789 return bpf_program__attach_trace(prog);
9790 }
9791 }
9792
9793 struct bpf_link *
bpf_program__attach_iter(struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)9794 bpf_program__attach_iter(struct bpf_program *prog,
9795 const struct bpf_iter_attach_opts *opts)
9796 {
9797 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
9798 char errmsg[STRERR_BUFSIZE];
9799 struct bpf_link *link;
9800 int prog_fd, link_fd;
9801 __u32 target_fd = 0;
9802
9803 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
9804 return ERR_PTR(-EINVAL);
9805
9806 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
9807 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
9808
9809 prog_fd = bpf_program__fd(prog);
9810 if (prog_fd < 0) {
9811 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9812 return ERR_PTR(-EINVAL);
9813 }
9814
9815 link = calloc(1, sizeof(*link));
9816 if (!link)
9817 return ERR_PTR(-ENOMEM);
9818 link->detach = &bpf_link__detach_fd;
9819
9820 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
9821 &link_create_opts);
9822 if (link_fd < 0) {
9823 link_fd = -errno;
9824 free(link);
9825 pr_warn("prog '%s': failed to attach to iterator: %s\n",
9826 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
9827 return ERR_PTR(link_fd);
9828 }
9829 link->fd = link_fd;
9830 return link;
9831 }
9832
bpf_program__attach(struct bpf_program * prog)9833 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
9834 {
9835 const struct bpf_sec_def *sec_def;
9836
9837 sec_def = find_sec_def(prog->sec_name);
9838 if (!sec_def || !sec_def->attach_fn)
9839 return ERR_PTR(-ESRCH);
9840
9841 return sec_def->attach_fn(sec_def, prog);
9842 }
9843
bpf_link__detach_struct_ops(struct bpf_link * link)9844 static int bpf_link__detach_struct_ops(struct bpf_link *link)
9845 {
9846 __u32 zero = 0;
9847
9848 if (bpf_map_delete_elem(link->fd, &zero))
9849 return -errno;
9850
9851 return 0;
9852 }
9853
bpf_map__attach_struct_ops(struct bpf_map * map)9854 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
9855 {
9856 struct bpf_struct_ops *st_ops;
9857 struct bpf_link *link;
9858 __u32 i, zero = 0;
9859 int err;
9860
9861 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
9862 return ERR_PTR(-EINVAL);
9863
9864 link = calloc(1, sizeof(*link));
9865 if (!link)
9866 return ERR_PTR(-EINVAL);
9867
9868 st_ops = map->st_ops;
9869 for (i = 0; i < btf_vlen(st_ops->type); i++) {
9870 struct bpf_program *prog = st_ops->progs[i];
9871 void *kern_data;
9872 int prog_fd;
9873
9874 if (!prog)
9875 continue;
9876
9877 prog_fd = bpf_program__fd(prog);
9878 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
9879 *(unsigned long *)kern_data = prog_fd;
9880 }
9881
9882 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
9883 if (err) {
9884 err = -errno;
9885 free(link);
9886 return ERR_PTR(err);
9887 }
9888
9889 link->detach = bpf_link__detach_struct_ops;
9890 link->fd = map->fd;
9891
9892 return link;
9893 }
9894
9895 enum bpf_perf_event_ret
bpf_perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)9896 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
9897 void **copy_mem, size_t *copy_size,
9898 bpf_perf_event_print_t fn, void *private_data)
9899 {
9900 struct perf_event_mmap_page *header = mmap_mem;
9901 __u64 data_head = ring_buffer_read_head(header);
9902 __u64 data_tail = header->data_tail;
9903 void *base = ((__u8 *)header) + page_size;
9904 int ret = LIBBPF_PERF_EVENT_CONT;
9905 struct perf_event_header *ehdr;
9906 size_t ehdr_size;
9907
9908 while (data_head != data_tail) {
9909 ehdr = base + (data_tail & (mmap_size - 1));
9910 ehdr_size = ehdr->size;
9911
9912 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
9913 void *copy_start = ehdr;
9914 size_t len_first = base + mmap_size - copy_start;
9915 size_t len_secnd = ehdr_size - len_first;
9916
9917 if (*copy_size < ehdr_size) {
9918 free(*copy_mem);
9919 *copy_mem = malloc(ehdr_size);
9920 if (!*copy_mem) {
9921 *copy_size = 0;
9922 ret = LIBBPF_PERF_EVENT_ERROR;
9923 break;
9924 }
9925 *copy_size = ehdr_size;
9926 }
9927
9928 memcpy(*copy_mem, copy_start, len_first);
9929 memcpy(*copy_mem + len_first, base, len_secnd);
9930 ehdr = *copy_mem;
9931 }
9932
9933 ret = fn(ehdr, private_data);
9934 data_tail += ehdr_size;
9935 if (ret != LIBBPF_PERF_EVENT_CONT)
9936 break;
9937 }
9938
9939 ring_buffer_write_tail(header, data_tail);
9940 return ret;
9941 }
9942
9943 struct perf_buffer;
9944
9945 struct perf_buffer_params {
9946 struct perf_event_attr *attr;
9947 /* if event_cb is specified, it takes precendence */
9948 perf_buffer_event_fn event_cb;
9949 /* sample_cb and lost_cb are higher-level common-case callbacks */
9950 perf_buffer_sample_fn sample_cb;
9951 perf_buffer_lost_fn lost_cb;
9952 void *ctx;
9953 int cpu_cnt;
9954 int *cpus;
9955 int *map_keys;
9956 };
9957
9958 struct perf_cpu_buf {
9959 struct perf_buffer *pb;
9960 void *base; /* mmap()'ed memory */
9961 void *buf; /* for reconstructing segmented data */
9962 size_t buf_size;
9963 int fd;
9964 int cpu;
9965 int map_key;
9966 };
9967
9968 struct perf_buffer {
9969 perf_buffer_event_fn event_cb;
9970 perf_buffer_sample_fn sample_cb;
9971 perf_buffer_lost_fn lost_cb;
9972 void *ctx; /* passed into callbacks */
9973
9974 size_t page_size;
9975 size_t mmap_size;
9976 struct perf_cpu_buf **cpu_bufs;
9977 struct epoll_event *events;
9978 int cpu_cnt; /* number of allocated CPU buffers */
9979 int epoll_fd; /* perf event FD */
9980 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
9981 };
9982
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)9983 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
9984 struct perf_cpu_buf *cpu_buf)
9985 {
9986 if (!cpu_buf)
9987 return;
9988 if (cpu_buf->base &&
9989 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
9990 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
9991 if (cpu_buf->fd >= 0) {
9992 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
9993 close(cpu_buf->fd);
9994 }
9995 free(cpu_buf->buf);
9996 free(cpu_buf);
9997 }
9998
perf_buffer__free(struct perf_buffer * pb)9999 void perf_buffer__free(struct perf_buffer *pb)
10000 {
10001 int i;
10002
10003 if (IS_ERR_OR_NULL(pb))
10004 return;
10005 if (pb->cpu_bufs) {
10006 for (i = 0; i < pb->cpu_cnt; i++) {
10007 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10008
10009 if (!cpu_buf)
10010 continue;
10011
10012 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10013 perf_buffer__free_cpu_buf(pb, cpu_buf);
10014 }
10015 free(pb->cpu_bufs);
10016 }
10017 if (pb->epoll_fd >= 0)
10018 close(pb->epoll_fd);
10019 free(pb->events);
10020 free(pb);
10021 }
10022
10023 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)10024 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10025 int cpu, int map_key)
10026 {
10027 struct perf_cpu_buf *cpu_buf;
10028 char msg[STRERR_BUFSIZE];
10029 int err;
10030
10031 cpu_buf = calloc(1, sizeof(*cpu_buf));
10032 if (!cpu_buf)
10033 return ERR_PTR(-ENOMEM);
10034
10035 cpu_buf->pb = pb;
10036 cpu_buf->cpu = cpu;
10037 cpu_buf->map_key = map_key;
10038
10039 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10040 -1, PERF_FLAG_FD_CLOEXEC);
10041 if (cpu_buf->fd < 0) {
10042 err = -errno;
10043 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10044 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10045 goto error;
10046 }
10047
10048 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10049 PROT_READ | PROT_WRITE, MAP_SHARED,
10050 cpu_buf->fd, 0);
10051 if (cpu_buf->base == MAP_FAILED) {
10052 cpu_buf->base = NULL;
10053 err = -errno;
10054 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10055 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10056 goto error;
10057 }
10058
10059 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10060 err = -errno;
10061 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10062 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10063 goto error;
10064 }
10065
10066 return cpu_buf;
10067
10068 error:
10069 perf_buffer__free_cpu_buf(pb, cpu_buf);
10070 return (struct perf_cpu_buf *)ERR_PTR(err);
10071 }
10072
10073 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10074 struct perf_buffer_params *p);
10075
perf_buffer__new(int map_fd,size_t page_cnt,const struct perf_buffer_opts * opts)10076 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10077 const struct perf_buffer_opts *opts)
10078 {
10079 struct perf_buffer_params p = {};
10080 struct perf_event_attr attr = { 0, };
10081
10082 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10083 attr.type = PERF_TYPE_SOFTWARE;
10084 attr.sample_type = PERF_SAMPLE_RAW;
10085 attr.sample_period = 1;
10086 attr.wakeup_events = 1;
10087
10088 p.attr = &attr;
10089 p.sample_cb = opts ? opts->sample_cb : NULL;
10090 p.lost_cb = opts ? opts->lost_cb : NULL;
10091 p.ctx = opts ? opts->ctx : NULL;
10092
10093 return __perf_buffer__new(map_fd, page_cnt, &p);
10094 }
10095
10096 struct perf_buffer *
perf_buffer__new_raw(int map_fd,size_t page_cnt,const struct perf_buffer_raw_opts * opts)10097 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10098 const struct perf_buffer_raw_opts *opts)
10099 {
10100 struct perf_buffer_params p = {};
10101
10102 p.attr = opts->attr;
10103 p.event_cb = opts->event_cb;
10104 p.ctx = opts->ctx;
10105 p.cpu_cnt = opts->cpu_cnt;
10106 p.cpus = opts->cpus;
10107 p.map_keys = opts->map_keys;
10108
10109 return __perf_buffer__new(map_fd, page_cnt, &p);
10110 }
10111
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)10112 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10113 struct perf_buffer_params *p)
10114 {
10115 const char *online_cpus_file = "/sys/devices/system/cpu/online";
10116 struct bpf_map_info map;
10117 char msg[STRERR_BUFSIZE];
10118 struct perf_buffer *pb;
10119 bool *online = NULL;
10120 __u32 map_info_len;
10121 int err, i, j, n;
10122
10123 if (page_cnt & (page_cnt - 1)) {
10124 pr_warn("page count should be power of two, but is %zu\n",
10125 page_cnt);
10126 return ERR_PTR(-EINVAL);
10127 }
10128
10129 /* best-effort sanity checks */
10130 memset(&map, 0, sizeof(map));
10131 map_info_len = sizeof(map);
10132 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10133 if (err) {
10134 err = -errno;
10135 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10136 * -EBADFD, -EFAULT, or -E2BIG on real error
10137 */
10138 if (err != -EINVAL) {
10139 pr_warn("failed to get map info for map FD %d: %s\n",
10140 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10141 return ERR_PTR(err);
10142 }
10143 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10144 map_fd);
10145 } else {
10146 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10147 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10148 map.name);
10149 return ERR_PTR(-EINVAL);
10150 }
10151 }
10152
10153 pb = calloc(1, sizeof(*pb));
10154 if (!pb)
10155 return ERR_PTR(-ENOMEM);
10156
10157 pb->event_cb = p->event_cb;
10158 pb->sample_cb = p->sample_cb;
10159 pb->lost_cb = p->lost_cb;
10160 pb->ctx = p->ctx;
10161
10162 pb->page_size = getpagesize();
10163 pb->mmap_size = pb->page_size * page_cnt;
10164 pb->map_fd = map_fd;
10165
10166 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10167 if (pb->epoll_fd < 0) {
10168 err = -errno;
10169 pr_warn("failed to create epoll instance: %s\n",
10170 libbpf_strerror_r(err, msg, sizeof(msg)));
10171 goto error;
10172 }
10173
10174 if (p->cpu_cnt > 0) {
10175 pb->cpu_cnt = p->cpu_cnt;
10176 } else {
10177 pb->cpu_cnt = libbpf_num_possible_cpus();
10178 if (pb->cpu_cnt < 0) {
10179 err = pb->cpu_cnt;
10180 goto error;
10181 }
10182 if (map.max_entries && map.max_entries < pb->cpu_cnt)
10183 pb->cpu_cnt = map.max_entries;
10184 }
10185
10186 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10187 if (!pb->events) {
10188 err = -ENOMEM;
10189 pr_warn("failed to allocate events: out of memory\n");
10190 goto error;
10191 }
10192 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10193 if (!pb->cpu_bufs) {
10194 err = -ENOMEM;
10195 pr_warn("failed to allocate buffers: out of memory\n");
10196 goto error;
10197 }
10198
10199 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10200 if (err) {
10201 pr_warn("failed to get online CPU mask: %d\n", err);
10202 goto error;
10203 }
10204
10205 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10206 struct perf_cpu_buf *cpu_buf;
10207 int cpu, map_key;
10208
10209 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10210 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10211
10212 /* in case user didn't explicitly requested particular CPUs to
10213 * be attached to, skip offline/not present CPUs
10214 */
10215 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10216 continue;
10217
10218 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10219 if (IS_ERR(cpu_buf)) {
10220 err = PTR_ERR(cpu_buf);
10221 goto error;
10222 }
10223
10224 pb->cpu_bufs[j] = cpu_buf;
10225
10226 err = bpf_map_update_elem(pb->map_fd, &map_key,
10227 &cpu_buf->fd, 0);
10228 if (err) {
10229 err = -errno;
10230 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10231 cpu, map_key, cpu_buf->fd,
10232 libbpf_strerror_r(err, msg, sizeof(msg)));
10233 goto error;
10234 }
10235
10236 pb->events[j].events = EPOLLIN;
10237 pb->events[j].data.ptr = cpu_buf;
10238 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10239 &pb->events[j]) < 0) {
10240 err = -errno;
10241 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10242 cpu, cpu_buf->fd,
10243 libbpf_strerror_r(err, msg, sizeof(msg)));
10244 goto error;
10245 }
10246 j++;
10247 }
10248 pb->cpu_cnt = j;
10249 free(online);
10250
10251 return pb;
10252
10253 error:
10254 free(online);
10255 if (pb)
10256 perf_buffer__free(pb);
10257 return ERR_PTR(err);
10258 }
10259
10260 struct perf_sample_raw {
10261 struct perf_event_header header;
10262 uint32_t size;
10263 char data[];
10264 };
10265
10266 struct perf_sample_lost {
10267 struct perf_event_header header;
10268 uint64_t id;
10269 uint64_t lost;
10270 uint64_t sample_id;
10271 };
10272
10273 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)10274 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10275 {
10276 struct perf_cpu_buf *cpu_buf = ctx;
10277 struct perf_buffer *pb = cpu_buf->pb;
10278 void *data = e;
10279
10280 /* user wants full control over parsing perf event */
10281 if (pb->event_cb)
10282 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10283
10284 switch (e->type) {
10285 case PERF_RECORD_SAMPLE: {
10286 struct perf_sample_raw *s = data;
10287
10288 if (pb->sample_cb)
10289 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10290 break;
10291 }
10292 case PERF_RECORD_LOST: {
10293 struct perf_sample_lost *s = data;
10294
10295 if (pb->lost_cb)
10296 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10297 break;
10298 }
10299 default:
10300 pr_warn("unknown perf sample type %d\n", e->type);
10301 return LIBBPF_PERF_EVENT_ERROR;
10302 }
10303 return LIBBPF_PERF_EVENT_CONT;
10304 }
10305
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)10306 static int perf_buffer__process_records(struct perf_buffer *pb,
10307 struct perf_cpu_buf *cpu_buf)
10308 {
10309 enum bpf_perf_event_ret ret;
10310
10311 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10312 pb->page_size, &cpu_buf->buf,
10313 &cpu_buf->buf_size,
10314 perf_buffer__process_record, cpu_buf);
10315 if (ret != LIBBPF_PERF_EVENT_CONT)
10316 return ret;
10317 return 0;
10318 }
10319
perf_buffer__epoll_fd(const struct perf_buffer * pb)10320 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10321 {
10322 return pb->epoll_fd;
10323 }
10324
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)10325 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10326 {
10327 int i, cnt, err;
10328
10329 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10330 for (i = 0; i < cnt; i++) {
10331 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10332
10333 err = perf_buffer__process_records(pb, cpu_buf);
10334 if (err) {
10335 pr_warn("error while processing records: %d\n", err);
10336 return err;
10337 }
10338 }
10339 return cnt < 0 ? -errno : cnt;
10340 }
10341
10342 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10343 * manager.
10344 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)10345 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10346 {
10347 return pb->cpu_cnt;
10348 }
10349
10350 /*
10351 * Return perf_event FD of a ring buffer in *buf_idx* slot of
10352 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10353 * select()/poll()/epoll() Linux syscalls.
10354 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)10355 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10356 {
10357 struct perf_cpu_buf *cpu_buf;
10358
10359 if (buf_idx >= pb->cpu_cnt)
10360 return -EINVAL;
10361
10362 cpu_buf = pb->cpu_bufs[buf_idx];
10363 if (!cpu_buf)
10364 return -ENOENT;
10365
10366 return cpu_buf->fd;
10367 }
10368
10369 /*
10370 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10371 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10372 * consume, do nothing and return success.
10373 * Returns:
10374 * - 0 on success;
10375 * - <0 on failure.
10376 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)10377 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10378 {
10379 struct perf_cpu_buf *cpu_buf;
10380
10381 if (buf_idx >= pb->cpu_cnt)
10382 return -EINVAL;
10383
10384 cpu_buf = pb->cpu_bufs[buf_idx];
10385 if (!cpu_buf)
10386 return -ENOENT;
10387
10388 return perf_buffer__process_records(pb, cpu_buf);
10389 }
10390
perf_buffer__consume(struct perf_buffer * pb)10391 int perf_buffer__consume(struct perf_buffer *pb)
10392 {
10393 int i, err;
10394
10395 for (i = 0; i < pb->cpu_cnt; i++) {
10396 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10397
10398 if (!cpu_buf)
10399 continue;
10400
10401 err = perf_buffer__process_records(pb, cpu_buf);
10402 if (err) {
10403 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10404 return err;
10405 }
10406 }
10407 return 0;
10408 }
10409
10410 struct bpf_prog_info_array_desc {
10411 int array_offset; /* e.g. offset of jited_prog_insns */
10412 int count_offset; /* e.g. offset of jited_prog_len */
10413 int size_offset; /* > 0: offset of rec size,
10414 * < 0: fix size of -size_offset
10415 */
10416 };
10417
10418 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10419 [BPF_PROG_INFO_JITED_INSNS] = {
10420 offsetof(struct bpf_prog_info, jited_prog_insns),
10421 offsetof(struct bpf_prog_info, jited_prog_len),
10422 -1,
10423 },
10424 [BPF_PROG_INFO_XLATED_INSNS] = {
10425 offsetof(struct bpf_prog_info, xlated_prog_insns),
10426 offsetof(struct bpf_prog_info, xlated_prog_len),
10427 -1,
10428 },
10429 [BPF_PROG_INFO_MAP_IDS] = {
10430 offsetof(struct bpf_prog_info, map_ids),
10431 offsetof(struct bpf_prog_info, nr_map_ids),
10432 -(int)sizeof(__u32),
10433 },
10434 [BPF_PROG_INFO_JITED_KSYMS] = {
10435 offsetof(struct bpf_prog_info, jited_ksyms),
10436 offsetof(struct bpf_prog_info, nr_jited_ksyms),
10437 -(int)sizeof(__u64),
10438 },
10439 [BPF_PROG_INFO_JITED_FUNC_LENS] = {
10440 offsetof(struct bpf_prog_info, jited_func_lens),
10441 offsetof(struct bpf_prog_info, nr_jited_func_lens),
10442 -(int)sizeof(__u32),
10443 },
10444 [BPF_PROG_INFO_FUNC_INFO] = {
10445 offsetof(struct bpf_prog_info, func_info),
10446 offsetof(struct bpf_prog_info, nr_func_info),
10447 offsetof(struct bpf_prog_info, func_info_rec_size),
10448 },
10449 [BPF_PROG_INFO_LINE_INFO] = {
10450 offsetof(struct bpf_prog_info, line_info),
10451 offsetof(struct bpf_prog_info, nr_line_info),
10452 offsetof(struct bpf_prog_info, line_info_rec_size),
10453 },
10454 [BPF_PROG_INFO_JITED_LINE_INFO] = {
10455 offsetof(struct bpf_prog_info, jited_line_info),
10456 offsetof(struct bpf_prog_info, nr_jited_line_info),
10457 offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10458 },
10459 [BPF_PROG_INFO_PROG_TAGS] = {
10460 offsetof(struct bpf_prog_info, prog_tags),
10461 offsetof(struct bpf_prog_info, nr_prog_tags),
10462 -(int)sizeof(__u8) * BPF_TAG_SIZE,
10463 },
10464
10465 };
10466
bpf_prog_info_read_offset_u32(struct bpf_prog_info * info,int offset)10467 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10468 int offset)
10469 {
10470 __u32 *array = (__u32 *)info;
10471
10472 if (offset >= 0)
10473 return array[offset / sizeof(__u32)];
10474 return -(int)offset;
10475 }
10476
bpf_prog_info_read_offset_u64(struct bpf_prog_info * info,int offset)10477 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10478 int offset)
10479 {
10480 __u64 *array = (__u64 *)info;
10481
10482 if (offset >= 0)
10483 return array[offset / sizeof(__u64)];
10484 return -(int)offset;
10485 }
10486
bpf_prog_info_set_offset_u32(struct bpf_prog_info * info,int offset,__u32 val)10487 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10488 __u32 val)
10489 {
10490 __u32 *array = (__u32 *)info;
10491
10492 if (offset >= 0)
10493 array[offset / sizeof(__u32)] = val;
10494 }
10495
bpf_prog_info_set_offset_u64(struct bpf_prog_info * info,int offset,__u64 val)10496 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10497 __u64 val)
10498 {
10499 __u64 *array = (__u64 *)info;
10500
10501 if (offset >= 0)
10502 array[offset / sizeof(__u64)] = val;
10503 }
10504
10505 struct bpf_prog_info_linear *
bpf_program__get_prog_info_linear(int fd,__u64 arrays)10506 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10507 {
10508 struct bpf_prog_info_linear *info_linear;
10509 struct bpf_prog_info info = {};
10510 __u32 info_len = sizeof(info);
10511 __u32 data_len = 0;
10512 int i, err;
10513 void *ptr;
10514
10515 if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10516 return ERR_PTR(-EINVAL);
10517
10518 /* step 1: get array dimensions */
10519 err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10520 if (err) {
10521 pr_debug("can't get prog info: %s", strerror(errno));
10522 return ERR_PTR(-EFAULT);
10523 }
10524
10525 /* step 2: calculate total size of all arrays */
10526 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10527 bool include_array = (arrays & (1UL << i)) > 0;
10528 struct bpf_prog_info_array_desc *desc;
10529 __u32 count, size;
10530
10531 desc = bpf_prog_info_array_desc + i;
10532
10533 /* kernel is too old to support this field */
10534 if (info_len < desc->array_offset + sizeof(__u32) ||
10535 info_len < desc->count_offset + sizeof(__u32) ||
10536 (desc->size_offset > 0 && info_len < desc->size_offset))
10537 include_array = false;
10538
10539 if (!include_array) {
10540 arrays &= ~(1UL << i); /* clear the bit */
10541 continue;
10542 }
10543
10544 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10545 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10546
10547 data_len += count * size;
10548 }
10549
10550 /* step 3: allocate continuous memory */
10551 data_len = roundup(data_len, sizeof(__u64));
10552 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10553 if (!info_linear)
10554 return ERR_PTR(-ENOMEM);
10555
10556 /* step 4: fill data to info_linear->info */
10557 info_linear->arrays = arrays;
10558 memset(&info_linear->info, 0, sizeof(info));
10559 ptr = info_linear->data;
10560
10561 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10562 struct bpf_prog_info_array_desc *desc;
10563 __u32 count, size;
10564
10565 if ((arrays & (1UL << i)) == 0)
10566 continue;
10567
10568 desc = bpf_prog_info_array_desc + i;
10569 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10570 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10571 bpf_prog_info_set_offset_u32(&info_linear->info,
10572 desc->count_offset, count);
10573 bpf_prog_info_set_offset_u32(&info_linear->info,
10574 desc->size_offset, size);
10575 bpf_prog_info_set_offset_u64(&info_linear->info,
10576 desc->array_offset,
10577 ptr_to_u64(ptr));
10578 ptr += count * size;
10579 }
10580
10581 /* step 5: call syscall again to get required arrays */
10582 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10583 if (err) {
10584 pr_debug("can't get prog info: %s", strerror(errno));
10585 free(info_linear);
10586 return ERR_PTR(-EFAULT);
10587 }
10588
10589 /* step 6: verify the data */
10590 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10591 struct bpf_prog_info_array_desc *desc;
10592 __u32 v1, v2;
10593
10594 if ((arrays & (1UL << i)) == 0)
10595 continue;
10596
10597 desc = bpf_prog_info_array_desc + i;
10598 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10599 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10600 desc->count_offset);
10601 if (v1 != v2)
10602 pr_warn("%s: mismatch in element count\n", __func__);
10603
10604 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10605 v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10606 desc->size_offset);
10607 if (v1 != v2)
10608 pr_warn("%s: mismatch in rec size\n", __func__);
10609 }
10610
10611 /* step 7: update info_len and data_len */
10612 info_linear->info_len = sizeof(struct bpf_prog_info);
10613 info_linear->data_len = data_len;
10614
10615 return info_linear;
10616 }
10617
bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear * info_linear)10618 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10619 {
10620 int i;
10621
10622 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10623 struct bpf_prog_info_array_desc *desc;
10624 __u64 addr, offs;
10625
10626 if ((info_linear->arrays & (1UL << i)) == 0)
10627 continue;
10628
10629 desc = bpf_prog_info_array_desc + i;
10630 addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10631 desc->array_offset);
10632 offs = addr - ptr_to_u64(info_linear->data);
10633 bpf_prog_info_set_offset_u64(&info_linear->info,
10634 desc->array_offset, offs);
10635 }
10636 }
10637
bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear * info_linear)10638 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10639 {
10640 int i;
10641
10642 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10643 struct bpf_prog_info_array_desc *desc;
10644 __u64 addr, offs;
10645
10646 if ((info_linear->arrays & (1UL << i)) == 0)
10647 continue;
10648
10649 desc = bpf_prog_info_array_desc + i;
10650 offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10651 desc->array_offset);
10652 addr = offs + ptr_to_u64(info_linear->data);
10653 bpf_prog_info_set_offset_u64(&info_linear->info,
10654 desc->array_offset, addr);
10655 }
10656 }
10657
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)10658 int bpf_program__set_attach_target(struct bpf_program *prog,
10659 int attach_prog_fd,
10660 const char *attach_func_name)
10661 {
10662 int btf_id;
10663
10664 if (!prog || attach_prog_fd < 0 || !attach_func_name)
10665 return -EINVAL;
10666
10667 if (attach_prog_fd)
10668 btf_id = libbpf_find_prog_btf_id(attach_func_name,
10669 attach_prog_fd);
10670 else
10671 btf_id = libbpf_find_vmlinux_btf_id(attach_func_name,
10672 prog->expected_attach_type);
10673
10674 if (btf_id < 0)
10675 return btf_id;
10676
10677 prog->attach_btf_id = btf_id;
10678 prog->attach_prog_fd = attach_prog_fd;
10679 return 0;
10680 }
10681
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)10682 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
10683 {
10684 int err = 0, n, len, start, end = -1;
10685 bool *tmp;
10686
10687 *mask = NULL;
10688 *mask_sz = 0;
10689
10690 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
10691 while (*s) {
10692 if (*s == ',' || *s == '\n') {
10693 s++;
10694 continue;
10695 }
10696 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
10697 if (n <= 0 || n > 2) {
10698 pr_warn("Failed to get CPU range %s: %d\n", s, n);
10699 err = -EINVAL;
10700 goto cleanup;
10701 } else if (n == 1) {
10702 end = start;
10703 }
10704 if (start < 0 || start > end) {
10705 pr_warn("Invalid CPU range [%d,%d] in %s\n",
10706 start, end, s);
10707 err = -EINVAL;
10708 goto cleanup;
10709 }
10710 tmp = realloc(*mask, end + 1);
10711 if (!tmp) {
10712 err = -ENOMEM;
10713 goto cleanup;
10714 }
10715 *mask = tmp;
10716 memset(tmp + *mask_sz, 0, start - *mask_sz);
10717 memset(tmp + start, 1, end - start + 1);
10718 *mask_sz = end + 1;
10719 s += len;
10720 }
10721 if (!*mask_sz) {
10722 pr_warn("Empty CPU range\n");
10723 return -EINVAL;
10724 }
10725 return 0;
10726 cleanup:
10727 free(*mask);
10728 *mask = NULL;
10729 return err;
10730 }
10731
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)10732 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
10733 {
10734 int fd, err = 0, len;
10735 char buf[128];
10736
10737 fd = open(fcpu, O_RDONLY);
10738 if (fd < 0) {
10739 err = -errno;
10740 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
10741 return err;
10742 }
10743 len = read(fd, buf, sizeof(buf));
10744 close(fd);
10745 if (len <= 0) {
10746 err = len ? -errno : -EINVAL;
10747 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
10748 return err;
10749 }
10750 if (len >= sizeof(buf)) {
10751 pr_warn("CPU mask is too big in file %s\n", fcpu);
10752 return -E2BIG;
10753 }
10754 buf[len] = '\0';
10755
10756 return parse_cpu_mask_str(buf, mask, mask_sz);
10757 }
10758
libbpf_num_possible_cpus(void)10759 int libbpf_num_possible_cpus(void)
10760 {
10761 static const char *fcpu = "/sys/devices/system/cpu/possible";
10762 static int cpus;
10763 int err, n, i, tmp_cpus;
10764 bool *mask;
10765
10766 tmp_cpus = READ_ONCE(cpus);
10767 if (tmp_cpus > 0)
10768 return tmp_cpus;
10769
10770 err = parse_cpu_mask_file(fcpu, &mask, &n);
10771 if (err)
10772 return err;
10773
10774 tmp_cpus = 0;
10775 for (i = 0; i < n; i++) {
10776 if (mask[i])
10777 tmp_cpus++;
10778 }
10779 free(mask);
10780
10781 WRITE_ONCE(cpus, tmp_cpus);
10782 return tmp_cpus;
10783 }
10784
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)10785 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
10786 const struct bpf_object_open_opts *opts)
10787 {
10788 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
10789 .object_name = s->name,
10790 );
10791 struct bpf_object *obj;
10792 int i;
10793
10794 /* Attempt to preserve opts->object_name, unless overriden by user
10795 * explicitly. Overwriting object name for skeletons is discouraged,
10796 * as it breaks global data maps, because they contain object name
10797 * prefix as their own map name prefix. When skeleton is generated,
10798 * bpftool is making an assumption that this name will stay the same.
10799 */
10800 if (opts) {
10801 memcpy(&skel_opts, opts, sizeof(*opts));
10802 if (!opts->object_name)
10803 skel_opts.object_name = s->name;
10804 }
10805
10806 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
10807 if (IS_ERR(obj)) {
10808 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
10809 s->name, PTR_ERR(obj));
10810 return PTR_ERR(obj);
10811 }
10812
10813 *s->obj = obj;
10814
10815 for (i = 0; i < s->map_cnt; i++) {
10816 struct bpf_map **map = s->maps[i].map;
10817 const char *name = s->maps[i].name;
10818 void **mmaped = s->maps[i].mmaped;
10819
10820 *map = bpf_object__find_map_by_name(obj, name);
10821 if (!*map) {
10822 pr_warn("failed to find skeleton map '%s'\n", name);
10823 return -ESRCH;
10824 }
10825
10826 /* externs shouldn't be pre-setup from user code */
10827 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
10828 *mmaped = (*map)->mmaped;
10829 }
10830
10831 for (i = 0; i < s->prog_cnt; i++) {
10832 struct bpf_program **prog = s->progs[i].prog;
10833 const char *name = s->progs[i].name;
10834
10835 *prog = bpf_object__find_program_by_name(obj, name);
10836 if (!*prog) {
10837 pr_warn("failed to find skeleton program '%s'\n", name);
10838 return -ESRCH;
10839 }
10840 }
10841
10842 return 0;
10843 }
10844
bpf_object__load_skeleton(struct bpf_object_skeleton * s)10845 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
10846 {
10847 int i, err;
10848
10849 err = bpf_object__load(*s->obj);
10850 if (err) {
10851 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
10852 return err;
10853 }
10854
10855 for (i = 0; i < s->map_cnt; i++) {
10856 struct bpf_map *map = *s->maps[i].map;
10857 size_t mmap_sz = bpf_map_mmap_sz(map);
10858 int prot, map_fd = bpf_map__fd(map);
10859 void **mmaped = s->maps[i].mmaped;
10860
10861 if (!mmaped)
10862 continue;
10863
10864 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
10865 *mmaped = NULL;
10866 continue;
10867 }
10868
10869 if (map->def.map_flags & BPF_F_RDONLY_PROG)
10870 prot = PROT_READ;
10871 else
10872 prot = PROT_READ | PROT_WRITE;
10873
10874 /* Remap anonymous mmap()-ed "map initialization image" as
10875 * a BPF map-backed mmap()-ed memory, but preserving the same
10876 * memory address. This will cause kernel to change process'
10877 * page table to point to a different piece of kernel memory,
10878 * but from userspace point of view memory address (and its
10879 * contents, being identical at this point) will stay the
10880 * same. This mapping will be released by bpf_object__close()
10881 * as per normal clean up procedure, so we don't need to worry
10882 * about it from skeleton's clean up perspective.
10883 */
10884 *mmaped = mmap(map->mmaped, mmap_sz, prot,
10885 MAP_SHARED | MAP_FIXED, map_fd, 0);
10886 if (*mmaped == MAP_FAILED) {
10887 err = -errno;
10888 *mmaped = NULL;
10889 pr_warn("failed to re-mmap() map '%s': %d\n",
10890 bpf_map__name(map), err);
10891 return err;
10892 }
10893 }
10894
10895 return 0;
10896 }
10897
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)10898 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
10899 {
10900 int i;
10901
10902 for (i = 0; i < s->prog_cnt; i++) {
10903 struct bpf_program *prog = *s->progs[i].prog;
10904 struct bpf_link **link = s->progs[i].link;
10905 const struct bpf_sec_def *sec_def;
10906
10907 if (!prog->load)
10908 continue;
10909
10910 sec_def = find_sec_def(prog->sec_name);
10911 if (!sec_def || !sec_def->attach_fn)
10912 continue;
10913
10914 *link = sec_def->attach_fn(sec_def, prog);
10915 if (IS_ERR(*link)) {
10916 pr_warn("failed to auto-attach program '%s': %ld\n",
10917 bpf_program__name(prog), PTR_ERR(*link));
10918 return PTR_ERR(*link);
10919 }
10920 }
10921
10922 return 0;
10923 }
10924
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)10925 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
10926 {
10927 int i;
10928
10929 for (i = 0; i < s->prog_cnt; i++) {
10930 struct bpf_link **link = s->progs[i].link;
10931
10932 bpf_link__destroy(*link);
10933 *link = NULL;
10934 }
10935 }
10936
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)10937 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
10938 {
10939 if (!s)
10940 return;
10941
10942 if (s->progs)
10943 bpf_object__detach_skeleton(s);
10944 if (s->obj)
10945 bpf_object__close(*s->obj);
10946 free(s->maps);
10947 free(s->progs);
10948 free(s);
10949 }
10950