xref: /OK3568_Linux_fs/kernel/net/core/filter.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86 	if (in_compat_syscall()) {
87 		struct compat_sock_fprog f32;
88 
89 		if (len != sizeof(f32))
90 			return -EINVAL;
91 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
92 			return -EFAULT;
93 		memset(dst, 0, sizeof(*dst));
94 		dst->len = f32.len;
95 		dst->filter = compat_ptr(f32.filter);
96 	} else {
97 		if (len != sizeof(*dst))
98 			return -EINVAL;
99 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
100 			return -EFAULT;
101 	}
102 
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106 
107 /**
108  *	sk_filter_trim_cap - run a packet through a socket filter
109  *	@sk: sock associated with &sk_buff
110  *	@skb: buffer to filter
111  *	@cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122 	int err;
123 	struct sk_filter *filter;
124 
125 	/*
126 	 * If the skb was allocated from pfmemalloc reserves, only
127 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
128 	 * helping free memory
129 	 */
130 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132 		return -ENOMEM;
133 	}
134 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135 	if (err)
136 		return err;
137 
138 	err = security_sock_rcv_skb(sk, skb);
139 	if (err)
140 		return err;
141 
142 	rcu_read_lock();
143 	filter = rcu_dereference(sk->sk_filter);
144 	if (filter) {
145 		struct sock *save_sk = skb->sk;
146 		unsigned int pkt_len;
147 
148 		skb->sk = sk;
149 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150 		skb->sk = save_sk;
151 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152 	}
153 	rcu_read_unlock();
154 
155 	return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161 	return skb_get_poff(skb);
162 }
163 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166 	struct nlattr *nla;
167 
168 	if (skb_is_nonlinear(skb))
169 		return 0;
170 
171 	if (skb->len < sizeof(struct nlattr))
172 		return 0;
173 
174 	if (a > skb->len - sizeof(struct nlattr))
175 		return 0;
176 
177 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178 	if (nla)
179 		return (void *) nla - (void *) skb->data;
180 
181 	return 0;
182 }
183 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186 	struct nlattr *nla;
187 
188 	if (skb_is_nonlinear(skb))
189 		return 0;
190 
191 	if (skb->len < sizeof(struct nlattr))
192 		return 0;
193 
194 	if (a > skb->len - sizeof(struct nlattr))
195 		return 0;
196 
197 	nla = (struct nlattr *) &skb->data[a];
198 	if (nla->nla_len > skb->len - a)
199 		return 0;
200 
201 	nla = nla_find_nested(nla, x);
202 	if (nla)
203 		return (void *) nla - (void *) skb->data;
204 
205 	return 0;
206 }
207 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209 	   data, int, headlen, int, offset)
210 {
211 	u8 tmp, *ptr;
212 	const int len = sizeof(tmp);
213 
214 	if (offset >= 0) {
215 		if (headlen - offset >= len)
216 			return *(u8 *)(data + offset);
217 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218 			return tmp;
219 	} else {
220 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221 		if (likely(ptr))
222 			return *(u8 *)ptr;
223 	}
224 
225 	return -EFAULT;
226 }
227 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229 	   int, offset)
230 {
231 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232 					 offset);
233 }
234 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236 	   data, int, headlen, int, offset)
237 {
238 	u16 tmp, *ptr;
239 	const int len = sizeof(tmp);
240 
241 	if (offset >= 0) {
242 		if (headlen - offset >= len)
243 			return get_unaligned_be16(data + offset);
244 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245 			return be16_to_cpu(tmp);
246 	} else {
247 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248 		if (likely(ptr))
249 			return get_unaligned_be16(ptr);
250 	}
251 
252 	return -EFAULT;
253 }
254 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256 	   int, offset)
257 {
258 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259 					  offset);
260 }
261 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263 	   data, int, headlen, int, offset)
264 {
265 	u32 tmp, *ptr;
266 	const int len = sizeof(tmp);
267 
268 	if (likely(offset >= 0)) {
269 		if (headlen - offset >= len)
270 			return get_unaligned_be32(data + offset);
271 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272 			return be32_to_cpu(tmp);
273 	} else {
274 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275 		if (likely(ptr))
276 			return get_unaligned_be32(ptr);
277 	}
278 
279 	return -EFAULT;
280 }
281 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283 	   int, offset)
284 {
285 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286 					  offset);
287 }
288 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290 			      struct bpf_insn *insn_buf)
291 {
292 	struct bpf_insn *insn = insn_buf;
293 
294 	switch (skb_field) {
295 	case SKF_AD_MARK:
296 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297 
298 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299 				      offsetof(struct sk_buff, mark));
300 		break;
301 
302 	case SKF_AD_PKTTYPE:
303 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308 		break;
309 
310 	case SKF_AD_QUEUE:
311 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312 
313 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314 				      offsetof(struct sk_buff, queue_mapping));
315 		break;
316 
317 	case SKF_AD_VLAN_TAG:
318 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319 
320 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322 				      offsetof(struct sk_buff, vlan_tci));
323 		break;
324 	case SKF_AD_VLAN_TAG_PRESENT:
325 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326 		if (PKT_VLAN_PRESENT_BIT)
327 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328 		if (PKT_VLAN_PRESENT_BIT < 7)
329 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330 		break;
331 	}
332 
333 	return insn - insn_buf;
334 }
335 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)336 static bool convert_bpf_extensions(struct sock_filter *fp,
337 				   struct bpf_insn **insnp)
338 {
339 	struct bpf_insn *insn = *insnp;
340 	u32 cnt;
341 
342 	switch (fp->k) {
343 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
344 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345 
346 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
347 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348 				      offsetof(struct sk_buff, protocol));
349 		/* A = ntohs(A) [emitting a nop or swap16] */
350 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351 		break;
352 
353 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
354 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355 		insn += cnt - 1;
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_IFINDEX:
359 	case SKF_AD_OFF + SKF_AD_HATYPE:
360 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362 
363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364 				      BPF_REG_TMP, BPF_REG_CTX,
365 				      offsetof(struct sk_buff, dev));
366 		/* if (tmp != 0) goto pc + 1 */
367 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368 		*insn++ = BPF_EXIT_INSN();
369 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371 					    offsetof(struct net_device, ifindex));
372 		else
373 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, type));
375 		break;
376 
377 	case SKF_AD_OFF + SKF_AD_MARK:
378 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379 		insn += cnt - 1;
380 		break;
381 
382 	case SKF_AD_OFF + SKF_AD_RXHASH:
383 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384 
385 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386 				    offsetof(struct sk_buff, hash));
387 		break;
388 
389 	case SKF_AD_OFF + SKF_AD_QUEUE:
390 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391 		insn += cnt - 1;
392 		break;
393 
394 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396 					 BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408 
409 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411 				      offsetof(struct sk_buff, vlan_proto));
412 		/* A = ntohs(A) [emitting a nop or swap16] */
413 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414 		break;
415 
416 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417 	case SKF_AD_OFF + SKF_AD_NLATTR:
418 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419 	case SKF_AD_OFF + SKF_AD_CPU:
420 	case SKF_AD_OFF + SKF_AD_RANDOM:
421 		/* arg1 = CTX */
422 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423 		/* arg2 = A */
424 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425 		/* arg3 = X */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
428 		switch (fp->k) {
429 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431 			break;
432 		case SKF_AD_OFF + SKF_AD_NLATTR:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_CPU:
439 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_RANDOM:
442 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443 			bpf_user_rnd_init_once();
444 			break;
445 		}
446 		break;
447 
448 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449 		/* A ^= X */
450 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451 		break;
452 
453 	default:
454 		/* This is just a dummy call to avoid letting the compiler
455 		 * evict __bpf_call_base() as an optimization. Placed here
456 		 * where no-one bothers.
457 		 */
458 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459 		return false;
460 	}
461 
462 	*insnp = insn;
463 	return true;
464 }
465 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
471 		      BPF_SIZE(fp->code) == BPF_W;
472 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
473 	const int ip_align = NET_IP_ALIGN;
474 	struct bpf_insn *insn = *insnp;
475 	int offset = fp->k;
476 
477 	if (!indirect &&
478 	    ((unaligned_ok && offset >= 0) ||
479 	     (!unaligned_ok && offset >= 0 &&
480 	      offset + ip_align >= 0 &&
481 	      offset + ip_align % size == 0))) {
482 		bool ldx_off_ok = offset <= S16_MAX;
483 
484 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485 		if (offset)
486 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488 				      size, 2 + endian + (!ldx_off_ok * 2));
489 		if (ldx_off_ok) {
490 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491 					      BPF_REG_D, offset);
492 		} else {
493 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496 					      BPF_REG_TMP, 0);
497 		}
498 		if (endian)
499 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500 		*insn++ = BPF_JMP_A(8);
501 	}
502 
503 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506 	if (!indirect) {
507 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508 	} else {
509 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510 		if (fp->k)
511 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512 	}
513 
514 	switch (BPF_SIZE(fp->code)) {
515 	case BPF_B:
516 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517 		break;
518 	case BPF_H:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520 		break;
521 	case BPF_W:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523 		break;
524 	default:
525 		return false;
526 	}
527 
528 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530 	*insn   = BPF_EXIT_INSN();
531 
532 	*insnp = insn;
533 	return true;
534 }
535 
536 /**
537  *	bpf_convert_filter - convert filter program
538  *	@prog: the user passed filter program
539  *	@len: the length of the user passed filter program
540  *	@new_prog: allocated 'struct bpf_prog' or NULL
541  *	@new_len: pointer to store length of converted program
542  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556 			      struct bpf_prog *new_prog, int *new_len,
557 			      bool *seen_ld_abs)
558 {
559 	int new_flen = 0, pass = 0, target, i, stack_off;
560 	struct bpf_insn *new_insn, *first_insn = NULL;
561 	struct sock_filter *fp;
562 	int *addrs = NULL;
563 	u8 bpf_src;
564 
565 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567 
568 	if (len <= 0 || len > BPF_MAXINSNS)
569 		return -EINVAL;
570 
571 	if (new_prog) {
572 		first_insn = new_prog->insnsi;
573 		addrs = kcalloc(len, sizeof(*addrs),
574 				GFP_KERNEL | __GFP_NOWARN);
575 		if (!addrs)
576 			return -ENOMEM;
577 	}
578 
579 do_pass:
580 	new_insn = first_insn;
581 	fp = prog;
582 
583 	/* Classic BPF related prologue emission. */
584 	if (new_prog) {
585 		/* Classic BPF expects A and X to be reset first. These need
586 		 * to be guaranteed to be the first two instructions.
587 		 */
588 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590 
591 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
592 		 * In eBPF case it's done by the compiler, here we need to
593 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594 		 */
595 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596 		if (*seen_ld_abs) {
597 			/* For packet access in classic BPF, cache skb->data
598 			 * in callee-saved BPF R8 and skb->len - skb->data_len
599 			 * (headlen) in BPF R9. Since classic BPF is read-only
600 			 * on CTX, we only need to cache it once.
601 			 */
602 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603 						  BPF_REG_D, BPF_REG_CTX,
604 						  offsetof(struct sk_buff, data));
605 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606 						  offsetof(struct sk_buff, len));
607 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data_len));
609 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610 		}
611 	} else {
612 		new_insn += 3;
613 	}
614 
615 	for (i = 0; i < len; fp++, i++) {
616 		struct bpf_insn tmp_insns[32] = { };
617 		struct bpf_insn *insn = tmp_insns;
618 
619 		if (addrs)
620 			addrs[i] = new_insn - first_insn;
621 
622 		switch (fp->code) {
623 		/* All arithmetic insns and skb loads map as-is. */
624 		case BPF_ALU | BPF_ADD | BPF_X:
625 		case BPF_ALU | BPF_ADD | BPF_K:
626 		case BPF_ALU | BPF_SUB | BPF_X:
627 		case BPF_ALU | BPF_SUB | BPF_K:
628 		case BPF_ALU | BPF_AND | BPF_X:
629 		case BPF_ALU | BPF_AND | BPF_K:
630 		case BPF_ALU | BPF_OR | BPF_X:
631 		case BPF_ALU | BPF_OR | BPF_K:
632 		case BPF_ALU | BPF_LSH | BPF_X:
633 		case BPF_ALU | BPF_LSH | BPF_K:
634 		case BPF_ALU | BPF_RSH | BPF_X:
635 		case BPF_ALU | BPF_RSH | BPF_K:
636 		case BPF_ALU | BPF_XOR | BPF_X:
637 		case BPF_ALU | BPF_XOR | BPF_K:
638 		case BPF_ALU | BPF_MUL | BPF_X:
639 		case BPF_ALU | BPF_MUL | BPF_K:
640 		case BPF_ALU | BPF_DIV | BPF_X:
641 		case BPF_ALU | BPF_DIV | BPF_K:
642 		case BPF_ALU | BPF_MOD | BPF_X:
643 		case BPF_ALU | BPF_MOD | BPF_K:
644 		case BPF_ALU | BPF_NEG:
645 		case BPF_LD | BPF_ABS | BPF_W:
646 		case BPF_LD | BPF_ABS | BPF_H:
647 		case BPF_LD | BPF_ABS | BPF_B:
648 		case BPF_LD | BPF_IND | BPF_W:
649 		case BPF_LD | BPF_IND | BPF_H:
650 		case BPF_LD | BPF_IND | BPF_B:
651 			/* Check for overloaded BPF extension and
652 			 * directly convert it if found, otherwise
653 			 * just move on with mapping.
654 			 */
655 			if (BPF_CLASS(fp->code) == BPF_LD &&
656 			    BPF_MODE(fp->code) == BPF_ABS &&
657 			    convert_bpf_extensions(fp, &insn))
658 				break;
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    convert_bpf_ld_abs(fp, &insn)) {
661 				*seen_ld_abs = true;
662 				break;
663 			}
664 
665 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668 				/* Error with exception code on div/mod by 0.
669 				 * For cBPF programs, this was always return 0.
670 				 */
671 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673 				*insn++ = BPF_EXIT_INSN();
674 			}
675 
676 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677 			break;
678 
679 		/* Jump transformation cannot use BPF block macros
680 		 * everywhere as offset calculation and target updates
681 		 * require a bit more work than the rest, i.e. jump
682 		 * opcodes map as-is, but offsets need adjustment.
683 		 */
684 
685 #define BPF_EMIT_JMP							\
686 	do {								\
687 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
688 		s32 off;						\
689 									\
690 		if (target >= len || target < 0)			\
691 			goto err;					\
692 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
693 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
694 		off -= insn - tmp_insns;				\
695 		/* Reject anything not fitting into insn->off. */	\
696 		if (off < off_min || off > off_max)			\
697 			goto err;					\
698 		insn->off = off;					\
699 	} while (0)
700 
701 		case BPF_JMP | BPF_JA:
702 			target = i + fp->k + 1;
703 			insn->code = fp->code;
704 			BPF_EMIT_JMP;
705 			break;
706 
707 		case BPF_JMP | BPF_JEQ | BPF_K:
708 		case BPF_JMP | BPF_JEQ | BPF_X:
709 		case BPF_JMP | BPF_JSET | BPF_K:
710 		case BPF_JMP | BPF_JSET | BPF_X:
711 		case BPF_JMP | BPF_JGT | BPF_K:
712 		case BPF_JMP | BPF_JGT | BPF_X:
713 		case BPF_JMP | BPF_JGE | BPF_K:
714 		case BPF_JMP | BPF_JGE | BPF_X:
715 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716 				/* BPF immediates are signed, zero extend
717 				 * immediate into tmp register and use it
718 				 * in compare insn.
719 				 */
720 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721 
722 				insn->dst_reg = BPF_REG_A;
723 				insn->src_reg = BPF_REG_TMP;
724 				bpf_src = BPF_X;
725 			} else {
726 				insn->dst_reg = BPF_REG_A;
727 				insn->imm = fp->k;
728 				bpf_src = BPF_SRC(fp->code);
729 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730 			}
731 
732 			/* Common case where 'jump_false' is next insn. */
733 			if (fp->jf == 0) {
734 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735 				target = i + fp->jt + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 
740 			/* Convert some jumps when 'jump_true' is next insn. */
741 			if (fp->jt == 0) {
742 				switch (BPF_OP(fp->code)) {
743 				case BPF_JEQ:
744 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
745 					break;
746 				case BPF_JGT:
747 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
748 					break;
749 				case BPF_JGE:
750 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
751 					break;
752 				default:
753 					goto jmp_rest;
754 				}
755 
756 				target = i + fp->jf + 1;
757 				BPF_EMIT_JMP;
758 				break;
759 			}
760 jmp_rest:
761 			/* Other jumps are mapped into two insns: Jxx and JA. */
762 			target = i + fp->jt + 1;
763 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764 			BPF_EMIT_JMP;
765 			insn++;
766 
767 			insn->code = BPF_JMP | BPF_JA;
768 			target = i + fp->jf + 1;
769 			BPF_EMIT_JMP;
770 			break;
771 
772 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773 		case BPF_LDX | BPF_MSH | BPF_B: {
774 			struct sock_filter tmp = {
775 				.code	= BPF_LD | BPF_ABS | BPF_B,
776 				.k	= fp->k,
777 			};
778 
779 			*seen_ld_abs = true;
780 
781 			/* X = A */
782 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
784 			convert_bpf_ld_abs(&tmp, &insn);
785 			insn++;
786 			/* A &= 0xf */
787 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788 			/* A <<= 2 */
789 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790 			/* tmp = X */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792 			/* X = A */
793 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794 			/* A = tmp */
795 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796 			break;
797 		}
798 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
799 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800 		 */
801 		case BPF_RET | BPF_A:
802 		case BPF_RET | BPF_K:
803 			if (BPF_RVAL(fp->code) == BPF_K)
804 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805 							0, fp->k);
806 			*insn = BPF_EXIT_INSN();
807 			break;
808 
809 		/* Store to stack. */
810 		case BPF_ST:
811 		case BPF_STX:
812 			stack_off = fp->k * 4  + 4;
813 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
815 					    -stack_off);
816 			/* check_load_and_stores() verifies that classic BPF can
817 			 * load from stack only after write, so tracking
818 			 * stack_depth for ST|STX insns is enough
819 			 */
820 			if (new_prog && new_prog->aux->stack_depth < stack_off)
821 				new_prog->aux->stack_depth = stack_off;
822 			break;
823 
824 		/* Load from stack. */
825 		case BPF_LD | BPF_MEM:
826 		case BPF_LDX | BPF_MEM:
827 			stack_off = fp->k * 4  + 4;
828 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830 					    -stack_off);
831 			break;
832 
833 		/* A = K or X = K */
834 		case BPF_LD | BPF_IMM:
835 		case BPF_LDX | BPF_IMM:
836 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837 					      BPF_REG_A : BPF_REG_X, fp->k);
838 			break;
839 
840 		/* X = A */
841 		case BPF_MISC | BPF_TAX:
842 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843 			break;
844 
845 		/* A = X */
846 		case BPF_MISC | BPF_TXA:
847 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848 			break;
849 
850 		/* A = skb->len or X = skb->len */
851 		case BPF_LD | BPF_W | BPF_LEN:
852 		case BPF_LDX | BPF_W | BPF_LEN:
853 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855 					    offsetof(struct sk_buff, len));
856 			break;
857 
858 		/* Access seccomp_data fields. */
859 		case BPF_LDX | BPF_ABS | BPF_W:
860 			/* A = *(u32 *) (ctx + K) */
861 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862 			break;
863 
864 		/* Unknown instruction. */
865 		default:
866 			goto err;
867 		}
868 
869 		insn++;
870 		if (new_prog)
871 			memcpy(new_insn, tmp_insns,
872 			       sizeof(*insn) * (insn - tmp_insns));
873 		new_insn += insn - tmp_insns;
874 	}
875 
876 	if (!new_prog) {
877 		/* Only calculating new length. */
878 		*new_len = new_insn - first_insn;
879 		if (*seen_ld_abs)
880 			*new_len += 4; /* Prologue bits. */
881 		return 0;
882 	}
883 
884 	pass++;
885 	if (new_flen != new_insn - first_insn) {
886 		new_flen = new_insn - first_insn;
887 		if (pass > 2)
888 			goto err;
889 		goto do_pass;
890 	}
891 
892 	kfree(addrs);
893 	BUG_ON(*new_len != new_flen);
894 	return 0;
895 err:
896 	kfree(addrs);
897 	return -EINVAL;
898 }
899 
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
check_load_and_stores(const struct sock_filter * filter,int flen)907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910 	int pc, ret = 0;
911 
912 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
913 
914 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915 	if (!masks)
916 		return -ENOMEM;
917 
918 	memset(masks, 0xff, flen * sizeof(*masks));
919 
920 	for (pc = 0; pc < flen; pc++) {
921 		memvalid &= masks[pc];
922 
923 		switch (filter[pc].code) {
924 		case BPF_ST:
925 		case BPF_STX:
926 			memvalid |= (1 << filter[pc].k);
927 			break;
928 		case BPF_LD | BPF_MEM:
929 		case BPF_LDX | BPF_MEM:
930 			if (!(memvalid & (1 << filter[pc].k))) {
931 				ret = -EINVAL;
932 				goto error;
933 			}
934 			break;
935 		case BPF_JMP | BPF_JA:
936 			/* A jump must set masks on target */
937 			masks[pc + 1 + filter[pc].k] &= memvalid;
938 			memvalid = ~0;
939 			break;
940 		case BPF_JMP | BPF_JEQ | BPF_K:
941 		case BPF_JMP | BPF_JEQ | BPF_X:
942 		case BPF_JMP | BPF_JGE | BPF_K:
943 		case BPF_JMP | BPF_JGE | BPF_X:
944 		case BPF_JMP | BPF_JGT | BPF_K:
945 		case BPF_JMP | BPF_JGT | BPF_X:
946 		case BPF_JMP | BPF_JSET | BPF_K:
947 		case BPF_JMP | BPF_JSET | BPF_X:
948 			/* A jump must set masks on targets */
949 			masks[pc + 1 + filter[pc].jt] &= memvalid;
950 			masks[pc + 1 + filter[pc].jf] &= memvalid;
951 			memvalid = ~0;
952 			break;
953 		}
954 	}
955 error:
956 	kfree(masks);
957 	return ret;
958 }
959 
chk_code_allowed(u16 code_to_probe)960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962 	static const bool codes[] = {
963 		/* 32 bit ALU operations */
964 		[BPF_ALU | BPF_ADD | BPF_K] = true,
965 		[BPF_ALU | BPF_ADD | BPF_X] = true,
966 		[BPF_ALU | BPF_SUB | BPF_K] = true,
967 		[BPF_ALU | BPF_SUB | BPF_X] = true,
968 		[BPF_ALU | BPF_MUL | BPF_K] = true,
969 		[BPF_ALU | BPF_MUL | BPF_X] = true,
970 		[BPF_ALU | BPF_DIV | BPF_K] = true,
971 		[BPF_ALU | BPF_DIV | BPF_X] = true,
972 		[BPF_ALU | BPF_MOD | BPF_K] = true,
973 		[BPF_ALU | BPF_MOD | BPF_X] = true,
974 		[BPF_ALU | BPF_AND | BPF_K] = true,
975 		[BPF_ALU | BPF_AND | BPF_X] = true,
976 		[BPF_ALU | BPF_OR | BPF_K] = true,
977 		[BPF_ALU | BPF_OR | BPF_X] = true,
978 		[BPF_ALU | BPF_XOR | BPF_K] = true,
979 		[BPF_ALU | BPF_XOR | BPF_X] = true,
980 		[BPF_ALU | BPF_LSH | BPF_K] = true,
981 		[BPF_ALU | BPF_LSH | BPF_X] = true,
982 		[BPF_ALU | BPF_RSH | BPF_K] = true,
983 		[BPF_ALU | BPF_RSH | BPF_X] = true,
984 		[BPF_ALU | BPF_NEG] = true,
985 		/* Load instructions */
986 		[BPF_LD | BPF_W | BPF_ABS] = true,
987 		[BPF_LD | BPF_H | BPF_ABS] = true,
988 		[BPF_LD | BPF_B | BPF_ABS] = true,
989 		[BPF_LD | BPF_W | BPF_LEN] = true,
990 		[BPF_LD | BPF_W | BPF_IND] = true,
991 		[BPF_LD | BPF_H | BPF_IND] = true,
992 		[BPF_LD | BPF_B | BPF_IND] = true,
993 		[BPF_LD | BPF_IMM] = true,
994 		[BPF_LD | BPF_MEM] = true,
995 		[BPF_LDX | BPF_W | BPF_LEN] = true,
996 		[BPF_LDX | BPF_B | BPF_MSH] = true,
997 		[BPF_LDX | BPF_IMM] = true,
998 		[BPF_LDX | BPF_MEM] = true,
999 		/* Store instructions */
1000 		[BPF_ST] = true,
1001 		[BPF_STX] = true,
1002 		/* Misc instructions */
1003 		[BPF_MISC | BPF_TAX] = true,
1004 		[BPF_MISC | BPF_TXA] = true,
1005 		/* Return instructions */
1006 		[BPF_RET | BPF_K] = true,
1007 		[BPF_RET | BPF_A] = true,
1008 		/* Jump instructions */
1009 		[BPF_JMP | BPF_JA] = true,
1010 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1011 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1012 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1013 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1014 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1015 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1016 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1017 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1018 	};
1019 
1020 	if (code_to_probe >= ARRAY_SIZE(codes))
1021 		return false;
1022 
1023 	return codes[code_to_probe];
1024 }
1025 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027 				unsigned int flen)
1028 {
1029 	if (filter == NULL)
1030 		return false;
1031 	if (flen == 0 || flen > BPF_MAXINSNS)
1032 		return false;
1033 
1034 	return true;
1035 }
1036 
1037 /**
1038  *	bpf_check_classic - verify socket filter code
1039  *	@filter: filter to verify
1040  *	@flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1051 static int bpf_check_classic(const struct sock_filter *filter,
1052 			     unsigned int flen)
1053 {
1054 	bool anc_found;
1055 	int pc;
1056 
1057 	/* Check the filter code now */
1058 	for (pc = 0; pc < flen; pc++) {
1059 		const struct sock_filter *ftest = &filter[pc];
1060 
1061 		/* May we actually operate on this code? */
1062 		if (!chk_code_allowed(ftest->code))
1063 			return -EINVAL;
1064 
1065 		/* Some instructions need special checks */
1066 		switch (ftest->code) {
1067 		case BPF_ALU | BPF_DIV | BPF_K:
1068 		case BPF_ALU | BPF_MOD | BPF_K:
1069 			/* Check for division by zero */
1070 			if (ftest->k == 0)
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_ALU | BPF_LSH | BPF_K:
1074 		case BPF_ALU | BPF_RSH | BPF_K:
1075 			if (ftest->k >= 32)
1076 				return -EINVAL;
1077 			break;
1078 		case BPF_LD | BPF_MEM:
1079 		case BPF_LDX | BPF_MEM:
1080 		case BPF_ST:
1081 		case BPF_STX:
1082 			/* Check for invalid memory addresses */
1083 			if (ftest->k >= BPF_MEMWORDS)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_JMP | BPF_JA:
1087 			/* Note, the large ftest->k might cause loops.
1088 			 * Compare this with conditional jumps below,
1089 			 * where offsets are limited. --ANK (981016)
1090 			 */
1091 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1092 				return -EINVAL;
1093 			break;
1094 		case BPF_JMP | BPF_JEQ | BPF_K:
1095 		case BPF_JMP | BPF_JEQ | BPF_X:
1096 		case BPF_JMP | BPF_JGE | BPF_K:
1097 		case BPF_JMP | BPF_JGE | BPF_X:
1098 		case BPF_JMP | BPF_JGT | BPF_K:
1099 		case BPF_JMP | BPF_JGT | BPF_X:
1100 		case BPF_JMP | BPF_JSET | BPF_K:
1101 		case BPF_JMP | BPF_JSET | BPF_X:
1102 			/* Both conditionals must be safe */
1103 			if (pc + ftest->jt + 1 >= flen ||
1104 			    pc + ftest->jf + 1 >= flen)
1105 				return -EINVAL;
1106 			break;
1107 		case BPF_LD | BPF_W | BPF_ABS:
1108 		case BPF_LD | BPF_H | BPF_ABS:
1109 		case BPF_LD | BPF_B | BPF_ABS:
1110 			anc_found = false;
1111 			if (bpf_anc_helper(ftest) & BPF_ANC)
1112 				anc_found = true;
1113 			/* Ancillary operation unknown or unsupported */
1114 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115 				return -EINVAL;
1116 		}
1117 	}
1118 
1119 	/* Last instruction must be a RET code */
1120 	switch (filter[flen - 1].code) {
1121 	case BPF_RET | BPF_K:
1122 	case BPF_RET | BPF_A:
1123 		return check_load_and_stores(filter, flen);
1124 	}
1125 
1126 	return -EINVAL;
1127 }
1128 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130 				      const struct sock_fprog *fprog)
1131 {
1132 	unsigned int fsize = bpf_classic_proglen(fprog);
1133 	struct sock_fprog_kern *fkprog;
1134 
1135 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136 	if (!fp->orig_prog)
1137 		return -ENOMEM;
1138 
1139 	fkprog = fp->orig_prog;
1140 	fkprog->len = fprog->len;
1141 
1142 	fkprog->filter = kmemdup(fp->insns, fsize,
1143 				 GFP_KERNEL | __GFP_NOWARN);
1144 	if (!fkprog->filter) {
1145 		kfree(fp->orig_prog);
1146 		return -ENOMEM;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
bpf_release_orig_filter(struct bpf_prog * fp)1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154 	struct sock_fprog_kern *fprog = fp->orig_prog;
1155 
1156 	if (fprog) {
1157 		kfree(fprog->filter);
1158 		kfree(fprog);
1159 	}
1160 }
1161 
__bpf_prog_release(struct bpf_prog * prog)1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165 		bpf_prog_put(prog);
1166 	} else {
1167 		bpf_release_orig_filter(prog);
1168 		bpf_prog_free(prog);
1169 	}
1170 }
1171 
__sk_filter_release(struct sk_filter * fp)1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174 	__bpf_prog_release(fp->prog);
1175 	kfree(fp);
1176 }
1177 
1178 /**
1179  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *	@rcu: rcu_head that contains the sk_filter to free
1181  */
sk_filter_release_rcu(struct rcu_head * rcu)1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185 
1186 	__sk_filter_release(fp);
1187 }
1188 
1189 /**
1190  *	sk_filter_release - release a socket filter
1191  *	@fp: filter to remove
1192  *
1193  *	Remove a filter from a socket and release its resources.
1194  */
sk_filter_release(struct sk_filter * fp)1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197 	if (refcount_dec_and_test(&fp->refcnt))
1198 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203 	u32 filter_size = bpf_prog_size(fp->prog->len);
1204 
1205 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1206 	sk_filter_release(fp);
1207 }
1208 
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214 	u32 filter_size = bpf_prog_size(fp->prog->len);
1215 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1216 
1217 	/* same check as in sock_kmalloc() */
1218 	if (filter_size <= optmem_max &&
1219 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1220 		atomic_add(filter_size, &sk->sk_omem_alloc);
1221 		return true;
1222 	}
1223 	return false;
1224 }
1225 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228 	if (!refcount_inc_not_zero(&fp->refcnt))
1229 		return false;
1230 
1231 	if (!__sk_filter_charge(sk, fp)) {
1232 		sk_filter_release(fp);
1233 		return false;
1234 	}
1235 	return true;
1236 }
1237 
bpf_migrate_filter(struct bpf_prog * fp)1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240 	struct sock_filter *old_prog;
1241 	struct bpf_prog *old_fp;
1242 	int err, new_len, old_len = fp->len;
1243 	bool seen_ld_abs = false;
1244 
1245 	/* We are free to overwrite insns et al right here as it
1246 	 * won't be used at this point in time anymore internally
1247 	 * after the migration to the internal BPF instruction
1248 	 * representation.
1249 	 */
1250 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251 		     sizeof(struct bpf_insn));
1252 
1253 	/* Conversion cannot happen on overlapping memory areas,
1254 	 * so we need to keep the user BPF around until the 2nd
1255 	 * pass. At this time, the user BPF is stored in fp->insns.
1256 	 */
1257 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258 			   GFP_KERNEL | __GFP_NOWARN);
1259 	if (!old_prog) {
1260 		err = -ENOMEM;
1261 		goto out_err;
1262 	}
1263 
1264 	/* 1st pass: calculate the new program length. */
1265 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		goto out_err_free;
1269 
1270 	/* Expand fp for appending the new filter representation. */
1271 	old_fp = fp;
1272 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273 	if (!fp) {
1274 		/* The old_fp is still around in case we couldn't
1275 		 * allocate new memory, so uncharge on that one.
1276 		 */
1277 		fp = old_fp;
1278 		err = -ENOMEM;
1279 		goto out_err_free;
1280 	}
1281 
1282 	fp->len = new_len;
1283 
1284 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286 				 &seen_ld_abs);
1287 	if (err)
1288 		/* 2nd bpf_convert_filter() can fail only if it fails
1289 		 * to allocate memory, remapping must succeed. Note,
1290 		 * that at this time old_fp has already been released
1291 		 * by krealloc().
1292 		 */
1293 		goto out_err_free;
1294 
1295 	fp = bpf_prog_select_runtime(fp, &err);
1296 	if (err)
1297 		goto out_err_free;
1298 
1299 	kfree(old_prog);
1300 	return fp;
1301 
1302 out_err_free:
1303 	kfree(old_prog);
1304 out_err:
1305 	__bpf_prog_release(fp);
1306 	return ERR_PTR(err);
1307 }
1308 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310 					   bpf_aux_classic_check_t trans)
1311 {
1312 	int err;
1313 
1314 	fp->bpf_func = NULL;
1315 	fp->jited = 0;
1316 
1317 	err = bpf_check_classic(fp->insns, fp->len);
1318 	if (err) {
1319 		__bpf_prog_release(fp);
1320 		return ERR_PTR(err);
1321 	}
1322 
1323 	/* There might be additional checks and transformations
1324 	 * needed on classic filters, f.e. in case of seccomp.
1325 	 */
1326 	if (trans) {
1327 		err = trans(fp->insns, fp->len);
1328 		if (err) {
1329 			__bpf_prog_release(fp);
1330 			return ERR_PTR(err);
1331 		}
1332 	}
1333 
1334 	/* Probe if we can JIT compile the filter and if so, do
1335 	 * the compilation of the filter.
1336 	 */
1337 	bpf_jit_compile(fp);
1338 
1339 	/* JIT compiler couldn't process this filter, so do the
1340 	 * internal BPF translation for the optimized interpreter.
1341 	 */
1342 	if (!fp->jited)
1343 		fp = bpf_migrate_filter(fp);
1344 
1345 	return fp;
1346 }
1347 
1348 /**
1349  *	bpf_prog_create - create an unattached filter
1350  *	@pfp: the unattached filter that is created
1351  *	@fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360 	unsigned int fsize = bpf_classic_proglen(fprog);
1361 	struct bpf_prog *fp;
1362 
1363 	/* Make sure new filter is there and in the right amounts. */
1364 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365 		return -EINVAL;
1366 
1367 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368 	if (!fp)
1369 		return -ENOMEM;
1370 
1371 	memcpy(fp->insns, fprog->filter, fsize);
1372 
1373 	fp->len = fprog->len;
1374 	/* Since unattached filters are not copied back to user
1375 	 * space through sk_get_filter(), we do not need to hold
1376 	 * a copy here, and can spare us the work.
1377 	 */
1378 	fp->orig_prog = NULL;
1379 
1380 	/* bpf_prepare_filter() already takes care of freeing
1381 	 * memory in case something goes wrong.
1382 	 */
1383 	fp = bpf_prepare_filter(fp, NULL);
1384 	if (IS_ERR(fp))
1385 		return PTR_ERR(fp);
1386 
1387 	*pfp = fp;
1388 	return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391 
1392 /**
1393  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *	@pfp: the unattached filter that is created
1395  *	@fprog: the filter program
1396  *	@trans: post-classic verifier transformation handler
1397  *	@save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404 			      bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406 	unsigned int fsize = bpf_classic_proglen(fprog);
1407 	struct bpf_prog *fp;
1408 	int err;
1409 
1410 	/* Make sure new filter is there and in the right amounts. */
1411 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412 		return -EINVAL;
1413 
1414 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415 	if (!fp)
1416 		return -ENOMEM;
1417 
1418 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419 		__bpf_prog_free(fp);
1420 		return -EFAULT;
1421 	}
1422 
1423 	fp->len = fprog->len;
1424 	fp->orig_prog = NULL;
1425 
1426 	if (save_orig) {
1427 		err = bpf_prog_store_orig_filter(fp, fprog);
1428 		if (err) {
1429 			__bpf_prog_free(fp);
1430 			return -ENOMEM;
1431 		}
1432 	}
1433 
1434 	/* bpf_prepare_filter() already takes care of freeing
1435 	 * memory in case something goes wrong.
1436 	 */
1437 	fp = bpf_prepare_filter(fp, trans);
1438 	if (IS_ERR(fp))
1439 		return PTR_ERR(fp);
1440 
1441 	*pfp = fp;
1442 	return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445 
bpf_prog_destroy(struct bpf_prog * fp)1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448 	__bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454 	struct sk_filter *fp, *old_fp;
1455 
1456 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457 	if (!fp)
1458 		return -ENOMEM;
1459 
1460 	fp->prog = prog;
1461 
1462 	if (!__sk_filter_charge(sk, fp)) {
1463 		kfree(fp);
1464 		return -ENOMEM;
1465 	}
1466 	refcount_set(&fp->refcnt, 1);
1467 
1468 	old_fp = rcu_dereference_protected(sk->sk_filter,
1469 					   lockdep_sock_is_held(sk));
1470 	rcu_assign_pointer(sk->sk_filter, fp);
1471 
1472 	if (old_fp)
1473 		sk_filter_uncharge(sk, old_fp);
1474 
1475 	return 0;
1476 }
1477 
1478 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481 	unsigned int fsize = bpf_classic_proglen(fprog);
1482 	struct bpf_prog *prog;
1483 	int err;
1484 
1485 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486 		return ERR_PTR(-EPERM);
1487 
1488 	/* Make sure new filter is there and in the right amounts. */
1489 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490 		return ERR_PTR(-EINVAL);
1491 
1492 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493 	if (!prog)
1494 		return ERR_PTR(-ENOMEM);
1495 
1496 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497 		__bpf_prog_free(prog);
1498 		return ERR_PTR(-EFAULT);
1499 	}
1500 
1501 	prog->len = fprog->len;
1502 
1503 	err = bpf_prog_store_orig_filter(prog, fprog);
1504 	if (err) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-ENOMEM);
1507 	}
1508 
1509 	/* bpf_prepare_filter() already takes care of freeing
1510 	 * memory in case something goes wrong.
1511 	 */
1512 	return bpf_prepare_filter(prog, NULL);
1513 }
1514 
1515 /**
1516  *	sk_attach_filter - attach a socket filter
1517  *	@fprog: the filter program
1518  *	@sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527 	struct bpf_prog *prog = __get_filter(fprog, sk);
1528 	int err;
1529 
1530 	if (IS_ERR(prog))
1531 		return PTR_ERR(prog);
1532 
1533 	err = __sk_attach_prog(prog, sk);
1534 	if (err < 0) {
1535 		__bpf_prog_release(prog);
1536 		return err;
1537 	}
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545 	struct bpf_prog *prog = __get_filter(fprog, sk);
1546 	int err;
1547 
1548 	if (IS_ERR(prog))
1549 		return PTR_ERR(prog);
1550 
1551 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1552 		err = -ENOMEM;
1553 	else
1554 		err = reuseport_attach_prog(sk, prog);
1555 
1556 	if (err)
1557 		__bpf_prog_release(prog);
1558 
1559 	return err;
1560 }
1561 
__get_bpf(u32 ufd,struct sock * sk)1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565 		return ERR_PTR(-EPERM);
1566 
1567 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569 
sk_attach_bpf(u32 ufd,struct sock * sk)1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1573 	int err;
1574 
1575 	if (IS_ERR(prog))
1576 		return PTR_ERR(prog);
1577 
1578 	err = __sk_attach_prog(prog, sk);
1579 	if (err < 0) {
1580 		bpf_prog_put(prog);
1581 		return err;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589 	struct bpf_prog *prog;
1590 	int err;
1591 
1592 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593 		return -EPERM;
1594 
1595 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596 	if (PTR_ERR(prog) == -EINVAL)
1597 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598 	if (IS_ERR(prog))
1599 		return PTR_ERR(prog);
1600 
1601 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603 		 * bpf prog (e.g. sockmap).  It depends on the
1604 		 * limitation imposed by bpf_prog_load().
1605 		 * Hence, sysctl_optmem_max is not checked.
1606 		 */
1607 		if ((sk->sk_type != SOCK_STREAM &&
1608 		     sk->sk_type != SOCK_DGRAM) ||
1609 		    (sk->sk_protocol != IPPROTO_UDP &&
1610 		     sk->sk_protocol != IPPROTO_TCP) ||
1611 		    (sk->sk_family != AF_INET &&
1612 		     sk->sk_family != AF_INET6)) {
1613 			err = -ENOTSUPP;
1614 			goto err_prog_put;
1615 		}
1616 	} else {
1617 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1618 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1619 			err = -ENOMEM;
1620 			goto err_prog_put;
1621 		}
1622 	}
1623 
1624 	err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626 	if (err)
1627 		bpf_prog_put(prog);
1628 
1629 	return err;
1630 }
1631 
sk_reuseport_prog_free(struct bpf_prog * prog)1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634 	if (!prog)
1635 		return;
1636 
1637 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638 		bpf_prog_put(prog);
1639 	else
1640 		bpf_prog_destroy(prog);
1641 }
1642 
1643 struct bpf_scratchpad {
1644 	union {
1645 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646 		u8     buff[MAX_BPF_STACK];
1647 	};
1648 };
1649 
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653 					  unsigned int write_len)
1654 {
1655 	return skb_ensure_writable(skb, write_len);
1656 }
1657 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659 					unsigned int write_len)
1660 {
1661 	int err = __bpf_try_make_writable(skb, write_len);
1662 
1663 	bpf_compute_data_pointers(skb);
1664 	return err;
1665 }
1666 
bpf_try_make_head_writable(struct sk_buff * skb)1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669 	return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671 
bpf_push_mac_rcsum(struct sk_buff * skb)1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674 	if (skb_at_tc_ingress(skb))
1675 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677 
bpf_pull_mac_rcsum(struct sk_buff * skb)1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680 	if (skb_at_tc_ingress(skb))
1681 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685 	   const void *, from, u32, len, u64, flags)
1686 {
1687 	void *ptr;
1688 
1689 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690 		return -EINVAL;
1691 	if (unlikely(offset > INT_MAX))
1692 		return -EFAULT;
1693 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694 		return -EFAULT;
1695 
1696 	ptr = skb->data + offset;
1697 	if (flags & BPF_F_RECOMPUTE_CSUM)
1698 		__skb_postpull_rcsum(skb, ptr, len, offset);
1699 
1700 	memcpy(ptr, from, len);
1701 
1702 	if (flags & BPF_F_RECOMPUTE_CSUM)
1703 		__skb_postpush_rcsum(skb, ptr, len, offset);
1704 	if (flags & BPF_F_INVALIDATE_HASH)
1705 		skb_clear_hash(skb);
1706 
1707 	return 0;
1708 }
1709 
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711 	.func		= bpf_skb_store_bytes,
1712 	.gpl_only	= false,
1713 	.ret_type	= RET_INTEGER,
1714 	.arg1_type	= ARG_PTR_TO_CTX,
1715 	.arg2_type	= ARG_ANYTHING,
1716 	.arg3_type	= ARG_PTR_TO_MEM,
1717 	.arg4_type	= ARG_CONST_SIZE,
1718 	.arg5_type	= ARG_ANYTHING,
1719 };
1720 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722 	   void *, to, u32, len)
1723 {
1724 	void *ptr;
1725 
1726 	if (unlikely(offset > INT_MAX))
1727 		goto err_clear;
1728 
1729 	ptr = skb_header_pointer(skb, offset, len, to);
1730 	if (unlikely(!ptr))
1731 		goto err_clear;
1732 	if (ptr != to)
1733 		memcpy(to, ptr, len);
1734 
1735 	return 0;
1736 err_clear:
1737 	memset(to, 0, len);
1738 	return -EFAULT;
1739 }
1740 
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742 	.func		= bpf_skb_load_bytes,
1743 	.gpl_only	= false,
1744 	.ret_type	= RET_INTEGER,
1745 	.arg1_type	= ARG_PTR_TO_CTX,
1746 	.arg2_type	= ARG_ANYTHING,
1747 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1748 	.arg4_type	= ARG_CONST_SIZE,
1749 };
1750 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1753 	   void *, to, u32, len)
1754 {
1755 	void *ptr;
1756 
1757 	if (unlikely(offset > 0xffff))
1758 		goto err_clear;
1759 
1760 	if (unlikely(!ctx->skb))
1761 		goto err_clear;
1762 
1763 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764 	if (unlikely(!ptr))
1765 		goto err_clear;
1766 	if (ptr != to)
1767 		memcpy(to, ptr, len);
1768 
1769 	return 0;
1770 err_clear:
1771 	memset(to, 0, len);
1772 	return -EFAULT;
1773 }
1774 
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776 	.func		= bpf_flow_dissector_load_bytes,
1777 	.gpl_only	= false,
1778 	.ret_type	= RET_INTEGER,
1779 	.arg1_type	= ARG_PTR_TO_CTX,
1780 	.arg2_type	= ARG_ANYTHING,
1781 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1782 	.arg4_type	= ARG_CONST_SIZE,
1783 };
1784 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786 	   u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788 	u8 *end = skb_tail_pointer(skb);
1789 	u8 *start, *ptr;
1790 
1791 	if (unlikely(offset > 0xffff))
1792 		goto err_clear;
1793 
1794 	switch (start_header) {
1795 	case BPF_HDR_START_MAC:
1796 		if (unlikely(!skb_mac_header_was_set(skb)))
1797 			goto err_clear;
1798 		start = skb_mac_header(skb);
1799 		break;
1800 	case BPF_HDR_START_NET:
1801 		start = skb_network_header(skb);
1802 		break;
1803 	default:
1804 		goto err_clear;
1805 	}
1806 
1807 	ptr = start + offset;
1808 
1809 	if (likely(ptr + len <= end)) {
1810 		memcpy(to, ptr, len);
1811 		return 0;
1812 	}
1813 
1814 err_clear:
1815 	memset(to, 0, len);
1816 	return -EFAULT;
1817 }
1818 
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820 	.func		= bpf_skb_load_bytes_relative,
1821 	.gpl_only	= false,
1822 	.ret_type	= RET_INTEGER,
1823 	.arg1_type	= ARG_PTR_TO_CTX,
1824 	.arg2_type	= ARG_ANYTHING,
1825 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1826 	.arg4_type	= ARG_CONST_SIZE,
1827 	.arg5_type	= ARG_ANYTHING,
1828 };
1829 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832 	/* Idea is the following: should the needed direct read/write
1833 	 * test fail during runtime, we can pull in more data and redo
1834 	 * again, since implicitly, we invalidate previous checks here.
1835 	 *
1836 	 * Or, since we know how much we need to make read/writeable,
1837 	 * this can be done once at the program beginning for direct
1838 	 * access case. By this we overcome limitations of only current
1839 	 * headroom being accessible.
1840 	 */
1841 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843 
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845 	.func		= bpf_skb_pull_data,
1846 	.gpl_only	= false,
1847 	.ret_type	= RET_INTEGER,
1848 	.arg1_type	= ARG_PTR_TO_CTX,
1849 	.arg2_type	= ARG_ANYTHING,
1850 };
1851 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856 
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858 	.func		= bpf_sk_fullsock,
1859 	.gpl_only	= false,
1860 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1861 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1862 };
1863 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865 					   unsigned int write_len)
1866 {
1867 	int err = __bpf_try_make_writable(skb, write_len);
1868 
1869 	bpf_compute_data_end_sk_skb(skb);
1870 	return err;
1871 }
1872 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875 	/* Idea is the following: should the needed direct read/write
1876 	 * test fail during runtime, we can pull in more data and redo
1877 	 * again, since implicitly, we invalidate previous checks here.
1878 	 *
1879 	 * Or, since we know how much we need to make read/writeable,
1880 	 * this can be done once at the program beginning for direct
1881 	 * access case. By this we overcome limitations of only current
1882 	 * headroom being accessible.
1883 	 */
1884 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886 
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888 	.func		= sk_skb_pull_data,
1889 	.gpl_only	= false,
1890 	.ret_type	= RET_INTEGER,
1891 	.arg1_type	= ARG_PTR_TO_CTX,
1892 	.arg2_type	= ARG_ANYTHING,
1893 };
1894 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896 	   u64, from, u64, to, u64, flags)
1897 {
1898 	__sum16 *ptr;
1899 
1900 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901 		return -EINVAL;
1902 	if (unlikely(offset > 0xffff || offset & 1))
1903 		return -EFAULT;
1904 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905 		return -EFAULT;
1906 
1907 	ptr = (__sum16 *)(skb->data + offset);
1908 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1909 	case 0:
1910 		if (unlikely(from != 0))
1911 			return -EINVAL;
1912 
1913 		csum_replace_by_diff(ptr, to);
1914 		break;
1915 	case 2:
1916 		csum_replace2(ptr, from, to);
1917 		break;
1918 	case 4:
1919 		csum_replace4(ptr, from, to);
1920 		break;
1921 	default:
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929 	.func		= bpf_l3_csum_replace,
1930 	.gpl_only	= false,
1931 	.ret_type	= RET_INTEGER,
1932 	.arg1_type	= ARG_PTR_TO_CTX,
1933 	.arg2_type	= ARG_ANYTHING,
1934 	.arg3_type	= ARG_ANYTHING,
1935 	.arg4_type	= ARG_ANYTHING,
1936 	.arg5_type	= ARG_ANYTHING,
1937 };
1938 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940 	   u64, from, u64, to, u64, flags)
1941 {
1942 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945 	__sum16 *ptr;
1946 
1947 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949 		return -EINVAL;
1950 	if (unlikely(offset > 0xffff || offset & 1))
1951 		return -EFAULT;
1952 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953 		return -EFAULT;
1954 
1955 	ptr = (__sum16 *)(skb->data + offset);
1956 	if (is_mmzero && !do_mforce && !*ptr)
1957 		return 0;
1958 
1959 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1960 	case 0:
1961 		if (unlikely(from != 0))
1962 			return -EINVAL;
1963 
1964 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965 		break;
1966 	case 2:
1967 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968 		break;
1969 	case 4:
1970 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971 		break;
1972 	default:
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (is_mmzero && !*ptr)
1977 		*ptr = CSUM_MANGLED_0;
1978 	return 0;
1979 }
1980 
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982 	.func		= bpf_l4_csum_replace,
1983 	.gpl_only	= false,
1984 	.ret_type	= RET_INTEGER,
1985 	.arg1_type	= ARG_PTR_TO_CTX,
1986 	.arg2_type	= ARG_ANYTHING,
1987 	.arg3_type	= ARG_ANYTHING,
1988 	.arg4_type	= ARG_ANYTHING,
1989 	.arg5_type	= ARG_ANYTHING,
1990 };
1991 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993 	   __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996 	u32 diff_size = from_size + to_size;
1997 	int i, j = 0;
1998 
1999 	/* This is quite flexible, some examples:
2000 	 *
2001 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004 	 *
2005 	 * Even for diffing, from_size and to_size don't need to be equal.
2006 	 */
2007 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008 		     diff_size > sizeof(sp->diff)))
2009 		return -EINVAL;
2010 
2011 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012 		sp->diff[j] = ~from[i];
2013 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014 		sp->diff[j] = to[i];
2015 
2016 	return csum_partial(sp->diff, diff_size, seed);
2017 }
2018 
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020 	.func		= bpf_csum_diff,
2021 	.gpl_only	= false,
2022 	.pkt_access	= true,
2023 	.ret_type	= RET_INTEGER,
2024 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2025 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2026 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2027 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2028 	.arg5_type	= ARG_ANYTHING,
2029 };
2030 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033 	/* The interface is to be used in combination with bpf_csum_diff()
2034 	 * for direct packet writes. csum rotation for alignment as well
2035 	 * as emulating csum_sub() can be done from the eBPF program.
2036 	 */
2037 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2038 		return (skb->csum = csum_add(skb->csum, csum));
2039 
2040 	return -ENOTSUPP;
2041 }
2042 
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044 	.func		= bpf_csum_update,
2045 	.gpl_only	= false,
2046 	.ret_type	= RET_INTEGER,
2047 	.arg1_type	= ARG_PTR_TO_CTX,
2048 	.arg2_type	= ARG_ANYTHING,
2049 };
2050 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2054 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055 	 * is passed as flags, for example.
2056 	 */
2057 	switch (level) {
2058 	case BPF_CSUM_LEVEL_INC:
2059 		__skb_incr_checksum_unnecessary(skb);
2060 		break;
2061 	case BPF_CSUM_LEVEL_DEC:
2062 		__skb_decr_checksum_unnecessary(skb);
2063 		break;
2064 	case BPF_CSUM_LEVEL_RESET:
2065 		__skb_reset_checksum_unnecessary(skb);
2066 		break;
2067 	case BPF_CSUM_LEVEL_QUERY:
2068 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069 		       skb->csum_level : -EACCES;
2070 	default:
2071 		return -EINVAL;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078 	.func		= bpf_csum_level,
2079 	.gpl_only	= false,
2080 	.ret_type	= RET_INTEGER,
2081 	.arg1_type	= ARG_PTR_TO_CTX,
2082 	.arg2_type	= ARG_ANYTHING,
2083 };
2084 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087 	return dev_forward_skb(dev, skb);
2088 }
2089 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091 				      struct sk_buff *skb)
2092 {
2093 	int ret = ____dev_forward_skb(dev, skb);
2094 
2095 	if (likely(!ret)) {
2096 		skb->dev = dev;
2097 		ret = netif_rx(skb);
2098 	}
2099 
2100 	return ret;
2101 }
2102 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	int ret;
2106 
2107 	if (dev_xmit_recursion()) {
2108 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109 		kfree_skb(skb);
2110 		return -ENETDOWN;
2111 	}
2112 
2113 	skb->dev = dev;
2114 	skb->tstamp = 0;
2115 
2116 	dev_xmit_recursion_inc();
2117 	ret = dev_queue_xmit(skb);
2118 	dev_xmit_recursion_dec();
2119 
2120 	return ret;
2121 }
2122 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124 				 u32 flags)
2125 {
2126 	unsigned int mlen = skb_network_offset(skb);
2127 
2128 	if (mlen) {
2129 		__skb_pull(skb, mlen);
2130 
2131 		/* At ingress, the mac header has already been pulled once.
2132 		 * At egress, skb_pospull_rcsum has to be done in case that
2133 		 * the skb is originated from ingress (i.e. a forwarded skb)
2134 		 * to ensure that rcsum starts at net header.
2135 		 */
2136 		if (!skb_at_tc_ingress(skb))
2137 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2138 	}
2139 	skb_pop_mac_header(skb);
2140 	skb_reset_mac_len(skb);
2141 	return flags & BPF_F_INGRESS ?
2142 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2143 }
2144 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2145 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2146 				 u32 flags)
2147 {
2148 	/* Verify that a link layer header is carried */
2149 	if (unlikely(skb->mac_header >= skb->network_header)) {
2150 		kfree_skb(skb);
2151 		return -ERANGE;
2152 	}
2153 
2154 	bpf_push_mac_rcsum(skb);
2155 	return flags & BPF_F_INGRESS ?
2156 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2157 }
2158 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2159 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2160 			  u32 flags)
2161 {
2162 	if (dev_is_mac_header_xmit(dev))
2163 		return __bpf_redirect_common(skb, dev, flags);
2164 	else
2165 		return __bpf_redirect_no_mac(skb, dev, flags);
2166 }
2167 
2168 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2169 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2170 			    struct net_device *dev, struct bpf_nh_params *nh)
2171 {
2172 	u32 hh_len = LL_RESERVED_SPACE(dev);
2173 	const struct in6_addr *nexthop;
2174 	struct dst_entry *dst = NULL;
2175 	struct neighbour *neigh;
2176 
2177 	if (dev_xmit_recursion()) {
2178 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2179 		goto out_drop;
2180 	}
2181 
2182 	skb->dev = dev;
2183 	skb->tstamp = 0;
2184 
2185 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2186 		struct sk_buff *skb2;
2187 
2188 		skb2 = skb_realloc_headroom(skb, hh_len);
2189 		if (unlikely(!skb2)) {
2190 			kfree_skb(skb);
2191 			return -ENOMEM;
2192 		}
2193 		if (skb->sk)
2194 			skb_set_owner_w(skb2, skb->sk);
2195 		consume_skb(skb);
2196 		skb = skb2;
2197 	}
2198 
2199 	rcu_read_lock_bh();
2200 	if (!nh) {
2201 		dst = skb_dst(skb);
2202 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2203 				      &ipv6_hdr(skb)->daddr);
2204 	} else {
2205 		nexthop = &nh->ipv6_nh;
2206 	}
2207 	neigh = ip_neigh_gw6(dev, nexthop);
2208 	if (likely(!IS_ERR(neigh))) {
2209 		int ret;
2210 
2211 		sock_confirm_neigh(skb, neigh);
2212 		dev_xmit_recursion_inc();
2213 		ret = neigh_output(neigh, skb, false);
2214 		dev_xmit_recursion_dec();
2215 		rcu_read_unlock_bh();
2216 		return ret;
2217 	}
2218 	rcu_read_unlock_bh();
2219 	if (dst)
2220 		IP6_INC_STATS(dev_net(dst->dev),
2221 			      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2222 out_drop:
2223 	kfree_skb(skb);
2224 	return -ENETDOWN;
2225 }
2226 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2227 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2228 				   struct bpf_nh_params *nh)
2229 {
2230 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2231 	struct net *net = dev_net(dev);
2232 	int err, ret = NET_XMIT_DROP;
2233 
2234 	if (!nh) {
2235 		struct dst_entry *dst;
2236 		struct flowi6 fl6 = {
2237 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2238 			.flowi6_mark  = skb->mark,
2239 			.flowlabel    = ip6_flowinfo(ip6h),
2240 			.flowi6_oif   = dev->ifindex,
2241 			.flowi6_proto = ip6h->nexthdr,
2242 			.daddr	      = ip6h->daddr,
2243 			.saddr	      = ip6h->saddr,
2244 		};
2245 
2246 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2247 		if (IS_ERR(dst))
2248 			goto out_drop;
2249 
2250 		skb_dst_set(skb, dst);
2251 	} else if (nh->nh_family != AF_INET6) {
2252 		goto out_drop;
2253 	}
2254 
2255 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2256 	if (unlikely(net_xmit_eval(err)))
2257 		dev->stats.tx_errors++;
2258 	else
2259 		ret = NET_XMIT_SUCCESS;
2260 	goto out_xmit;
2261 out_drop:
2262 	dev->stats.tx_errors++;
2263 	kfree_skb(skb);
2264 out_xmit:
2265 	return ret;
2266 }
2267 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2268 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2269 				   struct bpf_nh_params *nh)
2270 {
2271 	kfree_skb(skb);
2272 	return NET_XMIT_DROP;
2273 }
2274 #endif /* CONFIG_IPV6 */
2275 
2276 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2277 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2278 			    struct net_device *dev, struct bpf_nh_params *nh)
2279 {
2280 	u32 hh_len = LL_RESERVED_SPACE(dev);
2281 	struct neighbour *neigh;
2282 	bool is_v6gw = false;
2283 
2284 	if (dev_xmit_recursion()) {
2285 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2286 		goto out_drop;
2287 	}
2288 
2289 	skb->dev = dev;
2290 	skb->tstamp = 0;
2291 
2292 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2293 		struct sk_buff *skb2;
2294 
2295 		skb2 = skb_realloc_headroom(skb, hh_len);
2296 		if (unlikely(!skb2)) {
2297 			kfree_skb(skb);
2298 			return -ENOMEM;
2299 		}
2300 		if (skb->sk)
2301 			skb_set_owner_w(skb2, skb->sk);
2302 		consume_skb(skb);
2303 		skb = skb2;
2304 	}
2305 
2306 	rcu_read_lock_bh();
2307 	if (!nh) {
2308 		struct dst_entry *dst = skb_dst(skb);
2309 		struct rtable *rt = container_of(dst, struct rtable, dst);
2310 
2311 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2312 	} else if (nh->nh_family == AF_INET6) {
2313 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2314 		is_v6gw = true;
2315 	} else if (nh->nh_family == AF_INET) {
2316 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2317 	} else {
2318 		rcu_read_unlock_bh();
2319 		goto out_drop;
2320 	}
2321 
2322 	if (likely(!IS_ERR(neigh))) {
2323 		int ret;
2324 
2325 		sock_confirm_neigh(skb, neigh);
2326 		dev_xmit_recursion_inc();
2327 		ret = neigh_output(neigh, skb, is_v6gw);
2328 		dev_xmit_recursion_dec();
2329 		rcu_read_unlock_bh();
2330 		return ret;
2331 	}
2332 	rcu_read_unlock_bh();
2333 out_drop:
2334 	kfree_skb(skb);
2335 	return -ENETDOWN;
2336 }
2337 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2338 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2339 				   struct bpf_nh_params *nh)
2340 {
2341 	const struct iphdr *ip4h = ip_hdr(skb);
2342 	struct net *net = dev_net(dev);
2343 	int err, ret = NET_XMIT_DROP;
2344 
2345 	if (!nh) {
2346 		struct flowi4 fl4 = {
2347 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2348 			.flowi4_mark  = skb->mark,
2349 			.flowi4_tos   = RT_TOS(ip4h->tos),
2350 			.flowi4_oif   = dev->ifindex,
2351 			.flowi4_proto = ip4h->protocol,
2352 			.daddr	      = ip4h->daddr,
2353 			.saddr	      = ip4h->saddr,
2354 		};
2355 		struct rtable *rt;
2356 
2357 		rt = ip_route_output_flow(net, &fl4, NULL);
2358 		if (IS_ERR(rt))
2359 			goto out_drop;
2360 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2361 			ip_rt_put(rt);
2362 			goto out_drop;
2363 		}
2364 
2365 		skb_dst_set(skb, &rt->dst);
2366 	}
2367 
2368 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2369 	if (unlikely(net_xmit_eval(err)))
2370 		dev->stats.tx_errors++;
2371 	else
2372 		ret = NET_XMIT_SUCCESS;
2373 	goto out_xmit;
2374 out_drop:
2375 	dev->stats.tx_errors++;
2376 	kfree_skb(skb);
2377 out_xmit:
2378 	return ret;
2379 }
2380 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2381 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2382 				   struct bpf_nh_params *nh)
2383 {
2384 	kfree_skb(skb);
2385 	return NET_XMIT_DROP;
2386 }
2387 #endif /* CONFIG_INET */
2388 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2389 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2390 				struct bpf_nh_params *nh)
2391 {
2392 	struct ethhdr *ethh = eth_hdr(skb);
2393 
2394 	if (unlikely(skb->mac_header >= skb->network_header))
2395 		goto out;
2396 	bpf_push_mac_rcsum(skb);
2397 	if (is_multicast_ether_addr(ethh->h_dest))
2398 		goto out;
2399 
2400 	skb_pull(skb, sizeof(*ethh));
2401 	skb_unset_mac_header(skb);
2402 	skb_reset_network_header(skb);
2403 
2404 	if (skb->protocol == htons(ETH_P_IP))
2405 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2406 	else if (skb->protocol == htons(ETH_P_IPV6))
2407 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2408 out:
2409 	kfree_skb(skb);
2410 	return -ENOTSUPP;
2411 }
2412 
2413 /* Internal, non-exposed redirect flags. */
2414 enum {
2415 	BPF_F_NEIGH	= (1ULL << 1),
2416 	BPF_F_PEER	= (1ULL << 2),
2417 	BPF_F_NEXTHOP	= (1ULL << 3),
2418 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2419 };
2420 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2421 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2422 {
2423 	struct net_device *dev;
2424 	struct sk_buff *clone;
2425 	int ret;
2426 
2427 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2428 		return -EINVAL;
2429 
2430 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2431 	if (unlikely(!dev))
2432 		return -EINVAL;
2433 
2434 	clone = skb_clone(skb, GFP_ATOMIC);
2435 	if (unlikely(!clone))
2436 		return -ENOMEM;
2437 
2438 	/* For direct write, we need to keep the invariant that the skbs
2439 	 * we're dealing with need to be uncloned. Should uncloning fail
2440 	 * here, we need to free the just generated clone to unclone once
2441 	 * again.
2442 	 */
2443 	ret = bpf_try_make_head_writable(skb);
2444 	if (unlikely(ret)) {
2445 		kfree_skb(clone);
2446 		return -ENOMEM;
2447 	}
2448 
2449 	return __bpf_redirect(clone, dev, flags);
2450 }
2451 
2452 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2453 	.func           = bpf_clone_redirect,
2454 	.gpl_only       = false,
2455 	.ret_type       = RET_INTEGER,
2456 	.arg1_type      = ARG_PTR_TO_CTX,
2457 	.arg2_type      = ARG_ANYTHING,
2458 	.arg3_type      = ARG_ANYTHING,
2459 };
2460 
2461 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2462 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2463 
skb_do_redirect(struct sk_buff * skb)2464 int skb_do_redirect(struct sk_buff *skb)
2465 {
2466 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2467 	struct net *net = dev_net(skb->dev);
2468 	struct net_device *dev;
2469 	u32 flags = ri->flags;
2470 
2471 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2472 	ri->tgt_index = 0;
2473 	ri->flags = 0;
2474 	if (unlikely(!dev))
2475 		goto out_drop;
2476 	if (flags & BPF_F_PEER) {
2477 		const struct net_device_ops *ops = dev->netdev_ops;
2478 
2479 		if (unlikely(!ops->ndo_get_peer_dev ||
2480 			     !skb_at_tc_ingress(skb)))
2481 			goto out_drop;
2482 		dev = ops->ndo_get_peer_dev(dev);
2483 		if (unlikely(!dev ||
2484 			     !is_skb_forwardable(dev, skb) ||
2485 			     net_eq(net, dev_net(dev))))
2486 			goto out_drop;
2487 		skb->dev = dev;
2488 		return -EAGAIN;
2489 	}
2490 	return flags & BPF_F_NEIGH ?
2491 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2492 				    &ri->nh : NULL) :
2493 	       __bpf_redirect(skb, dev, flags);
2494 out_drop:
2495 	kfree_skb(skb);
2496 	return -EINVAL;
2497 }
2498 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2499 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2500 {
2501 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2502 
2503 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2504 		return TC_ACT_SHOT;
2505 
2506 	ri->flags = flags;
2507 	ri->tgt_index = ifindex;
2508 
2509 	return TC_ACT_REDIRECT;
2510 }
2511 
2512 static const struct bpf_func_proto bpf_redirect_proto = {
2513 	.func           = bpf_redirect,
2514 	.gpl_only       = false,
2515 	.ret_type       = RET_INTEGER,
2516 	.arg1_type      = ARG_ANYTHING,
2517 	.arg2_type      = ARG_ANYTHING,
2518 };
2519 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2520 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2521 {
2522 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2523 
2524 	if (unlikely(flags))
2525 		return TC_ACT_SHOT;
2526 
2527 	ri->flags = BPF_F_PEER;
2528 	ri->tgt_index = ifindex;
2529 
2530 	return TC_ACT_REDIRECT;
2531 }
2532 
2533 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2534 	.func           = bpf_redirect_peer,
2535 	.gpl_only       = false,
2536 	.ret_type       = RET_INTEGER,
2537 	.arg1_type      = ARG_ANYTHING,
2538 	.arg2_type      = ARG_ANYTHING,
2539 };
2540 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2541 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2542 	   int, plen, u64, flags)
2543 {
2544 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2545 
2546 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2547 		return TC_ACT_SHOT;
2548 
2549 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2550 	ri->tgt_index = ifindex;
2551 
2552 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2553 	if (plen)
2554 		memcpy(&ri->nh, params, sizeof(ri->nh));
2555 
2556 	return TC_ACT_REDIRECT;
2557 }
2558 
2559 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2560 	.func		= bpf_redirect_neigh,
2561 	.gpl_only	= false,
2562 	.ret_type	= RET_INTEGER,
2563 	.arg1_type	= ARG_ANYTHING,
2564 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2565 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2566 	.arg4_type	= ARG_ANYTHING,
2567 };
2568 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2569 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2570 {
2571 	msg->apply_bytes = bytes;
2572 	return 0;
2573 }
2574 
2575 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2576 	.func           = bpf_msg_apply_bytes,
2577 	.gpl_only       = false,
2578 	.ret_type       = RET_INTEGER,
2579 	.arg1_type	= ARG_PTR_TO_CTX,
2580 	.arg2_type      = ARG_ANYTHING,
2581 };
2582 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2583 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2584 {
2585 	msg->cork_bytes = bytes;
2586 	return 0;
2587 }
2588 
2589 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2590 	.func           = bpf_msg_cork_bytes,
2591 	.gpl_only       = false,
2592 	.ret_type       = RET_INTEGER,
2593 	.arg1_type	= ARG_PTR_TO_CTX,
2594 	.arg2_type      = ARG_ANYTHING,
2595 };
2596 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2597 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2598 	   u32, end, u64, flags)
2599 {
2600 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2601 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2602 	struct scatterlist *sge;
2603 	u8 *raw, *to, *from;
2604 	struct page *page;
2605 
2606 	if (unlikely(flags || end <= start))
2607 		return -EINVAL;
2608 
2609 	/* First find the starting scatterlist element */
2610 	i = msg->sg.start;
2611 	do {
2612 		offset += len;
2613 		len = sk_msg_elem(msg, i)->length;
2614 		if (start < offset + len)
2615 			break;
2616 		sk_msg_iter_var_next(i);
2617 	} while (i != msg->sg.end);
2618 
2619 	if (unlikely(start >= offset + len))
2620 		return -EINVAL;
2621 
2622 	first_sge = i;
2623 	/* The start may point into the sg element so we need to also
2624 	 * account for the headroom.
2625 	 */
2626 	bytes_sg_total = start - offset + bytes;
2627 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2628 		goto out;
2629 
2630 	/* At this point we need to linearize multiple scatterlist
2631 	 * elements or a single shared page. Either way we need to
2632 	 * copy into a linear buffer exclusively owned by BPF. Then
2633 	 * place the buffer in the scatterlist and fixup the original
2634 	 * entries by removing the entries now in the linear buffer
2635 	 * and shifting the remaining entries. For now we do not try
2636 	 * to copy partial entries to avoid complexity of running out
2637 	 * of sg_entry slots. The downside is reading a single byte
2638 	 * will copy the entire sg entry.
2639 	 */
2640 	do {
2641 		copy += sk_msg_elem(msg, i)->length;
2642 		sk_msg_iter_var_next(i);
2643 		if (bytes_sg_total <= copy)
2644 			break;
2645 	} while (i != msg->sg.end);
2646 	last_sge = i;
2647 
2648 	if (unlikely(bytes_sg_total > copy))
2649 		return -EINVAL;
2650 
2651 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2652 			   get_order(copy));
2653 	if (unlikely(!page))
2654 		return -ENOMEM;
2655 
2656 	raw = page_address(page);
2657 	i = first_sge;
2658 	do {
2659 		sge = sk_msg_elem(msg, i);
2660 		from = sg_virt(sge);
2661 		len = sge->length;
2662 		to = raw + poffset;
2663 
2664 		memcpy(to, from, len);
2665 		poffset += len;
2666 		sge->length = 0;
2667 		put_page(sg_page(sge));
2668 
2669 		sk_msg_iter_var_next(i);
2670 	} while (i != last_sge);
2671 
2672 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2673 
2674 	/* To repair sg ring we need to shift entries. If we only
2675 	 * had a single entry though we can just replace it and
2676 	 * be done. Otherwise walk the ring and shift the entries.
2677 	 */
2678 	WARN_ON_ONCE(last_sge == first_sge);
2679 	shift = last_sge > first_sge ?
2680 		last_sge - first_sge - 1 :
2681 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2682 	if (!shift)
2683 		goto out;
2684 
2685 	i = first_sge;
2686 	sk_msg_iter_var_next(i);
2687 	do {
2688 		u32 move_from;
2689 
2690 		if (i + shift >= NR_MSG_FRAG_IDS)
2691 			move_from = i + shift - NR_MSG_FRAG_IDS;
2692 		else
2693 			move_from = i + shift;
2694 		if (move_from == msg->sg.end)
2695 			break;
2696 
2697 		msg->sg.data[i] = msg->sg.data[move_from];
2698 		msg->sg.data[move_from].length = 0;
2699 		msg->sg.data[move_from].page_link = 0;
2700 		msg->sg.data[move_from].offset = 0;
2701 		sk_msg_iter_var_next(i);
2702 	} while (1);
2703 
2704 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2705 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2706 		      msg->sg.end - shift;
2707 out:
2708 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2709 	msg->data_end = msg->data + bytes;
2710 	return 0;
2711 }
2712 
2713 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2714 	.func		= bpf_msg_pull_data,
2715 	.gpl_only	= false,
2716 	.ret_type	= RET_INTEGER,
2717 	.arg1_type	= ARG_PTR_TO_CTX,
2718 	.arg2_type	= ARG_ANYTHING,
2719 	.arg3_type	= ARG_ANYTHING,
2720 	.arg4_type	= ARG_ANYTHING,
2721 };
2722 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2723 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2724 	   u32, len, u64, flags)
2725 {
2726 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2727 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2728 	u8 *raw, *to, *from;
2729 	struct page *page;
2730 
2731 	if (unlikely(flags))
2732 		return -EINVAL;
2733 
2734 	if (unlikely(len == 0))
2735 		return 0;
2736 
2737 	/* First find the starting scatterlist element */
2738 	i = msg->sg.start;
2739 	do {
2740 		offset += l;
2741 		l = sk_msg_elem(msg, i)->length;
2742 
2743 		if (start < offset + l)
2744 			break;
2745 		sk_msg_iter_var_next(i);
2746 	} while (i != msg->sg.end);
2747 
2748 	if (start >= offset + l)
2749 		return -EINVAL;
2750 
2751 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2752 
2753 	/* If no space available will fallback to copy, we need at
2754 	 * least one scatterlist elem available to push data into
2755 	 * when start aligns to the beginning of an element or two
2756 	 * when it falls inside an element. We handle the start equals
2757 	 * offset case because its the common case for inserting a
2758 	 * header.
2759 	 */
2760 	if (!space || (space == 1 && start != offset))
2761 		copy = msg->sg.data[i].length;
2762 
2763 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2764 			   get_order(copy + len));
2765 	if (unlikely(!page))
2766 		return -ENOMEM;
2767 
2768 	if (copy) {
2769 		int front, back;
2770 
2771 		raw = page_address(page);
2772 
2773 		psge = sk_msg_elem(msg, i);
2774 		front = start - offset;
2775 		back = psge->length - front;
2776 		from = sg_virt(psge);
2777 
2778 		if (front)
2779 			memcpy(raw, from, front);
2780 
2781 		if (back) {
2782 			from += front;
2783 			to = raw + front + len;
2784 
2785 			memcpy(to, from, back);
2786 		}
2787 
2788 		put_page(sg_page(psge));
2789 	} else if (start - offset) {
2790 		psge = sk_msg_elem(msg, i);
2791 		rsge = sk_msg_elem_cpy(msg, i);
2792 
2793 		psge->length = start - offset;
2794 		rsge.length -= psge->length;
2795 		rsge.offset += start;
2796 
2797 		sk_msg_iter_var_next(i);
2798 		sg_unmark_end(psge);
2799 		sg_unmark_end(&rsge);
2800 		sk_msg_iter_next(msg, end);
2801 	}
2802 
2803 	/* Slot(s) to place newly allocated data */
2804 	new = i;
2805 
2806 	/* Shift one or two slots as needed */
2807 	if (!copy) {
2808 		sge = sk_msg_elem_cpy(msg, i);
2809 
2810 		sk_msg_iter_var_next(i);
2811 		sg_unmark_end(&sge);
2812 		sk_msg_iter_next(msg, end);
2813 
2814 		nsge = sk_msg_elem_cpy(msg, i);
2815 		if (rsge.length) {
2816 			sk_msg_iter_var_next(i);
2817 			nnsge = sk_msg_elem_cpy(msg, i);
2818 		}
2819 
2820 		while (i != msg->sg.end) {
2821 			msg->sg.data[i] = sge;
2822 			sge = nsge;
2823 			sk_msg_iter_var_next(i);
2824 			if (rsge.length) {
2825 				nsge = nnsge;
2826 				nnsge = sk_msg_elem_cpy(msg, i);
2827 			} else {
2828 				nsge = sk_msg_elem_cpy(msg, i);
2829 			}
2830 		}
2831 	}
2832 
2833 	/* Place newly allocated data buffer */
2834 	sk_mem_charge(msg->sk, len);
2835 	msg->sg.size += len;
2836 	__clear_bit(new, &msg->sg.copy);
2837 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2838 	if (rsge.length) {
2839 		get_page(sg_page(&rsge));
2840 		sk_msg_iter_var_next(new);
2841 		msg->sg.data[new] = rsge;
2842 	}
2843 
2844 	sk_msg_compute_data_pointers(msg);
2845 	return 0;
2846 }
2847 
2848 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2849 	.func		= bpf_msg_push_data,
2850 	.gpl_only	= false,
2851 	.ret_type	= RET_INTEGER,
2852 	.arg1_type	= ARG_PTR_TO_CTX,
2853 	.arg2_type	= ARG_ANYTHING,
2854 	.arg3_type	= ARG_ANYTHING,
2855 	.arg4_type	= ARG_ANYTHING,
2856 };
2857 
sk_msg_shift_left(struct sk_msg * msg,int i)2858 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2859 {
2860 	int prev;
2861 
2862 	do {
2863 		prev = i;
2864 		sk_msg_iter_var_next(i);
2865 		msg->sg.data[prev] = msg->sg.data[i];
2866 	} while (i != msg->sg.end);
2867 
2868 	sk_msg_iter_prev(msg, end);
2869 }
2870 
sk_msg_shift_right(struct sk_msg * msg,int i)2871 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2872 {
2873 	struct scatterlist tmp, sge;
2874 
2875 	sk_msg_iter_next(msg, end);
2876 	sge = sk_msg_elem_cpy(msg, i);
2877 	sk_msg_iter_var_next(i);
2878 	tmp = sk_msg_elem_cpy(msg, i);
2879 
2880 	while (i != msg->sg.end) {
2881 		msg->sg.data[i] = sge;
2882 		sk_msg_iter_var_next(i);
2883 		sge = tmp;
2884 		tmp = sk_msg_elem_cpy(msg, i);
2885 	}
2886 }
2887 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2888 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2889 	   u32, len, u64, flags)
2890 {
2891 	u32 i = 0, l = 0, space, offset = 0;
2892 	u64 last = start + len;
2893 	int pop;
2894 
2895 	if (unlikely(flags))
2896 		return -EINVAL;
2897 
2898 	/* First find the starting scatterlist element */
2899 	i = msg->sg.start;
2900 	do {
2901 		offset += l;
2902 		l = sk_msg_elem(msg, i)->length;
2903 
2904 		if (start < offset + l)
2905 			break;
2906 		sk_msg_iter_var_next(i);
2907 	} while (i != msg->sg.end);
2908 
2909 	/* Bounds checks: start and pop must be inside message */
2910 	if (start >= offset + l || last >= msg->sg.size)
2911 		return -EINVAL;
2912 
2913 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2914 
2915 	pop = len;
2916 	/* --------------| offset
2917 	 * -| start      |-------- len -------|
2918 	 *
2919 	 *  |----- a ----|-------- pop -------|----- b ----|
2920 	 *  |______________________________________________| length
2921 	 *
2922 	 *
2923 	 * a:   region at front of scatter element to save
2924 	 * b:   region at back of scatter element to save when length > A + pop
2925 	 * pop: region to pop from element, same as input 'pop' here will be
2926 	 *      decremented below per iteration.
2927 	 *
2928 	 * Two top-level cases to handle when start != offset, first B is non
2929 	 * zero and second B is zero corresponding to when a pop includes more
2930 	 * than one element.
2931 	 *
2932 	 * Then if B is non-zero AND there is no space allocate space and
2933 	 * compact A, B regions into page. If there is space shift ring to
2934 	 * the rigth free'ing the next element in ring to place B, leaving
2935 	 * A untouched except to reduce length.
2936 	 */
2937 	if (start != offset) {
2938 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2939 		int a = start;
2940 		int b = sge->length - pop - a;
2941 
2942 		sk_msg_iter_var_next(i);
2943 
2944 		if (pop < sge->length - a) {
2945 			if (space) {
2946 				sge->length = a;
2947 				sk_msg_shift_right(msg, i);
2948 				nsge = sk_msg_elem(msg, i);
2949 				get_page(sg_page(sge));
2950 				sg_set_page(nsge,
2951 					    sg_page(sge),
2952 					    b, sge->offset + pop + a);
2953 			} else {
2954 				struct page *page, *orig;
2955 				u8 *to, *from;
2956 
2957 				page = alloc_pages(__GFP_NOWARN |
2958 						   __GFP_COMP   | GFP_ATOMIC,
2959 						   get_order(a + b));
2960 				if (unlikely(!page))
2961 					return -ENOMEM;
2962 
2963 				sge->length = a;
2964 				orig = sg_page(sge);
2965 				from = sg_virt(sge);
2966 				to = page_address(page);
2967 				memcpy(to, from, a);
2968 				memcpy(to + a, from + a + pop, b);
2969 				sg_set_page(sge, page, a + b, 0);
2970 				put_page(orig);
2971 			}
2972 			pop = 0;
2973 		} else if (pop >= sge->length - a) {
2974 			pop -= (sge->length - a);
2975 			sge->length = a;
2976 		}
2977 	}
2978 
2979 	/* From above the current layout _must_ be as follows,
2980 	 *
2981 	 * -| offset
2982 	 * -| start
2983 	 *
2984 	 *  |---- pop ---|---------------- b ------------|
2985 	 *  |____________________________________________| length
2986 	 *
2987 	 * Offset and start of the current msg elem are equal because in the
2988 	 * previous case we handled offset != start and either consumed the
2989 	 * entire element and advanced to the next element OR pop == 0.
2990 	 *
2991 	 * Two cases to handle here are first pop is less than the length
2992 	 * leaving some remainder b above. Simply adjust the element's layout
2993 	 * in this case. Or pop >= length of the element so that b = 0. In this
2994 	 * case advance to next element decrementing pop.
2995 	 */
2996 	while (pop) {
2997 		struct scatterlist *sge = sk_msg_elem(msg, i);
2998 
2999 		if (pop < sge->length) {
3000 			sge->length -= pop;
3001 			sge->offset += pop;
3002 			pop = 0;
3003 		} else {
3004 			pop -= sge->length;
3005 			sk_msg_shift_left(msg, i);
3006 		}
3007 		sk_msg_iter_var_next(i);
3008 	}
3009 
3010 	sk_mem_uncharge(msg->sk, len - pop);
3011 	msg->sg.size -= (len - pop);
3012 	sk_msg_compute_data_pointers(msg);
3013 	return 0;
3014 }
3015 
3016 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3017 	.func		= bpf_msg_pop_data,
3018 	.gpl_only	= false,
3019 	.ret_type	= RET_INTEGER,
3020 	.arg1_type	= ARG_PTR_TO_CTX,
3021 	.arg2_type	= ARG_ANYTHING,
3022 	.arg3_type	= ARG_ANYTHING,
3023 	.arg4_type	= ARG_ANYTHING,
3024 };
3025 
3026 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3027 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3028 {
3029 	return __task_get_classid(current);
3030 }
3031 
3032 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3033 	.func		= bpf_get_cgroup_classid_curr,
3034 	.gpl_only	= false,
3035 	.ret_type	= RET_INTEGER,
3036 };
3037 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3038 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3039 {
3040 	struct sock *sk = skb_to_full_sk(skb);
3041 
3042 	if (!sk || !sk_fullsock(sk))
3043 		return 0;
3044 
3045 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3046 }
3047 
3048 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3049 	.func		= bpf_skb_cgroup_classid,
3050 	.gpl_only	= false,
3051 	.ret_type	= RET_INTEGER,
3052 	.arg1_type	= ARG_PTR_TO_CTX,
3053 };
3054 #endif
3055 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3056 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3057 {
3058 	return task_get_classid(skb);
3059 }
3060 
3061 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3062 	.func           = bpf_get_cgroup_classid,
3063 	.gpl_only       = false,
3064 	.ret_type       = RET_INTEGER,
3065 	.arg1_type      = ARG_PTR_TO_CTX,
3066 };
3067 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3068 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3069 {
3070 	return dst_tclassid(skb);
3071 }
3072 
3073 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3074 	.func           = bpf_get_route_realm,
3075 	.gpl_only       = false,
3076 	.ret_type       = RET_INTEGER,
3077 	.arg1_type      = ARG_PTR_TO_CTX,
3078 };
3079 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3080 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3081 {
3082 	/* If skb_clear_hash() was called due to mangling, we can
3083 	 * trigger SW recalculation here. Later access to hash
3084 	 * can then use the inline skb->hash via context directly
3085 	 * instead of calling this helper again.
3086 	 */
3087 	return skb_get_hash(skb);
3088 }
3089 
3090 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3091 	.func		= bpf_get_hash_recalc,
3092 	.gpl_only	= false,
3093 	.ret_type	= RET_INTEGER,
3094 	.arg1_type	= ARG_PTR_TO_CTX,
3095 };
3096 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3097 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3098 {
3099 	/* After all direct packet write, this can be used once for
3100 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3101 	 */
3102 	skb_clear_hash(skb);
3103 	return 0;
3104 }
3105 
3106 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3107 	.func		= bpf_set_hash_invalid,
3108 	.gpl_only	= false,
3109 	.ret_type	= RET_INTEGER,
3110 	.arg1_type	= ARG_PTR_TO_CTX,
3111 };
3112 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3113 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3114 {
3115 	/* Set user specified hash as L4(+), so that it gets returned
3116 	 * on skb_get_hash() call unless BPF prog later on triggers a
3117 	 * skb_clear_hash().
3118 	 */
3119 	__skb_set_sw_hash(skb, hash, true);
3120 	return 0;
3121 }
3122 
3123 static const struct bpf_func_proto bpf_set_hash_proto = {
3124 	.func		= bpf_set_hash,
3125 	.gpl_only	= false,
3126 	.ret_type	= RET_INTEGER,
3127 	.arg1_type	= ARG_PTR_TO_CTX,
3128 	.arg2_type	= ARG_ANYTHING,
3129 };
3130 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3131 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3132 	   u16, vlan_tci)
3133 {
3134 	int ret;
3135 
3136 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3137 		     vlan_proto != htons(ETH_P_8021AD)))
3138 		vlan_proto = htons(ETH_P_8021Q);
3139 
3140 	bpf_push_mac_rcsum(skb);
3141 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3142 	bpf_pull_mac_rcsum(skb);
3143 
3144 	bpf_compute_data_pointers(skb);
3145 	return ret;
3146 }
3147 
3148 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3149 	.func           = bpf_skb_vlan_push,
3150 	.gpl_only       = false,
3151 	.ret_type       = RET_INTEGER,
3152 	.arg1_type      = ARG_PTR_TO_CTX,
3153 	.arg2_type      = ARG_ANYTHING,
3154 	.arg3_type      = ARG_ANYTHING,
3155 };
3156 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3157 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3158 {
3159 	int ret;
3160 
3161 	bpf_push_mac_rcsum(skb);
3162 	ret = skb_vlan_pop(skb);
3163 	bpf_pull_mac_rcsum(skb);
3164 
3165 	bpf_compute_data_pointers(skb);
3166 	return ret;
3167 }
3168 
3169 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3170 	.func           = bpf_skb_vlan_pop,
3171 	.gpl_only       = false,
3172 	.ret_type       = RET_INTEGER,
3173 	.arg1_type      = ARG_PTR_TO_CTX,
3174 };
3175 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3176 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3177 {
3178 	/* Caller already did skb_cow() with len as headroom,
3179 	 * so no need to do it here.
3180 	 */
3181 	skb_push(skb, len);
3182 	memmove(skb->data, skb->data + len, off);
3183 	memset(skb->data + off, 0, len);
3184 
3185 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3186 	 * needed here as it does not change the skb->csum
3187 	 * result for checksum complete when summing over
3188 	 * zeroed blocks.
3189 	 */
3190 	return 0;
3191 }
3192 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3193 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3194 {
3195 	/* skb_ensure_writable() is not needed here, as we're
3196 	 * already working on an uncloned skb.
3197 	 */
3198 	if (unlikely(!pskb_may_pull(skb, off + len)))
3199 		return -ENOMEM;
3200 
3201 	skb_postpull_rcsum(skb, skb->data + off, len);
3202 	memmove(skb->data + len, skb->data, off);
3203 	__skb_pull(skb, len);
3204 
3205 	return 0;
3206 }
3207 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3208 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210 	bool trans_same = skb->transport_header == skb->network_header;
3211 	int ret;
3212 
3213 	/* There's no need for __skb_push()/__skb_pull() pair to
3214 	 * get to the start of the mac header as we're guaranteed
3215 	 * to always start from here under eBPF.
3216 	 */
3217 	ret = bpf_skb_generic_push(skb, off, len);
3218 	if (likely(!ret)) {
3219 		skb->mac_header -= len;
3220 		skb->network_header -= len;
3221 		if (trans_same)
3222 			skb->transport_header = skb->network_header;
3223 	}
3224 
3225 	return ret;
3226 }
3227 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3228 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3229 {
3230 	bool trans_same = skb->transport_header == skb->network_header;
3231 	int ret;
3232 
3233 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3234 	ret = bpf_skb_generic_pop(skb, off, len);
3235 	if (likely(!ret)) {
3236 		skb->mac_header += len;
3237 		skb->network_header += len;
3238 		if (trans_same)
3239 			skb->transport_header = skb->network_header;
3240 	}
3241 
3242 	return ret;
3243 }
3244 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3245 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3246 {
3247 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3248 	u32 off = skb_mac_header_len(skb);
3249 	int ret;
3250 
3251 	ret = skb_cow(skb, len_diff);
3252 	if (unlikely(ret < 0))
3253 		return ret;
3254 
3255 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3256 	if (unlikely(ret < 0))
3257 		return ret;
3258 
3259 	if (skb_is_gso(skb)) {
3260 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3261 
3262 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3263 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3264 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3265 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3266 		}
3267 	}
3268 
3269 	skb->protocol = htons(ETH_P_IPV6);
3270 	skb_clear_hash(skb);
3271 
3272 	return 0;
3273 }
3274 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3275 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3276 {
3277 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3278 	u32 off = skb_mac_header_len(skb);
3279 	int ret;
3280 
3281 	ret = skb_unclone(skb, GFP_ATOMIC);
3282 	if (unlikely(ret < 0))
3283 		return ret;
3284 
3285 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3286 	if (unlikely(ret < 0))
3287 		return ret;
3288 
3289 	if (skb_is_gso(skb)) {
3290 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3291 
3292 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3293 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3294 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3295 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3296 		}
3297 	}
3298 
3299 	skb->protocol = htons(ETH_P_IP);
3300 	skb_clear_hash(skb);
3301 
3302 	return 0;
3303 }
3304 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3305 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3306 {
3307 	__be16 from_proto = skb->protocol;
3308 
3309 	if (from_proto == htons(ETH_P_IP) &&
3310 	      to_proto == htons(ETH_P_IPV6))
3311 		return bpf_skb_proto_4_to_6(skb);
3312 
3313 	if (from_proto == htons(ETH_P_IPV6) &&
3314 	      to_proto == htons(ETH_P_IP))
3315 		return bpf_skb_proto_6_to_4(skb);
3316 
3317 	return -ENOTSUPP;
3318 }
3319 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3320 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3321 	   u64, flags)
3322 {
3323 	int ret;
3324 
3325 	if (unlikely(flags))
3326 		return -EINVAL;
3327 
3328 	/* General idea is that this helper does the basic groundwork
3329 	 * needed for changing the protocol, and eBPF program fills the
3330 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3331 	 * and other helpers, rather than passing a raw buffer here.
3332 	 *
3333 	 * The rationale is to keep this minimal and without a need to
3334 	 * deal with raw packet data. F.e. even if we would pass buffers
3335 	 * here, the program still needs to call the bpf_lX_csum_replace()
3336 	 * helpers anyway. Plus, this way we keep also separation of
3337 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3338 	 * care of stores.
3339 	 *
3340 	 * Currently, additional options and extension header space are
3341 	 * not supported, but flags register is reserved so we can adapt
3342 	 * that. For offloads, we mark packet as dodgy, so that headers
3343 	 * need to be verified first.
3344 	 */
3345 	ret = bpf_skb_proto_xlat(skb, proto);
3346 	bpf_compute_data_pointers(skb);
3347 	return ret;
3348 }
3349 
3350 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3351 	.func		= bpf_skb_change_proto,
3352 	.gpl_only	= false,
3353 	.ret_type	= RET_INTEGER,
3354 	.arg1_type	= ARG_PTR_TO_CTX,
3355 	.arg2_type	= ARG_ANYTHING,
3356 	.arg3_type	= ARG_ANYTHING,
3357 };
3358 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3359 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3360 {
3361 	/* We only allow a restricted subset to be changed for now. */
3362 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3363 		     !skb_pkt_type_ok(pkt_type)))
3364 		return -EINVAL;
3365 
3366 	skb->pkt_type = pkt_type;
3367 	return 0;
3368 }
3369 
3370 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3371 	.func		= bpf_skb_change_type,
3372 	.gpl_only	= false,
3373 	.ret_type	= RET_INTEGER,
3374 	.arg1_type	= ARG_PTR_TO_CTX,
3375 	.arg2_type	= ARG_ANYTHING,
3376 };
3377 
bpf_skb_net_base_len(const struct sk_buff * skb)3378 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3379 {
3380 	switch (skb->protocol) {
3381 	case htons(ETH_P_IP):
3382 		return sizeof(struct iphdr);
3383 	case htons(ETH_P_IPV6):
3384 		return sizeof(struct ipv6hdr);
3385 	default:
3386 		return ~0U;
3387 	}
3388 }
3389 
3390 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3391 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3392 
3393 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3394 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3395 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3396 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3397 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3398 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3399 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3400 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3401 			    u64 flags)
3402 {
3403 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3404 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3405 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3406 	unsigned int gso_type = SKB_GSO_DODGY;
3407 	int ret;
3408 
3409 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3410 		/* udp gso_size delineates datagrams, only allow if fixed */
3411 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3412 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3413 			return -ENOTSUPP;
3414 	}
3415 
3416 	ret = skb_cow_head(skb, len_diff);
3417 	if (unlikely(ret < 0))
3418 		return ret;
3419 
3420 	if (encap) {
3421 		if (skb->protocol != htons(ETH_P_IP) &&
3422 		    skb->protocol != htons(ETH_P_IPV6))
3423 			return -ENOTSUPP;
3424 
3425 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3426 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3427 			return -EINVAL;
3428 
3429 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3430 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3431 			return -EINVAL;
3432 
3433 		if (skb->encapsulation)
3434 			return -EALREADY;
3435 
3436 		mac_len = skb->network_header - skb->mac_header;
3437 		inner_net = skb->network_header;
3438 		if (inner_mac_len > len_diff)
3439 			return -EINVAL;
3440 		inner_trans = skb->transport_header;
3441 	}
3442 
3443 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3444 	if (unlikely(ret < 0))
3445 		return ret;
3446 
3447 	if (encap) {
3448 		skb->inner_mac_header = inner_net - inner_mac_len;
3449 		skb->inner_network_header = inner_net;
3450 		skb->inner_transport_header = inner_trans;
3451 		skb_set_inner_protocol(skb, skb->protocol);
3452 
3453 		skb->encapsulation = 1;
3454 		skb_set_network_header(skb, mac_len);
3455 
3456 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3457 			gso_type |= SKB_GSO_UDP_TUNNEL;
3458 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3459 			gso_type |= SKB_GSO_GRE;
3460 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3461 			gso_type |= SKB_GSO_IPXIP6;
3462 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3463 			gso_type |= SKB_GSO_IPXIP4;
3464 
3465 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3466 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3467 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3468 					sizeof(struct ipv6hdr) :
3469 					sizeof(struct iphdr);
3470 
3471 			skb_set_transport_header(skb, mac_len + nh_len);
3472 		}
3473 
3474 		/* Match skb->protocol to new outer l3 protocol */
3475 		if (skb->protocol == htons(ETH_P_IP) &&
3476 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3477 			skb->protocol = htons(ETH_P_IPV6);
3478 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3479 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3480 			skb->protocol = htons(ETH_P_IP);
3481 	}
3482 
3483 	if (skb_is_gso(skb)) {
3484 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3485 
3486 		/* Due to header grow, MSS needs to be downgraded. */
3487 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3488 			skb_decrease_gso_size(shinfo, len_diff);
3489 
3490 		/* Header must be checked, and gso_segs recomputed. */
3491 		shinfo->gso_type |= gso_type;
3492 		shinfo->gso_segs = 0;
3493 	}
3494 
3495 	return 0;
3496 }
3497 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3498 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3499 			      u64 flags)
3500 {
3501 	int ret;
3502 
3503 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3504 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3505 		return -EINVAL;
3506 
3507 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3508 		/* udp gso_size delineates datagrams, only allow if fixed */
3509 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3510 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3511 			return -ENOTSUPP;
3512 	}
3513 
3514 	ret = skb_unclone(skb, GFP_ATOMIC);
3515 	if (unlikely(ret < 0))
3516 		return ret;
3517 
3518 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3519 	if (unlikely(ret < 0))
3520 		return ret;
3521 
3522 	if (skb_is_gso(skb)) {
3523 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3524 
3525 		/* Due to header shrink, MSS can be upgraded. */
3526 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3527 			skb_increase_gso_size(shinfo, len_diff);
3528 
3529 		/* Header must be checked, and gso_segs recomputed. */
3530 		shinfo->gso_type |= SKB_GSO_DODGY;
3531 		shinfo->gso_segs = 0;
3532 	}
3533 
3534 	return 0;
3535 }
3536 
3537 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3538 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3539 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3540 	   u32, mode, u64, flags)
3541 {
3542 	u32 len_diff_abs = abs(len_diff);
3543 	bool shrink = len_diff < 0;
3544 	int ret = 0;
3545 
3546 	if (unlikely(flags || mode))
3547 		return -EINVAL;
3548 	if (unlikely(len_diff_abs > 0xfffU))
3549 		return -EFAULT;
3550 
3551 	if (!shrink) {
3552 		ret = skb_cow(skb, len_diff);
3553 		if (unlikely(ret < 0))
3554 			return ret;
3555 		__skb_push(skb, len_diff_abs);
3556 		memset(skb->data, 0, len_diff_abs);
3557 	} else {
3558 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3559 			return -ENOMEM;
3560 		__skb_pull(skb, len_diff_abs);
3561 	}
3562 	bpf_compute_data_end_sk_skb(skb);
3563 	if (tls_sw_has_ctx_rx(skb->sk)) {
3564 		struct strp_msg *rxm = strp_msg(skb);
3565 
3566 		rxm->full_len += len_diff;
3567 	}
3568 	return ret;
3569 }
3570 
3571 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3572 	.func		= sk_skb_adjust_room,
3573 	.gpl_only	= false,
3574 	.ret_type	= RET_INTEGER,
3575 	.arg1_type	= ARG_PTR_TO_CTX,
3576 	.arg2_type	= ARG_ANYTHING,
3577 	.arg3_type	= ARG_ANYTHING,
3578 	.arg4_type	= ARG_ANYTHING,
3579 };
3580 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3581 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3582 	   u32, mode, u64, flags)
3583 {
3584 	u32 len_cur, len_diff_abs = abs(len_diff);
3585 	u32 len_min = bpf_skb_net_base_len(skb);
3586 	u32 len_max = BPF_SKB_MAX_LEN;
3587 	__be16 proto = skb->protocol;
3588 	bool shrink = len_diff < 0;
3589 	u32 off;
3590 	int ret;
3591 
3592 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3593 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3594 		return -EINVAL;
3595 	if (unlikely(len_diff_abs > 0xfffU))
3596 		return -EFAULT;
3597 	if (unlikely(proto != htons(ETH_P_IP) &&
3598 		     proto != htons(ETH_P_IPV6)))
3599 		return -ENOTSUPP;
3600 
3601 	off = skb_mac_header_len(skb);
3602 	switch (mode) {
3603 	case BPF_ADJ_ROOM_NET:
3604 		off += bpf_skb_net_base_len(skb);
3605 		break;
3606 	case BPF_ADJ_ROOM_MAC:
3607 		break;
3608 	default:
3609 		return -ENOTSUPP;
3610 	}
3611 
3612 	len_cur = skb->len - skb_network_offset(skb);
3613 	if ((shrink && (len_diff_abs >= len_cur ||
3614 			len_cur - len_diff_abs < len_min)) ||
3615 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3616 			 !skb_is_gso(skb))))
3617 		return -ENOTSUPP;
3618 
3619 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3620 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3621 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3622 		__skb_reset_checksum_unnecessary(skb);
3623 
3624 	bpf_compute_data_pointers(skb);
3625 	return ret;
3626 }
3627 
3628 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3629 	.func		= bpf_skb_adjust_room,
3630 	.gpl_only	= false,
3631 	.ret_type	= RET_INTEGER,
3632 	.arg1_type	= ARG_PTR_TO_CTX,
3633 	.arg2_type	= ARG_ANYTHING,
3634 	.arg3_type	= ARG_ANYTHING,
3635 	.arg4_type	= ARG_ANYTHING,
3636 };
3637 
__bpf_skb_min_len(const struct sk_buff * skb)3638 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3639 {
3640 	u32 min_len = skb_network_offset(skb);
3641 
3642 	if (skb_transport_header_was_set(skb))
3643 		min_len = skb_transport_offset(skb);
3644 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3645 		min_len = skb_checksum_start_offset(skb) +
3646 			  skb->csum_offset + sizeof(__sum16);
3647 	return min_len;
3648 }
3649 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3650 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3651 {
3652 	unsigned int old_len = skb->len;
3653 	int ret;
3654 
3655 	ret = __skb_grow_rcsum(skb, new_len);
3656 	if (!ret)
3657 		memset(skb->data + old_len, 0, new_len - old_len);
3658 	return ret;
3659 }
3660 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3661 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3662 {
3663 	return __skb_trim_rcsum(skb, new_len);
3664 }
3665 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3666 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3667 					u64 flags)
3668 {
3669 	u32 max_len = BPF_SKB_MAX_LEN;
3670 	u32 min_len = __bpf_skb_min_len(skb);
3671 	int ret;
3672 
3673 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3674 		return -EINVAL;
3675 	if (skb->encapsulation)
3676 		return -ENOTSUPP;
3677 
3678 	/* The basic idea of this helper is that it's performing the
3679 	 * needed work to either grow or trim an skb, and eBPF program
3680 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3681 	 * bpf_lX_csum_replace() and others rather than passing a raw
3682 	 * buffer here. This one is a slow path helper and intended
3683 	 * for replies with control messages.
3684 	 *
3685 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3686 	 * minimal and without protocol specifics so that we are able
3687 	 * to separate concerns as in bpf_skb_store_bytes() should only
3688 	 * be the one responsible for writing buffers.
3689 	 *
3690 	 * It's really expected to be a slow path operation here for
3691 	 * control message replies, so we're implicitly linearizing,
3692 	 * uncloning and drop offloads from the skb by this.
3693 	 */
3694 	ret = __bpf_try_make_writable(skb, skb->len);
3695 	if (!ret) {
3696 		if (new_len > skb->len)
3697 			ret = bpf_skb_grow_rcsum(skb, new_len);
3698 		else if (new_len < skb->len)
3699 			ret = bpf_skb_trim_rcsum(skb, new_len);
3700 		if (!ret && skb_is_gso(skb))
3701 			skb_gso_reset(skb);
3702 	}
3703 	return ret;
3704 }
3705 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3706 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3707 	   u64, flags)
3708 {
3709 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3710 
3711 	bpf_compute_data_pointers(skb);
3712 	return ret;
3713 }
3714 
3715 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3716 	.func		= bpf_skb_change_tail,
3717 	.gpl_only	= false,
3718 	.ret_type	= RET_INTEGER,
3719 	.arg1_type	= ARG_PTR_TO_CTX,
3720 	.arg2_type	= ARG_ANYTHING,
3721 	.arg3_type	= ARG_ANYTHING,
3722 };
3723 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3724 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3725 	   u64, flags)
3726 {
3727 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3728 
3729 	bpf_compute_data_end_sk_skb(skb);
3730 	return ret;
3731 }
3732 
3733 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3734 	.func		= sk_skb_change_tail,
3735 	.gpl_only	= false,
3736 	.ret_type	= RET_INTEGER,
3737 	.arg1_type	= ARG_PTR_TO_CTX,
3738 	.arg2_type	= ARG_ANYTHING,
3739 	.arg3_type	= ARG_ANYTHING,
3740 };
3741 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3742 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3743 					u64 flags)
3744 {
3745 	u32 max_len = BPF_SKB_MAX_LEN;
3746 	u32 new_len = skb->len + head_room;
3747 	int ret;
3748 
3749 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3750 		     new_len < skb->len))
3751 		return -EINVAL;
3752 
3753 	ret = skb_cow(skb, head_room);
3754 	if (likely(!ret)) {
3755 		/* Idea for this helper is that we currently only
3756 		 * allow to expand on mac header. This means that
3757 		 * skb->protocol network header, etc, stay as is.
3758 		 * Compared to bpf_skb_change_tail(), we're more
3759 		 * flexible due to not needing to linearize or
3760 		 * reset GSO. Intention for this helper is to be
3761 		 * used by an L3 skb that needs to push mac header
3762 		 * for redirection into L2 device.
3763 		 */
3764 		__skb_push(skb, head_room);
3765 		memset(skb->data, 0, head_room);
3766 		skb_reset_mac_header(skb);
3767 		skb_reset_mac_len(skb);
3768 	}
3769 
3770 	return ret;
3771 }
3772 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3773 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3774 	   u64, flags)
3775 {
3776 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3777 
3778 	bpf_compute_data_pointers(skb);
3779 	return ret;
3780 }
3781 
3782 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3783 	.func		= bpf_skb_change_head,
3784 	.gpl_only	= false,
3785 	.ret_type	= RET_INTEGER,
3786 	.arg1_type	= ARG_PTR_TO_CTX,
3787 	.arg2_type	= ARG_ANYTHING,
3788 	.arg3_type	= ARG_ANYTHING,
3789 };
3790 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3791 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3792 	   u64, flags)
3793 {
3794 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3795 
3796 	bpf_compute_data_end_sk_skb(skb);
3797 	return ret;
3798 }
3799 
3800 static const struct bpf_func_proto sk_skb_change_head_proto = {
3801 	.func		= sk_skb_change_head,
3802 	.gpl_only	= false,
3803 	.ret_type	= RET_INTEGER,
3804 	.arg1_type	= ARG_PTR_TO_CTX,
3805 	.arg2_type	= ARG_ANYTHING,
3806 	.arg3_type	= ARG_ANYTHING,
3807 };
xdp_get_metalen(const struct xdp_buff * xdp)3808 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3809 {
3810 	return xdp_data_meta_unsupported(xdp) ? 0 :
3811 	       xdp->data - xdp->data_meta;
3812 }
3813 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3814 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3815 {
3816 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3817 	unsigned long metalen = xdp_get_metalen(xdp);
3818 	void *data_start = xdp_frame_end + metalen;
3819 	void *data = xdp->data + offset;
3820 
3821 	if (unlikely(data < data_start ||
3822 		     data > xdp->data_end - ETH_HLEN))
3823 		return -EINVAL;
3824 
3825 	if (metalen)
3826 		memmove(xdp->data_meta + offset,
3827 			xdp->data_meta, metalen);
3828 	xdp->data_meta += offset;
3829 	xdp->data = data;
3830 
3831 	return 0;
3832 }
3833 
3834 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3835 	.func		= bpf_xdp_adjust_head,
3836 	.gpl_only	= false,
3837 	.ret_type	= RET_INTEGER,
3838 	.arg1_type	= ARG_PTR_TO_CTX,
3839 	.arg2_type	= ARG_ANYTHING,
3840 };
3841 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3842 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3843 {
3844 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3845 	void *data_end = xdp->data_end + offset;
3846 
3847 	/* Notice that xdp_data_hard_end have reserved some tailroom */
3848 	if (unlikely(data_end > data_hard_end))
3849 		return -EINVAL;
3850 
3851 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
3852 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3853 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3854 		return -EINVAL;
3855 	}
3856 
3857 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3858 		return -EINVAL;
3859 
3860 	/* Clear memory area on grow, can contain uninit kernel memory */
3861 	if (offset > 0)
3862 		memset(xdp->data_end, 0, offset);
3863 
3864 	xdp->data_end = data_end;
3865 
3866 	return 0;
3867 }
3868 
3869 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3870 	.func		= bpf_xdp_adjust_tail,
3871 	.gpl_only	= false,
3872 	.ret_type	= RET_INTEGER,
3873 	.arg1_type	= ARG_PTR_TO_CTX,
3874 	.arg2_type	= ARG_ANYTHING,
3875 };
3876 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3877 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3878 {
3879 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3880 	void *meta = xdp->data_meta + offset;
3881 	unsigned long metalen = xdp->data - meta;
3882 
3883 	if (xdp_data_meta_unsupported(xdp))
3884 		return -ENOTSUPP;
3885 	if (unlikely(meta < xdp_frame_end ||
3886 		     meta > xdp->data))
3887 		return -EINVAL;
3888 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3889 		     (metalen > 32)))
3890 		return -EACCES;
3891 
3892 	xdp->data_meta = meta;
3893 
3894 	return 0;
3895 }
3896 
3897 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3898 	.func		= bpf_xdp_adjust_meta,
3899 	.gpl_only	= false,
3900 	.ret_type	= RET_INTEGER,
3901 	.arg1_type	= ARG_PTR_TO_CTX,
3902 	.arg2_type	= ARG_ANYTHING,
3903 };
3904 
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp)3905 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3906 			    struct bpf_map *map, struct xdp_buff *xdp)
3907 {
3908 	switch (map->map_type) {
3909 	case BPF_MAP_TYPE_DEVMAP:
3910 	case BPF_MAP_TYPE_DEVMAP_HASH:
3911 		return dev_map_enqueue(fwd, xdp, dev_rx);
3912 	case BPF_MAP_TYPE_CPUMAP:
3913 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3914 	case BPF_MAP_TYPE_XSKMAP:
3915 		return __xsk_map_redirect(fwd, xdp);
3916 	default:
3917 		return -EBADRQC;
3918 	}
3919 	return 0;
3920 }
3921 
xdp_do_flush(void)3922 void xdp_do_flush(void)
3923 {
3924 	__dev_flush();
3925 	__cpu_map_flush();
3926 	__xsk_map_flush();
3927 }
3928 EXPORT_SYMBOL_GPL(xdp_do_flush);
3929 
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3930 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3931 {
3932 	switch (map->map_type) {
3933 	case BPF_MAP_TYPE_DEVMAP:
3934 		return __dev_map_lookup_elem(map, index);
3935 	case BPF_MAP_TYPE_DEVMAP_HASH:
3936 		return __dev_map_hash_lookup_elem(map, index);
3937 	case BPF_MAP_TYPE_CPUMAP:
3938 		return __cpu_map_lookup_elem(map, index);
3939 	case BPF_MAP_TYPE_XSKMAP:
3940 		return __xsk_map_lookup_elem(map, index);
3941 	default:
3942 		return NULL;
3943 	}
3944 }
3945 
bpf_clear_redirect_map(struct bpf_map * map)3946 void bpf_clear_redirect_map(struct bpf_map *map)
3947 {
3948 	struct bpf_redirect_info *ri;
3949 	int cpu;
3950 
3951 	for_each_possible_cpu(cpu) {
3952 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3953 		/* Avoid polluting remote cacheline due to writes if
3954 		 * not needed. Once we pass this test, we need the
3955 		 * cmpxchg() to make sure it hasn't been changed in
3956 		 * the meantime by remote CPU.
3957 		 */
3958 		if (unlikely(READ_ONCE(ri->map) == map))
3959 			cmpxchg(&ri->map, map, NULL);
3960 	}
3961 }
3962 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3963 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3964 		    struct bpf_prog *xdp_prog)
3965 {
3966 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3967 	struct bpf_map *map = READ_ONCE(ri->map);
3968 	u32 index = ri->tgt_index;
3969 	void *fwd = ri->tgt_value;
3970 	int err;
3971 
3972 	ri->tgt_index = 0;
3973 	ri->tgt_value = NULL;
3974 	WRITE_ONCE(ri->map, NULL);
3975 
3976 	if (unlikely(!map)) {
3977 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3978 		if (unlikely(!fwd)) {
3979 			err = -EINVAL;
3980 			goto err;
3981 		}
3982 
3983 		err = dev_xdp_enqueue(fwd, xdp, dev);
3984 	} else {
3985 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3986 	}
3987 
3988 	if (unlikely(err))
3989 		goto err;
3990 
3991 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3992 	return 0;
3993 err:
3994 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3995 	return err;
3996 }
3997 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3998 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3999 static int xdp_do_generic_redirect_map(struct net_device *dev,
4000 				       struct sk_buff *skb,
4001 				       struct xdp_buff *xdp,
4002 				       struct bpf_prog *xdp_prog,
4003 				       struct bpf_map *map)
4004 {
4005 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4006 	u32 index = ri->tgt_index;
4007 	void *fwd = ri->tgt_value;
4008 	int err = 0;
4009 
4010 	ri->tgt_index = 0;
4011 	ri->tgt_value = NULL;
4012 	WRITE_ONCE(ri->map, NULL);
4013 
4014 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
4015 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
4016 		struct bpf_dtab_netdev *dst = fwd;
4017 
4018 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
4019 		if (unlikely(err))
4020 			goto err;
4021 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4022 		struct xdp_sock *xs = fwd;
4023 
4024 		err = xsk_generic_rcv(xs, xdp);
4025 		if (err)
4026 			goto err;
4027 		consume_skb(skb);
4028 	} else {
4029 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4030 		err = -EBADRQC;
4031 		goto err;
4032 	}
4033 
4034 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4035 	return 0;
4036 err:
4037 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4038 	return err;
4039 }
4040 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4041 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4042 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4043 {
4044 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4045 	struct bpf_map *map = READ_ONCE(ri->map);
4046 	u32 index = ri->tgt_index;
4047 	struct net_device *fwd;
4048 	int err = 0;
4049 
4050 	if (map)
4051 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4052 						   map);
4053 	ri->tgt_index = 0;
4054 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
4055 	if (unlikely(!fwd)) {
4056 		err = -EINVAL;
4057 		goto err;
4058 	}
4059 
4060 	err = xdp_ok_fwd_dev(fwd, skb->len);
4061 	if (unlikely(err))
4062 		goto err;
4063 
4064 	skb->dev = fwd;
4065 	_trace_xdp_redirect(dev, xdp_prog, index);
4066 	generic_xdp_tx(skb, xdp_prog);
4067 	return 0;
4068 err:
4069 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
4070 	return err;
4071 }
4072 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4073 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4074 {
4075 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4076 
4077 	if (unlikely(flags))
4078 		return XDP_ABORTED;
4079 
4080 	ri->flags = flags;
4081 	ri->tgt_index = ifindex;
4082 	ri->tgt_value = NULL;
4083 	WRITE_ONCE(ri->map, NULL);
4084 
4085 	return XDP_REDIRECT;
4086 }
4087 
4088 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4089 	.func           = bpf_xdp_redirect,
4090 	.gpl_only       = false,
4091 	.ret_type       = RET_INTEGER,
4092 	.arg1_type      = ARG_ANYTHING,
4093 	.arg2_type      = ARG_ANYTHING,
4094 };
4095 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)4096 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4097 	   u64, flags)
4098 {
4099 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4100 
4101 	/* Lower bits of the flags are used as return code on lookup failure */
4102 	if (unlikely(flags > XDP_TX))
4103 		return XDP_ABORTED;
4104 
4105 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4106 	if (unlikely(!ri->tgt_value)) {
4107 		/* If the lookup fails we want to clear out the state in the
4108 		 * redirect_info struct completely, so that if an eBPF program
4109 		 * performs multiple lookups, the last one always takes
4110 		 * precedence.
4111 		 */
4112 		WRITE_ONCE(ri->map, NULL);
4113 		return flags;
4114 	}
4115 
4116 	ri->flags = flags;
4117 	ri->tgt_index = ifindex;
4118 	WRITE_ONCE(ri->map, map);
4119 
4120 	return XDP_REDIRECT;
4121 }
4122 
4123 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4124 	.func           = bpf_xdp_redirect_map,
4125 	.gpl_only       = false,
4126 	.ret_type       = RET_INTEGER,
4127 	.arg1_type      = ARG_CONST_MAP_PTR,
4128 	.arg2_type      = ARG_ANYTHING,
4129 	.arg3_type      = ARG_ANYTHING,
4130 };
4131 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4132 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4133 				  unsigned long off, unsigned long len)
4134 {
4135 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4136 
4137 	if (unlikely(!ptr))
4138 		return len;
4139 	if (ptr != dst_buff)
4140 		memcpy(dst_buff, ptr, len);
4141 
4142 	return 0;
4143 }
4144 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4145 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4146 	   u64, flags, void *, meta, u64, meta_size)
4147 {
4148 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4149 
4150 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4151 		return -EINVAL;
4152 	if (unlikely(!skb || skb_size > skb->len))
4153 		return -EFAULT;
4154 
4155 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4156 				bpf_skb_copy);
4157 }
4158 
4159 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4160 	.func		= bpf_skb_event_output,
4161 	.gpl_only	= true,
4162 	.ret_type	= RET_INTEGER,
4163 	.arg1_type	= ARG_PTR_TO_CTX,
4164 	.arg2_type	= ARG_CONST_MAP_PTR,
4165 	.arg3_type	= ARG_ANYTHING,
4166 	.arg4_type	= ARG_PTR_TO_MEM,
4167 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4168 };
4169 
4170 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4171 
4172 const struct bpf_func_proto bpf_skb_output_proto = {
4173 	.func		= bpf_skb_event_output,
4174 	.gpl_only	= true,
4175 	.ret_type	= RET_INTEGER,
4176 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4177 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4178 	.arg2_type	= ARG_CONST_MAP_PTR,
4179 	.arg3_type	= ARG_ANYTHING,
4180 	.arg4_type	= ARG_PTR_TO_MEM,
4181 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4182 };
4183 
bpf_tunnel_key_af(u64 flags)4184 static unsigned short bpf_tunnel_key_af(u64 flags)
4185 {
4186 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4187 }
4188 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4189 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4190 	   u32, size, u64, flags)
4191 {
4192 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4193 	u8 compat[sizeof(struct bpf_tunnel_key)];
4194 	void *to_orig = to;
4195 	int err;
4196 
4197 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4198 		err = -EINVAL;
4199 		goto err_clear;
4200 	}
4201 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4202 		err = -EPROTO;
4203 		goto err_clear;
4204 	}
4205 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4206 		err = -EINVAL;
4207 		switch (size) {
4208 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4209 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4210 			goto set_compat;
4211 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4212 			/* Fixup deprecated structure layouts here, so we have
4213 			 * a common path later on.
4214 			 */
4215 			if (ip_tunnel_info_af(info) != AF_INET)
4216 				goto err_clear;
4217 set_compat:
4218 			to = (struct bpf_tunnel_key *)compat;
4219 			break;
4220 		default:
4221 			goto err_clear;
4222 		}
4223 	}
4224 
4225 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4226 	to->tunnel_tos = info->key.tos;
4227 	to->tunnel_ttl = info->key.ttl;
4228 	to->tunnel_ext = 0;
4229 
4230 	if (flags & BPF_F_TUNINFO_IPV6) {
4231 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4232 		       sizeof(to->remote_ipv6));
4233 		to->tunnel_label = be32_to_cpu(info->key.label);
4234 	} else {
4235 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4236 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4237 		to->tunnel_label = 0;
4238 	}
4239 
4240 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4241 		memcpy(to_orig, to, size);
4242 
4243 	return 0;
4244 err_clear:
4245 	memset(to_orig, 0, size);
4246 	return err;
4247 }
4248 
4249 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4250 	.func		= bpf_skb_get_tunnel_key,
4251 	.gpl_only	= false,
4252 	.ret_type	= RET_INTEGER,
4253 	.arg1_type	= ARG_PTR_TO_CTX,
4254 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4255 	.arg3_type	= ARG_CONST_SIZE,
4256 	.arg4_type	= ARG_ANYTHING,
4257 };
4258 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4259 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4260 {
4261 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4262 	int err;
4263 
4264 	if (unlikely(!info ||
4265 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4266 		err = -ENOENT;
4267 		goto err_clear;
4268 	}
4269 	if (unlikely(size < info->options_len)) {
4270 		err = -ENOMEM;
4271 		goto err_clear;
4272 	}
4273 
4274 	ip_tunnel_info_opts_get(to, info);
4275 	if (size > info->options_len)
4276 		memset(to + info->options_len, 0, size - info->options_len);
4277 
4278 	return info->options_len;
4279 err_clear:
4280 	memset(to, 0, size);
4281 	return err;
4282 }
4283 
4284 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4285 	.func		= bpf_skb_get_tunnel_opt,
4286 	.gpl_only	= false,
4287 	.ret_type	= RET_INTEGER,
4288 	.arg1_type	= ARG_PTR_TO_CTX,
4289 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4290 	.arg3_type	= ARG_CONST_SIZE,
4291 };
4292 
4293 static struct metadata_dst __percpu *md_dst;
4294 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4295 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4296 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4297 {
4298 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4299 	u8 compat[sizeof(struct bpf_tunnel_key)];
4300 	struct ip_tunnel_info *info;
4301 
4302 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4303 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4304 		return -EINVAL;
4305 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4306 		switch (size) {
4307 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4308 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4309 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4310 			/* Fixup deprecated structure layouts here, so we have
4311 			 * a common path later on.
4312 			 */
4313 			memcpy(compat, from, size);
4314 			memset(compat + size, 0, sizeof(compat) - size);
4315 			from = (const struct bpf_tunnel_key *) compat;
4316 			break;
4317 		default:
4318 			return -EINVAL;
4319 		}
4320 	}
4321 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4322 		     from->tunnel_ext))
4323 		return -EINVAL;
4324 
4325 	skb_dst_drop(skb);
4326 	dst_hold((struct dst_entry *) md);
4327 	skb_dst_set(skb, (struct dst_entry *) md);
4328 
4329 	info = &md->u.tun_info;
4330 	memset(info, 0, sizeof(*info));
4331 	info->mode = IP_TUNNEL_INFO_TX;
4332 
4333 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4334 	if (flags & BPF_F_DONT_FRAGMENT)
4335 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4336 	if (flags & BPF_F_ZERO_CSUM_TX)
4337 		info->key.tun_flags &= ~TUNNEL_CSUM;
4338 	if (flags & BPF_F_SEQ_NUMBER)
4339 		info->key.tun_flags |= TUNNEL_SEQ;
4340 
4341 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4342 	info->key.tos = from->tunnel_tos;
4343 	info->key.ttl = from->tunnel_ttl;
4344 
4345 	if (flags & BPF_F_TUNINFO_IPV6) {
4346 		info->mode |= IP_TUNNEL_INFO_IPV6;
4347 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4348 		       sizeof(from->remote_ipv6));
4349 		info->key.label = cpu_to_be32(from->tunnel_label) &
4350 				  IPV6_FLOWLABEL_MASK;
4351 	} else {
4352 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4353 	}
4354 
4355 	return 0;
4356 }
4357 
4358 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4359 	.func		= bpf_skb_set_tunnel_key,
4360 	.gpl_only	= false,
4361 	.ret_type	= RET_INTEGER,
4362 	.arg1_type	= ARG_PTR_TO_CTX,
4363 	.arg2_type	= ARG_PTR_TO_MEM,
4364 	.arg3_type	= ARG_CONST_SIZE,
4365 	.arg4_type	= ARG_ANYTHING,
4366 };
4367 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4368 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4369 	   const u8 *, from, u32, size)
4370 {
4371 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4372 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4373 
4374 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4375 		return -EINVAL;
4376 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4377 		return -ENOMEM;
4378 
4379 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4380 
4381 	return 0;
4382 }
4383 
4384 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4385 	.func		= bpf_skb_set_tunnel_opt,
4386 	.gpl_only	= false,
4387 	.ret_type	= RET_INTEGER,
4388 	.arg1_type	= ARG_PTR_TO_CTX,
4389 	.arg2_type	= ARG_PTR_TO_MEM,
4390 	.arg3_type	= ARG_CONST_SIZE,
4391 };
4392 
4393 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4394 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4395 {
4396 	if (!md_dst) {
4397 		struct metadata_dst __percpu *tmp;
4398 
4399 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4400 						METADATA_IP_TUNNEL,
4401 						GFP_KERNEL);
4402 		if (!tmp)
4403 			return NULL;
4404 		if (cmpxchg(&md_dst, NULL, tmp))
4405 			metadata_dst_free_percpu(tmp);
4406 	}
4407 
4408 	switch (which) {
4409 	case BPF_FUNC_skb_set_tunnel_key:
4410 		return &bpf_skb_set_tunnel_key_proto;
4411 	case BPF_FUNC_skb_set_tunnel_opt:
4412 		return &bpf_skb_set_tunnel_opt_proto;
4413 	default:
4414 		return NULL;
4415 	}
4416 }
4417 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4418 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4419 	   u32, idx)
4420 {
4421 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4422 	struct cgroup *cgrp;
4423 	struct sock *sk;
4424 
4425 	sk = skb_to_full_sk(skb);
4426 	if (!sk || !sk_fullsock(sk))
4427 		return -ENOENT;
4428 	if (unlikely(idx >= array->map.max_entries))
4429 		return -E2BIG;
4430 
4431 	cgrp = READ_ONCE(array->ptrs[idx]);
4432 	if (unlikely(!cgrp))
4433 		return -EAGAIN;
4434 
4435 	return sk_under_cgroup_hierarchy(sk, cgrp);
4436 }
4437 
4438 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4439 	.func		= bpf_skb_under_cgroup,
4440 	.gpl_only	= false,
4441 	.ret_type	= RET_INTEGER,
4442 	.arg1_type	= ARG_PTR_TO_CTX,
4443 	.arg2_type	= ARG_CONST_MAP_PTR,
4444 	.arg3_type	= ARG_ANYTHING,
4445 };
4446 
4447 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4448 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4449 {
4450 	struct cgroup *cgrp;
4451 
4452 	sk = sk_to_full_sk(sk);
4453 	if (!sk || !sk_fullsock(sk))
4454 		return 0;
4455 
4456 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4457 	return cgroup_id(cgrp);
4458 }
4459 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4460 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4461 {
4462 	return __bpf_sk_cgroup_id(skb->sk);
4463 }
4464 
4465 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4466 	.func           = bpf_skb_cgroup_id,
4467 	.gpl_only       = false,
4468 	.ret_type       = RET_INTEGER,
4469 	.arg1_type      = ARG_PTR_TO_CTX,
4470 };
4471 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4472 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4473 					      int ancestor_level)
4474 {
4475 	struct cgroup *ancestor;
4476 	struct cgroup *cgrp;
4477 
4478 	sk = sk_to_full_sk(sk);
4479 	if (!sk || !sk_fullsock(sk))
4480 		return 0;
4481 
4482 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4483 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4484 	if (!ancestor)
4485 		return 0;
4486 
4487 	return cgroup_id(ancestor);
4488 }
4489 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4490 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4491 	   ancestor_level)
4492 {
4493 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4494 }
4495 
4496 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4497 	.func           = bpf_skb_ancestor_cgroup_id,
4498 	.gpl_only       = false,
4499 	.ret_type       = RET_INTEGER,
4500 	.arg1_type      = ARG_PTR_TO_CTX,
4501 	.arg2_type      = ARG_ANYTHING,
4502 };
4503 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4504 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4505 {
4506 	return __bpf_sk_cgroup_id(sk);
4507 }
4508 
4509 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4510 	.func           = bpf_sk_cgroup_id,
4511 	.gpl_only       = false,
4512 	.ret_type       = RET_INTEGER,
4513 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4514 };
4515 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4516 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4517 {
4518 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4519 }
4520 
4521 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4522 	.func           = bpf_sk_ancestor_cgroup_id,
4523 	.gpl_only       = false,
4524 	.ret_type       = RET_INTEGER,
4525 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4526 	.arg2_type      = ARG_ANYTHING,
4527 };
4528 #endif
4529 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)4530 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4531 				  unsigned long off, unsigned long len)
4532 {
4533 	memcpy(dst_buff, src_buff + off, len);
4534 	return 0;
4535 }
4536 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4537 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4538 	   u64, flags, void *, meta, u64, meta_size)
4539 {
4540 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4541 
4542 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4543 		return -EINVAL;
4544 	if (unlikely(!xdp ||
4545 		     xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4546 		return -EFAULT;
4547 
4548 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4549 				xdp_size, bpf_xdp_copy);
4550 }
4551 
4552 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4553 	.func		= bpf_xdp_event_output,
4554 	.gpl_only	= true,
4555 	.ret_type	= RET_INTEGER,
4556 	.arg1_type	= ARG_PTR_TO_CTX,
4557 	.arg2_type	= ARG_CONST_MAP_PTR,
4558 	.arg3_type	= ARG_ANYTHING,
4559 	.arg4_type	= ARG_PTR_TO_MEM,
4560 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4561 };
4562 
4563 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4564 
4565 const struct bpf_func_proto bpf_xdp_output_proto = {
4566 	.func		= bpf_xdp_event_output,
4567 	.gpl_only	= true,
4568 	.ret_type	= RET_INTEGER,
4569 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4570 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4571 	.arg2_type	= ARG_CONST_MAP_PTR,
4572 	.arg3_type	= ARG_ANYTHING,
4573 	.arg4_type	= ARG_PTR_TO_MEM,
4574 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4575 };
4576 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4577 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4578 {
4579 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4580 }
4581 
4582 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4583 	.func           = bpf_get_socket_cookie,
4584 	.gpl_only       = false,
4585 	.ret_type       = RET_INTEGER,
4586 	.arg1_type      = ARG_PTR_TO_CTX,
4587 };
4588 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4589 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4590 {
4591 	return __sock_gen_cookie(ctx->sk);
4592 }
4593 
4594 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4595 	.func		= bpf_get_socket_cookie_sock_addr,
4596 	.gpl_only	= false,
4597 	.ret_type	= RET_INTEGER,
4598 	.arg1_type	= ARG_PTR_TO_CTX,
4599 };
4600 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4601 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4602 {
4603 	return __sock_gen_cookie(ctx);
4604 }
4605 
4606 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4607 	.func		= bpf_get_socket_cookie_sock,
4608 	.gpl_only	= false,
4609 	.ret_type	= RET_INTEGER,
4610 	.arg1_type	= ARG_PTR_TO_CTX,
4611 };
4612 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4613 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4614 {
4615 	return __sock_gen_cookie(ctx->sk);
4616 }
4617 
4618 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4619 	.func		= bpf_get_socket_cookie_sock_ops,
4620 	.gpl_only	= false,
4621 	.ret_type	= RET_INTEGER,
4622 	.arg1_type	= ARG_PTR_TO_CTX,
4623 };
4624 
__bpf_get_netns_cookie(struct sock * sk)4625 static u64 __bpf_get_netns_cookie(struct sock *sk)
4626 {
4627 #ifdef CONFIG_NET_NS
4628 	return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4629 #else
4630 	return 0;
4631 #endif
4632 }
4633 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)4634 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4635 {
4636 	return __bpf_get_netns_cookie(ctx);
4637 }
4638 
4639 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4640 	.func		= bpf_get_netns_cookie_sock,
4641 	.gpl_only	= false,
4642 	.ret_type	= RET_INTEGER,
4643 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4644 };
4645 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4646 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4647 {
4648 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4649 }
4650 
4651 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4652 	.func		= bpf_get_netns_cookie_sock_addr,
4653 	.gpl_only	= false,
4654 	.ret_type	= RET_INTEGER,
4655 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4656 };
4657 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)4658 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4659 {
4660 	struct sock *sk = sk_to_full_sk(skb->sk);
4661 	kuid_t kuid;
4662 
4663 	if (!sk || !sk_fullsock(sk))
4664 		return overflowuid;
4665 	kuid = sock_net_uid(sock_net(sk), sk);
4666 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4667 }
4668 
4669 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4670 	.func           = bpf_get_socket_uid,
4671 	.gpl_only       = false,
4672 	.ret_type       = RET_INTEGER,
4673 	.arg1_type      = ARG_PTR_TO_CTX,
4674 };
4675 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4676 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4677 			   char *optval, int optlen)
4678 {
4679 	char devname[IFNAMSIZ];
4680 	int val, valbool;
4681 	struct net *net;
4682 	int ifindex;
4683 	int ret = 0;
4684 
4685 	if (!sk_fullsock(sk))
4686 		return -EINVAL;
4687 
4688 	sock_owned_by_me(sk);
4689 
4690 	if (level == SOL_SOCKET) {
4691 		if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4692 			return -EINVAL;
4693 		val = *((int *)optval);
4694 		valbool = val ? 1 : 0;
4695 
4696 		/* Only some socketops are supported */
4697 		switch (optname) {
4698 		case SO_RCVBUF:
4699 			val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4700 			val = min_t(int, val, INT_MAX / 2);
4701 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4702 			WRITE_ONCE(sk->sk_rcvbuf,
4703 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4704 			break;
4705 		case SO_SNDBUF:
4706 			val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4707 			val = min_t(int, val, INT_MAX / 2);
4708 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4709 			WRITE_ONCE(sk->sk_sndbuf,
4710 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4711 			break;
4712 		case SO_MAX_PACING_RATE: /* 32bit version */
4713 			if (val != ~0U)
4714 				cmpxchg(&sk->sk_pacing_status,
4715 					SK_PACING_NONE,
4716 					SK_PACING_NEEDED);
4717 			sk->sk_max_pacing_rate = (val == ~0U) ?
4718 						 ~0UL : (unsigned int)val;
4719 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4720 						 sk->sk_max_pacing_rate);
4721 			break;
4722 		case SO_PRIORITY:
4723 			sk->sk_priority = val;
4724 			break;
4725 		case SO_RCVLOWAT:
4726 			if (val < 0)
4727 				val = INT_MAX;
4728 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4729 			break;
4730 		case SO_MARK:
4731 			if (sk->sk_mark != val) {
4732 				sk->sk_mark = val;
4733 				sk_dst_reset(sk);
4734 			}
4735 			break;
4736 		case SO_BINDTODEVICE:
4737 			optlen = min_t(long, optlen, IFNAMSIZ - 1);
4738 			strncpy(devname, optval, optlen);
4739 			devname[optlen] = 0;
4740 
4741 			ifindex = 0;
4742 			if (devname[0] != '\0') {
4743 				struct net_device *dev;
4744 
4745 				ret = -ENODEV;
4746 
4747 				net = sock_net(sk);
4748 				dev = dev_get_by_name(net, devname);
4749 				if (!dev)
4750 					break;
4751 				ifindex = dev->ifindex;
4752 				dev_put(dev);
4753 			}
4754 			ret = sock_bindtoindex(sk, ifindex, false);
4755 			break;
4756 		case SO_KEEPALIVE:
4757 			if (sk->sk_prot->keepalive)
4758 				sk->sk_prot->keepalive(sk, valbool);
4759 			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4760 			break;
4761 		default:
4762 			ret = -EINVAL;
4763 		}
4764 #ifdef CONFIG_INET
4765 	} else if (level == SOL_IP) {
4766 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4767 			return -EINVAL;
4768 
4769 		val = *((int *)optval);
4770 		/* Only some options are supported */
4771 		switch (optname) {
4772 		case IP_TOS:
4773 			if (val < -1 || val > 0xff) {
4774 				ret = -EINVAL;
4775 			} else {
4776 				struct inet_sock *inet = inet_sk(sk);
4777 
4778 				if (val == -1)
4779 					val = 0;
4780 				inet->tos = val;
4781 			}
4782 			break;
4783 		default:
4784 			ret = -EINVAL;
4785 		}
4786 #if IS_ENABLED(CONFIG_IPV6)
4787 	} else if (level == SOL_IPV6) {
4788 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4789 			return -EINVAL;
4790 
4791 		val = *((int *)optval);
4792 		/* Only some options are supported */
4793 		switch (optname) {
4794 		case IPV6_TCLASS:
4795 			if (val < -1 || val > 0xff) {
4796 				ret = -EINVAL;
4797 			} else {
4798 				struct ipv6_pinfo *np = inet6_sk(sk);
4799 
4800 				if (val == -1)
4801 					val = 0;
4802 				np->tclass = val;
4803 			}
4804 			break;
4805 		default:
4806 			ret = -EINVAL;
4807 		}
4808 #endif
4809 	} else if (level == SOL_TCP &&
4810 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4811 		if (optname == TCP_CONGESTION) {
4812 			char name[TCP_CA_NAME_MAX];
4813 
4814 			strncpy(name, optval, min_t(long, optlen,
4815 						    TCP_CA_NAME_MAX-1));
4816 			name[TCP_CA_NAME_MAX-1] = 0;
4817 			ret = tcp_set_congestion_control(sk, name, false, true);
4818 		} else {
4819 			struct inet_connection_sock *icsk = inet_csk(sk);
4820 			struct tcp_sock *tp = tcp_sk(sk);
4821 			unsigned long timeout;
4822 
4823 			if (optlen != sizeof(int))
4824 				return -EINVAL;
4825 
4826 			val = *((int *)optval);
4827 			/* Only some options are supported */
4828 			switch (optname) {
4829 			case TCP_BPF_IW:
4830 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4831 					ret = -EINVAL;
4832 				else
4833 					tp->snd_cwnd = val;
4834 				break;
4835 			case TCP_BPF_SNDCWND_CLAMP:
4836 				if (val <= 0) {
4837 					ret = -EINVAL;
4838 				} else {
4839 					tp->snd_cwnd_clamp = val;
4840 					tp->snd_ssthresh = val;
4841 				}
4842 				break;
4843 			case TCP_BPF_DELACK_MAX:
4844 				timeout = usecs_to_jiffies(val);
4845 				if (timeout > TCP_DELACK_MAX ||
4846 				    timeout < TCP_TIMEOUT_MIN)
4847 					return -EINVAL;
4848 				inet_csk(sk)->icsk_delack_max = timeout;
4849 				break;
4850 			case TCP_BPF_RTO_MIN:
4851 				timeout = usecs_to_jiffies(val);
4852 				if (timeout > TCP_RTO_MIN ||
4853 				    timeout < TCP_TIMEOUT_MIN)
4854 					return -EINVAL;
4855 				inet_csk(sk)->icsk_rto_min = timeout;
4856 				break;
4857 			case TCP_SAVE_SYN:
4858 				if (val < 0 || val > 1)
4859 					ret = -EINVAL;
4860 				else
4861 					tp->save_syn = val;
4862 				break;
4863 			case TCP_KEEPIDLE:
4864 				ret = tcp_sock_set_keepidle_locked(sk, val);
4865 				break;
4866 			case TCP_KEEPINTVL:
4867 				if (val < 1 || val > MAX_TCP_KEEPINTVL)
4868 					ret = -EINVAL;
4869 				else
4870 					tp->keepalive_intvl = val * HZ;
4871 				break;
4872 			case TCP_KEEPCNT:
4873 				if (val < 1 || val > MAX_TCP_KEEPCNT)
4874 					ret = -EINVAL;
4875 				else
4876 					tp->keepalive_probes = val;
4877 				break;
4878 			case TCP_SYNCNT:
4879 				if (val < 1 || val > MAX_TCP_SYNCNT)
4880 					ret = -EINVAL;
4881 				else
4882 					icsk->icsk_syn_retries = val;
4883 				break;
4884 			case TCP_USER_TIMEOUT:
4885 				if (val < 0)
4886 					ret = -EINVAL;
4887 				else
4888 					icsk->icsk_user_timeout = val;
4889 				break;
4890 			case TCP_NOTSENT_LOWAT:
4891 				tp->notsent_lowat = val;
4892 				sk->sk_write_space(sk);
4893 				break;
4894 			default:
4895 				ret = -EINVAL;
4896 			}
4897 		}
4898 #endif
4899 	} else {
4900 		ret = -EINVAL;
4901 	}
4902 	return ret;
4903 }
4904 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)4905 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4906 			   char *optval, int optlen)
4907 {
4908 	if (!sk_fullsock(sk))
4909 		goto err_clear;
4910 
4911 	sock_owned_by_me(sk);
4912 
4913 #ifdef CONFIG_INET
4914 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4915 		struct inet_connection_sock *icsk;
4916 		struct tcp_sock *tp;
4917 
4918 		switch (optname) {
4919 		case TCP_CONGESTION:
4920 			icsk = inet_csk(sk);
4921 
4922 			if (!icsk->icsk_ca_ops || optlen <= 1)
4923 				goto err_clear;
4924 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4925 			optval[optlen - 1] = 0;
4926 			break;
4927 		case TCP_SAVED_SYN:
4928 			tp = tcp_sk(sk);
4929 
4930 			if (optlen <= 0 || !tp->saved_syn ||
4931 			    optlen > tcp_saved_syn_len(tp->saved_syn))
4932 				goto err_clear;
4933 			memcpy(optval, tp->saved_syn->data, optlen);
4934 			break;
4935 		default:
4936 			goto err_clear;
4937 		}
4938 	} else if (level == SOL_IP) {
4939 		struct inet_sock *inet = inet_sk(sk);
4940 
4941 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4942 			goto err_clear;
4943 
4944 		/* Only some options are supported */
4945 		switch (optname) {
4946 		case IP_TOS:
4947 			*((int *)optval) = (int)inet->tos;
4948 			break;
4949 		default:
4950 			goto err_clear;
4951 		}
4952 #if IS_ENABLED(CONFIG_IPV6)
4953 	} else if (level == SOL_IPV6) {
4954 		struct ipv6_pinfo *np = inet6_sk(sk);
4955 
4956 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4957 			goto err_clear;
4958 
4959 		/* Only some options are supported */
4960 		switch (optname) {
4961 		case IPV6_TCLASS:
4962 			*((int *)optval) = (int)np->tclass;
4963 			break;
4964 		default:
4965 			goto err_clear;
4966 		}
4967 #endif
4968 	} else {
4969 		goto err_clear;
4970 	}
4971 	return 0;
4972 #endif
4973 err_clear:
4974 	memset(optval, 0, optlen);
4975 	return -EINVAL;
4976 }
4977 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)4978 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4979 	   int, level, int, optname, char *, optval, int, optlen)
4980 {
4981 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
4982 }
4983 
4984 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4985 	.func		= bpf_sock_addr_setsockopt,
4986 	.gpl_only	= false,
4987 	.ret_type	= RET_INTEGER,
4988 	.arg1_type	= ARG_PTR_TO_CTX,
4989 	.arg2_type	= ARG_ANYTHING,
4990 	.arg3_type	= ARG_ANYTHING,
4991 	.arg4_type	= ARG_PTR_TO_MEM,
4992 	.arg5_type	= ARG_CONST_SIZE,
4993 };
4994 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)4995 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4996 	   int, level, int, optname, char *, optval, int, optlen)
4997 {
4998 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4999 }
5000 
5001 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5002 	.func		= bpf_sock_addr_getsockopt,
5003 	.gpl_only	= false,
5004 	.ret_type	= RET_INTEGER,
5005 	.arg1_type	= ARG_PTR_TO_CTX,
5006 	.arg2_type	= ARG_ANYTHING,
5007 	.arg3_type	= ARG_ANYTHING,
5008 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5009 	.arg5_type	= ARG_CONST_SIZE,
5010 };
5011 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5012 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5013 	   int, level, int, optname, char *, optval, int, optlen)
5014 {
5015 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5016 }
5017 
5018 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5019 	.func		= bpf_sock_ops_setsockopt,
5020 	.gpl_only	= false,
5021 	.ret_type	= RET_INTEGER,
5022 	.arg1_type	= ARG_PTR_TO_CTX,
5023 	.arg2_type	= ARG_ANYTHING,
5024 	.arg3_type	= ARG_ANYTHING,
5025 	.arg4_type	= ARG_PTR_TO_MEM,
5026 	.arg5_type	= ARG_CONST_SIZE,
5027 };
5028 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5029 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5030 				int optname, const u8 **start)
5031 {
5032 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5033 	const u8 *hdr_start;
5034 	int ret;
5035 
5036 	if (syn_skb) {
5037 		/* sk is a request_sock here */
5038 
5039 		if (optname == TCP_BPF_SYN) {
5040 			hdr_start = syn_skb->data;
5041 			ret = tcp_hdrlen(syn_skb);
5042 		} else if (optname == TCP_BPF_SYN_IP) {
5043 			hdr_start = skb_network_header(syn_skb);
5044 			ret = skb_network_header_len(syn_skb) +
5045 				tcp_hdrlen(syn_skb);
5046 		} else {
5047 			/* optname == TCP_BPF_SYN_MAC */
5048 			hdr_start = skb_mac_header(syn_skb);
5049 			ret = skb_mac_header_len(syn_skb) +
5050 				skb_network_header_len(syn_skb) +
5051 				tcp_hdrlen(syn_skb);
5052 		}
5053 	} else {
5054 		struct sock *sk = bpf_sock->sk;
5055 		struct saved_syn *saved_syn;
5056 
5057 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5058 			/* synack retransmit. bpf_sock->syn_skb will
5059 			 * not be available.  It has to resort to
5060 			 * saved_syn (if it is saved).
5061 			 */
5062 			saved_syn = inet_reqsk(sk)->saved_syn;
5063 		else
5064 			saved_syn = tcp_sk(sk)->saved_syn;
5065 
5066 		if (!saved_syn)
5067 			return -ENOENT;
5068 
5069 		if (optname == TCP_BPF_SYN) {
5070 			hdr_start = saved_syn->data +
5071 				saved_syn->mac_hdrlen +
5072 				saved_syn->network_hdrlen;
5073 			ret = saved_syn->tcp_hdrlen;
5074 		} else if (optname == TCP_BPF_SYN_IP) {
5075 			hdr_start = saved_syn->data +
5076 				saved_syn->mac_hdrlen;
5077 			ret = saved_syn->network_hdrlen +
5078 				saved_syn->tcp_hdrlen;
5079 		} else {
5080 			/* optname == TCP_BPF_SYN_MAC */
5081 
5082 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5083 			if (!saved_syn->mac_hdrlen)
5084 				return -ENOENT;
5085 
5086 			hdr_start = saved_syn->data;
5087 			ret = saved_syn->mac_hdrlen +
5088 				saved_syn->network_hdrlen +
5089 				saved_syn->tcp_hdrlen;
5090 		}
5091 	}
5092 
5093 	*start = hdr_start;
5094 	return ret;
5095 }
5096 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5097 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5098 	   int, level, int, optname, char *, optval, int, optlen)
5099 {
5100 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5101 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5102 		int ret, copy_len = 0;
5103 		const u8 *start;
5104 
5105 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5106 		if (ret > 0) {
5107 			copy_len = ret;
5108 			if (optlen < copy_len) {
5109 				copy_len = optlen;
5110 				ret = -ENOSPC;
5111 			}
5112 
5113 			memcpy(optval, start, copy_len);
5114 		}
5115 
5116 		/* Zero out unused buffer at the end */
5117 		memset(optval + copy_len, 0, optlen - copy_len);
5118 
5119 		return ret;
5120 	}
5121 
5122 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5123 }
5124 
5125 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5126 	.func		= bpf_sock_ops_getsockopt,
5127 	.gpl_only	= false,
5128 	.ret_type	= RET_INTEGER,
5129 	.arg1_type	= ARG_PTR_TO_CTX,
5130 	.arg2_type	= ARG_ANYTHING,
5131 	.arg3_type	= ARG_ANYTHING,
5132 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5133 	.arg5_type	= ARG_CONST_SIZE,
5134 };
5135 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5136 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5137 	   int, argval)
5138 {
5139 	struct sock *sk = bpf_sock->sk;
5140 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5141 
5142 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5143 		return -EINVAL;
5144 
5145 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5146 
5147 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5148 }
5149 
5150 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5151 	.func		= bpf_sock_ops_cb_flags_set,
5152 	.gpl_only	= false,
5153 	.ret_type	= RET_INTEGER,
5154 	.arg1_type	= ARG_PTR_TO_CTX,
5155 	.arg2_type	= ARG_ANYTHING,
5156 };
5157 
5158 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5159 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5160 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5161 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5162 	   int, addr_len)
5163 {
5164 #ifdef CONFIG_INET
5165 	struct sock *sk = ctx->sk;
5166 	u32 flags = BIND_FROM_BPF;
5167 	int err;
5168 
5169 	err = -EINVAL;
5170 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5171 		return err;
5172 	if (addr->sa_family == AF_INET) {
5173 		if (addr_len < sizeof(struct sockaddr_in))
5174 			return err;
5175 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5176 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5177 		return __inet_bind(sk, addr, addr_len, flags);
5178 #if IS_ENABLED(CONFIG_IPV6)
5179 	} else if (addr->sa_family == AF_INET6) {
5180 		if (addr_len < SIN6_LEN_RFC2133)
5181 			return err;
5182 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5183 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5184 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5185 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5186 		 */
5187 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5188 #endif /* CONFIG_IPV6 */
5189 	}
5190 #endif /* CONFIG_INET */
5191 
5192 	return -EAFNOSUPPORT;
5193 }
5194 
5195 static const struct bpf_func_proto bpf_bind_proto = {
5196 	.func		= bpf_bind,
5197 	.gpl_only	= false,
5198 	.ret_type	= RET_INTEGER,
5199 	.arg1_type	= ARG_PTR_TO_CTX,
5200 	.arg2_type	= ARG_PTR_TO_MEM,
5201 	.arg3_type	= ARG_CONST_SIZE,
5202 };
5203 
5204 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5205 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5206 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5207 {
5208 	const struct sec_path *sp = skb_sec_path(skb);
5209 	const struct xfrm_state *x;
5210 
5211 	if (!sp || unlikely(index >= sp->len || flags))
5212 		goto err_clear;
5213 
5214 	x = sp->xvec[index];
5215 
5216 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5217 		goto err_clear;
5218 
5219 	to->reqid = x->props.reqid;
5220 	to->spi = x->id.spi;
5221 	to->family = x->props.family;
5222 	to->ext = 0;
5223 
5224 	if (to->family == AF_INET6) {
5225 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5226 		       sizeof(to->remote_ipv6));
5227 	} else {
5228 		to->remote_ipv4 = x->props.saddr.a4;
5229 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5230 	}
5231 
5232 	return 0;
5233 err_clear:
5234 	memset(to, 0, size);
5235 	return -EINVAL;
5236 }
5237 
5238 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5239 	.func		= bpf_skb_get_xfrm_state,
5240 	.gpl_only	= false,
5241 	.ret_type	= RET_INTEGER,
5242 	.arg1_type	= ARG_PTR_TO_CTX,
5243 	.arg2_type	= ARG_ANYTHING,
5244 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5245 	.arg4_type	= ARG_CONST_SIZE,
5246 	.arg5_type	= ARG_ANYTHING,
5247 };
5248 #endif
5249 
5250 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)5251 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5252 				  const struct neighbour *neigh,
5253 				  const struct net_device *dev)
5254 {
5255 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5256 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5257 	params->h_vlan_TCI = 0;
5258 	params->h_vlan_proto = 0;
5259 
5260 	return 0;
5261 }
5262 #endif
5263 
5264 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5265 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5266 			       u32 flags, bool check_mtu)
5267 {
5268 	struct fib_nh_common *nhc;
5269 	struct in_device *in_dev;
5270 	struct neighbour *neigh;
5271 	struct net_device *dev;
5272 	struct fib_result res;
5273 	struct flowi4 fl4;
5274 	int err;
5275 	u32 mtu;
5276 
5277 	dev = dev_get_by_index_rcu(net, params->ifindex);
5278 	if (unlikely(!dev))
5279 		return -ENODEV;
5280 
5281 	/* verify forwarding is enabled on this interface */
5282 	in_dev = __in_dev_get_rcu(dev);
5283 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5284 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5285 
5286 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5287 		fl4.flowi4_iif = 1;
5288 		fl4.flowi4_oif = params->ifindex;
5289 	} else {
5290 		fl4.flowi4_iif = params->ifindex;
5291 		fl4.flowi4_oif = 0;
5292 	}
5293 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5294 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5295 	fl4.flowi4_flags = 0;
5296 
5297 	fl4.flowi4_proto = params->l4_protocol;
5298 	fl4.daddr = params->ipv4_dst;
5299 	fl4.saddr = params->ipv4_src;
5300 	fl4.fl4_sport = params->sport;
5301 	fl4.fl4_dport = params->dport;
5302 	fl4.flowi4_multipath_hash = 0;
5303 
5304 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5305 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5306 		struct fib_table *tb;
5307 
5308 		tb = fib_get_table(net, tbid);
5309 		if (unlikely(!tb))
5310 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5311 
5312 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5313 	} else {
5314 		fl4.flowi4_mark = 0;
5315 		fl4.flowi4_secid = 0;
5316 		fl4.flowi4_tun_key.tun_id = 0;
5317 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5318 
5319 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5320 	}
5321 
5322 	if (err) {
5323 		/* map fib lookup errors to RTN_ type */
5324 		if (err == -EINVAL)
5325 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5326 		if (err == -EHOSTUNREACH)
5327 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5328 		if (err == -EACCES)
5329 			return BPF_FIB_LKUP_RET_PROHIBIT;
5330 
5331 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5332 	}
5333 
5334 	if (res.type != RTN_UNICAST)
5335 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5336 
5337 	if (fib_info_num_path(res.fi) > 1)
5338 		fib_select_path(net, &res, &fl4, NULL);
5339 
5340 	if (check_mtu) {
5341 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5342 		if (params->tot_len > mtu)
5343 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5344 	}
5345 
5346 	nhc = res.nhc;
5347 
5348 	/* do not handle lwt encaps right now */
5349 	if (nhc->nhc_lwtstate)
5350 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5351 
5352 	dev = nhc->nhc_dev;
5353 
5354 	params->rt_metric = res.fi->fib_priority;
5355 	params->ifindex = dev->ifindex;
5356 
5357 	/* xdp and cls_bpf programs are run in RCU-bh so
5358 	 * rcu_read_lock_bh is not needed here
5359 	 */
5360 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5361 		if (nhc->nhc_gw_family)
5362 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5363 
5364 		neigh = __ipv4_neigh_lookup_noref(dev,
5365 						 (__force u32)params->ipv4_dst);
5366 	} else {
5367 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5368 
5369 		params->family = AF_INET6;
5370 		*dst = nhc->nhc_gw.ipv6;
5371 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5372 	}
5373 
5374 	if (!neigh)
5375 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5376 
5377 	return bpf_fib_set_fwd_params(params, neigh, dev);
5378 }
5379 #endif
5380 
5381 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5382 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5383 			       u32 flags, bool check_mtu)
5384 {
5385 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5386 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5387 	struct fib6_result res = {};
5388 	struct neighbour *neigh;
5389 	struct net_device *dev;
5390 	struct inet6_dev *idev;
5391 	struct flowi6 fl6;
5392 	int strict = 0;
5393 	int oif, err;
5394 	u32 mtu;
5395 
5396 	/* link local addresses are never forwarded */
5397 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5398 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5399 
5400 	dev = dev_get_by_index_rcu(net, params->ifindex);
5401 	if (unlikely(!dev))
5402 		return -ENODEV;
5403 
5404 	idev = __in6_dev_get_safely(dev);
5405 	if (unlikely(!idev || !idev->cnf.forwarding))
5406 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5407 
5408 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5409 		fl6.flowi6_iif = 1;
5410 		oif = fl6.flowi6_oif = params->ifindex;
5411 	} else {
5412 		oif = fl6.flowi6_iif = params->ifindex;
5413 		fl6.flowi6_oif = 0;
5414 		strict = RT6_LOOKUP_F_HAS_SADDR;
5415 	}
5416 	fl6.flowlabel = params->flowinfo;
5417 	fl6.flowi6_scope = 0;
5418 	fl6.flowi6_flags = 0;
5419 	fl6.mp_hash = 0;
5420 
5421 	fl6.flowi6_proto = params->l4_protocol;
5422 	fl6.daddr = *dst;
5423 	fl6.saddr = *src;
5424 	fl6.fl6_sport = params->sport;
5425 	fl6.fl6_dport = params->dport;
5426 
5427 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5428 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5429 		struct fib6_table *tb;
5430 
5431 		tb = ipv6_stub->fib6_get_table(net, tbid);
5432 		if (unlikely(!tb))
5433 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5434 
5435 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5436 						   strict);
5437 	} else {
5438 		fl6.flowi6_mark = 0;
5439 		fl6.flowi6_secid = 0;
5440 		fl6.flowi6_tun_key.tun_id = 0;
5441 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5442 
5443 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5444 	}
5445 
5446 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5447 		     res.f6i == net->ipv6.fib6_null_entry))
5448 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5449 
5450 	switch (res.fib6_type) {
5451 	/* only unicast is forwarded */
5452 	case RTN_UNICAST:
5453 		break;
5454 	case RTN_BLACKHOLE:
5455 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5456 	case RTN_UNREACHABLE:
5457 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5458 	case RTN_PROHIBIT:
5459 		return BPF_FIB_LKUP_RET_PROHIBIT;
5460 	default:
5461 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5462 	}
5463 
5464 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5465 				    fl6.flowi6_oif != 0, NULL, strict);
5466 
5467 	if (check_mtu) {
5468 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5469 		if (params->tot_len > mtu)
5470 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5471 	}
5472 
5473 	if (res.nh->fib_nh_lws)
5474 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5475 
5476 	if (res.nh->fib_nh_gw_family)
5477 		*dst = res.nh->fib_nh_gw6;
5478 
5479 	dev = res.nh->fib_nh_dev;
5480 	params->rt_metric = res.f6i->fib6_metric;
5481 	params->ifindex = dev->ifindex;
5482 
5483 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5484 	 * not needed here.
5485 	 */
5486 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5487 	if (!neigh)
5488 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5489 
5490 	return bpf_fib_set_fwd_params(params, neigh, dev);
5491 }
5492 #endif
5493 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)5494 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5495 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5496 {
5497 	if (plen < sizeof(*params))
5498 		return -EINVAL;
5499 
5500 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5501 		return -EINVAL;
5502 
5503 	switch (params->family) {
5504 #if IS_ENABLED(CONFIG_INET)
5505 	case AF_INET:
5506 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5507 					   flags, true);
5508 #endif
5509 #if IS_ENABLED(CONFIG_IPV6)
5510 	case AF_INET6:
5511 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5512 					   flags, true);
5513 #endif
5514 	}
5515 	return -EAFNOSUPPORT;
5516 }
5517 
5518 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5519 	.func		= bpf_xdp_fib_lookup,
5520 	.gpl_only	= true,
5521 	.ret_type	= RET_INTEGER,
5522 	.arg1_type      = ARG_PTR_TO_CTX,
5523 	.arg2_type      = ARG_PTR_TO_MEM,
5524 	.arg3_type      = ARG_CONST_SIZE,
5525 	.arg4_type	= ARG_ANYTHING,
5526 };
5527 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)5528 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5529 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5530 {
5531 	struct net *net = dev_net(skb->dev);
5532 	int rc = -EAFNOSUPPORT;
5533 	bool check_mtu = false;
5534 
5535 	if (plen < sizeof(*params))
5536 		return -EINVAL;
5537 
5538 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5539 		return -EINVAL;
5540 
5541 	if (params->tot_len)
5542 		check_mtu = true;
5543 
5544 	switch (params->family) {
5545 #if IS_ENABLED(CONFIG_INET)
5546 	case AF_INET:
5547 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5548 		break;
5549 #endif
5550 #if IS_ENABLED(CONFIG_IPV6)
5551 	case AF_INET6:
5552 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5553 		break;
5554 #endif
5555 	}
5556 
5557 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5558 		struct net_device *dev;
5559 
5560 		/* When tot_len isn't provided by user, check skb
5561 		 * against MTU of FIB lookup resulting net_device
5562 		 */
5563 		dev = dev_get_by_index_rcu(net, params->ifindex);
5564 		if (!is_skb_forwardable(dev, skb))
5565 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5566 	}
5567 
5568 	return rc;
5569 }
5570 
5571 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5572 	.func		= bpf_skb_fib_lookup,
5573 	.gpl_only	= true,
5574 	.ret_type	= RET_INTEGER,
5575 	.arg1_type      = ARG_PTR_TO_CTX,
5576 	.arg2_type      = ARG_PTR_TO_MEM,
5577 	.arg3_type      = ARG_CONST_SIZE,
5578 	.arg4_type	= ARG_ANYTHING,
5579 };
5580 
5581 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)5582 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5583 {
5584 	int err;
5585 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5586 
5587 	if (!seg6_validate_srh(srh, len, false))
5588 		return -EINVAL;
5589 
5590 	switch (type) {
5591 	case BPF_LWT_ENCAP_SEG6_INLINE:
5592 		if (skb->protocol != htons(ETH_P_IPV6))
5593 			return -EBADMSG;
5594 
5595 		err = seg6_do_srh_inline(skb, srh);
5596 		break;
5597 	case BPF_LWT_ENCAP_SEG6:
5598 		skb_reset_inner_headers(skb);
5599 		skb->encapsulation = 1;
5600 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5601 		break;
5602 	default:
5603 		return -EINVAL;
5604 	}
5605 
5606 	bpf_compute_data_pointers(skb);
5607 	if (err)
5608 		return err;
5609 
5610 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5611 
5612 	return seg6_lookup_nexthop(skb, NULL, 0);
5613 }
5614 #endif /* CONFIG_IPV6_SEG6_BPF */
5615 
5616 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)5617 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5618 			     bool ingress)
5619 {
5620 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5621 }
5622 #endif
5623 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5624 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5625 	   u32, len)
5626 {
5627 	switch (type) {
5628 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5629 	case BPF_LWT_ENCAP_SEG6:
5630 	case BPF_LWT_ENCAP_SEG6_INLINE:
5631 		return bpf_push_seg6_encap(skb, type, hdr, len);
5632 #endif
5633 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5634 	case BPF_LWT_ENCAP_IP:
5635 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5636 #endif
5637 	default:
5638 		return -EINVAL;
5639 	}
5640 }
5641 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)5642 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5643 	   void *, hdr, u32, len)
5644 {
5645 	switch (type) {
5646 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5647 	case BPF_LWT_ENCAP_IP:
5648 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5649 #endif
5650 	default:
5651 		return -EINVAL;
5652 	}
5653 }
5654 
5655 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5656 	.func		= bpf_lwt_in_push_encap,
5657 	.gpl_only	= false,
5658 	.ret_type	= RET_INTEGER,
5659 	.arg1_type	= ARG_PTR_TO_CTX,
5660 	.arg2_type	= ARG_ANYTHING,
5661 	.arg3_type	= ARG_PTR_TO_MEM,
5662 	.arg4_type	= ARG_CONST_SIZE
5663 };
5664 
5665 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5666 	.func		= bpf_lwt_xmit_push_encap,
5667 	.gpl_only	= false,
5668 	.ret_type	= RET_INTEGER,
5669 	.arg1_type	= ARG_PTR_TO_CTX,
5670 	.arg2_type	= ARG_ANYTHING,
5671 	.arg3_type	= ARG_PTR_TO_MEM,
5672 	.arg4_type	= ARG_CONST_SIZE
5673 };
5674 
5675 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)5676 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5677 	   const void *, from, u32, len)
5678 {
5679 	struct seg6_bpf_srh_state *srh_state =
5680 		this_cpu_ptr(&seg6_bpf_srh_states);
5681 	struct ipv6_sr_hdr *srh = srh_state->srh;
5682 	void *srh_tlvs, *srh_end, *ptr;
5683 	int srhoff = 0;
5684 
5685 	if (srh == NULL)
5686 		return -EINVAL;
5687 
5688 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5689 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5690 
5691 	ptr = skb->data + offset;
5692 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5693 		srh_state->valid = false;
5694 	else if (ptr < (void *)&srh->flags ||
5695 		 ptr + len > (void *)&srh->segments)
5696 		return -EFAULT;
5697 
5698 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5699 		return -EFAULT;
5700 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5701 		return -EINVAL;
5702 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5703 
5704 	memcpy(skb->data + offset, from, len);
5705 	return 0;
5706 }
5707 
5708 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5709 	.func		= bpf_lwt_seg6_store_bytes,
5710 	.gpl_only	= false,
5711 	.ret_type	= RET_INTEGER,
5712 	.arg1_type	= ARG_PTR_TO_CTX,
5713 	.arg2_type	= ARG_ANYTHING,
5714 	.arg3_type	= ARG_PTR_TO_MEM,
5715 	.arg4_type	= ARG_CONST_SIZE
5716 };
5717 
bpf_update_srh_state(struct sk_buff * skb)5718 static void bpf_update_srh_state(struct sk_buff *skb)
5719 {
5720 	struct seg6_bpf_srh_state *srh_state =
5721 		this_cpu_ptr(&seg6_bpf_srh_states);
5722 	int srhoff = 0;
5723 
5724 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5725 		srh_state->srh = NULL;
5726 	} else {
5727 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5728 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5729 		srh_state->valid = true;
5730 	}
5731 }
5732 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)5733 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5734 	   u32, action, void *, param, u32, param_len)
5735 {
5736 	struct seg6_bpf_srh_state *srh_state =
5737 		this_cpu_ptr(&seg6_bpf_srh_states);
5738 	int hdroff = 0;
5739 	int err;
5740 
5741 	switch (action) {
5742 	case SEG6_LOCAL_ACTION_END_X:
5743 		if (!seg6_bpf_has_valid_srh(skb))
5744 			return -EBADMSG;
5745 		if (param_len != sizeof(struct in6_addr))
5746 			return -EINVAL;
5747 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5748 	case SEG6_LOCAL_ACTION_END_T:
5749 		if (!seg6_bpf_has_valid_srh(skb))
5750 			return -EBADMSG;
5751 		if (param_len != sizeof(int))
5752 			return -EINVAL;
5753 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5754 	case SEG6_LOCAL_ACTION_END_DT6:
5755 		if (!seg6_bpf_has_valid_srh(skb))
5756 			return -EBADMSG;
5757 		if (param_len != sizeof(int))
5758 			return -EINVAL;
5759 
5760 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5761 			return -EBADMSG;
5762 		if (!pskb_pull(skb, hdroff))
5763 			return -EBADMSG;
5764 
5765 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5766 		skb_reset_network_header(skb);
5767 		skb_reset_transport_header(skb);
5768 		skb->encapsulation = 0;
5769 
5770 		bpf_compute_data_pointers(skb);
5771 		bpf_update_srh_state(skb);
5772 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5773 	case SEG6_LOCAL_ACTION_END_B6:
5774 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5775 			return -EBADMSG;
5776 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5777 					  param, param_len);
5778 		if (!err)
5779 			bpf_update_srh_state(skb);
5780 
5781 		return err;
5782 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5783 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5784 			return -EBADMSG;
5785 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5786 					  param, param_len);
5787 		if (!err)
5788 			bpf_update_srh_state(skb);
5789 
5790 		return err;
5791 	default:
5792 		return -EINVAL;
5793 	}
5794 }
5795 
5796 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5797 	.func		= bpf_lwt_seg6_action,
5798 	.gpl_only	= false,
5799 	.ret_type	= RET_INTEGER,
5800 	.arg1_type	= ARG_PTR_TO_CTX,
5801 	.arg2_type	= ARG_ANYTHING,
5802 	.arg3_type	= ARG_PTR_TO_MEM,
5803 	.arg4_type	= ARG_CONST_SIZE
5804 };
5805 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)5806 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5807 	   s32, len)
5808 {
5809 	struct seg6_bpf_srh_state *srh_state =
5810 		this_cpu_ptr(&seg6_bpf_srh_states);
5811 	struct ipv6_sr_hdr *srh = srh_state->srh;
5812 	void *srh_end, *srh_tlvs, *ptr;
5813 	struct ipv6hdr *hdr;
5814 	int srhoff = 0;
5815 	int ret;
5816 
5817 	if (unlikely(srh == NULL))
5818 		return -EINVAL;
5819 
5820 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5821 			((srh->first_segment + 1) << 4));
5822 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5823 			srh_state->hdrlen);
5824 	ptr = skb->data + offset;
5825 
5826 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5827 		return -EFAULT;
5828 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5829 		return -EFAULT;
5830 
5831 	if (len > 0) {
5832 		ret = skb_cow_head(skb, len);
5833 		if (unlikely(ret < 0))
5834 			return ret;
5835 
5836 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5837 	} else {
5838 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5839 	}
5840 
5841 	bpf_compute_data_pointers(skb);
5842 	if (unlikely(ret < 0))
5843 		return ret;
5844 
5845 	hdr = (struct ipv6hdr *)skb->data;
5846 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5847 
5848 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5849 		return -EINVAL;
5850 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5851 	srh_state->hdrlen += len;
5852 	srh_state->valid = false;
5853 	return 0;
5854 }
5855 
5856 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5857 	.func		= bpf_lwt_seg6_adjust_srh,
5858 	.gpl_only	= false,
5859 	.ret_type	= RET_INTEGER,
5860 	.arg1_type	= ARG_PTR_TO_CTX,
5861 	.arg2_type	= ARG_ANYTHING,
5862 	.arg3_type	= ARG_ANYTHING,
5863 };
5864 #endif /* CONFIG_IPV6_SEG6_BPF */
5865 
5866 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)5867 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5868 			      int dif, int sdif, u8 family, u8 proto)
5869 {
5870 	bool refcounted = false;
5871 	struct sock *sk = NULL;
5872 
5873 	if (family == AF_INET) {
5874 		__be32 src4 = tuple->ipv4.saddr;
5875 		__be32 dst4 = tuple->ipv4.daddr;
5876 
5877 		if (proto == IPPROTO_TCP)
5878 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5879 					   src4, tuple->ipv4.sport,
5880 					   dst4, tuple->ipv4.dport,
5881 					   dif, sdif, &refcounted);
5882 		else
5883 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5884 					       dst4, tuple->ipv4.dport,
5885 					       dif, sdif, &udp_table, NULL);
5886 #if IS_ENABLED(CONFIG_IPV6)
5887 	} else {
5888 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5889 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5890 
5891 		if (proto == IPPROTO_TCP)
5892 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5893 					    src6, tuple->ipv6.sport,
5894 					    dst6, ntohs(tuple->ipv6.dport),
5895 					    dif, sdif, &refcounted);
5896 		else if (likely(ipv6_bpf_stub))
5897 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5898 							    src6, tuple->ipv6.sport,
5899 							    dst6, tuple->ipv6.dport,
5900 							    dif, sdif,
5901 							    &udp_table, NULL);
5902 #endif
5903 	}
5904 
5905 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5906 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5907 		sk = NULL;
5908 	}
5909 	return sk;
5910 }
5911 
5912 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5913  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5914  * Returns the socket as an 'unsigned long' to simplify the casting in the
5915  * callers to satisfy BPF_CALL declarations.
5916  */
5917 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5918 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5919 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5920 		 u64 flags)
5921 {
5922 	struct sock *sk = NULL;
5923 	u8 family = AF_UNSPEC;
5924 	struct net *net;
5925 	int sdif;
5926 
5927 	if (len == sizeof(tuple->ipv4))
5928 		family = AF_INET;
5929 	else if (len == sizeof(tuple->ipv6))
5930 		family = AF_INET6;
5931 	else
5932 		return NULL;
5933 
5934 	if (unlikely(family == AF_UNSPEC || flags ||
5935 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5936 		goto out;
5937 
5938 	if (family == AF_INET)
5939 		sdif = inet_sdif(skb);
5940 	else
5941 		sdif = inet6_sdif(skb);
5942 
5943 	if ((s32)netns_id < 0) {
5944 		net = caller_net;
5945 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5946 	} else {
5947 		net = get_net_ns_by_id(caller_net, netns_id);
5948 		if (unlikely(!net))
5949 			goto out;
5950 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5951 		put_net(net);
5952 	}
5953 
5954 out:
5955 	return sk;
5956 }
5957 
5958 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags)5959 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5960 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5961 		u64 flags)
5962 {
5963 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5964 					   ifindex, proto, netns_id, flags);
5965 
5966 	if (sk) {
5967 		struct sock *sk2 = sk_to_full_sk(sk);
5968 
5969 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
5970 		 * sock refcnt is decremented to prevent a request_sock leak.
5971 		 */
5972 		if (!sk_fullsock(sk2))
5973 			sk2 = NULL;
5974 		if (sk2 != sk) {
5975 			sock_gen_put(sk);
5976 			/* Ensure there is no need to bump sk2 refcnt */
5977 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
5978 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5979 				return NULL;
5980 			}
5981 			sk = sk2;
5982 		}
5983 	}
5984 
5985 	return sk;
5986 }
5987 
5988 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)5989 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5990 	       u8 proto, u64 netns_id, u64 flags)
5991 {
5992 	struct net *caller_net;
5993 	int ifindex;
5994 
5995 	if (skb->dev) {
5996 		caller_net = dev_net(skb->dev);
5997 		ifindex = skb->dev->ifindex;
5998 	} else {
5999 		caller_net = sock_net(skb->sk);
6000 		ifindex = 0;
6001 	}
6002 
6003 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6004 				netns_id, flags);
6005 }
6006 
6007 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6008 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6009 	      u8 proto, u64 netns_id, u64 flags)
6010 {
6011 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6012 					 flags);
6013 
6014 	if (sk) {
6015 		struct sock *sk2 = sk_to_full_sk(sk);
6016 
6017 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6018 		 * sock refcnt is decremented to prevent a request_sock leak.
6019 		 */
6020 		if (!sk_fullsock(sk2))
6021 			sk2 = NULL;
6022 		if (sk2 != sk) {
6023 			sock_gen_put(sk);
6024 			/* Ensure there is no need to bump sk2 refcnt */
6025 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6026 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6027 				return NULL;
6028 			}
6029 			sk = sk2;
6030 		}
6031 	}
6032 
6033 	return sk;
6034 }
6035 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6036 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6037 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6038 {
6039 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6040 					     netns_id, flags);
6041 }
6042 
6043 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6044 	.func		= bpf_skc_lookup_tcp,
6045 	.gpl_only	= false,
6046 	.pkt_access	= true,
6047 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6048 	.arg1_type	= ARG_PTR_TO_CTX,
6049 	.arg2_type	= ARG_PTR_TO_MEM,
6050 	.arg3_type	= ARG_CONST_SIZE,
6051 	.arg4_type	= ARG_ANYTHING,
6052 	.arg5_type	= ARG_ANYTHING,
6053 };
6054 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6055 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6056 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6057 {
6058 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6059 					    netns_id, flags);
6060 }
6061 
6062 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6063 	.func		= bpf_sk_lookup_tcp,
6064 	.gpl_only	= false,
6065 	.pkt_access	= true,
6066 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6067 	.arg1_type	= ARG_PTR_TO_CTX,
6068 	.arg2_type	= ARG_PTR_TO_MEM,
6069 	.arg3_type	= ARG_CONST_SIZE,
6070 	.arg4_type	= ARG_ANYTHING,
6071 	.arg5_type	= ARG_ANYTHING,
6072 };
6073 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6074 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6075 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6076 {
6077 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6078 					    netns_id, flags);
6079 }
6080 
6081 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6082 	.func		= bpf_sk_lookup_udp,
6083 	.gpl_only	= false,
6084 	.pkt_access	= true,
6085 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6086 	.arg1_type	= ARG_PTR_TO_CTX,
6087 	.arg2_type	= ARG_PTR_TO_MEM,
6088 	.arg3_type	= ARG_CONST_SIZE,
6089 	.arg4_type	= ARG_ANYTHING,
6090 	.arg5_type	= ARG_ANYTHING,
6091 };
6092 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6093 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6094 {
6095 	if (sk && sk_is_refcounted(sk))
6096 		sock_gen_put(sk);
6097 	return 0;
6098 }
6099 
6100 static const struct bpf_func_proto bpf_sk_release_proto = {
6101 	.func		= bpf_sk_release,
6102 	.gpl_only	= false,
6103 	.ret_type	= RET_INTEGER,
6104 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6105 };
6106 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6107 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6108 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6109 {
6110 	struct net *caller_net = dev_net(ctx->rxq->dev);
6111 	int ifindex = ctx->rxq->dev->ifindex;
6112 
6113 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6114 					      ifindex, IPPROTO_UDP, netns_id,
6115 					      flags);
6116 }
6117 
6118 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6119 	.func           = bpf_xdp_sk_lookup_udp,
6120 	.gpl_only       = false,
6121 	.pkt_access     = true,
6122 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6123 	.arg1_type      = ARG_PTR_TO_CTX,
6124 	.arg2_type      = ARG_PTR_TO_MEM,
6125 	.arg3_type      = ARG_CONST_SIZE,
6126 	.arg4_type      = ARG_ANYTHING,
6127 	.arg5_type      = ARG_ANYTHING,
6128 };
6129 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6130 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6131 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6132 {
6133 	struct net *caller_net = dev_net(ctx->rxq->dev);
6134 	int ifindex = ctx->rxq->dev->ifindex;
6135 
6136 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6137 					       ifindex, IPPROTO_TCP, netns_id,
6138 					       flags);
6139 }
6140 
6141 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6142 	.func           = bpf_xdp_skc_lookup_tcp,
6143 	.gpl_only       = false,
6144 	.pkt_access     = true,
6145 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6146 	.arg1_type      = ARG_PTR_TO_CTX,
6147 	.arg2_type      = ARG_PTR_TO_MEM,
6148 	.arg3_type      = ARG_CONST_SIZE,
6149 	.arg4_type      = ARG_ANYTHING,
6150 	.arg5_type      = ARG_ANYTHING,
6151 };
6152 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6153 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6154 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6155 {
6156 	struct net *caller_net = dev_net(ctx->rxq->dev);
6157 	int ifindex = ctx->rxq->dev->ifindex;
6158 
6159 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6160 					      ifindex, IPPROTO_TCP, netns_id,
6161 					      flags);
6162 }
6163 
6164 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6165 	.func           = bpf_xdp_sk_lookup_tcp,
6166 	.gpl_only       = false,
6167 	.pkt_access     = true,
6168 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6169 	.arg1_type      = ARG_PTR_TO_CTX,
6170 	.arg2_type      = ARG_PTR_TO_MEM,
6171 	.arg3_type      = ARG_CONST_SIZE,
6172 	.arg4_type      = ARG_ANYTHING,
6173 	.arg5_type      = ARG_ANYTHING,
6174 };
6175 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6176 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6177 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6178 {
6179 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6180 					       sock_net(ctx->sk), 0,
6181 					       IPPROTO_TCP, netns_id, flags);
6182 }
6183 
6184 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6185 	.func		= bpf_sock_addr_skc_lookup_tcp,
6186 	.gpl_only	= false,
6187 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6188 	.arg1_type	= ARG_PTR_TO_CTX,
6189 	.arg2_type	= ARG_PTR_TO_MEM,
6190 	.arg3_type	= ARG_CONST_SIZE,
6191 	.arg4_type	= ARG_ANYTHING,
6192 	.arg5_type	= ARG_ANYTHING,
6193 };
6194 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6195 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6196 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6197 {
6198 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6199 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6200 					      netns_id, flags);
6201 }
6202 
6203 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6204 	.func		= bpf_sock_addr_sk_lookup_tcp,
6205 	.gpl_only	= false,
6206 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6207 	.arg1_type	= ARG_PTR_TO_CTX,
6208 	.arg2_type	= ARG_PTR_TO_MEM,
6209 	.arg3_type	= ARG_CONST_SIZE,
6210 	.arg4_type	= ARG_ANYTHING,
6211 	.arg5_type	= ARG_ANYTHING,
6212 };
6213 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6214 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6215 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6216 {
6217 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6218 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6219 					      netns_id, flags);
6220 }
6221 
6222 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6223 	.func		= bpf_sock_addr_sk_lookup_udp,
6224 	.gpl_only	= false,
6225 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6226 	.arg1_type	= ARG_PTR_TO_CTX,
6227 	.arg2_type	= ARG_PTR_TO_MEM,
6228 	.arg3_type	= ARG_CONST_SIZE,
6229 	.arg4_type	= ARG_ANYTHING,
6230 	.arg5_type	= ARG_ANYTHING,
6231 };
6232 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6233 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6234 				  struct bpf_insn_access_aux *info)
6235 {
6236 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6237 					  icsk_retransmits))
6238 		return false;
6239 
6240 	if (off % size != 0)
6241 		return false;
6242 
6243 	switch (off) {
6244 	case offsetof(struct bpf_tcp_sock, bytes_received):
6245 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6246 		return size == sizeof(__u64);
6247 	default:
6248 		return size == sizeof(__u32);
6249 	}
6250 }
6251 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6252 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6253 				    const struct bpf_insn *si,
6254 				    struct bpf_insn *insn_buf,
6255 				    struct bpf_prog *prog, u32 *target_size)
6256 {
6257 	struct bpf_insn *insn = insn_buf;
6258 
6259 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6260 	do {								\
6261 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6262 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6263 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6264 				      si->dst_reg, si->src_reg,		\
6265 				      offsetof(struct tcp_sock, FIELD)); \
6266 	} while (0)
6267 
6268 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6269 	do {								\
6270 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6271 					  FIELD) >			\
6272 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6273 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6274 					struct inet_connection_sock,	\
6275 					FIELD),				\
6276 				      si->dst_reg, si->src_reg,		\
6277 				      offsetof(				\
6278 					struct inet_connection_sock,	\
6279 					FIELD));			\
6280 	} while (0)
6281 
6282 	if (insn > insn_buf)
6283 		return insn - insn_buf;
6284 
6285 	switch (si->off) {
6286 	case offsetof(struct bpf_tcp_sock, rtt_min):
6287 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6288 			     sizeof(struct minmax));
6289 		BUILD_BUG_ON(sizeof(struct minmax) <
6290 			     sizeof(struct minmax_sample));
6291 
6292 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6293 				      offsetof(struct tcp_sock, rtt_min) +
6294 				      offsetof(struct minmax_sample, v));
6295 		break;
6296 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6297 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6298 		break;
6299 	case offsetof(struct bpf_tcp_sock, srtt_us):
6300 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6301 		break;
6302 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6303 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6304 		break;
6305 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6306 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6307 		break;
6308 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6309 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6310 		break;
6311 	case offsetof(struct bpf_tcp_sock, snd_una):
6312 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6313 		break;
6314 	case offsetof(struct bpf_tcp_sock, mss_cache):
6315 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6316 		break;
6317 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6318 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6319 		break;
6320 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6321 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6322 		break;
6323 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6324 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6325 		break;
6326 	case offsetof(struct bpf_tcp_sock, packets_out):
6327 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6328 		break;
6329 	case offsetof(struct bpf_tcp_sock, retrans_out):
6330 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6331 		break;
6332 	case offsetof(struct bpf_tcp_sock, total_retrans):
6333 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6334 		break;
6335 	case offsetof(struct bpf_tcp_sock, segs_in):
6336 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6337 		break;
6338 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6339 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6340 		break;
6341 	case offsetof(struct bpf_tcp_sock, segs_out):
6342 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6343 		break;
6344 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6345 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6346 		break;
6347 	case offsetof(struct bpf_tcp_sock, lost_out):
6348 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6349 		break;
6350 	case offsetof(struct bpf_tcp_sock, sacked_out):
6351 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6352 		break;
6353 	case offsetof(struct bpf_tcp_sock, bytes_received):
6354 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6355 		break;
6356 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6357 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6358 		break;
6359 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6360 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6361 		break;
6362 	case offsetof(struct bpf_tcp_sock, delivered):
6363 		BPF_TCP_SOCK_GET_COMMON(delivered);
6364 		break;
6365 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6366 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6367 		break;
6368 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6369 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6370 		break;
6371 	}
6372 
6373 	return insn - insn_buf;
6374 }
6375 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)6376 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6377 {
6378 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6379 		return (unsigned long)sk;
6380 
6381 	return (unsigned long)NULL;
6382 }
6383 
6384 const struct bpf_func_proto bpf_tcp_sock_proto = {
6385 	.func		= bpf_tcp_sock,
6386 	.gpl_only	= false,
6387 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6388 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6389 };
6390 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)6391 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6392 {
6393 	sk = sk_to_full_sk(sk);
6394 
6395 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6396 		return (unsigned long)sk;
6397 
6398 	return (unsigned long)NULL;
6399 }
6400 
6401 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6402 	.func		= bpf_get_listener_sock,
6403 	.gpl_only	= false,
6404 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6405 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6406 };
6407 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)6408 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6409 {
6410 	unsigned int iphdr_len;
6411 
6412 	switch (skb_protocol(skb, true)) {
6413 	case cpu_to_be16(ETH_P_IP):
6414 		iphdr_len = sizeof(struct iphdr);
6415 		break;
6416 	case cpu_to_be16(ETH_P_IPV6):
6417 		iphdr_len = sizeof(struct ipv6hdr);
6418 		break;
6419 	default:
6420 		return 0;
6421 	}
6422 
6423 	if (skb_headlen(skb) < iphdr_len)
6424 		return 0;
6425 
6426 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6427 		return 0;
6428 
6429 	return INET_ECN_set_ce(skb);
6430 }
6431 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6432 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6433 				  struct bpf_insn_access_aux *info)
6434 {
6435 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6436 		return false;
6437 
6438 	if (off % size != 0)
6439 		return false;
6440 
6441 	switch (off) {
6442 	default:
6443 		return size == sizeof(__u32);
6444 	}
6445 }
6446 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6447 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6448 				    const struct bpf_insn *si,
6449 				    struct bpf_insn *insn_buf,
6450 				    struct bpf_prog *prog, u32 *target_size)
6451 {
6452 	struct bpf_insn *insn = insn_buf;
6453 
6454 #define BPF_XDP_SOCK_GET(FIELD)						\
6455 	do {								\
6456 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
6457 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
6458 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6459 				      si->dst_reg, si->src_reg,		\
6460 				      offsetof(struct xdp_sock, FIELD)); \
6461 	} while (0)
6462 
6463 	switch (si->off) {
6464 	case offsetof(struct bpf_xdp_sock, queue_id):
6465 		BPF_XDP_SOCK_GET(queue_id);
6466 		break;
6467 	}
6468 
6469 	return insn - insn_buf;
6470 }
6471 
6472 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6473 	.func           = bpf_skb_ecn_set_ce,
6474 	.gpl_only       = false,
6475 	.ret_type       = RET_INTEGER,
6476 	.arg1_type      = ARG_PTR_TO_CTX,
6477 };
6478 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6479 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6480 	   struct tcphdr *, th, u32, th_len)
6481 {
6482 #ifdef CONFIG_SYN_COOKIES
6483 	u32 cookie;
6484 	int ret;
6485 
6486 	if (unlikely(!sk || th_len < sizeof(*th)))
6487 		return -EINVAL;
6488 
6489 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6490 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6491 		return -EINVAL;
6492 
6493 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6494 		return -EINVAL;
6495 
6496 	if (!th->ack || th->rst || th->syn)
6497 		return -ENOENT;
6498 
6499 	if (unlikely(iph_len < sizeof(struct iphdr)))
6500 		return -EINVAL;
6501 
6502 	if (tcp_synq_no_recent_overflow(sk))
6503 		return -ENOENT;
6504 
6505 	cookie = ntohl(th->ack_seq) - 1;
6506 
6507 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6508 	 * same offset so we can cast to the shorter header (struct iphdr).
6509 	 */
6510 	switch (((struct iphdr *)iph)->version) {
6511 	case 4:
6512 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6513 			return -EINVAL;
6514 
6515 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6516 		break;
6517 
6518 #if IS_BUILTIN(CONFIG_IPV6)
6519 	case 6:
6520 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6521 			return -EINVAL;
6522 
6523 		if (sk->sk_family != AF_INET6)
6524 			return -EINVAL;
6525 
6526 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6527 		break;
6528 #endif /* CONFIG_IPV6 */
6529 
6530 	default:
6531 		return -EPROTONOSUPPORT;
6532 	}
6533 
6534 	if (ret > 0)
6535 		return 0;
6536 
6537 	return -ENOENT;
6538 #else
6539 	return -ENOTSUPP;
6540 #endif
6541 }
6542 
6543 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6544 	.func		= bpf_tcp_check_syncookie,
6545 	.gpl_only	= true,
6546 	.pkt_access	= true,
6547 	.ret_type	= RET_INTEGER,
6548 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6549 	.arg2_type	= ARG_PTR_TO_MEM,
6550 	.arg3_type	= ARG_CONST_SIZE,
6551 	.arg4_type	= ARG_PTR_TO_MEM,
6552 	.arg5_type	= ARG_CONST_SIZE,
6553 };
6554 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)6555 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6556 	   struct tcphdr *, th, u32, th_len)
6557 {
6558 #ifdef CONFIG_SYN_COOKIES
6559 	u32 cookie;
6560 	u16 mss;
6561 
6562 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6563 		return -EINVAL;
6564 
6565 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6566 		return -EINVAL;
6567 
6568 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6569 		return -ENOENT;
6570 
6571 	if (!th->syn || th->ack || th->fin || th->rst)
6572 		return -EINVAL;
6573 
6574 	if (unlikely(iph_len < sizeof(struct iphdr)))
6575 		return -EINVAL;
6576 
6577 	/* Both struct iphdr and struct ipv6hdr have the version field at the
6578 	 * same offset so we can cast to the shorter header (struct iphdr).
6579 	 */
6580 	switch (((struct iphdr *)iph)->version) {
6581 	case 4:
6582 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6583 			return -EINVAL;
6584 
6585 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6586 		break;
6587 
6588 #if IS_BUILTIN(CONFIG_IPV6)
6589 	case 6:
6590 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6591 			return -EINVAL;
6592 
6593 		if (sk->sk_family != AF_INET6)
6594 			return -EINVAL;
6595 
6596 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6597 		break;
6598 #endif /* CONFIG_IPV6 */
6599 
6600 	default:
6601 		return -EPROTONOSUPPORT;
6602 	}
6603 	if (mss == 0)
6604 		return -ENOENT;
6605 
6606 	return cookie | ((u64)mss << 32);
6607 #else
6608 	return -EOPNOTSUPP;
6609 #endif /* CONFIG_SYN_COOKIES */
6610 }
6611 
6612 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6613 	.func		= bpf_tcp_gen_syncookie,
6614 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
6615 	.pkt_access	= true,
6616 	.ret_type	= RET_INTEGER,
6617 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6618 	.arg2_type	= ARG_PTR_TO_MEM,
6619 	.arg3_type	= ARG_CONST_SIZE,
6620 	.arg4_type	= ARG_PTR_TO_MEM,
6621 	.arg5_type	= ARG_CONST_SIZE,
6622 };
6623 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)6624 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6625 {
6626 	if (!sk || flags != 0)
6627 		return -EINVAL;
6628 	if (!skb_at_tc_ingress(skb))
6629 		return -EOPNOTSUPP;
6630 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6631 		return -ENETUNREACH;
6632 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6633 		return -ESOCKTNOSUPPORT;
6634 	if (sk_is_refcounted(sk) &&
6635 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6636 		return -ENOENT;
6637 
6638 	skb_orphan(skb);
6639 	skb->sk = sk;
6640 	skb->destructor = sock_pfree;
6641 
6642 	return 0;
6643 }
6644 
6645 static const struct bpf_func_proto bpf_sk_assign_proto = {
6646 	.func		= bpf_sk_assign,
6647 	.gpl_only	= false,
6648 	.ret_type	= RET_INTEGER,
6649 	.arg1_type      = ARG_PTR_TO_CTX,
6650 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6651 	.arg3_type	= ARG_ANYTHING,
6652 };
6653 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)6654 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6655 				    u8 search_kind, const u8 *magic,
6656 				    u8 magic_len, bool *eol)
6657 {
6658 	u8 kind, kind_len;
6659 
6660 	*eol = false;
6661 
6662 	while (op < opend) {
6663 		kind = op[0];
6664 
6665 		if (kind == TCPOPT_EOL) {
6666 			*eol = true;
6667 			return ERR_PTR(-ENOMSG);
6668 		} else if (kind == TCPOPT_NOP) {
6669 			op++;
6670 			continue;
6671 		}
6672 
6673 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6674 			/* Something is wrong in the received header.
6675 			 * Follow the TCP stack's tcp_parse_options()
6676 			 * and just bail here.
6677 			 */
6678 			return ERR_PTR(-EFAULT);
6679 
6680 		kind_len = op[1];
6681 		if (search_kind == kind) {
6682 			if (!magic_len)
6683 				return op;
6684 
6685 			if (magic_len > kind_len - 2)
6686 				return ERR_PTR(-ENOMSG);
6687 
6688 			if (!memcmp(&op[2], magic, magic_len))
6689 				return op;
6690 		}
6691 
6692 		op += kind_len;
6693 	}
6694 
6695 	return ERR_PTR(-ENOMSG);
6696 }
6697 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)6698 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6699 	   void *, search_res, u32, len, u64, flags)
6700 {
6701 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6702 	const u8 *op, *opend, *magic, *search = search_res;
6703 	u8 search_kind, search_len, copy_len, magic_len;
6704 	int ret;
6705 
6706 	/* 2 byte is the minimal option len except TCPOPT_NOP and
6707 	 * TCPOPT_EOL which are useless for the bpf prog to learn
6708 	 * and this helper disallow loading them also.
6709 	 */
6710 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6711 		return -EINVAL;
6712 
6713 	search_kind = search[0];
6714 	search_len = search[1];
6715 
6716 	if (search_len > len || search_kind == TCPOPT_NOP ||
6717 	    search_kind == TCPOPT_EOL)
6718 		return -EINVAL;
6719 
6720 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
6721 		/* 16 or 32 bit magic.  +2 for kind and kind length */
6722 		if (search_len != 4 && search_len != 6)
6723 			return -EINVAL;
6724 		magic = &search[2];
6725 		magic_len = search_len - 2;
6726 	} else {
6727 		if (search_len)
6728 			return -EINVAL;
6729 		magic = NULL;
6730 		magic_len = 0;
6731 	}
6732 
6733 	if (load_syn) {
6734 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6735 		if (ret < 0)
6736 			return ret;
6737 
6738 		opend = op + ret;
6739 		op += sizeof(struct tcphdr);
6740 	} else {
6741 		if (!bpf_sock->skb ||
6742 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6743 			/* This bpf_sock->op cannot call this helper */
6744 			return -EPERM;
6745 
6746 		opend = bpf_sock->skb_data_end;
6747 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
6748 	}
6749 
6750 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6751 				&eol);
6752 	if (IS_ERR(op))
6753 		return PTR_ERR(op);
6754 
6755 	copy_len = op[1];
6756 	ret = copy_len;
6757 	if (copy_len > len) {
6758 		ret = -ENOSPC;
6759 		copy_len = len;
6760 	}
6761 
6762 	memcpy(search_res, op, copy_len);
6763 	return ret;
6764 }
6765 
6766 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6767 	.func		= bpf_sock_ops_load_hdr_opt,
6768 	.gpl_only	= false,
6769 	.ret_type	= RET_INTEGER,
6770 	.arg1_type	= ARG_PTR_TO_CTX,
6771 	.arg2_type	= ARG_PTR_TO_MEM,
6772 	.arg3_type	= ARG_CONST_SIZE,
6773 	.arg4_type	= ARG_ANYTHING,
6774 };
6775 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)6776 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6777 	   const void *, from, u32, len, u64, flags)
6778 {
6779 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
6780 	const u8 *op, *new_op, *magic = NULL;
6781 	struct sk_buff *skb;
6782 	bool eol;
6783 
6784 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6785 		return -EPERM;
6786 
6787 	if (len < 2 || flags)
6788 		return -EINVAL;
6789 
6790 	new_op = from;
6791 	new_kind = new_op[0];
6792 	new_kind_len = new_op[1];
6793 
6794 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6795 	    new_kind == TCPOPT_EOL)
6796 		return -EINVAL;
6797 
6798 	if (new_kind_len > bpf_sock->remaining_opt_len)
6799 		return -ENOSPC;
6800 
6801 	/* 253 is another experimental kind */
6802 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6803 		if (new_kind_len < 4)
6804 			return -EINVAL;
6805 		/* Match for the 2 byte magic also.
6806 		 * RFC 6994: the magic could be 2 or 4 bytes.
6807 		 * Hence, matching by 2 byte only is on the
6808 		 * conservative side but it is the right
6809 		 * thing to do for the 'search-for-duplication'
6810 		 * purpose.
6811 		 */
6812 		magic = &new_op[2];
6813 		magic_len = 2;
6814 	}
6815 
6816 	/* Check for duplication */
6817 	skb = bpf_sock->skb;
6818 	op = skb->data + sizeof(struct tcphdr);
6819 	opend = bpf_sock->skb_data_end;
6820 
6821 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6822 				&eol);
6823 	if (!IS_ERR(op))
6824 		return -EEXIST;
6825 
6826 	if (PTR_ERR(op) != -ENOMSG)
6827 		return PTR_ERR(op);
6828 
6829 	if (eol)
6830 		/* The option has been ended.  Treat it as no more
6831 		 * header option can be written.
6832 		 */
6833 		return -ENOSPC;
6834 
6835 	/* No duplication found.  Store the header option. */
6836 	memcpy(opend, from, new_kind_len);
6837 
6838 	bpf_sock->remaining_opt_len -= new_kind_len;
6839 	bpf_sock->skb_data_end += new_kind_len;
6840 
6841 	return 0;
6842 }
6843 
6844 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6845 	.func		= bpf_sock_ops_store_hdr_opt,
6846 	.gpl_only	= false,
6847 	.ret_type	= RET_INTEGER,
6848 	.arg1_type	= ARG_PTR_TO_CTX,
6849 	.arg2_type	= ARG_PTR_TO_MEM,
6850 	.arg3_type	= ARG_CONST_SIZE,
6851 	.arg4_type	= ARG_ANYTHING,
6852 };
6853 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)6854 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6855 	   u32, len, u64, flags)
6856 {
6857 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6858 		return -EPERM;
6859 
6860 	if (flags || len < 2)
6861 		return -EINVAL;
6862 
6863 	if (len > bpf_sock->remaining_opt_len)
6864 		return -ENOSPC;
6865 
6866 	bpf_sock->remaining_opt_len -= len;
6867 
6868 	return 0;
6869 }
6870 
6871 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6872 	.func		= bpf_sock_ops_reserve_hdr_opt,
6873 	.gpl_only	= false,
6874 	.ret_type	= RET_INTEGER,
6875 	.arg1_type	= ARG_PTR_TO_CTX,
6876 	.arg2_type	= ARG_ANYTHING,
6877 	.arg3_type	= ARG_ANYTHING,
6878 };
6879 
6880 #endif /* CONFIG_INET */
6881 
bpf_helper_changes_pkt_data(void * func)6882 bool bpf_helper_changes_pkt_data(void *func)
6883 {
6884 	if (func == bpf_skb_vlan_push ||
6885 	    func == bpf_skb_vlan_pop ||
6886 	    func == bpf_skb_store_bytes ||
6887 	    func == bpf_skb_change_proto ||
6888 	    func == bpf_skb_change_head ||
6889 	    func == sk_skb_change_head ||
6890 	    func == bpf_skb_change_tail ||
6891 	    func == sk_skb_change_tail ||
6892 	    func == bpf_skb_adjust_room ||
6893 	    func == sk_skb_adjust_room ||
6894 	    func == bpf_skb_pull_data ||
6895 	    func == sk_skb_pull_data ||
6896 	    func == bpf_clone_redirect ||
6897 	    func == bpf_l3_csum_replace ||
6898 	    func == bpf_l4_csum_replace ||
6899 	    func == bpf_xdp_adjust_head ||
6900 	    func == bpf_xdp_adjust_meta ||
6901 	    func == bpf_msg_pull_data ||
6902 	    func == bpf_msg_push_data ||
6903 	    func == bpf_msg_pop_data ||
6904 	    func == bpf_xdp_adjust_tail ||
6905 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6906 	    func == bpf_lwt_seg6_store_bytes ||
6907 	    func == bpf_lwt_seg6_adjust_srh ||
6908 	    func == bpf_lwt_seg6_action ||
6909 #endif
6910 #ifdef CONFIG_INET
6911 	    func == bpf_sock_ops_store_hdr_opt ||
6912 #endif
6913 	    func == bpf_lwt_in_push_encap ||
6914 	    func == bpf_lwt_xmit_push_encap)
6915 		return true;
6916 
6917 	return false;
6918 }
6919 
6920 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6921 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6922 
6923 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6924 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6925 {
6926 	switch (func_id) {
6927 	/* inet and inet6 sockets are created in a process
6928 	 * context so there is always a valid uid/gid
6929 	 */
6930 	case BPF_FUNC_get_current_uid_gid:
6931 		return &bpf_get_current_uid_gid_proto;
6932 	case BPF_FUNC_get_local_storage:
6933 		return &bpf_get_local_storage_proto;
6934 	case BPF_FUNC_get_socket_cookie:
6935 		return &bpf_get_socket_cookie_sock_proto;
6936 	case BPF_FUNC_get_netns_cookie:
6937 		return &bpf_get_netns_cookie_sock_proto;
6938 	case BPF_FUNC_perf_event_output:
6939 		return &bpf_event_output_data_proto;
6940 	case BPF_FUNC_get_current_pid_tgid:
6941 		return &bpf_get_current_pid_tgid_proto;
6942 	case BPF_FUNC_get_current_comm:
6943 		return &bpf_get_current_comm_proto;
6944 #ifdef CONFIG_CGROUPS
6945 	case BPF_FUNC_get_current_cgroup_id:
6946 		return &bpf_get_current_cgroup_id_proto;
6947 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6948 		return &bpf_get_current_ancestor_cgroup_id_proto;
6949 #endif
6950 #ifdef CONFIG_CGROUP_NET_CLASSID
6951 	case BPF_FUNC_get_cgroup_classid:
6952 		return &bpf_get_cgroup_classid_curr_proto;
6953 #endif
6954 	case BPF_FUNC_sk_storage_get:
6955 		return &bpf_sk_storage_get_cg_sock_proto;
6956 	default:
6957 		return bpf_base_func_proto(func_id);
6958 	}
6959 }
6960 
6961 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)6962 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6963 {
6964 	switch (func_id) {
6965 	/* inet and inet6 sockets are created in a process
6966 	 * context so there is always a valid uid/gid
6967 	 */
6968 	case BPF_FUNC_get_current_uid_gid:
6969 		return &bpf_get_current_uid_gid_proto;
6970 	case BPF_FUNC_bind:
6971 		switch (prog->expected_attach_type) {
6972 		case BPF_CGROUP_INET4_CONNECT:
6973 		case BPF_CGROUP_INET6_CONNECT:
6974 			return &bpf_bind_proto;
6975 		default:
6976 			return NULL;
6977 		}
6978 	case BPF_FUNC_get_socket_cookie:
6979 		return &bpf_get_socket_cookie_sock_addr_proto;
6980 	case BPF_FUNC_get_netns_cookie:
6981 		return &bpf_get_netns_cookie_sock_addr_proto;
6982 	case BPF_FUNC_get_local_storage:
6983 		return &bpf_get_local_storage_proto;
6984 	case BPF_FUNC_perf_event_output:
6985 		return &bpf_event_output_data_proto;
6986 	case BPF_FUNC_get_current_pid_tgid:
6987 		return &bpf_get_current_pid_tgid_proto;
6988 	case BPF_FUNC_get_current_comm:
6989 		return &bpf_get_current_comm_proto;
6990 #ifdef CONFIG_CGROUPS
6991 	case BPF_FUNC_get_current_cgroup_id:
6992 		return &bpf_get_current_cgroup_id_proto;
6993 	case BPF_FUNC_get_current_ancestor_cgroup_id:
6994 		return &bpf_get_current_ancestor_cgroup_id_proto;
6995 #endif
6996 #ifdef CONFIG_CGROUP_NET_CLASSID
6997 	case BPF_FUNC_get_cgroup_classid:
6998 		return &bpf_get_cgroup_classid_curr_proto;
6999 #endif
7000 #ifdef CONFIG_INET
7001 	case BPF_FUNC_sk_lookup_tcp:
7002 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7003 	case BPF_FUNC_sk_lookup_udp:
7004 		return &bpf_sock_addr_sk_lookup_udp_proto;
7005 	case BPF_FUNC_sk_release:
7006 		return &bpf_sk_release_proto;
7007 	case BPF_FUNC_skc_lookup_tcp:
7008 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7009 #endif /* CONFIG_INET */
7010 	case BPF_FUNC_sk_storage_get:
7011 		return &bpf_sk_storage_get_proto;
7012 	case BPF_FUNC_sk_storage_delete:
7013 		return &bpf_sk_storage_delete_proto;
7014 	case BPF_FUNC_setsockopt:
7015 		switch (prog->expected_attach_type) {
7016 		case BPF_CGROUP_INET4_CONNECT:
7017 		case BPF_CGROUP_INET6_CONNECT:
7018 			return &bpf_sock_addr_setsockopt_proto;
7019 		default:
7020 			return NULL;
7021 		}
7022 	case BPF_FUNC_getsockopt:
7023 		switch (prog->expected_attach_type) {
7024 		case BPF_CGROUP_INET4_CONNECT:
7025 		case BPF_CGROUP_INET6_CONNECT:
7026 			return &bpf_sock_addr_getsockopt_proto;
7027 		default:
7028 			return NULL;
7029 		}
7030 	default:
7031 		return bpf_sk_base_func_proto(func_id);
7032 	}
7033 }
7034 
7035 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7036 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7037 {
7038 	switch (func_id) {
7039 	case BPF_FUNC_skb_load_bytes:
7040 		return &bpf_skb_load_bytes_proto;
7041 	case BPF_FUNC_skb_load_bytes_relative:
7042 		return &bpf_skb_load_bytes_relative_proto;
7043 	case BPF_FUNC_get_socket_cookie:
7044 		return &bpf_get_socket_cookie_proto;
7045 	case BPF_FUNC_get_socket_uid:
7046 		return &bpf_get_socket_uid_proto;
7047 	case BPF_FUNC_perf_event_output:
7048 		return &bpf_skb_event_output_proto;
7049 	default:
7050 		return bpf_sk_base_func_proto(func_id);
7051 	}
7052 }
7053 
7054 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7055 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7056 
7057 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7058 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7059 {
7060 	switch (func_id) {
7061 	case BPF_FUNC_get_local_storage:
7062 		return &bpf_get_local_storage_proto;
7063 	case BPF_FUNC_sk_fullsock:
7064 		return &bpf_sk_fullsock_proto;
7065 	case BPF_FUNC_sk_storage_get:
7066 		return &bpf_sk_storage_get_proto;
7067 	case BPF_FUNC_sk_storage_delete:
7068 		return &bpf_sk_storage_delete_proto;
7069 	case BPF_FUNC_perf_event_output:
7070 		return &bpf_skb_event_output_proto;
7071 #ifdef CONFIG_SOCK_CGROUP_DATA
7072 	case BPF_FUNC_skb_cgroup_id:
7073 		return &bpf_skb_cgroup_id_proto;
7074 	case BPF_FUNC_skb_ancestor_cgroup_id:
7075 		return &bpf_skb_ancestor_cgroup_id_proto;
7076 	case BPF_FUNC_sk_cgroup_id:
7077 		return &bpf_sk_cgroup_id_proto;
7078 	case BPF_FUNC_sk_ancestor_cgroup_id:
7079 		return &bpf_sk_ancestor_cgroup_id_proto;
7080 #endif
7081 #ifdef CONFIG_INET
7082 	case BPF_FUNC_sk_lookup_tcp:
7083 		return &bpf_sk_lookup_tcp_proto;
7084 	case BPF_FUNC_sk_lookup_udp:
7085 		return &bpf_sk_lookup_udp_proto;
7086 	case BPF_FUNC_sk_release:
7087 		return &bpf_sk_release_proto;
7088 	case BPF_FUNC_skc_lookup_tcp:
7089 		return &bpf_skc_lookup_tcp_proto;
7090 	case BPF_FUNC_tcp_sock:
7091 		return &bpf_tcp_sock_proto;
7092 	case BPF_FUNC_get_listener_sock:
7093 		return &bpf_get_listener_sock_proto;
7094 	case BPF_FUNC_skb_ecn_set_ce:
7095 		return &bpf_skb_ecn_set_ce_proto;
7096 #endif
7097 	default:
7098 		return sk_filter_func_proto(func_id, prog);
7099 	}
7100 }
7101 
7102 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7103 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7104 {
7105 	switch (func_id) {
7106 	case BPF_FUNC_skb_store_bytes:
7107 		return &bpf_skb_store_bytes_proto;
7108 	case BPF_FUNC_skb_load_bytes:
7109 		return &bpf_skb_load_bytes_proto;
7110 	case BPF_FUNC_skb_load_bytes_relative:
7111 		return &bpf_skb_load_bytes_relative_proto;
7112 	case BPF_FUNC_skb_pull_data:
7113 		return &bpf_skb_pull_data_proto;
7114 	case BPF_FUNC_csum_diff:
7115 		return &bpf_csum_diff_proto;
7116 	case BPF_FUNC_csum_update:
7117 		return &bpf_csum_update_proto;
7118 	case BPF_FUNC_csum_level:
7119 		return &bpf_csum_level_proto;
7120 	case BPF_FUNC_l3_csum_replace:
7121 		return &bpf_l3_csum_replace_proto;
7122 	case BPF_FUNC_l4_csum_replace:
7123 		return &bpf_l4_csum_replace_proto;
7124 	case BPF_FUNC_clone_redirect:
7125 		return &bpf_clone_redirect_proto;
7126 	case BPF_FUNC_get_cgroup_classid:
7127 		return &bpf_get_cgroup_classid_proto;
7128 	case BPF_FUNC_skb_vlan_push:
7129 		return &bpf_skb_vlan_push_proto;
7130 	case BPF_FUNC_skb_vlan_pop:
7131 		return &bpf_skb_vlan_pop_proto;
7132 	case BPF_FUNC_skb_change_proto:
7133 		return &bpf_skb_change_proto_proto;
7134 	case BPF_FUNC_skb_change_type:
7135 		return &bpf_skb_change_type_proto;
7136 	case BPF_FUNC_skb_adjust_room:
7137 		return &bpf_skb_adjust_room_proto;
7138 	case BPF_FUNC_skb_change_tail:
7139 		return &bpf_skb_change_tail_proto;
7140 	case BPF_FUNC_skb_change_head:
7141 		return &bpf_skb_change_head_proto;
7142 	case BPF_FUNC_skb_get_tunnel_key:
7143 		return &bpf_skb_get_tunnel_key_proto;
7144 	case BPF_FUNC_skb_set_tunnel_key:
7145 		return bpf_get_skb_set_tunnel_proto(func_id);
7146 	case BPF_FUNC_skb_get_tunnel_opt:
7147 		return &bpf_skb_get_tunnel_opt_proto;
7148 	case BPF_FUNC_skb_set_tunnel_opt:
7149 		return bpf_get_skb_set_tunnel_proto(func_id);
7150 	case BPF_FUNC_redirect:
7151 		return &bpf_redirect_proto;
7152 	case BPF_FUNC_redirect_neigh:
7153 		return &bpf_redirect_neigh_proto;
7154 	case BPF_FUNC_redirect_peer:
7155 		return &bpf_redirect_peer_proto;
7156 	case BPF_FUNC_get_route_realm:
7157 		return &bpf_get_route_realm_proto;
7158 	case BPF_FUNC_get_hash_recalc:
7159 		return &bpf_get_hash_recalc_proto;
7160 	case BPF_FUNC_set_hash_invalid:
7161 		return &bpf_set_hash_invalid_proto;
7162 	case BPF_FUNC_set_hash:
7163 		return &bpf_set_hash_proto;
7164 	case BPF_FUNC_perf_event_output:
7165 		return &bpf_skb_event_output_proto;
7166 	case BPF_FUNC_get_smp_processor_id:
7167 		return &bpf_get_smp_processor_id_proto;
7168 	case BPF_FUNC_skb_under_cgroup:
7169 		return &bpf_skb_under_cgroup_proto;
7170 	case BPF_FUNC_get_socket_cookie:
7171 		return &bpf_get_socket_cookie_proto;
7172 	case BPF_FUNC_get_socket_uid:
7173 		return &bpf_get_socket_uid_proto;
7174 	case BPF_FUNC_fib_lookup:
7175 		return &bpf_skb_fib_lookup_proto;
7176 	case BPF_FUNC_sk_fullsock:
7177 		return &bpf_sk_fullsock_proto;
7178 	case BPF_FUNC_sk_storage_get:
7179 		return &bpf_sk_storage_get_proto;
7180 	case BPF_FUNC_sk_storage_delete:
7181 		return &bpf_sk_storage_delete_proto;
7182 #ifdef CONFIG_XFRM
7183 	case BPF_FUNC_skb_get_xfrm_state:
7184 		return &bpf_skb_get_xfrm_state_proto;
7185 #endif
7186 #ifdef CONFIG_CGROUP_NET_CLASSID
7187 	case BPF_FUNC_skb_cgroup_classid:
7188 		return &bpf_skb_cgroup_classid_proto;
7189 #endif
7190 #ifdef CONFIG_SOCK_CGROUP_DATA
7191 	case BPF_FUNC_skb_cgroup_id:
7192 		return &bpf_skb_cgroup_id_proto;
7193 	case BPF_FUNC_skb_ancestor_cgroup_id:
7194 		return &bpf_skb_ancestor_cgroup_id_proto;
7195 #endif
7196 #ifdef CONFIG_INET
7197 	case BPF_FUNC_sk_lookup_tcp:
7198 		return &bpf_sk_lookup_tcp_proto;
7199 	case BPF_FUNC_sk_lookup_udp:
7200 		return &bpf_sk_lookup_udp_proto;
7201 	case BPF_FUNC_sk_release:
7202 		return &bpf_sk_release_proto;
7203 	case BPF_FUNC_tcp_sock:
7204 		return &bpf_tcp_sock_proto;
7205 	case BPF_FUNC_get_listener_sock:
7206 		return &bpf_get_listener_sock_proto;
7207 	case BPF_FUNC_skc_lookup_tcp:
7208 		return &bpf_skc_lookup_tcp_proto;
7209 	case BPF_FUNC_tcp_check_syncookie:
7210 		return &bpf_tcp_check_syncookie_proto;
7211 	case BPF_FUNC_skb_ecn_set_ce:
7212 		return &bpf_skb_ecn_set_ce_proto;
7213 	case BPF_FUNC_tcp_gen_syncookie:
7214 		return &bpf_tcp_gen_syncookie_proto;
7215 	case BPF_FUNC_sk_assign:
7216 		return &bpf_sk_assign_proto;
7217 #endif
7218 	default:
7219 		return bpf_sk_base_func_proto(func_id);
7220 	}
7221 }
7222 
7223 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7224 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7225 {
7226 	switch (func_id) {
7227 	case BPF_FUNC_perf_event_output:
7228 		return &bpf_xdp_event_output_proto;
7229 	case BPF_FUNC_get_smp_processor_id:
7230 		return &bpf_get_smp_processor_id_proto;
7231 	case BPF_FUNC_csum_diff:
7232 		return &bpf_csum_diff_proto;
7233 	case BPF_FUNC_xdp_adjust_head:
7234 		return &bpf_xdp_adjust_head_proto;
7235 	case BPF_FUNC_xdp_adjust_meta:
7236 		return &bpf_xdp_adjust_meta_proto;
7237 	case BPF_FUNC_redirect:
7238 		return &bpf_xdp_redirect_proto;
7239 	case BPF_FUNC_redirect_map:
7240 		return &bpf_xdp_redirect_map_proto;
7241 	case BPF_FUNC_xdp_adjust_tail:
7242 		return &bpf_xdp_adjust_tail_proto;
7243 	case BPF_FUNC_fib_lookup:
7244 		return &bpf_xdp_fib_lookup_proto;
7245 #ifdef CONFIG_INET
7246 	case BPF_FUNC_sk_lookup_udp:
7247 		return &bpf_xdp_sk_lookup_udp_proto;
7248 	case BPF_FUNC_sk_lookup_tcp:
7249 		return &bpf_xdp_sk_lookup_tcp_proto;
7250 	case BPF_FUNC_sk_release:
7251 		return &bpf_sk_release_proto;
7252 	case BPF_FUNC_skc_lookup_tcp:
7253 		return &bpf_xdp_skc_lookup_tcp_proto;
7254 	case BPF_FUNC_tcp_check_syncookie:
7255 		return &bpf_tcp_check_syncookie_proto;
7256 	case BPF_FUNC_tcp_gen_syncookie:
7257 		return &bpf_tcp_gen_syncookie_proto;
7258 #endif
7259 	default:
7260 		return bpf_sk_base_func_proto(func_id);
7261 	}
7262 }
7263 
7264 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7265 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7266 
7267 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7268 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7269 {
7270 	switch (func_id) {
7271 	case BPF_FUNC_setsockopt:
7272 		return &bpf_sock_ops_setsockopt_proto;
7273 	case BPF_FUNC_getsockopt:
7274 		return &bpf_sock_ops_getsockopt_proto;
7275 	case BPF_FUNC_sock_ops_cb_flags_set:
7276 		return &bpf_sock_ops_cb_flags_set_proto;
7277 	case BPF_FUNC_sock_map_update:
7278 		return &bpf_sock_map_update_proto;
7279 	case BPF_FUNC_sock_hash_update:
7280 		return &bpf_sock_hash_update_proto;
7281 	case BPF_FUNC_get_socket_cookie:
7282 		return &bpf_get_socket_cookie_sock_ops_proto;
7283 	case BPF_FUNC_get_local_storage:
7284 		return &bpf_get_local_storage_proto;
7285 	case BPF_FUNC_perf_event_output:
7286 		return &bpf_event_output_data_proto;
7287 	case BPF_FUNC_sk_storage_get:
7288 		return &bpf_sk_storage_get_proto;
7289 	case BPF_FUNC_sk_storage_delete:
7290 		return &bpf_sk_storage_delete_proto;
7291 #ifdef CONFIG_INET
7292 	case BPF_FUNC_load_hdr_opt:
7293 		return &bpf_sock_ops_load_hdr_opt_proto;
7294 	case BPF_FUNC_store_hdr_opt:
7295 		return &bpf_sock_ops_store_hdr_opt_proto;
7296 	case BPF_FUNC_reserve_hdr_opt:
7297 		return &bpf_sock_ops_reserve_hdr_opt_proto;
7298 	case BPF_FUNC_tcp_sock:
7299 		return &bpf_tcp_sock_proto;
7300 #endif /* CONFIG_INET */
7301 	default:
7302 		return bpf_sk_base_func_proto(func_id);
7303 	}
7304 }
7305 
7306 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7307 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7308 
7309 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7310 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7311 {
7312 	switch (func_id) {
7313 	case BPF_FUNC_msg_redirect_map:
7314 		return &bpf_msg_redirect_map_proto;
7315 	case BPF_FUNC_msg_redirect_hash:
7316 		return &bpf_msg_redirect_hash_proto;
7317 	case BPF_FUNC_msg_apply_bytes:
7318 		return &bpf_msg_apply_bytes_proto;
7319 	case BPF_FUNC_msg_cork_bytes:
7320 		return &bpf_msg_cork_bytes_proto;
7321 	case BPF_FUNC_msg_pull_data:
7322 		return &bpf_msg_pull_data_proto;
7323 	case BPF_FUNC_msg_push_data:
7324 		return &bpf_msg_push_data_proto;
7325 	case BPF_FUNC_msg_pop_data:
7326 		return &bpf_msg_pop_data_proto;
7327 	case BPF_FUNC_perf_event_output:
7328 		return &bpf_event_output_data_proto;
7329 	case BPF_FUNC_get_current_uid_gid:
7330 		return &bpf_get_current_uid_gid_proto;
7331 	case BPF_FUNC_get_current_pid_tgid:
7332 		return &bpf_get_current_pid_tgid_proto;
7333 	case BPF_FUNC_sk_storage_get:
7334 		return &bpf_sk_storage_get_proto;
7335 	case BPF_FUNC_sk_storage_delete:
7336 		return &bpf_sk_storage_delete_proto;
7337 #ifdef CONFIG_CGROUPS
7338 	case BPF_FUNC_get_current_cgroup_id:
7339 		return &bpf_get_current_cgroup_id_proto;
7340 	case BPF_FUNC_get_current_ancestor_cgroup_id:
7341 		return &bpf_get_current_ancestor_cgroup_id_proto;
7342 #endif
7343 #ifdef CONFIG_CGROUP_NET_CLASSID
7344 	case BPF_FUNC_get_cgroup_classid:
7345 		return &bpf_get_cgroup_classid_curr_proto;
7346 #endif
7347 	default:
7348 		return bpf_sk_base_func_proto(func_id);
7349 	}
7350 }
7351 
7352 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7353 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7354 
7355 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7356 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7357 {
7358 	switch (func_id) {
7359 	case BPF_FUNC_skb_store_bytes:
7360 		return &bpf_skb_store_bytes_proto;
7361 	case BPF_FUNC_skb_load_bytes:
7362 		return &bpf_skb_load_bytes_proto;
7363 	case BPF_FUNC_skb_pull_data:
7364 		return &sk_skb_pull_data_proto;
7365 	case BPF_FUNC_skb_change_tail:
7366 		return &sk_skb_change_tail_proto;
7367 	case BPF_FUNC_skb_change_head:
7368 		return &sk_skb_change_head_proto;
7369 	case BPF_FUNC_skb_adjust_room:
7370 		return &sk_skb_adjust_room_proto;
7371 	case BPF_FUNC_get_socket_cookie:
7372 		return &bpf_get_socket_cookie_proto;
7373 	case BPF_FUNC_get_socket_uid:
7374 		return &bpf_get_socket_uid_proto;
7375 	case BPF_FUNC_sk_redirect_map:
7376 		return &bpf_sk_redirect_map_proto;
7377 	case BPF_FUNC_sk_redirect_hash:
7378 		return &bpf_sk_redirect_hash_proto;
7379 	case BPF_FUNC_perf_event_output:
7380 		return &bpf_skb_event_output_proto;
7381 #ifdef CONFIG_INET
7382 	case BPF_FUNC_sk_lookup_tcp:
7383 		return &bpf_sk_lookup_tcp_proto;
7384 	case BPF_FUNC_sk_lookup_udp:
7385 		return &bpf_sk_lookup_udp_proto;
7386 	case BPF_FUNC_sk_release:
7387 		return &bpf_sk_release_proto;
7388 	case BPF_FUNC_skc_lookup_tcp:
7389 		return &bpf_skc_lookup_tcp_proto;
7390 #endif
7391 	default:
7392 		return bpf_sk_base_func_proto(func_id);
7393 	}
7394 }
7395 
7396 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7397 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7398 {
7399 	switch (func_id) {
7400 	case BPF_FUNC_skb_load_bytes:
7401 		return &bpf_flow_dissector_load_bytes_proto;
7402 	default:
7403 		return bpf_sk_base_func_proto(func_id);
7404 	}
7405 }
7406 
7407 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7408 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7409 {
7410 	switch (func_id) {
7411 	case BPF_FUNC_skb_load_bytes:
7412 		return &bpf_skb_load_bytes_proto;
7413 	case BPF_FUNC_skb_pull_data:
7414 		return &bpf_skb_pull_data_proto;
7415 	case BPF_FUNC_csum_diff:
7416 		return &bpf_csum_diff_proto;
7417 	case BPF_FUNC_get_cgroup_classid:
7418 		return &bpf_get_cgroup_classid_proto;
7419 	case BPF_FUNC_get_route_realm:
7420 		return &bpf_get_route_realm_proto;
7421 	case BPF_FUNC_get_hash_recalc:
7422 		return &bpf_get_hash_recalc_proto;
7423 	case BPF_FUNC_perf_event_output:
7424 		return &bpf_skb_event_output_proto;
7425 	case BPF_FUNC_get_smp_processor_id:
7426 		return &bpf_get_smp_processor_id_proto;
7427 	case BPF_FUNC_skb_under_cgroup:
7428 		return &bpf_skb_under_cgroup_proto;
7429 	default:
7430 		return bpf_sk_base_func_proto(func_id);
7431 	}
7432 }
7433 
7434 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7435 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7436 {
7437 	switch (func_id) {
7438 	case BPF_FUNC_lwt_push_encap:
7439 		return &bpf_lwt_in_push_encap_proto;
7440 	default:
7441 		return lwt_out_func_proto(func_id, prog);
7442 	}
7443 }
7444 
7445 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7446 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7447 {
7448 	switch (func_id) {
7449 	case BPF_FUNC_skb_get_tunnel_key:
7450 		return &bpf_skb_get_tunnel_key_proto;
7451 	case BPF_FUNC_skb_set_tunnel_key:
7452 		return bpf_get_skb_set_tunnel_proto(func_id);
7453 	case BPF_FUNC_skb_get_tunnel_opt:
7454 		return &bpf_skb_get_tunnel_opt_proto;
7455 	case BPF_FUNC_skb_set_tunnel_opt:
7456 		return bpf_get_skb_set_tunnel_proto(func_id);
7457 	case BPF_FUNC_redirect:
7458 		return &bpf_redirect_proto;
7459 	case BPF_FUNC_clone_redirect:
7460 		return &bpf_clone_redirect_proto;
7461 	case BPF_FUNC_skb_change_tail:
7462 		return &bpf_skb_change_tail_proto;
7463 	case BPF_FUNC_skb_change_head:
7464 		return &bpf_skb_change_head_proto;
7465 	case BPF_FUNC_skb_store_bytes:
7466 		return &bpf_skb_store_bytes_proto;
7467 	case BPF_FUNC_csum_update:
7468 		return &bpf_csum_update_proto;
7469 	case BPF_FUNC_csum_level:
7470 		return &bpf_csum_level_proto;
7471 	case BPF_FUNC_l3_csum_replace:
7472 		return &bpf_l3_csum_replace_proto;
7473 	case BPF_FUNC_l4_csum_replace:
7474 		return &bpf_l4_csum_replace_proto;
7475 	case BPF_FUNC_set_hash_invalid:
7476 		return &bpf_set_hash_invalid_proto;
7477 	case BPF_FUNC_lwt_push_encap:
7478 		return &bpf_lwt_xmit_push_encap_proto;
7479 	default:
7480 		return lwt_out_func_proto(func_id, prog);
7481 	}
7482 }
7483 
7484 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7485 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7486 {
7487 	switch (func_id) {
7488 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7489 	case BPF_FUNC_lwt_seg6_store_bytes:
7490 		return &bpf_lwt_seg6_store_bytes_proto;
7491 	case BPF_FUNC_lwt_seg6_action:
7492 		return &bpf_lwt_seg6_action_proto;
7493 	case BPF_FUNC_lwt_seg6_adjust_srh:
7494 		return &bpf_lwt_seg6_adjust_srh_proto;
7495 #endif
7496 	default:
7497 		return lwt_out_func_proto(func_id, prog);
7498 	}
7499 }
7500 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7501 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7502 				    const struct bpf_prog *prog,
7503 				    struct bpf_insn_access_aux *info)
7504 {
7505 	const int size_default = sizeof(__u32);
7506 
7507 	if (off < 0 || off >= sizeof(struct __sk_buff))
7508 		return false;
7509 
7510 	/* The verifier guarantees that size > 0. */
7511 	if (off % size != 0)
7512 		return false;
7513 
7514 	switch (off) {
7515 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7516 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
7517 			return false;
7518 		break;
7519 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7520 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7521 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7522 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7523 	case bpf_ctx_range(struct __sk_buff, data):
7524 	case bpf_ctx_range(struct __sk_buff, data_meta):
7525 	case bpf_ctx_range(struct __sk_buff, data_end):
7526 		if (size != size_default)
7527 			return false;
7528 		break;
7529 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7530 		return false;
7531 	case bpf_ctx_range(struct __sk_buff, tstamp):
7532 		if (size != sizeof(__u64))
7533 			return false;
7534 		break;
7535 	case offsetof(struct __sk_buff, sk):
7536 		if (type == BPF_WRITE || size != sizeof(__u64))
7537 			return false;
7538 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7539 		break;
7540 	default:
7541 		/* Only narrow read access allowed for now. */
7542 		if (type == BPF_WRITE) {
7543 			if (size != size_default)
7544 				return false;
7545 		} else {
7546 			bpf_ctx_record_field_size(info, size_default);
7547 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7548 				return false;
7549 		}
7550 	}
7551 
7552 	return true;
7553 }
7554 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7555 static bool sk_filter_is_valid_access(int off, int size,
7556 				      enum bpf_access_type type,
7557 				      const struct bpf_prog *prog,
7558 				      struct bpf_insn_access_aux *info)
7559 {
7560 	switch (off) {
7561 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7562 	case bpf_ctx_range(struct __sk_buff, data):
7563 	case bpf_ctx_range(struct __sk_buff, data_meta):
7564 	case bpf_ctx_range(struct __sk_buff, data_end):
7565 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7566 	case bpf_ctx_range(struct __sk_buff, tstamp):
7567 	case bpf_ctx_range(struct __sk_buff, wire_len):
7568 		return false;
7569 	}
7570 
7571 	if (type == BPF_WRITE) {
7572 		switch (off) {
7573 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7574 			break;
7575 		default:
7576 			return false;
7577 		}
7578 	}
7579 
7580 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7581 }
7582 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7583 static bool cg_skb_is_valid_access(int off, int size,
7584 				   enum bpf_access_type type,
7585 				   const struct bpf_prog *prog,
7586 				   struct bpf_insn_access_aux *info)
7587 {
7588 	switch (off) {
7589 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7590 	case bpf_ctx_range(struct __sk_buff, data_meta):
7591 	case bpf_ctx_range(struct __sk_buff, wire_len):
7592 		return false;
7593 	case bpf_ctx_range(struct __sk_buff, data):
7594 	case bpf_ctx_range(struct __sk_buff, data_end):
7595 		if (!bpf_capable())
7596 			return false;
7597 		break;
7598 	}
7599 
7600 	if (type == BPF_WRITE) {
7601 		switch (off) {
7602 		case bpf_ctx_range(struct __sk_buff, mark):
7603 		case bpf_ctx_range(struct __sk_buff, priority):
7604 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7605 			break;
7606 		case bpf_ctx_range(struct __sk_buff, tstamp):
7607 			if (!bpf_capable())
7608 				return false;
7609 			break;
7610 		default:
7611 			return false;
7612 		}
7613 	}
7614 
7615 	switch (off) {
7616 	case bpf_ctx_range(struct __sk_buff, data):
7617 		info->reg_type = PTR_TO_PACKET;
7618 		break;
7619 	case bpf_ctx_range(struct __sk_buff, data_end):
7620 		info->reg_type = PTR_TO_PACKET_END;
7621 		break;
7622 	}
7623 
7624 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7625 }
7626 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7627 static bool lwt_is_valid_access(int off, int size,
7628 				enum bpf_access_type type,
7629 				const struct bpf_prog *prog,
7630 				struct bpf_insn_access_aux *info)
7631 {
7632 	switch (off) {
7633 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7634 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7635 	case bpf_ctx_range(struct __sk_buff, data_meta):
7636 	case bpf_ctx_range(struct __sk_buff, tstamp):
7637 	case bpf_ctx_range(struct __sk_buff, wire_len):
7638 		return false;
7639 	}
7640 
7641 	if (type == BPF_WRITE) {
7642 		switch (off) {
7643 		case bpf_ctx_range(struct __sk_buff, mark):
7644 		case bpf_ctx_range(struct __sk_buff, priority):
7645 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7646 			break;
7647 		default:
7648 			return false;
7649 		}
7650 	}
7651 
7652 	switch (off) {
7653 	case bpf_ctx_range(struct __sk_buff, data):
7654 		info->reg_type = PTR_TO_PACKET;
7655 		break;
7656 	case bpf_ctx_range(struct __sk_buff, data_end):
7657 		info->reg_type = PTR_TO_PACKET_END;
7658 		break;
7659 	}
7660 
7661 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7662 }
7663 
7664 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)7665 static bool __sock_filter_check_attach_type(int off,
7666 					    enum bpf_access_type access_type,
7667 					    enum bpf_attach_type attach_type)
7668 {
7669 	switch (off) {
7670 	case offsetof(struct bpf_sock, bound_dev_if):
7671 	case offsetof(struct bpf_sock, mark):
7672 	case offsetof(struct bpf_sock, priority):
7673 		switch (attach_type) {
7674 		case BPF_CGROUP_INET_SOCK_CREATE:
7675 		case BPF_CGROUP_INET_SOCK_RELEASE:
7676 			goto full_access;
7677 		default:
7678 			return false;
7679 		}
7680 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7681 		switch (attach_type) {
7682 		case BPF_CGROUP_INET4_POST_BIND:
7683 			goto read_only;
7684 		default:
7685 			return false;
7686 		}
7687 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7688 		switch (attach_type) {
7689 		case BPF_CGROUP_INET6_POST_BIND:
7690 			goto read_only;
7691 		default:
7692 			return false;
7693 		}
7694 	case bpf_ctx_range(struct bpf_sock, src_port):
7695 		switch (attach_type) {
7696 		case BPF_CGROUP_INET4_POST_BIND:
7697 		case BPF_CGROUP_INET6_POST_BIND:
7698 			goto read_only;
7699 		default:
7700 			return false;
7701 		}
7702 	}
7703 read_only:
7704 	return access_type == BPF_READ;
7705 full_access:
7706 	return true;
7707 }
7708 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7709 bool bpf_sock_common_is_valid_access(int off, int size,
7710 				     enum bpf_access_type type,
7711 				     struct bpf_insn_access_aux *info)
7712 {
7713 	switch (off) {
7714 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
7715 		return false;
7716 	default:
7717 		return bpf_sock_is_valid_access(off, size, type, info);
7718 	}
7719 }
7720 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7721 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7722 			      struct bpf_insn_access_aux *info)
7723 {
7724 	const int size_default = sizeof(__u32);
7725 	int field_size;
7726 
7727 	if (off < 0 || off >= sizeof(struct bpf_sock))
7728 		return false;
7729 	if (off % size != 0)
7730 		return false;
7731 
7732 	switch (off) {
7733 	case offsetof(struct bpf_sock, state):
7734 	case offsetof(struct bpf_sock, family):
7735 	case offsetof(struct bpf_sock, type):
7736 	case offsetof(struct bpf_sock, protocol):
7737 	case offsetof(struct bpf_sock, src_port):
7738 	case offsetof(struct bpf_sock, rx_queue_mapping):
7739 	case bpf_ctx_range(struct bpf_sock, src_ip4):
7740 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7741 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
7742 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7743 		bpf_ctx_record_field_size(info, size_default);
7744 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7745 	case bpf_ctx_range(struct bpf_sock, dst_port):
7746 		field_size = size == size_default ?
7747 			size_default : sizeof_field(struct bpf_sock, dst_port);
7748 		bpf_ctx_record_field_size(info, field_size);
7749 		return bpf_ctx_narrow_access_ok(off, size, field_size);
7750 	case offsetofend(struct bpf_sock, dst_port) ...
7751 	     offsetof(struct bpf_sock, dst_ip4) - 1:
7752 		return false;
7753 	}
7754 
7755 	return size == size_default;
7756 }
7757 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7758 static bool sock_filter_is_valid_access(int off, int size,
7759 					enum bpf_access_type type,
7760 					const struct bpf_prog *prog,
7761 					struct bpf_insn_access_aux *info)
7762 {
7763 	if (!bpf_sock_is_valid_access(off, size, type, info))
7764 		return false;
7765 	return __sock_filter_check_attach_type(off, type,
7766 					       prog->expected_attach_type);
7767 }
7768 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7769 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7770 			     const struct bpf_prog *prog)
7771 {
7772 	/* Neither direct read nor direct write requires any preliminary
7773 	 * action.
7774 	 */
7775 	return 0;
7776 }
7777 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)7778 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7779 				const struct bpf_prog *prog, int drop_verdict)
7780 {
7781 	struct bpf_insn *insn = insn_buf;
7782 
7783 	if (!direct_write)
7784 		return 0;
7785 
7786 	/* if (!skb->cloned)
7787 	 *       goto start;
7788 	 *
7789 	 * (Fast-path, otherwise approximation that we might be
7790 	 *  a clone, do the rest in helper.)
7791 	 */
7792 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7793 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7794 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7795 
7796 	/* ret = bpf_skb_pull_data(skb, 0); */
7797 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7798 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7799 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7800 			       BPF_FUNC_skb_pull_data);
7801 	/* if (!ret)
7802 	 *      goto restore;
7803 	 * return TC_ACT_SHOT;
7804 	 */
7805 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7806 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7807 	*insn++ = BPF_EXIT_INSN();
7808 
7809 	/* restore: */
7810 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7811 	/* start: */
7812 	*insn++ = prog->insnsi[0];
7813 
7814 	return insn - insn_buf;
7815 }
7816 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)7817 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7818 			  struct bpf_insn *insn_buf)
7819 {
7820 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
7821 	struct bpf_insn *insn = insn_buf;
7822 
7823 	if (!indirect) {
7824 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7825 	} else {
7826 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7827 		if (orig->imm)
7828 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7829 	}
7830 	/* We're guaranteed here that CTX is in R6. */
7831 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7832 
7833 	switch (BPF_SIZE(orig->code)) {
7834 	case BPF_B:
7835 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7836 		break;
7837 	case BPF_H:
7838 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7839 		break;
7840 	case BPF_W:
7841 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7842 		break;
7843 	}
7844 
7845 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7846 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7847 	*insn++ = BPF_EXIT_INSN();
7848 
7849 	return insn - insn_buf;
7850 }
7851 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)7852 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7853 			       const struct bpf_prog *prog)
7854 {
7855 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7856 }
7857 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7858 static bool tc_cls_act_is_valid_access(int off, int size,
7859 				       enum bpf_access_type type,
7860 				       const struct bpf_prog *prog,
7861 				       struct bpf_insn_access_aux *info)
7862 {
7863 	if (type == BPF_WRITE) {
7864 		switch (off) {
7865 		case bpf_ctx_range(struct __sk_buff, mark):
7866 		case bpf_ctx_range(struct __sk_buff, tc_index):
7867 		case bpf_ctx_range(struct __sk_buff, priority):
7868 		case bpf_ctx_range(struct __sk_buff, tc_classid):
7869 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7870 		case bpf_ctx_range(struct __sk_buff, tstamp):
7871 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
7872 			break;
7873 		default:
7874 			return false;
7875 		}
7876 	}
7877 
7878 	switch (off) {
7879 	case bpf_ctx_range(struct __sk_buff, data):
7880 		info->reg_type = PTR_TO_PACKET;
7881 		break;
7882 	case bpf_ctx_range(struct __sk_buff, data_meta):
7883 		info->reg_type = PTR_TO_PACKET_META;
7884 		break;
7885 	case bpf_ctx_range(struct __sk_buff, data_end):
7886 		info->reg_type = PTR_TO_PACKET_END;
7887 		break;
7888 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7889 		return false;
7890 	}
7891 
7892 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7893 }
7894 
__is_valid_xdp_access(int off,int size)7895 static bool __is_valid_xdp_access(int off, int size)
7896 {
7897 	if (off < 0 || off >= sizeof(struct xdp_md))
7898 		return false;
7899 	if (off % size != 0)
7900 		return false;
7901 	if (size != sizeof(__u32))
7902 		return false;
7903 
7904 	return true;
7905 }
7906 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7907 static bool xdp_is_valid_access(int off, int size,
7908 				enum bpf_access_type type,
7909 				const struct bpf_prog *prog,
7910 				struct bpf_insn_access_aux *info)
7911 {
7912 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7913 		switch (off) {
7914 		case offsetof(struct xdp_md, egress_ifindex):
7915 			return false;
7916 		}
7917 	}
7918 
7919 	if (type == BPF_WRITE) {
7920 		if (bpf_prog_is_dev_bound(prog->aux)) {
7921 			switch (off) {
7922 			case offsetof(struct xdp_md, rx_queue_index):
7923 				return __is_valid_xdp_access(off, size);
7924 			}
7925 		}
7926 		return false;
7927 	}
7928 
7929 	switch (off) {
7930 	case offsetof(struct xdp_md, data):
7931 		info->reg_type = PTR_TO_PACKET;
7932 		break;
7933 	case offsetof(struct xdp_md, data_meta):
7934 		info->reg_type = PTR_TO_PACKET_META;
7935 		break;
7936 	case offsetof(struct xdp_md, data_end):
7937 		info->reg_type = PTR_TO_PACKET_END;
7938 		break;
7939 	}
7940 
7941 	return __is_valid_xdp_access(off, size);
7942 }
7943 
bpf_warn_invalid_xdp_action(u32 act)7944 void bpf_warn_invalid_xdp_action(u32 act)
7945 {
7946 	const u32 act_max = XDP_REDIRECT;
7947 
7948 	pr_warn_once("%s XDP return value %u, expect packet loss!\n",
7949 		     act > act_max ? "Illegal" : "Driver unsupported",
7950 		     act);
7951 }
7952 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7953 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7954 static bool sock_addr_is_valid_access(int off, int size,
7955 				      enum bpf_access_type type,
7956 				      const struct bpf_prog *prog,
7957 				      struct bpf_insn_access_aux *info)
7958 {
7959 	const int size_default = sizeof(__u32);
7960 
7961 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7962 		return false;
7963 	if (off % size != 0)
7964 		return false;
7965 
7966 	/* Disallow access to IPv6 fields from IPv4 contex and vise
7967 	 * versa.
7968 	 */
7969 	switch (off) {
7970 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7971 		switch (prog->expected_attach_type) {
7972 		case BPF_CGROUP_INET4_BIND:
7973 		case BPF_CGROUP_INET4_CONNECT:
7974 		case BPF_CGROUP_INET4_GETPEERNAME:
7975 		case BPF_CGROUP_INET4_GETSOCKNAME:
7976 		case BPF_CGROUP_UDP4_SENDMSG:
7977 		case BPF_CGROUP_UDP4_RECVMSG:
7978 			break;
7979 		default:
7980 			return false;
7981 		}
7982 		break;
7983 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7984 		switch (prog->expected_attach_type) {
7985 		case BPF_CGROUP_INET6_BIND:
7986 		case BPF_CGROUP_INET6_CONNECT:
7987 		case BPF_CGROUP_INET6_GETPEERNAME:
7988 		case BPF_CGROUP_INET6_GETSOCKNAME:
7989 		case BPF_CGROUP_UDP6_SENDMSG:
7990 		case BPF_CGROUP_UDP6_RECVMSG:
7991 			break;
7992 		default:
7993 			return false;
7994 		}
7995 		break;
7996 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7997 		switch (prog->expected_attach_type) {
7998 		case BPF_CGROUP_UDP4_SENDMSG:
7999 			break;
8000 		default:
8001 			return false;
8002 		}
8003 		break;
8004 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8005 				msg_src_ip6[3]):
8006 		switch (prog->expected_attach_type) {
8007 		case BPF_CGROUP_UDP6_SENDMSG:
8008 			break;
8009 		default:
8010 			return false;
8011 		}
8012 		break;
8013 	}
8014 
8015 	switch (off) {
8016 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8017 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8018 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8019 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8020 				msg_src_ip6[3]):
8021 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8022 		if (type == BPF_READ) {
8023 			bpf_ctx_record_field_size(info, size_default);
8024 
8025 			if (bpf_ctx_wide_access_ok(off, size,
8026 						   struct bpf_sock_addr,
8027 						   user_ip6))
8028 				return true;
8029 
8030 			if (bpf_ctx_wide_access_ok(off, size,
8031 						   struct bpf_sock_addr,
8032 						   msg_src_ip6))
8033 				return true;
8034 
8035 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8036 				return false;
8037 		} else {
8038 			if (bpf_ctx_wide_access_ok(off, size,
8039 						   struct bpf_sock_addr,
8040 						   user_ip6))
8041 				return true;
8042 
8043 			if (bpf_ctx_wide_access_ok(off, size,
8044 						   struct bpf_sock_addr,
8045 						   msg_src_ip6))
8046 				return true;
8047 
8048 			if (size != size_default)
8049 				return false;
8050 		}
8051 		break;
8052 	case offsetof(struct bpf_sock_addr, sk):
8053 		if (type != BPF_READ)
8054 			return false;
8055 		if (size != sizeof(__u64))
8056 			return false;
8057 		info->reg_type = PTR_TO_SOCKET;
8058 		break;
8059 	default:
8060 		if (type == BPF_READ) {
8061 			if (size != size_default)
8062 				return false;
8063 		} else {
8064 			return false;
8065 		}
8066 	}
8067 
8068 	return true;
8069 }
8070 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8071 static bool sock_ops_is_valid_access(int off, int size,
8072 				     enum bpf_access_type type,
8073 				     const struct bpf_prog *prog,
8074 				     struct bpf_insn_access_aux *info)
8075 {
8076 	const int size_default = sizeof(__u32);
8077 
8078 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8079 		return false;
8080 
8081 	/* The verifier guarantees that size > 0. */
8082 	if (off % size != 0)
8083 		return false;
8084 
8085 	if (type == BPF_WRITE) {
8086 		switch (off) {
8087 		case offsetof(struct bpf_sock_ops, reply):
8088 		case offsetof(struct bpf_sock_ops, sk_txhash):
8089 			if (size != size_default)
8090 				return false;
8091 			break;
8092 		default:
8093 			return false;
8094 		}
8095 	} else {
8096 		switch (off) {
8097 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8098 					bytes_acked):
8099 			if (size != sizeof(__u64))
8100 				return false;
8101 			break;
8102 		case offsetof(struct bpf_sock_ops, sk):
8103 			if (size != sizeof(__u64))
8104 				return false;
8105 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8106 			break;
8107 		case offsetof(struct bpf_sock_ops, skb_data):
8108 			if (size != sizeof(__u64))
8109 				return false;
8110 			info->reg_type = PTR_TO_PACKET;
8111 			break;
8112 		case offsetof(struct bpf_sock_ops, skb_data_end):
8113 			if (size != sizeof(__u64))
8114 				return false;
8115 			info->reg_type = PTR_TO_PACKET_END;
8116 			break;
8117 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8118 			bpf_ctx_record_field_size(info, size_default);
8119 			return bpf_ctx_narrow_access_ok(off, size,
8120 							size_default);
8121 		default:
8122 			if (size != size_default)
8123 				return false;
8124 			break;
8125 		}
8126 	}
8127 
8128 	return true;
8129 }
8130 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8131 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8132 			   const struct bpf_prog *prog)
8133 {
8134 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8135 }
8136 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8137 static bool sk_skb_is_valid_access(int off, int size,
8138 				   enum bpf_access_type type,
8139 				   const struct bpf_prog *prog,
8140 				   struct bpf_insn_access_aux *info)
8141 {
8142 	switch (off) {
8143 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8144 	case bpf_ctx_range(struct __sk_buff, data_meta):
8145 	case bpf_ctx_range(struct __sk_buff, tstamp):
8146 	case bpf_ctx_range(struct __sk_buff, wire_len):
8147 		return false;
8148 	}
8149 
8150 	if (type == BPF_WRITE) {
8151 		switch (off) {
8152 		case bpf_ctx_range(struct __sk_buff, tc_index):
8153 		case bpf_ctx_range(struct __sk_buff, priority):
8154 			break;
8155 		default:
8156 			return false;
8157 		}
8158 	}
8159 
8160 	switch (off) {
8161 	case bpf_ctx_range(struct __sk_buff, mark):
8162 		return false;
8163 	case bpf_ctx_range(struct __sk_buff, data):
8164 		info->reg_type = PTR_TO_PACKET;
8165 		break;
8166 	case bpf_ctx_range(struct __sk_buff, data_end):
8167 		info->reg_type = PTR_TO_PACKET_END;
8168 		break;
8169 	}
8170 
8171 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8172 }
8173 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8174 static bool sk_msg_is_valid_access(int off, int size,
8175 				   enum bpf_access_type type,
8176 				   const struct bpf_prog *prog,
8177 				   struct bpf_insn_access_aux *info)
8178 {
8179 	if (type == BPF_WRITE)
8180 		return false;
8181 
8182 	if (off % size != 0)
8183 		return false;
8184 
8185 	switch (off) {
8186 	case offsetof(struct sk_msg_md, data):
8187 		info->reg_type = PTR_TO_PACKET;
8188 		if (size != sizeof(__u64))
8189 			return false;
8190 		break;
8191 	case offsetof(struct sk_msg_md, data_end):
8192 		info->reg_type = PTR_TO_PACKET_END;
8193 		if (size != sizeof(__u64))
8194 			return false;
8195 		break;
8196 	case offsetof(struct sk_msg_md, sk):
8197 		if (size != sizeof(__u64))
8198 			return false;
8199 		info->reg_type = PTR_TO_SOCKET;
8200 		break;
8201 	case bpf_ctx_range(struct sk_msg_md, family):
8202 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8203 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
8204 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8205 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8206 	case bpf_ctx_range(struct sk_msg_md, remote_port):
8207 	case bpf_ctx_range(struct sk_msg_md, local_port):
8208 	case bpf_ctx_range(struct sk_msg_md, size):
8209 		if (size != sizeof(__u32))
8210 			return false;
8211 		break;
8212 	default:
8213 		return false;
8214 	}
8215 	return true;
8216 }
8217 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8218 static bool flow_dissector_is_valid_access(int off, int size,
8219 					   enum bpf_access_type type,
8220 					   const struct bpf_prog *prog,
8221 					   struct bpf_insn_access_aux *info)
8222 {
8223 	const int size_default = sizeof(__u32);
8224 
8225 	if (off < 0 || off >= sizeof(struct __sk_buff))
8226 		return false;
8227 
8228 	if (type == BPF_WRITE)
8229 		return false;
8230 
8231 	switch (off) {
8232 	case bpf_ctx_range(struct __sk_buff, data):
8233 		if (size != size_default)
8234 			return false;
8235 		info->reg_type = PTR_TO_PACKET;
8236 		return true;
8237 	case bpf_ctx_range(struct __sk_buff, data_end):
8238 		if (size != size_default)
8239 			return false;
8240 		info->reg_type = PTR_TO_PACKET_END;
8241 		return true;
8242 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8243 		if (size != sizeof(__u64))
8244 			return false;
8245 		info->reg_type = PTR_TO_FLOW_KEYS;
8246 		return true;
8247 	default:
8248 		return false;
8249 	}
8250 }
8251 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8252 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8253 					     const struct bpf_insn *si,
8254 					     struct bpf_insn *insn_buf,
8255 					     struct bpf_prog *prog,
8256 					     u32 *target_size)
8257 
8258 {
8259 	struct bpf_insn *insn = insn_buf;
8260 
8261 	switch (si->off) {
8262 	case offsetof(struct __sk_buff, data):
8263 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8264 				      si->dst_reg, si->src_reg,
8265 				      offsetof(struct bpf_flow_dissector, data));
8266 		break;
8267 
8268 	case offsetof(struct __sk_buff, data_end):
8269 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8270 				      si->dst_reg, si->src_reg,
8271 				      offsetof(struct bpf_flow_dissector, data_end));
8272 		break;
8273 
8274 	case offsetof(struct __sk_buff, flow_keys):
8275 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8276 				      si->dst_reg, si->src_reg,
8277 				      offsetof(struct bpf_flow_dissector, flow_keys));
8278 		break;
8279 	}
8280 
8281 	return insn - insn_buf;
8282 }
8283 
bpf_convert_shinfo_access(const struct bpf_insn * si,struct bpf_insn * insn)8284 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8285 						  struct bpf_insn *insn)
8286 {
8287 	/* si->dst_reg = skb_shinfo(SKB); */
8288 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8289 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8290 			      BPF_REG_AX, si->src_reg,
8291 			      offsetof(struct sk_buff, end));
8292 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8293 			      si->dst_reg, si->src_reg,
8294 			      offsetof(struct sk_buff, head));
8295 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8296 #else
8297 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8298 			      si->dst_reg, si->src_reg,
8299 			      offsetof(struct sk_buff, end));
8300 #endif
8301 
8302 	return insn;
8303 }
8304 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8305 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8306 				  const struct bpf_insn *si,
8307 				  struct bpf_insn *insn_buf,
8308 				  struct bpf_prog *prog, u32 *target_size)
8309 {
8310 	struct bpf_insn *insn = insn_buf;
8311 	int off;
8312 
8313 	switch (si->off) {
8314 	case offsetof(struct __sk_buff, len):
8315 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8316 				      bpf_target_off(struct sk_buff, len, 4,
8317 						     target_size));
8318 		break;
8319 
8320 	case offsetof(struct __sk_buff, protocol):
8321 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8322 				      bpf_target_off(struct sk_buff, protocol, 2,
8323 						     target_size));
8324 		break;
8325 
8326 	case offsetof(struct __sk_buff, vlan_proto):
8327 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8328 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
8329 						     target_size));
8330 		break;
8331 
8332 	case offsetof(struct __sk_buff, priority):
8333 		if (type == BPF_WRITE)
8334 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8335 					      bpf_target_off(struct sk_buff, priority, 4,
8336 							     target_size));
8337 		else
8338 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8339 					      bpf_target_off(struct sk_buff, priority, 4,
8340 							     target_size));
8341 		break;
8342 
8343 	case offsetof(struct __sk_buff, ingress_ifindex):
8344 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8345 				      bpf_target_off(struct sk_buff, skb_iif, 4,
8346 						     target_size));
8347 		break;
8348 
8349 	case offsetof(struct __sk_buff, ifindex):
8350 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8351 				      si->dst_reg, si->src_reg,
8352 				      offsetof(struct sk_buff, dev));
8353 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8354 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8355 				      bpf_target_off(struct net_device, ifindex, 4,
8356 						     target_size));
8357 		break;
8358 
8359 	case offsetof(struct __sk_buff, hash):
8360 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8361 				      bpf_target_off(struct sk_buff, hash, 4,
8362 						     target_size));
8363 		break;
8364 
8365 	case offsetof(struct __sk_buff, mark):
8366 		if (type == BPF_WRITE)
8367 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8368 					      bpf_target_off(struct sk_buff, mark, 4,
8369 							     target_size));
8370 		else
8371 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8372 					      bpf_target_off(struct sk_buff, mark, 4,
8373 							     target_size));
8374 		break;
8375 
8376 	case offsetof(struct __sk_buff, pkt_type):
8377 		*target_size = 1;
8378 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8379 				      PKT_TYPE_OFFSET());
8380 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8381 #ifdef __BIG_ENDIAN_BITFIELD
8382 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8383 #endif
8384 		break;
8385 
8386 	case offsetof(struct __sk_buff, queue_mapping):
8387 		if (type == BPF_WRITE) {
8388 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8389 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8390 					      bpf_target_off(struct sk_buff,
8391 							     queue_mapping,
8392 							     2, target_size));
8393 		} else {
8394 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8395 					      bpf_target_off(struct sk_buff,
8396 							     queue_mapping,
8397 							     2, target_size));
8398 		}
8399 		break;
8400 
8401 	case offsetof(struct __sk_buff, vlan_present):
8402 		*target_size = 1;
8403 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8404 				      PKT_VLAN_PRESENT_OFFSET());
8405 		if (PKT_VLAN_PRESENT_BIT)
8406 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8407 		if (PKT_VLAN_PRESENT_BIT < 7)
8408 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8409 		break;
8410 
8411 	case offsetof(struct __sk_buff, vlan_tci):
8412 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8413 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
8414 						     target_size));
8415 		break;
8416 
8417 	case offsetof(struct __sk_buff, cb[0]) ...
8418 	     offsetofend(struct __sk_buff, cb[4]) - 1:
8419 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8420 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8421 			      offsetof(struct qdisc_skb_cb, data)) %
8422 			     sizeof(__u64));
8423 
8424 		prog->cb_access = 1;
8425 		off  = si->off;
8426 		off -= offsetof(struct __sk_buff, cb[0]);
8427 		off += offsetof(struct sk_buff, cb);
8428 		off += offsetof(struct qdisc_skb_cb, data);
8429 		if (type == BPF_WRITE)
8430 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8431 					      si->src_reg, off);
8432 		else
8433 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8434 					      si->src_reg, off);
8435 		break;
8436 
8437 	case offsetof(struct __sk_buff, tc_classid):
8438 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8439 
8440 		off  = si->off;
8441 		off -= offsetof(struct __sk_buff, tc_classid);
8442 		off += offsetof(struct sk_buff, cb);
8443 		off += offsetof(struct qdisc_skb_cb, tc_classid);
8444 		*target_size = 2;
8445 		if (type == BPF_WRITE)
8446 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8447 					      si->src_reg, off);
8448 		else
8449 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8450 					      si->src_reg, off);
8451 		break;
8452 
8453 	case offsetof(struct __sk_buff, data):
8454 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8455 				      si->dst_reg, si->src_reg,
8456 				      offsetof(struct sk_buff, data));
8457 		break;
8458 
8459 	case offsetof(struct __sk_buff, data_meta):
8460 		off  = si->off;
8461 		off -= offsetof(struct __sk_buff, data_meta);
8462 		off += offsetof(struct sk_buff, cb);
8463 		off += offsetof(struct bpf_skb_data_end, data_meta);
8464 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8465 				      si->src_reg, off);
8466 		break;
8467 
8468 	case offsetof(struct __sk_buff, data_end):
8469 		off  = si->off;
8470 		off -= offsetof(struct __sk_buff, data_end);
8471 		off += offsetof(struct sk_buff, cb);
8472 		off += offsetof(struct bpf_skb_data_end, data_end);
8473 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8474 				      si->src_reg, off);
8475 		break;
8476 
8477 	case offsetof(struct __sk_buff, tc_index):
8478 #ifdef CONFIG_NET_SCHED
8479 		if (type == BPF_WRITE)
8480 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8481 					      bpf_target_off(struct sk_buff, tc_index, 2,
8482 							     target_size));
8483 		else
8484 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8485 					      bpf_target_off(struct sk_buff, tc_index, 2,
8486 							     target_size));
8487 #else
8488 		*target_size = 2;
8489 		if (type == BPF_WRITE)
8490 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8491 		else
8492 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8493 #endif
8494 		break;
8495 
8496 	case offsetof(struct __sk_buff, napi_id):
8497 #if defined(CONFIG_NET_RX_BUSY_POLL)
8498 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8499 				      bpf_target_off(struct sk_buff, napi_id, 4,
8500 						     target_size));
8501 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8502 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8503 #else
8504 		*target_size = 4;
8505 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8506 #endif
8507 		break;
8508 	case offsetof(struct __sk_buff, family):
8509 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8510 
8511 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8512 				      si->dst_reg, si->src_reg,
8513 				      offsetof(struct sk_buff, sk));
8514 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8515 				      bpf_target_off(struct sock_common,
8516 						     skc_family,
8517 						     2, target_size));
8518 		break;
8519 	case offsetof(struct __sk_buff, remote_ip4):
8520 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8521 
8522 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8523 				      si->dst_reg, si->src_reg,
8524 				      offsetof(struct sk_buff, sk));
8525 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8526 				      bpf_target_off(struct sock_common,
8527 						     skc_daddr,
8528 						     4, target_size));
8529 		break;
8530 	case offsetof(struct __sk_buff, local_ip4):
8531 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8532 					  skc_rcv_saddr) != 4);
8533 
8534 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8535 				      si->dst_reg, si->src_reg,
8536 				      offsetof(struct sk_buff, sk));
8537 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8538 				      bpf_target_off(struct sock_common,
8539 						     skc_rcv_saddr,
8540 						     4, target_size));
8541 		break;
8542 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
8543 	     offsetof(struct __sk_buff, remote_ip6[3]):
8544 #if IS_ENABLED(CONFIG_IPV6)
8545 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8546 					  skc_v6_daddr.s6_addr32[0]) != 4);
8547 
8548 		off = si->off;
8549 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
8550 
8551 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8552 				      si->dst_reg, si->src_reg,
8553 				      offsetof(struct sk_buff, sk));
8554 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8555 				      offsetof(struct sock_common,
8556 					       skc_v6_daddr.s6_addr32[0]) +
8557 				      off);
8558 #else
8559 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8560 #endif
8561 		break;
8562 	case offsetof(struct __sk_buff, local_ip6[0]) ...
8563 	     offsetof(struct __sk_buff, local_ip6[3]):
8564 #if IS_ENABLED(CONFIG_IPV6)
8565 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8566 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8567 
8568 		off = si->off;
8569 		off -= offsetof(struct __sk_buff, local_ip6[0]);
8570 
8571 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8572 				      si->dst_reg, si->src_reg,
8573 				      offsetof(struct sk_buff, sk));
8574 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8575 				      offsetof(struct sock_common,
8576 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8577 				      off);
8578 #else
8579 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8580 #endif
8581 		break;
8582 
8583 	case offsetof(struct __sk_buff, remote_port):
8584 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8585 
8586 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8587 				      si->dst_reg, si->src_reg,
8588 				      offsetof(struct sk_buff, sk));
8589 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8590 				      bpf_target_off(struct sock_common,
8591 						     skc_dport,
8592 						     2, target_size));
8593 #ifndef __BIG_ENDIAN_BITFIELD
8594 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8595 #endif
8596 		break;
8597 
8598 	case offsetof(struct __sk_buff, local_port):
8599 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8600 
8601 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8602 				      si->dst_reg, si->src_reg,
8603 				      offsetof(struct sk_buff, sk));
8604 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8605 				      bpf_target_off(struct sock_common,
8606 						     skc_num, 2, target_size));
8607 		break;
8608 
8609 	case offsetof(struct __sk_buff, tstamp):
8610 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8611 
8612 		if (type == BPF_WRITE)
8613 			*insn++ = BPF_STX_MEM(BPF_DW,
8614 					      si->dst_reg, si->src_reg,
8615 					      bpf_target_off(struct sk_buff,
8616 							     tstamp, 8,
8617 							     target_size));
8618 		else
8619 			*insn++ = BPF_LDX_MEM(BPF_DW,
8620 					      si->dst_reg, si->src_reg,
8621 					      bpf_target_off(struct sk_buff,
8622 							     tstamp, 8,
8623 							     target_size));
8624 		break;
8625 
8626 	case offsetof(struct __sk_buff, gso_segs):
8627 		insn = bpf_convert_shinfo_access(si, insn);
8628 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8629 				      si->dst_reg, si->dst_reg,
8630 				      bpf_target_off(struct skb_shared_info,
8631 						     gso_segs, 2,
8632 						     target_size));
8633 		break;
8634 	case offsetof(struct __sk_buff, gso_size):
8635 		insn = bpf_convert_shinfo_access(si, insn);
8636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8637 				      si->dst_reg, si->dst_reg,
8638 				      bpf_target_off(struct skb_shared_info,
8639 						     gso_size, 2,
8640 						     target_size));
8641 		break;
8642 	case offsetof(struct __sk_buff, wire_len):
8643 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8644 
8645 		off = si->off;
8646 		off -= offsetof(struct __sk_buff, wire_len);
8647 		off += offsetof(struct sk_buff, cb);
8648 		off += offsetof(struct qdisc_skb_cb, pkt_len);
8649 		*target_size = 4;
8650 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8651 		break;
8652 
8653 	case offsetof(struct __sk_buff, sk):
8654 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8655 				      si->dst_reg, si->src_reg,
8656 				      offsetof(struct sk_buff, sk));
8657 		break;
8658 	}
8659 
8660 	return insn - insn_buf;
8661 }
8662 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8663 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8664 				const struct bpf_insn *si,
8665 				struct bpf_insn *insn_buf,
8666 				struct bpf_prog *prog, u32 *target_size)
8667 {
8668 	struct bpf_insn *insn = insn_buf;
8669 	int off;
8670 
8671 	switch (si->off) {
8672 	case offsetof(struct bpf_sock, bound_dev_if):
8673 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8674 
8675 		if (type == BPF_WRITE)
8676 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8677 					offsetof(struct sock, sk_bound_dev_if));
8678 		else
8679 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8680 				      offsetof(struct sock, sk_bound_dev_if));
8681 		break;
8682 
8683 	case offsetof(struct bpf_sock, mark):
8684 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8685 
8686 		if (type == BPF_WRITE)
8687 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8688 					offsetof(struct sock, sk_mark));
8689 		else
8690 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8691 				      offsetof(struct sock, sk_mark));
8692 		break;
8693 
8694 	case offsetof(struct bpf_sock, priority):
8695 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8696 
8697 		if (type == BPF_WRITE)
8698 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8699 					offsetof(struct sock, sk_priority));
8700 		else
8701 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8702 				      offsetof(struct sock, sk_priority));
8703 		break;
8704 
8705 	case offsetof(struct bpf_sock, family):
8706 		*insn++ = BPF_LDX_MEM(
8707 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8708 			si->dst_reg, si->src_reg,
8709 			bpf_target_off(struct sock_common,
8710 				       skc_family,
8711 				       sizeof_field(struct sock_common,
8712 						    skc_family),
8713 				       target_size));
8714 		break;
8715 
8716 	case offsetof(struct bpf_sock, type):
8717 		*insn++ = BPF_LDX_MEM(
8718 			BPF_FIELD_SIZEOF(struct sock, sk_type),
8719 			si->dst_reg, si->src_reg,
8720 			bpf_target_off(struct sock, sk_type,
8721 				       sizeof_field(struct sock, sk_type),
8722 				       target_size));
8723 		break;
8724 
8725 	case offsetof(struct bpf_sock, protocol):
8726 		*insn++ = BPF_LDX_MEM(
8727 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8728 			si->dst_reg, si->src_reg,
8729 			bpf_target_off(struct sock, sk_protocol,
8730 				       sizeof_field(struct sock, sk_protocol),
8731 				       target_size));
8732 		break;
8733 
8734 	case offsetof(struct bpf_sock, src_ip4):
8735 		*insn++ = BPF_LDX_MEM(
8736 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8737 			bpf_target_off(struct sock_common, skc_rcv_saddr,
8738 				       sizeof_field(struct sock_common,
8739 						    skc_rcv_saddr),
8740 				       target_size));
8741 		break;
8742 
8743 	case offsetof(struct bpf_sock, dst_ip4):
8744 		*insn++ = BPF_LDX_MEM(
8745 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8746 			bpf_target_off(struct sock_common, skc_daddr,
8747 				       sizeof_field(struct sock_common,
8748 						    skc_daddr),
8749 				       target_size));
8750 		break;
8751 
8752 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8753 #if IS_ENABLED(CONFIG_IPV6)
8754 		off = si->off;
8755 		off -= offsetof(struct bpf_sock, src_ip6[0]);
8756 		*insn++ = BPF_LDX_MEM(
8757 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8758 			bpf_target_off(
8759 				struct sock_common,
8760 				skc_v6_rcv_saddr.s6_addr32[0],
8761 				sizeof_field(struct sock_common,
8762 					     skc_v6_rcv_saddr.s6_addr32[0]),
8763 				target_size) + off);
8764 #else
8765 		(void)off;
8766 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8767 #endif
8768 		break;
8769 
8770 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8771 #if IS_ENABLED(CONFIG_IPV6)
8772 		off = si->off;
8773 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
8774 		*insn++ = BPF_LDX_MEM(
8775 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8776 			bpf_target_off(struct sock_common,
8777 				       skc_v6_daddr.s6_addr32[0],
8778 				       sizeof_field(struct sock_common,
8779 						    skc_v6_daddr.s6_addr32[0]),
8780 				       target_size) + off);
8781 #else
8782 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8783 		*target_size = 4;
8784 #endif
8785 		break;
8786 
8787 	case offsetof(struct bpf_sock, src_port):
8788 		*insn++ = BPF_LDX_MEM(
8789 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8790 			si->dst_reg, si->src_reg,
8791 			bpf_target_off(struct sock_common, skc_num,
8792 				       sizeof_field(struct sock_common,
8793 						    skc_num),
8794 				       target_size));
8795 		break;
8796 
8797 	case offsetof(struct bpf_sock, dst_port):
8798 		*insn++ = BPF_LDX_MEM(
8799 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8800 			si->dst_reg, si->src_reg,
8801 			bpf_target_off(struct sock_common, skc_dport,
8802 				       sizeof_field(struct sock_common,
8803 						    skc_dport),
8804 				       target_size));
8805 		break;
8806 
8807 	case offsetof(struct bpf_sock, state):
8808 		*insn++ = BPF_LDX_MEM(
8809 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8810 			si->dst_reg, si->src_reg,
8811 			bpf_target_off(struct sock_common, skc_state,
8812 				       sizeof_field(struct sock_common,
8813 						    skc_state),
8814 				       target_size));
8815 		break;
8816 	case offsetof(struct bpf_sock, rx_queue_mapping):
8817 #ifdef CONFIG_XPS
8818 		*insn++ = BPF_LDX_MEM(
8819 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8820 			si->dst_reg, si->src_reg,
8821 			bpf_target_off(struct sock, sk_rx_queue_mapping,
8822 				       sizeof_field(struct sock,
8823 						    sk_rx_queue_mapping),
8824 				       target_size));
8825 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8826 				      1);
8827 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8828 #else
8829 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8830 		*target_size = 2;
8831 #endif
8832 		break;
8833 	}
8834 
8835 	return insn - insn_buf;
8836 }
8837 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8838 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8839 					 const struct bpf_insn *si,
8840 					 struct bpf_insn *insn_buf,
8841 					 struct bpf_prog *prog, u32 *target_size)
8842 {
8843 	struct bpf_insn *insn = insn_buf;
8844 
8845 	switch (si->off) {
8846 	case offsetof(struct __sk_buff, ifindex):
8847 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8848 				      si->dst_reg, si->src_reg,
8849 				      offsetof(struct sk_buff, dev));
8850 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8851 				      bpf_target_off(struct net_device, ifindex, 4,
8852 						     target_size));
8853 		break;
8854 	default:
8855 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8856 					      target_size);
8857 	}
8858 
8859 	return insn - insn_buf;
8860 }
8861 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8862 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8863 				  const struct bpf_insn *si,
8864 				  struct bpf_insn *insn_buf,
8865 				  struct bpf_prog *prog, u32 *target_size)
8866 {
8867 	struct bpf_insn *insn = insn_buf;
8868 
8869 	switch (si->off) {
8870 	case offsetof(struct xdp_md, data):
8871 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8872 				      si->dst_reg, si->src_reg,
8873 				      offsetof(struct xdp_buff, data));
8874 		break;
8875 	case offsetof(struct xdp_md, data_meta):
8876 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8877 				      si->dst_reg, si->src_reg,
8878 				      offsetof(struct xdp_buff, data_meta));
8879 		break;
8880 	case offsetof(struct xdp_md, data_end):
8881 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8882 				      si->dst_reg, si->src_reg,
8883 				      offsetof(struct xdp_buff, data_end));
8884 		break;
8885 	case offsetof(struct xdp_md, ingress_ifindex):
8886 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8887 				      si->dst_reg, si->src_reg,
8888 				      offsetof(struct xdp_buff, rxq));
8889 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8890 				      si->dst_reg, si->dst_reg,
8891 				      offsetof(struct xdp_rxq_info, dev));
8892 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8893 				      offsetof(struct net_device, ifindex));
8894 		break;
8895 	case offsetof(struct xdp_md, rx_queue_index):
8896 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8897 				      si->dst_reg, si->src_reg,
8898 				      offsetof(struct xdp_buff, rxq));
8899 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8900 				      offsetof(struct xdp_rxq_info,
8901 					       queue_index));
8902 		break;
8903 	case offsetof(struct xdp_md, egress_ifindex):
8904 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8905 				      si->dst_reg, si->src_reg,
8906 				      offsetof(struct xdp_buff, txq));
8907 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8908 				      si->dst_reg, si->dst_reg,
8909 				      offsetof(struct xdp_txq_info, dev));
8910 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8911 				      offsetof(struct net_device, ifindex));
8912 		break;
8913 	}
8914 
8915 	return insn - insn_buf;
8916 }
8917 
8918 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8919  * context Structure, F is Field in context structure that contains a pointer
8920  * to Nested Structure of type NS that has the field NF.
8921  *
8922  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8923  * sure that SIZE is not greater than actual size of S.F.NF.
8924  *
8925  * If offset OFF is provided, the load happens from that offset relative to
8926  * offset of NF.
8927  */
8928 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
8929 	do {								       \
8930 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8931 				      si->src_reg, offsetof(S, F));	       \
8932 		*insn++ = BPF_LDX_MEM(					       \
8933 			SIZE, si->dst_reg, si->dst_reg,			       \
8934 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8935 				       target_size)			       \
8936 				+ OFF);					       \
8937 	} while (0)
8938 
8939 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
8940 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
8941 					     BPF_FIELD_SIZEOF(NS, NF), 0)
8942 
8943 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8944  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8945  *
8946  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8947  * "register" since two registers available in convert_ctx_access are not
8948  * enough: we can't override neither SRC, since it contains value to store, nor
8949  * DST since it contains pointer to context that may be used by later
8950  * instructions. But we need a temporary place to save pointer to nested
8951  * structure whose field we want to store to.
8952  */
8953 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
8954 	do {								       \
8955 		int tmp_reg = BPF_REG_9;				       \
8956 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8957 			--tmp_reg;					       \
8958 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
8959 			--tmp_reg;					       \
8960 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
8961 				      offsetof(S, TF));			       \
8962 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
8963 				      si->dst_reg, offsetof(S, F));	       \
8964 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
8965 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
8966 				       target_size)			       \
8967 				+ OFF);					       \
8968 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
8969 				      offsetof(S, TF));			       \
8970 	} while (0)
8971 
8972 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8973 						      TF)		       \
8974 	do {								       \
8975 		if (type == BPF_WRITE) {				       \
8976 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8977 							 OFF, TF);	       \
8978 		} else {						       \
8979 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
8980 				S, NS, F, NF, SIZE, OFF);  \
8981 		}							       \
8982 	} while (0)
8983 
8984 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
8985 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
8986 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8987 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)8988 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8989 					const struct bpf_insn *si,
8990 					struct bpf_insn *insn_buf,
8991 					struct bpf_prog *prog, u32 *target_size)
8992 {
8993 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8994 	struct bpf_insn *insn = insn_buf;
8995 
8996 	switch (si->off) {
8997 	case offsetof(struct bpf_sock_addr, user_family):
8998 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8999 					    struct sockaddr, uaddr, sa_family);
9000 		break;
9001 
9002 	case offsetof(struct bpf_sock_addr, user_ip4):
9003 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9004 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9005 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9006 		break;
9007 
9008 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9009 		off = si->off;
9010 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9011 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9012 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9013 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9014 			tmp_reg);
9015 		break;
9016 
9017 	case offsetof(struct bpf_sock_addr, user_port):
9018 		/* To get port we need to know sa_family first and then treat
9019 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9020 		 * Though we can simplify since port field has same offset and
9021 		 * size in both structures.
9022 		 * Here we check this invariant and use just one of the
9023 		 * structures if it's true.
9024 		 */
9025 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9026 			     offsetof(struct sockaddr_in6, sin6_port));
9027 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9028 			     sizeof_field(struct sockaddr_in6, sin6_port));
9029 		/* Account for sin6_port being smaller than user_port. */
9030 		port_size = min(port_size, BPF_LDST_BYTES(si));
9031 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9032 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9033 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9034 		break;
9035 
9036 	case offsetof(struct bpf_sock_addr, family):
9037 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9038 					    struct sock, sk, sk_family);
9039 		break;
9040 
9041 	case offsetof(struct bpf_sock_addr, type):
9042 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9043 					    struct sock, sk, sk_type);
9044 		break;
9045 
9046 	case offsetof(struct bpf_sock_addr, protocol):
9047 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9048 					    struct sock, sk, sk_protocol);
9049 		break;
9050 
9051 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9052 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9053 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9054 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9055 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9056 		break;
9057 
9058 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9059 				msg_src_ip6[3]):
9060 		off = si->off;
9061 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9062 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9063 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9064 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9065 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9066 		break;
9067 	case offsetof(struct bpf_sock_addr, sk):
9068 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9069 				      si->dst_reg, si->src_reg,
9070 				      offsetof(struct bpf_sock_addr_kern, sk));
9071 		break;
9072 	}
9073 
9074 	return insn - insn_buf;
9075 }
9076 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9077 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9078 				       const struct bpf_insn *si,
9079 				       struct bpf_insn *insn_buf,
9080 				       struct bpf_prog *prog,
9081 				       u32 *target_size)
9082 {
9083 	struct bpf_insn *insn = insn_buf;
9084 	int off;
9085 
9086 /* Helper macro for adding read access to tcp_sock or sock fields. */
9087 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9088 	do {								      \
9089 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9090 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9091 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9092 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9093 			reg--;						      \
9094 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9095 			reg--;						      \
9096 		if (si->dst_reg == si->src_reg) {			      \
9097 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9098 					  offsetof(struct bpf_sock_ops_kern,  \
9099 					  temp));			      \
9100 			fullsock_reg = reg;				      \
9101 			jmp += 2;					      \
9102 		}							      \
9103 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9104 						struct bpf_sock_ops_kern,     \
9105 						is_fullsock),		      \
9106 				      fullsock_reg, si->src_reg,	      \
9107 				      offsetof(struct bpf_sock_ops_kern,      \
9108 					       is_fullsock));		      \
9109 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9110 		if (si->dst_reg == si->src_reg)				      \
9111 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9112 				      offsetof(struct bpf_sock_ops_kern,      \
9113 				      temp));				      \
9114 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9115 						struct bpf_sock_ops_kern, sk),\
9116 				      si->dst_reg, si->src_reg,		      \
9117 				      offsetof(struct bpf_sock_ops_kern, sk));\
9118 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
9119 						       OBJ_FIELD),	      \
9120 				      si->dst_reg, si->dst_reg,		      \
9121 				      offsetof(OBJ, OBJ_FIELD));	      \
9122 		if (si->dst_reg == si->src_reg)	{			      \
9123 			*insn++ = BPF_JMP_A(1);				      \
9124 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9125 				      offsetof(struct bpf_sock_ops_kern,      \
9126 				      temp));				      \
9127 		}							      \
9128 	} while (0)
9129 
9130 #define SOCK_OPS_GET_SK()							      \
9131 	do {								      \
9132 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9133 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9134 			reg--;						      \
9135 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9136 			reg--;						      \
9137 		if (si->dst_reg == si->src_reg) {			      \
9138 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9139 					  offsetof(struct bpf_sock_ops_kern,  \
9140 					  temp));			      \
9141 			fullsock_reg = reg;				      \
9142 			jmp += 2;					      \
9143 		}							      \
9144 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9145 						struct bpf_sock_ops_kern,     \
9146 						is_fullsock),		      \
9147 				      fullsock_reg, si->src_reg,	      \
9148 				      offsetof(struct bpf_sock_ops_kern,      \
9149 					       is_fullsock));		      \
9150 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
9151 		if (si->dst_reg == si->src_reg)				      \
9152 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9153 				      offsetof(struct bpf_sock_ops_kern,      \
9154 				      temp));				      \
9155 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9156 						struct bpf_sock_ops_kern, sk),\
9157 				      si->dst_reg, si->src_reg,		      \
9158 				      offsetof(struct bpf_sock_ops_kern, sk));\
9159 		if (si->dst_reg == si->src_reg)	{			      \
9160 			*insn++ = BPF_JMP_A(1);				      \
9161 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
9162 				      offsetof(struct bpf_sock_ops_kern,      \
9163 				      temp));				      \
9164 		}							      \
9165 	} while (0)
9166 
9167 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9168 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9169 
9170 /* Helper macro for adding write access to tcp_sock or sock fields.
9171  * The macro is called with two registers, dst_reg which contains a pointer
9172  * to ctx (context) and src_reg which contains the value that should be
9173  * stored. However, we need an additional register since we cannot overwrite
9174  * dst_reg because it may be used later in the program.
9175  * Instead we "borrow" one of the other register. We first save its value
9176  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9177  * it at the end of the macro.
9178  */
9179 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9180 	do {								      \
9181 		int reg = BPF_REG_9;					      \
9182 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9183 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9184 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9185 			reg--;						      \
9186 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9187 			reg--;						      \
9188 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
9189 				      offsetof(struct bpf_sock_ops_kern,      \
9190 					       temp));			      \
9191 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9192 						struct bpf_sock_ops_kern,     \
9193 						is_fullsock),		      \
9194 				      reg, si->dst_reg,			      \
9195 				      offsetof(struct bpf_sock_ops_kern,      \
9196 					       is_fullsock));		      \
9197 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
9198 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
9199 						struct bpf_sock_ops_kern, sk),\
9200 				      reg, si->dst_reg,			      \
9201 				      offsetof(struct bpf_sock_ops_kern, sk));\
9202 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
9203 				      reg, si->src_reg,			      \
9204 				      offsetof(OBJ, OBJ_FIELD));	      \
9205 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
9206 				      offsetof(struct bpf_sock_ops_kern,      \
9207 					       temp));			      \
9208 	} while (0)
9209 
9210 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
9211 	do {								      \
9212 		if (TYPE == BPF_WRITE)					      \
9213 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9214 		else							      \
9215 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
9216 	} while (0)
9217 
9218 	if (insn > insn_buf)
9219 		return insn - insn_buf;
9220 
9221 	switch (si->off) {
9222 	case offsetof(struct bpf_sock_ops, op):
9223 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9224 						       op),
9225 				      si->dst_reg, si->src_reg,
9226 				      offsetof(struct bpf_sock_ops_kern, op));
9227 		break;
9228 
9229 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
9230 	     offsetof(struct bpf_sock_ops, replylong[3]):
9231 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9232 			     sizeof_field(struct bpf_sock_ops_kern, reply));
9233 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9234 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
9235 		off = si->off;
9236 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
9237 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9238 		if (type == BPF_WRITE)
9239 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9240 					      off);
9241 		else
9242 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9243 					      off);
9244 		break;
9245 
9246 	case offsetof(struct bpf_sock_ops, family):
9247 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9248 
9249 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9250 					      struct bpf_sock_ops_kern, sk),
9251 				      si->dst_reg, si->src_reg,
9252 				      offsetof(struct bpf_sock_ops_kern, sk));
9253 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9254 				      offsetof(struct sock_common, skc_family));
9255 		break;
9256 
9257 	case offsetof(struct bpf_sock_ops, remote_ip4):
9258 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9259 
9260 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9261 						struct bpf_sock_ops_kern, sk),
9262 				      si->dst_reg, si->src_reg,
9263 				      offsetof(struct bpf_sock_ops_kern, sk));
9264 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9265 				      offsetof(struct sock_common, skc_daddr));
9266 		break;
9267 
9268 	case offsetof(struct bpf_sock_ops, local_ip4):
9269 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9270 					  skc_rcv_saddr) != 4);
9271 
9272 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9273 					      struct bpf_sock_ops_kern, sk),
9274 				      si->dst_reg, si->src_reg,
9275 				      offsetof(struct bpf_sock_ops_kern, sk));
9276 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9277 				      offsetof(struct sock_common,
9278 					       skc_rcv_saddr));
9279 		break;
9280 
9281 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9282 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
9283 #if IS_ENABLED(CONFIG_IPV6)
9284 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9285 					  skc_v6_daddr.s6_addr32[0]) != 4);
9286 
9287 		off = si->off;
9288 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9289 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9290 						struct bpf_sock_ops_kern, sk),
9291 				      si->dst_reg, si->src_reg,
9292 				      offsetof(struct bpf_sock_ops_kern, sk));
9293 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9294 				      offsetof(struct sock_common,
9295 					       skc_v6_daddr.s6_addr32[0]) +
9296 				      off);
9297 #else
9298 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9299 #endif
9300 		break;
9301 
9302 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9303 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
9304 #if IS_ENABLED(CONFIG_IPV6)
9305 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9306 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9307 
9308 		off = si->off;
9309 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9310 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9311 						struct bpf_sock_ops_kern, sk),
9312 				      si->dst_reg, si->src_reg,
9313 				      offsetof(struct bpf_sock_ops_kern, sk));
9314 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9315 				      offsetof(struct sock_common,
9316 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9317 				      off);
9318 #else
9319 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9320 #endif
9321 		break;
9322 
9323 	case offsetof(struct bpf_sock_ops, remote_port):
9324 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9325 
9326 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9327 						struct bpf_sock_ops_kern, sk),
9328 				      si->dst_reg, si->src_reg,
9329 				      offsetof(struct bpf_sock_ops_kern, sk));
9330 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9331 				      offsetof(struct sock_common, skc_dport));
9332 #ifndef __BIG_ENDIAN_BITFIELD
9333 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9334 #endif
9335 		break;
9336 
9337 	case offsetof(struct bpf_sock_ops, local_port):
9338 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9339 
9340 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9341 						struct bpf_sock_ops_kern, sk),
9342 				      si->dst_reg, si->src_reg,
9343 				      offsetof(struct bpf_sock_ops_kern, sk));
9344 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9345 				      offsetof(struct sock_common, skc_num));
9346 		break;
9347 
9348 	case offsetof(struct bpf_sock_ops, is_fullsock):
9349 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9350 						struct bpf_sock_ops_kern,
9351 						is_fullsock),
9352 				      si->dst_reg, si->src_reg,
9353 				      offsetof(struct bpf_sock_ops_kern,
9354 					       is_fullsock));
9355 		break;
9356 
9357 	case offsetof(struct bpf_sock_ops, state):
9358 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9359 
9360 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9361 						struct bpf_sock_ops_kern, sk),
9362 				      si->dst_reg, si->src_reg,
9363 				      offsetof(struct bpf_sock_ops_kern, sk));
9364 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9365 				      offsetof(struct sock_common, skc_state));
9366 		break;
9367 
9368 	case offsetof(struct bpf_sock_ops, rtt_min):
9369 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9370 			     sizeof(struct minmax));
9371 		BUILD_BUG_ON(sizeof(struct minmax) <
9372 			     sizeof(struct minmax_sample));
9373 
9374 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9375 						struct bpf_sock_ops_kern, sk),
9376 				      si->dst_reg, si->src_reg,
9377 				      offsetof(struct bpf_sock_ops_kern, sk));
9378 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9379 				      offsetof(struct tcp_sock, rtt_min) +
9380 				      sizeof_field(struct minmax_sample, t));
9381 		break;
9382 
9383 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9384 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9385 				   struct tcp_sock);
9386 		break;
9387 
9388 	case offsetof(struct bpf_sock_ops, sk_txhash):
9389 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9390 					  struct sock, type);
9391 		break;
9392 	case offsetof(struct bpf_sock_ops, snd_cwnd):
9393 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9394 		break;
9395 	case offsetof(struct bpf_sock_ops, srtt_us):
9396 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9397 		break;
9398 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
9399 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9400 		break;
9401 	case offsetof(struct bpf_sock_ops, rcv_nxt):
9402 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9403 		break;
9404 	case offsetof(struct bpf_sock_ops, snd_nxt):
9405 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9406 		break;
9407 	case offsetof(struct bpf_sock_ops, snd_una):
9408 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9409 		break;
9410 	case offsetof(struct bpf_sock_ops, mss_cache):
9411 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9412 		break;
9413 	case offsetof(struct bpf_sock_ops, ecn_flags):
9414 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9415 		break;
9416 	case offsetof(struct bpf_sock_ops, rate_delivered):
9417 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9418 		break;
9419 	case offsetof(struct bpf_sock_ops, rate_interval_us):
9420 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9421 		break;
9422 	case offsetof(struct bpf_sock_ops, packets_out):
9423 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9424 		break;
9425 	case offsetof(struct bpf_sock_ops, retrans_out):
9426 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9427 		break;
9428 	case offsetof(struct bpf_sock_ops, total_retrans):
9429 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9430 		break;
9431 	case offsetof(struct bpf_sock_ops, segs_in):
9432 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9433 		break;
9434 	case offsetof(struct bpf_sock_ops, data_segs_in):
9435 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9436 		break;
9437 	case offsetof(struct bpf_sock_ops, segs_out):
9438 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9439 		break;
9440 	case offsetof(struct bpf_sock_ops, data_segs_out):
9441 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9442 		break;
9443 	case offsetof(struct bpf_sock_ops, lost_out):
9444 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9445 		break;
9446 	case offsetof(struct bpf_sock_ops, sacked_out):
9447 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9448 		break;
9449 	case offsetof(struct bpf_sock_ops, bytes_received):
9450 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9451 		break;
9452 	case offsetof(struct bpf_sock_ops, bytes_acked):
9453 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9454 		break;
9455 	case offsetof(struct bpf_sock_ops, sk):
9456 		SOCK_OPS_GET_SK();
9457 		break;
9458 	case offsetof(struct bpf_sock_ops, skb_data_end):
9459 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9460 						       skb_data_end),
9461 				      si->dst_reg, si->src_reg,
9462 				      offsetof(struct bpf_sock_ops_kern,
9463 					       skb_data_end));
9464 		break;
9465 	case offsetof(struct bpf_sock_ops, skb_data):
9466 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9467 						       skb),
9468 				      si->dst_reg, si->src_reg,
9469 				      offsetof(struct bpf_sock_ops_kern,
9470 					       skb));
9471 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9472 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9473 				      si->dst_reg, si->dst_reg,
9474 				      offsetof(struct sk_buff, data));
9475 		break;
9476 	case offsetof(struct bpf_sock_ops, skb_len):
9477 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9478 						       skb),
9479 				      si->dst_reg, si->src_reg,
9480 				      offsetof(struct bpf_sock_ops_kern,
9481 					       skb));
9482 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9483 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9484 				      si->dst_reg, si->dst_reg,
9485 				      offsetof(struct sk_buff, len));
9486 		break;
9487 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9488 		off = offsetof(struct sk_buff, cb);
9489 		off += offsetof(struct tcp_skb_cb, tcp_flags);
9490 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9491 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9492 						       skb),
9493 				      si->dst_reg, si->src_reg,
9494 				      offsetof(struct bpf_sock_ops_kern,
9495 					       skb));
9496 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9497 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9498 						       tcp_flags),
9499 				      si->dst_reg, si->dst_reg, off);
9500 		break;
9501 	}
9502 	return insn - insn_buf;
9503 }
9504 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9505 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9506 				     const struct bpf_insn *si,
9507 				     struct bpf_insn *insn_buf,
9508 				     struct bpf_prog *prog, u32 *target_size)
9509 {
9510 	struct bpf_insn *insn = insn_buf;
9511 	int off;
9512 
9513 	switch (si->off) {
9514 	case offsetof(struct __sk_buff, data_end):
9515 		off  = si->off;
9516 		off -= offsetof(struct __sk_buff, data_end);
9517 		off += offsetof(struct sk_buff, cb);
9518 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
9519 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9520 				      si->src_reg, off);
9521 		break;
9522 	case offsetof(struct __sk_buff, cb[0]) ...
9523 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9524 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9525 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9526 			      offsetof(struct sk_skb_cb, data)) %
9527 			     sizeof(__u64));
9528 
9529 		prog->cb_access = 1;
9530 		off  = si->off;
9531 		off -= offsetof(struct __sk_buff, cb[0]);
9532 		off += offsetof(struct sk_buff, cb);
9533 		off += offsetof(struct sk_skb_cb, data);
9534 		if (type == BPF_WRITE)
9535 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9536 					      si->src_reg, off);
9537 		else
9538 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9539 					      si->src_reg, off);
9540 		break;
9541 
9542 
9543 	default:
9544 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9545 					      target_size);
9546 	}
9547 
9548 	return insn - insn_buf;
9549 }
9550 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9551 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9552 				     const struct bpf_insn *si,
9553 				     struct bpf_insn *insn_buf,
9554 				     struct bpf_prog *prog, u32 *target_size)
9555 {
9556 	struct bpf_insn *insn = insn_buf;
9557 #if IS_ENABLED(CONFIG_IPV6)
9558 	int off;
9559 #endif
9560 
9561 	/* convert ctx uses the fact sg element is first in struct */
9562 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9563 
9564 	switch (si->off) {
9565 	case offsetof(struct sk_msg_md, data):
9566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9567 				      si->dst_reg, si->src_reg,
9568 				      offsetof(struct sk_msg, data));
9569 		break;
9570 	case offsetof(struct sk_msg_md, data_end):
9571 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9572 				      si->dst_reg, si->src_reg,
9573 				      offsetof(struct sk_msg, data_end));
9574 		break;
9575 	case offsetof(struct sk_msg_md, family):
9576 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9577 
9578 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9579 					      struct sk_msg, sk),
9580 				      si->dst_reg, si->src_reg,
9581 				      offsetof(struct sk_msg, sk));
9582 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9583 				      offsetof(struct sock_common, skc_family));
9584 		break;
9585 
9586 	case offsetof(struct sk_msg_md, remote_ip4):
9587 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9588 
9589 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9590 						struct sk_msg, sk),
9591 				      si->dst_reg, si->src_reg,
9592 				      offsetof(struct sk_msg, sk));
9593 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9594 				      offsetof(struct sock_common, skc_daddr));
9595 		break;
9596 
9597 	case offsetof(struct sk_msg_md, local_ip4):
9598 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9599 					  skc_rcv_saddr) != 4);
9600 
9601 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9602 					      struct sk_msg, sk),
9603 				      si->dst_reg, si->src_reg,
9604 				      offsetof(struct sk_msg, sk));
9605 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9606 				      offsetof(struct sock_common,
9607 					       skc_rcv_saddr));
9608 		break;
9609 
9610 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9611 	     offsetof(struct sk_msg_md, remote_ip6[3]):
9612 #if IS_ENABLED(CONFIG_IPV6)
9613 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9614 					  skc_v6_daddr.s6_addr32[0]) != 4);
9615 
9616 		off = si->off;
9617 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9618 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9619 						struct sk_msg, sk),
9620 				      si->dst_reg, si->src_reg,
9621 				      offsetof(struct sk_msg, sk));
9622 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9623 				      offsetof(struct sock_common,
9624 					       skc_v6_daddr.s6_addr32[0]) +
9625 				      off);
9626 #else
9627 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9628 #endif
9629 		break;
9630 
9631 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
9632 	     offsetof(struct sk_msg_md, local_ip6[3]):
9633 #if IS_ENABLED(CONFIG_IPV6)
9634 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9635 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9636 
9637 		off = si->off;
9638 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
9639 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9640 						struct sk_msg, sk),
9641 				      si->dst_reg, si->src_reg,
9642 				      offsetof(struct sk_msg, sk));
9643 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9644 				      offsetof(struct sock_common,
9645 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9646 				      off);
9647 #else
9648 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9649 #endif
9650 		break;
9651 
9652 	case offsetof(struct sk_msg_md, remote_port):
9653 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9654 
9655 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9656 						struct sk_msg, sk),
9657 				      si->dst_reg, si->src_reg,
9658 				      offsetof(struct sk_msg, sk));
9659 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9660 				      offsetof(struct sock_common, skc_dport));
9661 #ifndef __BIG_ENDIAN_BITFIELD
9662 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9663 #endif
9664 		break;
9665 
9666 	case offsetof(struct sk_msg_md, local_port):
9667 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9668 
9669 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9670 						struct sk_msg, sk),
9671 				      si->dst_reg, si->src_reg,
9672 				      offsetof(struct sk_msg, sk));
9673 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9674 				      offsetof(struct sock_common, skc_num));
9675 		break;
9676 
9677 	case offsetof(struct sk_msg_md, size):
9678 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9679 				      si->dst_reg, si->src_reg,
9680 				      offsetof(struct sk_msg_sg, size));
9681 		break;
9682 
9683 	case offsetof(struct sk_msg_md, sk):
9684 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9685 				      si->dst_reg, si->src_reg,
9686 				      offsetof(struct sk_msg, sk));
9687 		break;
9688 	}
9689 
9690 	return insn - insn_buf;
9691 }
9692 
9693 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9694 	.get_func_proto		= sk_filter_func_proto,
9695 	.is_valid_access	= sk_filter_is_valid_access,
9696 	.convert_ctx_access	= bpf_convert_ctx_access,
9697 	.gen_ld_abs		= bpf_gen_ld_abs,
9698 };
9699 
9700 const struct bpf_prog_ops sk_filter_prog_ops = {
9701 	.test_run		= bpf_prog_test_run_skb,
9702 };
9703 
9704 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9705 	.get_func_proto		= tc_cls_act_func_proto,
9706 	.is_valid_access	= tc_cls_act_is_valid_access,
9707 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
9708 	.gen_prologue		= tc_cls_act_prologue,
9709 	.gen_ld_abs		= bpf_gen_ld_abs,
9710 };
9711 
9712 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9713 	.test_run		= bpf_prog_test_run_skb,
9714 };
9715 
9716 const struct bpf_verifier_ops xdp_verifier_ops = {
9717 	.get_func_proto		= xdp_func_proto,
9718 	.is_valid_access	= xdp_is_valid_access,
9719 	.convert_ctx_access	= xdp_convert_ctx_access,
9720 	.gen_prologue		= bpf_noop_prologue,
9721 };
9722 
9723 const struct bpf_prog_ops xdp_prog_ops = {
9724 	.test_run		= bpf_prog_test_run_xdp,
9725 };
9726 
9727 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9728 	.get_func_proto		= cg_skb_func_proto,
9729 	.is_valid_access	= cg_skb_is_valid_access,
9730 	.convert_ctx_access	= bpf_convert_ctx_access,
9731 };
9732 
9733 const struct bpf_prog_ops cg_skb_prog_ops = {
9734 	.test_run		= bpf_prog_test_run_skb,
9735 };
9736 
9737 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9738 	.get_func_proto		= lwt_in_func_proto,
9739 	.is_valid_access	= lwt_is_valid_access,
9740 	.convert_ctx_access	= bpf_convert_ctx_access,
9741 };
9742 
9743 const struct bpf_prog_ops lwt_in_prog_ops = {
9744 	.test_run		= bpf_prog_test_run_skb,
9745 };
9746 
9747 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9748 	.get_func_proto		= lwt_out_func_proto,
9749 	.is_valid_access	= lwt_is_valid_access,
9750 	.convert_ctx_access	= bpf_convert_ctx_access,
9751 };
9752 
9753 const struct bpf_prog_ops lwt_out_prog_ops = {
9754 	.test_run		= bpf_prog_test_run_skb,
9755 };
9756 
9757 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9758 	.get_func_proto		= lwt_xmit_func_proto,
9759 	.is_valid_access	= lwt_is_valid_access,
9760 	.convert_ctx_access	= bpf_convert_ctx_access,
9761 	.gen_prologue		= tc_cls_act_prologue,
9762 };
9763 
9764 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9765 	.test_run		= bpf_prog_test_run_skb,
9766 };
9767 
9768 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9769 	.get_func_proto		= lwt_seg6local_func_proto,
9770 	.is_valid_access	= lwt_is_valid_access,
9771 	.convert_ctx_access	= bpf_convert_ctx_access,
9772 };
9773 
9774 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9775 	.test_run		= bpf_prog_test_run_skb,
9776 };
9777 
9778 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9779 	.get_func_proto		= sock_filter_func_proto,
9780 	.is_valid_access	= sock_filter_is_valid_access,
9781 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
9782 };
9783 
9784 const struct bpf_prog_ops cg_sock_prog_ops = {
9785 };
9786 
9787 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9788 	.get_func_proto		= sock_addr_func_proto,
9789 	.is_valid_access	= sock_addr_is_valid_access,
9790 	.convert_ctx_access	= sock_addr_convert_ctx_access,
9791 };
9792 
9793 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9794 };
9795 
9796 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9797 	.get_func_proto		= sock_ops_func_proto,
9798 	.is_valid_access	= sock_ops_is_valid_access,
9799 	.convert_ctx_access	= sock_ops_convert_ctx_access,
9800 };
9801 
9802 const struct bpf_prog_ops sock_ops_prog_ops = {
9803 };
9804 
9805 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9806 	.get_func_proto		= sk_skb_func_proto,
9807 	.is_valid_access	= sk_skb_is_valid_access,
9808 	.convert_ctx_access	= sk_skb_convert_ctx_access,
9809 	.gen_prologue		= sk_skb_prologue,
9810 };
9811 
9812 const struct bpf_prog_ops sk_skb_prog_ops = {
9813 };
9814 
9815 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9816 	.get_func_proto		= sk_msg_func_proto,
9817 	.is_valid_access	= sk_msg_is_valid_access,
9818 	.convert_ctx_access	= sk_msg_convert_ctx_access,
9819 	.gen_prologue		= bpf_noop_prologue,
9820 };
9821 
9822 const struct bpf_prog_ops sk_msg_prog_ops = {
9823 };
9824 
9825 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9826 	.get_func_proto		= flow_dissector_func_proto,
9827 	.is_valid_access	= flow_dissector_is_valid_access,
9828 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
9829 };
9830 
9831 const struct bpf_prog_ops flow_dissector_prog_ops = {
9832 	.test_run		= bpf_prog_test_run_flow_dissector,
9833 };
9834 
sk_detach_filter(struct sock * sk)9835 int sk_detach_filter(struct sock *sk)
9836 {
9837 	int ret = -ENOENT;
9838 	struct sk_filter *filter;
9839 
9840 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
9841 		return -EPERM;
9842 
9843 	filter = rcu_dereference_protected(sk->sk_filter,
9844 					   lockdep_sock_is_held(sk));
9845 	if (filter) {
9846 		RCU_INIT_POINTER(sk->sk_filter, NULL);
9847 		sk_filter_uncharge(sk, filter);
9848 		ret = 0;
9849 	}
9850 
9851 	return ret;
9852 }
9853 EXPORT_SYMBOL_GPL(sk_detach_filter);
9854 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)9855 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9856 		  unsigned int len)
9857 {
9858 	struct sock_fprog_kern *fprog;
9859 	struct sk_filter *filter;
9860 	int ret = 0;
9861 
9862 	lock_sock(sk);
9863 	filter = rcu_dereference_protected(sk->sk_filter,
9864 					   lockdep_sock_is_held(sk));
9865 	if (!filter)
9866 		goto out;
9867 
9868 	/* We're copying the filter that has been originally attached,
9869 	 * so no conversion/decode needed anymore. eBPF programs that
9870 	 * have no original program cannot be dumped through this.
9871 	 */
9872 	ret = -EACCES;
9873 	fprog = filter->prog->orig_prog;
9874 	if (!fprog)
9875 		goto out;
9876 
9877 	ret = fprog->len;
9878 	if (!len)
9879 		/* User space only enquires number of filter blocks. */
9880 		goto out;
9881 
9882 	ret = -EINVAL;
9883 	if (len < fprog->len)
9884 		goto out;
9885 
9886 	ret = -EFAULT;
9887 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9888 		goto out;
9889 
9890 	/* Instead of bytes, the API requests to return the number
9891 	 * of filter blocks.
9892 	 */
9893 	ret = fprog->len;
9894 out:
9895 	release_sock(sk);
9896 	return ret;
9897 }
9898 
9899 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)9900 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9901 				    struct sock_reuseport *reuse,
9902 				    struct sock *sk, struct sk_buff *skb,
9903 				    u32 hash)
9904 {
9905 	reuse_kern->skb = skb;
9906 	reuse_kern->sk = sk;
9907 	reuse_kern->selected_sk = NULL;
9908 	reuse_kern->data_end = skb->data + skb_headlen(skb);
9909 	reuse_kern->hash = hash;
9910 	reuse_kern->reuseport_id = reuse->reuseport_id;
9911 	reuse_kern->bind_inany = reuse->bind_inany;
9912 }
9913 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)9914 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9915 				  struct bpf_prog *prog, struct sk_buff *skb,
9916 				  u32 hash)
9917 {
9918 	struct sk_reuseport_kern reuse_kern;
9919 	enum sk_action action;
9920 
9921 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9922 	action = BPF_PROG_RUN(prog, &reuse_kern);
9923 
9924 	if (action == SK_PASS)
9925 		return reuse_kern.selected_sk;
9926 	else
9927 		return ERR_PTR(-ECONNREFUSED);
9928 }
9929 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)9930 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9931 	   struct bpf_map *, map, void *, key, u32, flags)
9932 {
9933 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9934 	struct sock_reuseport *reuse;
9935 	struct sock *selected_sk;
9936 
9937 	selected_sk = map->ops->map_lookup_elem(map, key);
9938 	if (!selected_sk)
9939 		return -ENOENT;
9940 
9941 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9942 	if (!reuse) {
9943 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9944 		if (sk_is_refcounted(selected_sk))
9945 			sock_put(selected_sk);
9946 
9947 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
9948 		 * The only (!reuse) case here is - the sk has already been
9949 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
9950 		 *
9951 		 * Other maps (e.g. sock_map) do not provide this guarantee and
9952 		 * the sk may never be in the reuseport group to begin with.
9953 		 */
9954 		return is_sockarray ? -ENOENT : -EINVAL;
9955 	}
9956 
9957 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9958 		struct sock *sk = reuse_kern->sk;
9959 
9960 		if (sk->sk_protocol != selected_sk->sk_protocol)
9961 			return -EPROTOTYPE;
9962 		else if (sk->sk_family != selected_sk->sk_family)
9963 			return -EAFNOSUPPORT;
9964 
9965 		/* Catch all. Likely bound to a different sockaddr. */
9966 		return -EBADFD;
9967 	}
9968 
9969 	reuse_kern->selected_sk = selected_sk;
9970 
9971 	return 0;
9972 }
9973 
9974 static const struct bpf_func_proto sk_select_reuseport_proto = {
9975 	.func           = sk_select_reuseport,
9976 	.gpl_only       = false,
9977 	.ret_type       = RET_INTEGER,
9978 	.arg1_type	= ARG_PTR_TO_CTX,
9979 	.arg2_type      = ARG_CONST_MAP_PTR,
9980 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
9981 	.arg4_type	= ARG_ANYTHING,
9982 };
9983 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)9984 BPF_CALL_4(sk_reuseport_load_bytes,
9985 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9986 	   void *, to, u32, len)
9987 {
9988 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9989 }
9990 
9991 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9992 	.func		= sk_reuseport_load_bytes,
9993 	.gpl_only	= false,
9994 	.ret_type	= RET_INTEGER,
9995 	.arg1_type	= ARG_PTR_TO_CTX,
9996 	.arg2_type	= ARG_ANYTHING,
9997 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
9998 	.arg4_type	= ARG_CONST_SIZE,
9999 };
10000 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)10001 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10002 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10003 	   void *, to, u32, len, u32, start_header)
10004 {
10005 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10006 					       len, start_header);
10007 }
10008 
10009 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10010 	.func		= sk_reuseport_load_bytes_relative,
10011 	.gpl_only	= false,
10012 	.ret_type	= RET_INTEGER,
10013 	.arg1_type	= ARG_PTR_TO_CTX,
10014 	.arg2_type	= ARG_ANYTHING,
10015 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10016 	.arg4_type	= ARG_CONST_SIZE,
10017 	.arg5_type	= ARG_ANYTHING,
10018 };
10019 
10020 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10021 sk_reuseport_func_proto(enum bpf_func_id func_id,
10022 			const struct bpf_prog *prog)
10023 {
10024 	switch (func_id) {
10025 	case BPF_FUNC_sk_select_reuseport:
10026 		return &sk_select_reuseport_proto;
10027 	case BPF_FUNC_skb_load_bytes:
10028 		return &sk_reuseport_load_bytes_proto;
10029 	case BPF_FUNC_skb_load_bytes_relative:
10030 		return &sk_reuseport_load_bytes_relative_proto;
10031 	default:
10032 		return bpf_base_func_proto(func_id);
10033 	}
10034 }
10035 
10036 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10037 sk_reuseport_is_valid_access(int off, int size,
10038 			     enum bpf_access_type type,
10039 			     const struct bpf_prog *prog,
10040 			     struct bpf_insn_access_aux *info)
10041 {
10042 	const u32 size_default = sizeof(__u32);
10043 
10044 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10045 	    off % size || type != BPF_READ)
10046 		return false;
10047 
10048 	switch (off) {
10049 	case offsetof(struct sk_reuseport_md, data):
10050 		info->reg_type = PTR_TO_PACKET;
10051 		return size == sizeof(__u64);
10052 
10053 	case offsetof(struct sk_reuseport_md, data_end):
10054 		info->reg_type = PTR_TO_PACKET_END;
10055 		return size == sizeof(__u64);
10056 
10057 	case offsetof(struct sk_reuseport_md, hash):
10058 		return size == size_default;
10059 
10060 	/* Fields that allow narrowing */
10061 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10062 		if (size < sizeof_field(struct sk_buff, protocol))
10063 			return false;
10064 		fallthrough;
10065 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10066 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10067 	case bpf_ctx_range(struct sk_reuseport_md, len):
10068 		bpf_ctx_record_field_size(info, size_default);
10069 		return bpf_ctx_narrow_access_ok(off, size, size_default);
10070 
10071 	default:
10072 		return false;
10073 	}
10074 }
10075 
10076 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
10077 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10078 			      si->dst_reg, si->src_reg,			\
10079 			      bpf_target_off(struct sk_reuseport_kern, F, \
10080 					     sizeof_field(struct sk_reuseport_kern, F), \
10081 					     target_size));		\
10082 	})
10083 
10084 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
10085 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10086 				    struct sk_buff,			\
10087 				    skb,				\
10088 				    SKB_FIELD)
10089 
10090 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
10091 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
10092 				    struct sock,			\
10093 				    sk,					\
10094 				    SK_FIELD)
10095 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10096 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10097 					   const struct bpf_insn *si,
10098 					   struct bpf_insn *insn_buf,
10099 					   struct bpf_prog *prog,
10100 					   u32 *target_size)
10101 {
10102 	struct bpf_insn *insn = insn_buf;
10103 
10104 	switch (si->off) {
10105 	case offsetof(struct sk_reuseport_md, data):
10106 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
10107 		break;
10108 
10109 	case offsetof(struct sk_reuseport_md, len):
10110 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
10111 		break;
10112 
10113 	case offsetof(struct sk_reuseport_md, eth_protocol):
10114 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10115 		break;
10116 
10117 	case offsetof(struct sk_reuseport_md, ip_protocol):
10118 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10119 		break;
10120 
10121 	case offsetof(struct sk_reuseport_md, data_end):
10122 		SK_REUSEPORT_LOAD_FIELD(data_end);
10123 		break;
10124 
10125 	case offsetof(struct sk_reuseport_md, hash):
10126 		SK_REUSEPORT_LOAD_FIELD(hash);
10127 		break;
10128 
10129 	case offsetof(struct sk_reuseport_md, bind_inany):
10130 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
10131 		break;
10132 	}
10133 
10134 	return insn - insn_buf;
10135 }
10136 
10137 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10138 	.get_func_proto		= sk_reuseport_func_proto,
10139 	.is_valid_access	= sk_reuseport_is_valid_access,
10140 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
10141 };
10142 
10143 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10144 };
10145 
10146 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10147 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10148 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)10149 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10150 	   struct sock *, sk, u64, flags)
10151 {
10152 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10153 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10154 		return -EINVAL;
10155 	if (unlikely(sk && sk_is_refcounted(sk)))
10156 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10157 	if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10158 		return -ESOCKTNOSUPPORT; /* reject connected sockets */
10159 
10160 	/* Check if socket is suitable for packet L3/L4 protocol */
10161 	if (sk && sk->sk_protocol != ctx->protocol)
10162 		return -EPROTOTYPE;
10163 	if (sk && sk->sk_family != ctx->family &&
10164 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10165 		return -EAFNOSUPPORT;
10166 
10167 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10168 		return -EEXIST;
10169 
10170 	/* Select socket as lookup result */
10171 	ctx->selected_sk = sk;
10172 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10173 	return 0;
10174 }
10175 
10176 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10177 	.func		= bpf_sk_lookup_assign,
10178 	.gpl_only	= false,
10179 	.ret_type	= RET_INTEGER,
10180 	.arg1_type	= ARG_PTR_TO_CTX,
10181 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
10182 	.arg3_type	= ARG_ANYTHING,
10183 };
10184 
10185 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)10186 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10187 {
10188 	switch (func_id) {
10189 	case BPF_FUNC_perf_event_output:
10190 		return &bpf_event_output_data_proto;
10191 	case BPF_FUNC_sk_assign:
10192 		return &bpf_sk_lookup_assign_proto;
10193 	case BPF_FUNC_sk_release:
10194 		return &bpf_sk_release_proto;
10195 	default:
10196 		return bpf_sk_base_func_proto(func_id);
10197 	}
10198 }
10199 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)10200 static bool sk_lookup_is_valid_access(int off, int size,
10201 				      enum bpf_access_type type,
10202 				      const struct bpf_prog *prog,
10203 				      struct bpf_insn_access_aux *info)
10204 {
10205 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10206 		return false;
10207 	if (off % size != 0)
10208 		return false;
10209 	if (type != BPF_READ)
10210 		return false;
10211 
10212 	switch (off) {
10213 	case offsetof(struct bpf_sk_lookup, sk):
10214 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
10215 		return size == sizeof(__u64);
10216 
10217 	case bpf_ctx_range(struct bpf_sk_lookup, family):
10218 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10219 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10220 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10221 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10222 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10223 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10224 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10225 		bpf_ctx_record_field_size(info, sizeof(__u32));
10226 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10227 
10228 	default:
10229 		return false;
10230 	}
10231 }
10232 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10233 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10234 					const struct bpf_insn *si,
10235 					struct bpf_insn *insn_buf,
10236 					struct bpf_prog *prog,
10237 					u32 *target_size)
10238 {
10239 	struct bpf_insn *insn = insn_buf;
10240 
10241 	switch (si->off) {
10242 	case offsetof(struct bpf_sk_lookup, sk):
10243 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10244 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
10245 		break;
10246 
10247 	case offsetof(struct bpf_sk_lookup, family):
10248 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10249 				      bpf_target_off(struct bpf_sk_lookup_kern,
10250 						     family, 2, target_size));
10251 		break;
10252 
10253 	case offsetof(struct bpf_sk_lookup, protocol):
10254 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10255 				      bpf_target_off(struct bpf_sk_lookup_kern,
10256 						     protocol, 2, target_size));
10257 		break;
10258 
10259 	case offsetof(struct bpf_sk_lookup, remote_ip4):
10260 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10261 				      bpf_target_off(struct bpf_sk_lookup_kern,
10262 						     v4.saddr, 4, target_size));
10263 		break;
10264 
10265 	case offsetof(struct bpf_sk_lookup, local_ip4):
10266 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10267 				      bpf_target_off(struct bpf_sk_lookup_kern,
10268 						     v4.daddr, 4, target_size));
10269 		break;
10270 
10271 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10272 				remote_ip6[0], remote_ip6[3]): {
10273 #if IS_ENABLED(CONFIG_IPV6)
10274 		int off = si->off;
10275 
10276 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10277 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10278 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10279 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10280 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10281 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10282 #else
10283 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10284 #endif
10285 		break;
10286 	}
10287 	case bpf_ctx_range_till(struct bpf_sk_lookup,
10288 				local_ip6[0], local_ip6[3]): {
10289 #if IS_ENABLED(CONFIG_IPV6)
10290 		int off = si->off;
10291 
10292 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10293 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10294 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10295 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10296 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10297 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10298 #else
10299 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10300 #endif
10301 		break;
10302 	}
10303 	case offsetof(struct bpf_sk_lookup, remote_port):
10304 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10305 				      bpf_target_off(struct bpf_sk_lookup_kern,
10306 						     sport, 2, target_size));
10307 		break;
10308 
10309 	case offsetof(struct bpf_sk_lookup, local_port):
10310 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10311 				      bpf_target_off(struct bpf_sk_lookup_kern,
10312 						     dport, 2, target_size));
10313 		break;
10314 	}
10315 
10316 	return insn - insn_buf;
10317 }
10318 
10319 const struct bpf_prog_ops sk_lookup_prog_ops = {
10320 	.test_run = bpf_prog_test_run_sk_lookup,
10321 };
10322 
10323 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10324 	.get_func_proto		= sk_lookup_func_proto,
10325 	.is_valid_access	= sk_lookup_is_valid_access,
10326 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
10327 };
10328 
10329 #endif /* CONFIG_INET */
10330 
DEFINE_BPF_DISPATCHER(xdp)10331 DEFINE_BPF_DISPATCHER(xdp)
10332 
10333 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10334 {
10335 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10336 }
10337 
10338 #ifdef CONFIG_DEBUG_INFO_BTF
BTF_ID_LIST_GLOBAL(btf_sock_ids)10339 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10340 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10341 BTF_SOCK_TYPE_xxx
10342 #undef BTF_SOCK_TYPE
10343 #else
10344 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10345 #endif
10346 
10347 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10348 {
10349 	/* tcp6_sock type is not generated in dwarf and hence btf,
10350 	 * trigger an explicit type generation here.
10351 	 */
10352 	BTF_TYPE_EMIT(struct tcp6_sock);
10353 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10354 	    sk->sk_family == AF_INET6)
10355 		return (unsigned long)sk;
10356 
10357 	return (unsigned long)NULL;
10358 }
10359 
10360 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10361 	.func			= bpf_skc_to_tcp6_sock,
10362 	.gpl_only		= false,
10363 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10364 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10365 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10366 };
10367 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)10368 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10369 {
10370 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10371 		return (unsigned long)sk;
10372 
10373 	return (unsigned long)NULL;
10374 }
10375 
10376 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10377 	.func			= bpf_skc_to_tcp_sock,
10378 	.gpl_only		= false,
10379 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10380 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10381 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10382 };
10383 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)10384 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10385 {
10386 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10387 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
10388 	 */
10389 	BTF_TYPE_EMIT(struct inet_timewait_sock);
10390 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
10391 
10392 #ifdef CONFIG_INET
10393 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10394 		return (unsigned long)sk;
10395 #endif
10396 
10397 #if IS_BUILTIN(CONFIG_IPV6)
10398 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10399 		return (unsigned long)sk;
10400 #endif
10401 
10402 	return (unsigned long)NULL;
10403 }
10404 
10405 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10406 	.func			= bpf_skc_to_tcp_timewait_sock,
10407 	.gpl_only		= false,
10408 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10409 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10410 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10411 };
10412 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)10413 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10414 {
10415 #ifdef CONFIG_INET
10416 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10417 		return (unsigned long)sk;
10418 #endif
10419 
10420 #if IS_BUILTIN(CONFIG_IPV6)
10421 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10422 		return (unsigned long)sk;
10423 #endif
10424 
10425 	return (unsigned long)NULL;
10426 }
10427 
10428 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10429 	.func			= bpf_skc_to_tcp_request_sock,
10430 	.gpl_only		= false,
10431 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10432 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10433 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10434 };
10435 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)10436 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10437 {
10438 	/* udp6_sock type is not generated in dwarf and hence btf,
10439 	 * trigger an explicit type generation here.
10440 	 */
10441 	BTF_TYPE_EMIT(struct udp6_sock);
10442 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10443 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10444 		return (unsigned long)sk;
10445 
10446 	return (unsigned long)NULL;
10447 }
10448 
10449 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10450 	.func			= bpf_skc_to_udp6_sock,
10451 	.gpl_only		= false,
10452 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
10453 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10454 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10455 };
10456 
10457 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)10458 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10459 {
10460 	const struct bpf_func_proto *func;
10461 
10462 	switch (func_id) {
10463 	case BPF_FUNC_skc_to_tcp6_sock:
10464 		func = &bpf_skc_to_tcp6_sock_proto;
10465 		break;
10466 	case BPF_FUNC_skc_to_tcp_sock:
10467 		func = &bpf_skc_to_tcp_sock_proto;
10468 		break;
10469 	case BPF_FUNC_skc_to_tcp_timewait_sock:
10470 		func = &bpf_skc_to_tcp_timewait_sock_proto;
10471 		break;
10472 	case BPF_FUNC_skc_to_tcp_request_sock:
10473 		func = &bpf_skc_to_tcp_request_sock_proto;
10474 		break;
10475 	case BPF_FUNC_skc_to_udp6_sock:
10476 		func = &bpf_skc_to_udp6_sock_proto;
10477 		break;
10478 	default:
10479 		return bpf_base_func_proto(func_id);
10480 	}
10481 
10482 	if (!perfmon_capable())
10483 		return NULL;
10484 
10485 	return func;
10486 }
10487