1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/objtool.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/extable.h>
34 #include <linux/log2.h>
35
36 #include <asm/barrier.h>
37 #include <asm/unaligned.h>
38
39 #include <trace/hooks/memory.h>
40
41 /* Registers */
42 #define BPF_R0 regs[BPF_REG_0]
43 #define BPF_R1 regs[BPF_REG_1]
44 #define BPF_R2 regs[BPF_REG_2]
45 #define BPF_R3 regs[BPF_REG_3]
46 #define BPF_R4 regs[BPF_REG_4]
47 #define BPF_R5 regs[BPF_REG_5]
48 #define BPF_R6 regs[BPF_REG_6]
49 #define BPF_R7 regs[BPF_REG_7]
50 #define BPF_R8 regs[BPF_REG_8]
51 #define BPF_R9 regs[BPF_REG_9]
52 #define BPF_R10 regs[BPF_REG_10]
53
54 /* Named registers */
55 #define DST regs[insn->dst_reg]
56 #define SRC regs[insn->src_reg]
57 #define FP regs[BPF_REG_FP]
58 #define AX regs[BPF_REG_AX]
59 #define ARG1 regs[BPF_REG_ARG1]
60 #define CTX regs[BPF_REG_CTX]
61 #define IMM insn->imm
62
63 /* No hurry in this branch
64 *
65 * Exported for the bpf jit load helper.
66 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)67 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68 {
69 u8 *ptr = NULL;
70
71 if (k >= SKF_NET_OFF) {
72 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73 } else if (k >= SKF_LL_OFF) {
74 if (unlikely(!skb_mac_header_was_set(skb)))
75 return NULL;
76 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
77 }
78 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
79 return ptr;
80
81 return NULL;
82 }
83
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)84 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
85 {
86 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
87 struct bpf_prog_aux *aux;
88 struct bpf_prog *fp;
89
90 size = round_up(size, PAGE_SIZE);
91 fp = __vmalloc(size, gfp_flags);
92 if (fp == NULL)
93 return NULL;
94
95 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
96 if (aux == NULL) {
97 vfree(fp);
98 return NULL;
99 }
100
101 fp->pages = size / PAGE_SIZE;
102 fp->aux = aux;
103 fp->aux->prog = fp;
104 fp->jit_requested = ebpf_jit_enabled();
105
106 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
107 mutex_init(&fp->aux->used_maps_mutex);
108 mutex_init(&fp->aux->dst_mutex);
109
110 return fp;
111 }
112
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)113 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
114 {
115 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
116 struct bpf_prog *prog;
117 int cpu;
118
119 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
120 if (!prog)
121 return NULL;
122
123 prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
124 if (!prog->aux->stats) {
125 kfree(prog->aux);
126 vfree(prog);
127 return NULL;
128 }
129
130 for_each_possible_cpu(cpu) {
131 struct bpf_prog_stats *pstats;
132
133 pstats = per_cpu_ptr(prog->aux->stats, cpu);
134 u64_stats_init(&pstats->syncp);
135 }
136 return prog;
137 }
138 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
139
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)140 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
141 {
142 if (!prog->aux->nr_linfo || !prog->jit_requested)
143 return 0;
144
145 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
146 sizeof(*prog->aux->jited_linfo),
147 GFP_KERNEL | __GFP_NOWARN);
148 if (!prog->aux->jited_linfo)
149 return -ENOMEM;
150
151 return 0;
152 }
153
bpf_prog_free_jited_linfo(struct bpf_prog * prog)154 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
155 {
156 kfree(prog->aux->jited_linfo);
157 prog->aux->jited_linfo = NULL;
158 }
159
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)160 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
161 {
162 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
163 bpf_prog_free_jited_linfo(prog);
164 }
165
166 /* The jit engine is responsible to provide an array
167 * for insn_off to the jited_off mapping (insn_to_jit_off).
168 *
169 * The idx to this array is the insn_off. Hence, the insn_off
170 * here is relative to the prog itself instead of the main prog.
171 * This array has one entry for each xlated bpf insn.
172 *
173 * jited_off is the byte off to the last byte of the jited insn.
174 *
175 * Hence, with
176 * insn_start:
177 * The first bpf insn off of the prog. The insn off
178 * here is relative to the main prog.
179 * e.g. if prog is a subprog, insn_start > 0
180 * linfo_idx:
181 * The prog's idx to prog->aux->linfo and jited_linfo
182 *
183 * jited_linfo[linfo_idx] = prog->bpf_func
184 *
185 * For i > linfo_idx,
186 *
187 * jited_linfo[i] = prog->bpf_func +
188 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
189 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)190 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
191 const u32 *insn_to_jit_off)
192 {
193 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
194 const struct bpf_line_info *linfo;
195 void **jited_linfo;
196
197 if (!prog->aux->jited_linfo)
198 /* Userspace did not provide linfo */
199 return;
200
201 linfo_idx = prog->aux->linfo_idx;
202 linfo = &prog->aux->linfo[linfo_idx];
203 insn_start = linfo[0].insn_off;
204 insn_end = insn_start + prog->len;
205
206 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
207 jited_linfo[0] = prog->bpf_func;
208
209 nr_linfo = prog->aux->nr_linfo - linfo_idx;
210
211 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
212 /* The verifier ensures that linfo[i].insn_off is
213 * strictly increasing
214 */
215 jited_linfo[i] = prog->bpf_func +
216 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
217 }
218
bpf_prog_free_linfo(struct bpf_prog * prog)219 void bpf_prog_free_linfo(struct bpf_prog *prog)
220 {
221 bpf_prog_free_jited_linfo(prog);
222 kvfree(prog->aux->linfo);
223 }
224
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)225 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
226 gfp_t gfp_extra_flags)
227 {
228 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
229 struct bpf_prog *fp;
230 u32 pages, delta;
231 int ret;
232
233 size = round_up(size, PAGE_SIZE);
234 pages = size / PAGE_SIZE;
235 if (pages <= fp_old->pages)
236 return fp_old;
237
238 delta = pages - fp_old->pages;
239 ret = __bpf_prog_charge(fp_old->aux->user, delta);
240 if (ret)
241 return NULL;
242
243 fp = __vmalloc(size, gfp_flags);
244 if (fp == NULL) {
245 __bpf_prog_uncharge(fp_old->aux->user, delta);
246 } else {
247 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
248 fp->pages = pages;
249 fp->aux->prog = fp;
250
251 /* We keep fp->aux from fp_old around in the new
252 * reallocated structure.
253 */
254 fp_old->aux = NULL;
255 __bpf_prog_free(fp_old);
256 }
257
258 return fp;
259 }
260
__bpf_prog_free(struct bpf_prog * fp)261 void __bpf_prog_free(struct bpf_prog *fp)
262 {
263 if (fp->aux) {
264 mutex_destroy(&fp->aux->used_maps_mutex);
265 mutex_destroy(&fp->aux->dst_mutex);
266 free_percpu(fp->aux->stats);
267 kfree(fp->aux->poke_tab);
268 kfree(fp->aux);
269 }
270 vfree(fp);
271 }
272
bpf_prog_calc_tag(struct bpf_prog * fp)273 int bpf_prog_calc_tag(struct bpf_prog *fp)
274 {
275 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
276 u32 raw_size = bpf_prog_tag_scratch_size(fp);
277 u32 digest[SHA1_DIGEST_WORDS];
278 u32 ws[SHA1_WORKSPACE_WORDS];
279 u32 i, bsize, psize, blocks;
280 struct bpf_insn *dst;
281 bool was_ld_map;
282 u8 *raw, *todo;
283 __be32 *result;
284 __be64 *bits;
285
286 raw = vmalloc(raw_size);
287 if (!raw)
288 return -ENOMEM;
289
290 sha1_init(digest);
291 memset(ws, 0, sizeof(ws));
292
293 /* We need to take out the map fd for the digest calculation
294 * since they are unstable from user space side.
295 */
296 dst = (void *)raw;
297 for (i = 0, was_ld_map = false; i < fp->len; i++) {
298 dst[i] = fp->insnsi[i];
299 if (!was_ld_map &&
300 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
301 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
302 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
303 was_ld_map = true;
304 dst[i].imm = 0;
305 } else if (was_ld_map &&
306 dst[i].code == 0 &&
307 dst[i].dst_reg == 0 &&
308 dst[i].src_reg == 0 &&
309 dst[i].off == 0) {
310 was_ld_map = false;
311 dst[i].imm = 0;
312 } else {
313 was_ld_map = false;
314 }
315 }
316
317 psize = bpf_prog_insn_size(fp);
318 memset(&raw[psize], 0, raw_size - psize);
319 raw[psize++] = 0x80;
320
321 bsize = round_up(psize, SHA1_BLOCK_SIZE);
322 blocks = bsize / SHA1_BLOCK_SIZE;
323 todo = raw;
324 if (bsize - psize >= sizeof(__be64)) {
325 bits = (__be64 *)(todo + bsize - sizeof(__be64));
326 } else {
327 bits = (__be64 *)(todo + bsize + bits_offset);
328 blocks++;
329 }
330 *bits = cpu_to_be64((psize - 1) << 3);
331
332 while (blocks--) {
333 sha1_transform(digest, todo, ws);
334 todo += SHA1_BLOCK_SIZE;
335 }
336
337 result = (__force __be32 *)digest;
338 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
339 result[i] = cpu_to_be32(digest[i]);
340 memcpy(fp->tag, result, sizeof(fp->tag));
341
342 vfree(raw);
343 return 0;
344 }
345
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)346 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
347 s32 end_new, s32 curr, const bool probe_pass)
348 {
349 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
350 s32 delta = end_new - end_old;
351 s64 imm = insn->imm;
352
353 if (curr < pos && curr + imm + 1 >= end_old)
354 imm += delta;
355 else if (curr >= end_new && curr + imm + 1 < end_new)
356 imm -= delta;
357 if (imm < imm_min || imm > imm_max)
358 return -ERANGE;
359 if (!probe_pass)
360 insn->imm = imm;
361 return 0;
362 }
363
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)364 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
365 s32 end_new, s32 curr, const bool probe_pass)
366 {
367 const s32 off_min = S16_MIN, off_max = S16_MAX;
368 s32 delta = end_new - end_old;
369 s32 off = insn->off;
370
371 if (curr < pos && curr + off + 1 >= end_old)
372 off += delta;
373 else if (curr >= end_new && curr + off + 1 < end_new)
374 off -= delta;
375 if (off < off_min || off > off_max)
376 return -ERANGE;
377 if (!probe_pass)
378 insn->off = off;
379 return 0;
380 }
381
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)382 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
383 s32 end_new, const bool probe_pass)
384 {
385 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
386 struct bpf_insn *insn = prog->insnsi;
387 int ret = 0;
388
389 for (i = 0; i < insn_cnt; i++, insn++) {
390 u8 code;
391
392 /* In the probing pass we still operate on the original,
393 * unpatched image in order to check overflows before we
394 * do any other adjustments. Therefore skip the patchlet.
395 */
396 if (probe_pass && i == pos) {
397 i = end_new;
398 insn = prog->insnsi + end_old;
399 }
400 code = insn->code;
401 if ((BPF_CLASS(code) != BPF_JMP &&
402 BPF_CLASS(code) != BPF_JMP32) ||
403 BPF_OP(code) == BPF_EXIT)
404 continue;
405 /* Adjust offset of jmps if we cross patch boundaries. */
406 if (BPF_OP(code) == BPF_CALL) {
407 if (insn->src_reg != BPF_PSEUDO_CALL)
408 continue;
409 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
410 end_new, i, probe_pass);
411 } else {
412 ret = bpf_adj_delta_to_off(insn, pos, end_old,
413 end_new, i, probe_pass);
414 }
415 if (ret)
416 break;
417 }
418
419 return ret;
420 }
421
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)422 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
423 {
424 struct bpf_line_info *linfo;
425 u32 i, nr_linfo;
426
427 nr_linfo = prog->aux->nr_linfo;
428 if (!nr_linfo || !delta)
429 return;
430
431 linfo = prog->aux->linfo;
432
433 for (i = 0; i < nr_linfo; i++)
434 if (off < linfo[i].insn_off)
435 break;
436
437 /* Push all off < linfo[i].insn_off by delta */
438 for (; i < nr_linfo; i++)
439 linfo[i].insn_off += delta;
440 }
441
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)442 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
443 const struct bpf_insn *patch, u32 len)
444 {
445 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
446 const u32 cnt_max = S16_MAX;
447 struct bpf_prog *prog_adj;
448 int err;
449
450 /* Since our patchlet doesn't expand the image, we're done. */
451 if (insn_delta == 0) {
452 memcpy(prog->insnsi + off, patch, sizeof(*patch));
453 return prog;
454 }
455
456 insn_adj_cnt = prog->len + insn_delta;
457
458 /* Reject anything that would potentially let the insn->off
459 * target overflow when we have excessive program expansions.
460 * We need to probe here before we do any reallocation where
461 * we afterwards may not fail anymore.
462 */
463 if (insn_adj_cnt > cnt_max &&
464 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
465 return ERR_PTR(err);
466
467 /* Several new instructions need to be inserted. Make room
468 * for them. Likely, there's no need for a new allocation as
469 * last page could have large enough tailroom.
470 */
471 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
472 GFP_USER);
473 if (!prog_adj)
474 return ERR_PTR(-ENOMEM);
475
476 prog_adj->len = insn_adj_cnt;
477
478 /* Patching happens in 3 steps:
479 *
480 * 1) Move over tail of insnsi from next instruction onwards,
481 * so we can patch the single target insn with one or more
482 * new ones (patching is always from 1 to n insns, n > 0).
483 * 2) Inject new instructions at the target location.
484 * 3) Adjust branch offsets if necessary.
485 */
486 insn_rest = insn_adj_cnt - off - len;
487
488 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
489 sizeof(*patch) * insn_rest);
490 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
491
492 /* We are guaranteed to not fail at this point, otherwise
493 * the ship has sailed to reverse to the original state. An
494 * overflow cannot happen at this point.
495 */
496 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
497
498 bpf_adj_linfo(prog_adj, off, insn_delta);
499
500 return prog_adj;
501 }
502
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)503 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
504 {
505 /* Branch offsets can't overflow when program is shrinking, no need
506 * to call bpf_adj_branches(..., true) here
507 */
508 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
509 sizeof(struct bpf_insn) * (prog->len - off - cnt));
510 prog->len -= cnt;
511
512 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
513 }
514
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)515 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
516 {
517 int i;
518
519 for (i = 0; i < fp->aux->func_cnt; i++)
520 bpf_prog_kallsyms_del(fp->aux->func[i]);
521 }
522
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)523 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
524 {
525 bpf_prog_kallsyms_del_subprogs(fp);
526 bpf_prog_kallsyms_del(fp);
527 }
528
529 #ifdef CONFIG_BPF_JIT
530 /* All BPF JIT sysctl knobs here. */
531 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
532 int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
533 int bpf_jit_harden __read_mostly;
534 long bpf_jit_limit __read_mostly;
535 long bpf_jit_limit_max __read_mostly;
536
537 static void
bpf_prog_ksym_set_addr(struct bpf_prog * prog)538 bpf_prog_ksym_set_addr(struct bpf_prog *prog)
539 {
540 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
541 unsigned long addr = (unsigned long)hdr;
542
543 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
544
545 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
546 prog->aux->ksym.end = addr + hdr->pages * PAGE_SIZE;
547 }
548
549 static void
bpf_prog_ksym_set_name(struct bpf_prog * prog)550 bpf_prog_ksym_set_name(struct bpf_prog *prog)
551 {
552 char *sym = prog->aux->ksym.name;
553 const char *end = sym + KSYM_NAME_LEN;
554 const struct btf_type *type;
555 const char *func_name;
556
557 BUILD_BUG_ON(sizeof("bpf_prog_") +
558 sizeof(prog->tag) * 2 +
559 /* name has been null terminated.
560 * We should need +1 for the '_' preceding
561 * the name. However, the null character
562 * is double counted between the name and the
563 * sizeof("bpf_prog_") above, so we omit
564 * the +1 here.
565 */
566 sizeof(prog->aux->name) > KSYM_NAME_LEN);
567
568 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
569 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
570
571 /* prog->aux->name will be ignored if full btf name is available */
572 if (prog->aux->func_info_cnt) {
573 type = btf_type_by_id(prog->aux->btf,
574 prog->aux->func_info[prog->aux->func_idx].type_id);
575 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
576 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
577 return;
578 }
579
580 if (prog->aux->name[0])
581 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
582 else
583 *sym = 0;
584 }
585
bpf_get_ksym_start(struct latch_tree_node * n)586 static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
587 {
588 return container_of(n, struct bpf_ksym, tnode)->start;
589 }
590
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)591 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
592 struct latch_tree_node *b)
593 {
594 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
595 }
596
bpf_tree_comp(void * key,struct latch_tree_node * n)597 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
598 {
599 unsigned long val = (unsigned long)key;
600 const struct bpf_ksym *ksym;
601
602 ksym = container_of(n, struct bpf_ksym, tnode);
603
604 if (val < ksym->start)
605 return -1;
606 if (val >= ksym->end)
607 return 1;
608
609 return 0;
610 }
611
612 static const struct latch_tree_ops bpf_tree_ops = {
613 .less = bpf_tree_less,
614 .comp = bpf_tree_comp,
615 };
616
617 static DEFINE_SPINLOCK(bpf_lock);
618 static LIST_HEAD(bpf_kallsyms);
619 static struct latch_tree_root bpf_tree __cacheline_aligned;
620
bpf_ksym_add(struct bpf_ksym * ksym)621 void bpf_ksym_add(struct bpf_ksym *ksym)
622 {
623 spin_lock_bh(&bpf_lock);
624 WARN_ON_ONCE(!list_empty(&ksym->lnode));
625 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
626 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
627 spin_unlock_bh(&bpf_lock);
628 }
629
__bpf_ksym_del(struct bpf_ksym * ksym)630 static void __bpf_ksym_del(struct bpf_ksym *ksym)
631 {
632 if (list_empty(&ksym->lnode))
633 return;
634
635 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
636 list_del_rcu(&ksym->lnode);
637 }
638
bpf_ksym_del(struct bpf_ksym * ksym)639 void bpf_ksym_del(struct bpf_ksym *ksym)
640 {
641 spin_lock_bh(&bpf_lock);
642 __bpf_ksym_del(ksym);
643 spin_unlock_bh(&bpf_lock);
644 }
645
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)646 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
647 {
648 return fp->jited && !bpf_prog_was_classic(fp);
649 }
650
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)651 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
652 {
653 return list_empty(&fp->aux->ksym.lnode) ||
654 fp->aux->ksym.lnode.prev == LIST_POISON2;
655 }
656
bpf_prog_kallsyms_add(struct bpf_prog * fp)657 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
658 {
659 if (!bpf_prog_kallsyms_candidate(fp) ||
660 !bpf_capable())
661 return;
662
663 bpf_prog_ksym_set_addr(fp);
664 bpf_prog_ksym_set_name(fp);
665 fp->aux->ksym.prog = true;
666
667 bpf_ksym_add(&fp->aux->ksym);
668 }
669
bpf_prog_kallsyms_del(struct bpf_prog * fp)670 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
671 {
672 if (!bpf_prog_kallsyms_candidate(fp))
673 return;
674
675 bpf_ksym_del(&fp->aux->ksym);
676 }
677
bpf_ksym_find(unsigned long addr)678 static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
679 {
680 struct latch_tree_node *n;
681
682 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
683 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
684 }
685
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)686 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
687 unsigned long *off, char *sym)
688 {
689 struct bpf_ksym *ksym;
690 char *ret = NULL;
691
692 rcu_read_lock();
693 ksym = bpf_ksym_find(addr);
694 if (ksym) {
695 unsigned long symbol_start = ksym->start;
696 unsigned long symbol_end = ksym->end;
697
698 strncpy(sym, ksym->name, KSYM_NAME_LEN);
699
700 ret = sym;
701 if (size)
702 *size = symbol_end - symbol_start;
703 if (off)
704 *off = addr - symbol_start;
705 }
706 rcu_read_unlock();
707
708 return ret;
709 }
710
is_bpf_text_address(unsigned long addr)711 bool is_bpf_text_address(unsigned long addr)
712 {
713 bool ret;
714
715 rcu_read_lock();
716 ret = bpf_ksym_find(addr) != NULL;
717 rcu_read_unlock();
718
719 return ret;
720 }
721
bpf_prog_ksym_find(unsigned long addr)722 static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
723 {
724 struct bpf_ksym *ksym = bpf_ksym_find(addr);
725
726 return ksym && ksym->prog ?
727 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
728 NULL;
729 }
730
search_bpf_extables(unsigned long addr)731 const struct exception_table_entry *search_bpf_extables(unsigned long addr)
732 {
733 const struct exception_table_entry *e = NULL;
734 struct bpf_prog *prog;
735
736 rcu_read_lock();
737 prog = bpf_prog_ksym_find(addr);
738 if (!prog)
739 goto out;
740 if (!prog->aux->num_exentries)
741 goto out;
742
743 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
744 out:
745 rcu_read_unlock();
746 return e;
747 }
748
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)749 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
750 char *sym)
751 {
752 struct bpf_ksym *ksym;
753 unsigned int it = 0;
754 int ret = -ERANGE;
755
756 if (!bpf_jit_kallsyms_enabled())
757 return ret;
758
759 rcu_read_lock();
760 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
761 if (it++ != symnum)
762 continue;
763
764 strncpy(sym, ksym->name, KSYM_NAME_LEN);
765
766 *value = ksym->start;
767 *type = BPF_SYM_ELF_TYPE;
768
769 ret = 0;
770 break;
771 }
772 rcu_read_unlock();
773
774 return ret;
775 }
776
bpf_jit_add_poke_descriptor(struct bpf_prog * prog,struct bpf_jit_poke_descriptor * poke)777 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
778 struct bpf_jit_poke_descriptor *poke)
779 {
780 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
781 static const u32 poke_tab_max = 1024;
782 u32 slot = prog->aux->size_poke_tab;
783 u32 size = slot + 1;
784
785 if (size > poke_tab_max)
786 return -ENOSPC;
787 if (poke->tailcall_target || poke->tailcall_target_stable ||
788 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
789 return -EINVAL;
790
791 switch (poke->reason) {
792 case BPF_POKE_REASON_TAIL_CALL:
793 if (!poke->tail_call.map)
794 return -EINVAL;
795 break;
796 default:
797 return -EINVAL;
798 }
799
800 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
801 if (!tab)
802 return -ENOMEM;
803
804 memcpy(&tab[slot], poke, sizeof(*poke));
805 prog->aux->size_poke_tab = size;
806 prog->aux->poke_tab = tab;
807
808 return slot;
809 }
810
811 static atomic_long_t bpf_jit_current;
812
813 /* Can be overridden by an arch's JIT compiler if it has a custom,
814 * dedicated BPF backend memory area, or if neither of the two
815 * below apply.
816 */
bpf_jit_alloc_exec_limit(void)817 u64 __weak bpf_jit_alloc_exec_limit(void)
818 {
819 #if defined(MODULES_VADDR)
820 return MODULES_END - MODULES_VADDR;
821 #else
822 return VMALLOC_END - VMALLOC_START;
823 #endif
824 }
825
bpf_jit_charge_init(void)826 static int __init bpf_jit_charge_init(void)
827 {
828 /* Only used as heuristic here to derive limit. */
829 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
830 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
831 PAGE_SIZE), LONG_MAX);
832 return 0;
833 }
834 pure_initcall(bpf_jit_charge_init);
835
bpf_jit_charge_modmem(u32 pages)836 int bpf_jit_charge_modmem(u32 pages)
837 {
838 if (atomic_long_add_return(pages, &bpf_jit_current) >
839 (bpf_jit_limit >> PAGE_SHIFT)) {
840 if (!bpf_capable()) {
841 atomic_long_sub(pages, &bpf_jit_current);
842 return -EPERM;
843 }
844 }
845
846 return 0;
847 }
848
bpf_jit_uncharge_modmem(u32 pages)849 void bpf_jit_uncharge_modmem(u32 pages)
850 {
851 atomic_long_sub(pages, &bpf_jit_current);
852 }
853
bpf_jit_alloc_exec(unsigned long size)854 void *__weak bpf_jit_alloc_exec(unsigned long size)
855 {
856 return module_alloc(size);
857 }
858
bpf_jit_free_exec(void * addr)859 void __weak bpf_jit_free_exec(void *addr)
860 {
861 module_memfree(addr);
862 }
863
864 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)865 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
866 unsigned int alignment,
867 bpf_jit_fill_hole_t bpf_fill_ill_insns)
868 {
869 struct bpf_binary_header *hdr;
870 u32 size, hole, start, pages;
871
872 WARN_ON_ONCE(!is_power_of_2(alignment) ||
873 alignment > BPF_IMAGE_ALIGNMENT);
874
875 /* Most of BPF filters are really small, but if some of them
876 * fill a page, allow at least 128 extra bytes to insert a
877 * random section of illegal instructions.
878 */
879 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
880 pages = size / PAGE_SIZE;
881
882 if (bpf_jit_charge_modmem(pages))
883 return NULL;
884 hdr = bpf_jit_alloc_exec(size);
885 if (!hdr) {
886 bpf_jit_uncharge_modmem(pages);
887 return NULL;
888 }
889
890 /* Fill space with illegal/arch-dep instructions. */
891 bpf_fill_ill_insns(hdr, size);
892
893 hdr->pages = pages;
894 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
895 PAGE_SIZE - sizeof(*hdr));
896 start = (get_random_int() % hole) & ~(alignment - 1);
897
898 /* Leave a random number of instructions before BPF code. */
899 *image_ptr = &hdr->image[start];
900
901 return hdr;
902 }
903
bpf_jit_binary_free(struct bpf_binary_header * hdr)904 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
905 {
906 u32 pages = hdr->pages;
907
908 trace_android_vh_set_memory_rw((unsigned long)hdr, pages);
909 trace_android_vh_set_memory_nx((unsigned long)hdr, pages);
910 bpf_jit_free_exec(hdr);
911 bpf_jit_uncharge_modmem(pages);
912 }
913
914 /* This symbol is only overridden by archs that have different
915 * requirements than the usual eBPF JITs, f.e. when they only
916 * implement cBPF JIT, do not set images read-only, etc.
917 */
bpf_jit_free(struct bpf_prog * fp)918 void __weak bpf_jit_free(struct bpf_prog *fp)
919 {
920 if (fp->jited) {
921 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
922
923 bpf_jit_binary_free(hdr);
924
925 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
926 }
927
928 bpf_prog_unlock_free(fp);
929 }
930
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)931 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
932 const struct bpf_insn *insn, bool extra_pass,
933 u64 *func_addr, bool *func_addr_fixed)
934 {
935 s16 off = insn->off;
936 s32 imm = insn->imm;
937 u8 *addr;
938
939 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
940 if (!*func_addr_fixed) {
941 /* Place-holder address till the last pass has collected
942 * all addresses for JITed subprograms in which case we
943 * can pick them up from prog->aux.
944 */
945 if (!extra_pass)
946 addr = NULL;
947 else if (prog->aux->func &&
948 off >= 0 && off < prog->aux->func_cnt)
949 addr = (u8 *)prog->aux->func[off]->bpf_func;
950 else
951 return -EINVAL;
952 } else {
953 /* Address of a BPF helper call. Since part of the core
954 * kernel, it's always at a fixed location. __bpf_call_base
955 * and the helper with imm relative to it are both in core
956 * kernel.
957 */
958 addr = (u8 *)__bpf_call_base + imm;
959 }
960
961 *func_addr = (unsigned long)addr;
962 return 0;
963 }
964
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)965 static int bpf_jit_blind_insn(const struct bpf_insn *from,
966 const struct bpf_insn *aux,
967 struct bpf_insn *to_buff,
968 bool emit_zext)
969 {
970 struct bpf_insn *to = to_buff;
971 u32 imm_rnd = get_random_int();
972 s16 off;
973
974 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
975 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
976
977 /* Constraints on AX register:
978 *
979 * AX register is inaccessible from user space. It is mapped in
980 * all JITs, and used here for constant blinding rewrites. It is
981 * typically "stateless" meaning its contents are only valid within
982 * the executed instruction, but not across several instructions.
983 * There are a few exceptions however which are further detailed
984 * below.
985 *
986 * Constant blinding is only used by JITs, not in the interpreter.
987 * The interpreter uses AX in some occasions as a local temporary
988 * register e.g. in DIV or MOD instructions.
989 *
990 * In restricted circumstances, the verifier can also use the AX
991 * register for rewrites as long as they do not interfere with
992 * the above cases!
993 */
994 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
995 goto out;
996
997 if (from->imm == 0 &&
998 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
999 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1000 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1001 goto out;
1002 }
1003
1004 switch (from->code) {
1005 case BPF_ALU | BPF_ADD | BPF_K:
1006 case BPF_ALU | BPF_SUB | BPF_K:
1007 case BPF_ALU | BPF_AND | BPF_K:
1008 case BPF_ALU | BPF_OR | BPF_K:
1009 case BPF_ALU | BPF_XOR | BPF_K:
1010 case BPF_ALU | BPF_MUL | BPF_K:
1011 case BPF_ALU | BPF_MOV | BPF_K:
1012 case BPF_ALU | BPF_DIV | BPF_K:
1013 case BPF_ALU | BPF_MOD | BPF_K:
1014 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1015 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1016 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1017 break;
1018
1019 case BPF_ALU64 | BPF_ADD | BPF_K:
1020 case BPF_ALU64 | BPF_SUB | BPF_K:
1021 case BPF_ALU64 | BPF_AND | BPF_K:
1022 case BPF_ALU64 | BPF_OR | BPF_K:
1023 case BPF_ALU64 | BPF_XOR | BPF_K:
1024 case BPF_ALU64 | BPF_MUL | BPF_K:
1025 case BPF_ALU64 | BPF_MOV | BPF_K:
1026 case BPF_ALU64 | BPF_DIV | BPF_K:
1027 case BPF_ALU64 | BPF_MOD | BPF_K:
1028 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1029 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1030 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1031 break;
1032
1033 case BPF_JMP | BPF_JEQ | BPF_K:
1034 case BPF_JMP | BPF_JNE | BPF_K:
1035 case BPF_JMP | BPF_JGT | BPF_K:
1036 case BPF_JMP | BPF_JLT | BPF_K:
1037 case BPF_JMP | BPF_JGE | BPF_K:
1038 case BPF_JMP | BPF_JLE | BPF_K:
1039 case BPF_JMP | BPF_JSGT | BPF_K:
1040 case BPF_JMP | BPF_JSLT | BPF_K:
1041 case BPF_JMP | BPF_JSGE | BPF_K:
1042 case BPF_JMP | BPF_JSLE | BPF_K:
1043 case BPF_JMP | BPF_JSET | BPF_K:
1044 /* Accommodate for extra offset in case of a backjump. */
1045 off = from->off;
1046 if (off < 0)
1047 off -= 2;
1048 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1049 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1050 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1051 break;
1052
1053 case BPF_JMP32 | BPF_JEQ | BPF_K:
1054 case BPF_JMP32 | BPF_JNE | BPF_K:
1055 case BPF_JMP32 | BPF_JGT | BPF_K:
1056 case BPF_JMP32 | BPF_JLT | BPF_K:
1057 case BPF_JMP32 | BPF_JGE | BPF_K:
1058 case BPF_JMP32 | BPF_JLE | BPF_K:
1059 case BPF_JMP32 | BPF_JSGT | BPF_K:
1060 case BPF_JMP32 | BPF_JSLT | BPF_K:
1061 case BPF_JMP32 | BPF_JSGE | BPF_K:
1062 case BPF_JMP32 | BPF_JSLE | BPF_K:
1063 case BPF_JMP32 | BPF_JSET | BPF_K:
1064 /* Accommodate for extra offset in case of a backjump. */
1065 off = from->off;
1066 if (off < 0)
1067 off -= 2;
1068 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1069 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1070 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1071 off);
1072 break;
1073
1074 case BPF_LD | BPF_IMM | BPF_DW:
1075 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1076 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1077 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1078 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1079 break;
1080 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1081 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1082 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1083 if (emit_zext)
1084 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1085 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1086 break;
1087
1088 case BPF_ST | BPF_MEM | BPF_DW:
1089 case BPF_ST | BPF_MEM | BPF_W:
1090 case BPF_ST | BPF_MEM | BPF_H:
1091 case BPF_ST | BPF_MEM | BPF_B:
1092 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1093 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1094 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1095 break;
1096 }
1097 out:
1098 return to - to_buff;
1099 }
1100
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1101 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1102 gfp_t gfp_extra_flags)
1103 {
1104 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1105 struct bpf_prog *fp;
1106
1107 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1108 if (fp != NULL) {
1109 /* aux->prog still points to the fp_other one, so
1110 * when promoting the clone to the real program,
1111 * this still needs to be adapted.
1112 */
1113 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1114 }
1115
1116 return fp;
1117 }
1118
bpf_prog_clone_free(struct bpf_prog * fp)1119 static void bpf_prog_clone_free(struct bpf_prog *fp)
1120 {
1121 /* aux was stolen by the other clone, so we cannot free
1122 * it from this path! It will be freed eventually by the
1123 * other program on release.
1124 *
1125 * At this point, we don't need a deferred release since
1126 * clone is guaranteed to not be locked.
1127 */
1128 fp->aux = NULL;
1129 __bpf_prog_free(fp);
1130 }
1131
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1132 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1133 {
1134 /* We have to repoint aux->prog to self, as we don't
1135 * know whether fp here is the clone or the original.
1136 */
1137 fp->aux->prog = fp;
1138 bpf_prog_clone_free(fp_other);
1139 }
1140
bpf_jit_blind_constants(struct bpf_prog * prog)1141 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1142 {
1143 struct bpf_insn insn_buff[16], aux[2];
1144 struct bpf_prog *clone, *tmp;
1145 int insn_delta, insn_cnt;
1146 struct bpf_insn *insn;
1147 int i, rewritten;
1148
1149 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1150 return prog;
1151
1152 clone = bpf_prog_clone_create(prog, GFP_USER);
1153 if (!clone)
1154 return ERR_PTR(-ENOMEM);
1155
1156 insn_cnt = clone->len;
1157 insn = clone->insnsi;
1158
1159 for (i = 0; i < insn_cnt; i++, insn++) {
1160 /* We temporarily need to hold the original ld64 insn
1161 * so that we can still access the first part in the
1162 * second blinding run.
1163 */
1164 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1165 insn[1].code == 0)
1166 memcpy(aux, insn, sizeof(aux));
1167
1168 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1169 clone->aux->verifier_zext);
1170 if (!rewritten)
1171 continue;
1172
1173 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1174 if (IS_ERR(tmp)) {
1175 /* Patching may have repointed aux->prog during
1176 * realloc from the original one, so we need to
1177 * fix it up here on error.
1178 */
1179 bpf_jit_prog_release_other(prog, clone);
1180 return tmp;
1181 }
1182
1183 clone = tmp;
1184 insn_delta = rewritten - 1;
1185
1186 /* Walk new program and skip insns we just inserted. */
1187 insn = clone->insnsi + i + insn_delta;
1188 insn_cnt += insn_delta;
1189 i += insn_delta;
1190 }
1191
1192 clone->blinded = 1;
1193 return clone;
1194 }
1195 #endif /* CONFIG_BPF_JIT */
1196
1197 /* Base function for offset calculation. Needs to go into .text section,
1198 * therefore keeping it non-static as well; will also be used by JITs
1199 * anyway later on, so do not let the compiler omit it. This also needs
1200 * to go into kallsyms for correlation from e.g. bpftool, so naming
1201 * must not change.
1202 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1203 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1204 {
1205 return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(__bpf_call_base);
1208
1209 /* All UAPI available opcodes. */
1210 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1211 /* 32 bit ALU operations. */ \
1212 /* Register based. */ \
1213 INSN_3(ALU, ADD, X), \
1214 INSN_3(ALU, SUB, X), \
1215 INSN_3(ALU, AND, X), \
1216 INSN_3(ALU, OR, X), \
1217 INSN_3(ALU, LSH, X), \
1218 INSN_3(ALU, RSH, X), \
1219 INSN_3(ALU, XOR, X), \
1220 INSN_3(ALU, MUL, X), \
1221 INSN_3(ALU, MOV, X), \
1222 INSN_3(ALU, ARSH, X), \
1223 INSN_3(ALU, DIV, X), \
1224 INSN_3(ALU, MOD, X), \
1225 INSN_2(ALU, NEG), \
1226 INSN_3(ALU, END, TO_BE), \
1227 INSN_3(ALU, END, TO_LE), \
1228 /* Immediate based. */ \
1229 INSN_3(ALU, ADD, K), \
1230 INSN_3(ALU, SUB, K), \
1231 INSN_3(ALU, AND, K), \
1232 INSN_3(ALU, OR, K), \
1233 INSN_3(ALU, LSH, K), \
1234 INSN_3(ALU, RSH, K), \
1235 INSN_3(ALU, XOR, K), \
1236 INSN_3(ALU, MUL, K), \
1237 INSN_3(ALU, MOV, K), \
1238 INSN_3(ALU, ARSH, K), \
1239 INSN_3(ALU, DIV, K), \
1240 INSN_3(ALU, MOD, K), \
1241 /* 64 bit ALU operations. */ \
1242 /* Register based. */ \
1243 INSN_3(ALU64, ADD, X), \
1244 INSN_3(ALU64, SUB, X), \
1245 INSN_3(ALU64, AND, X), \
1246 INSN_3(ALU64, OR, X), \
1247 INSN_3(ALU64, LSH, X), \
1248 INSN_3(ALU64, RSH, X), \
1249 INSN_3(ALU64, XOR, X), \
1250 INSN_3(ALU64, MUL, X), \
1251 INSN_3(ALU64, MOV, X), \
1252 INSN_3(ALU64, ARSH, X), \
1253 INSN_3(ALU64, DIV, X), \
1254 INSN_3(ALU64, MOD, X), \
1255 INSN_2(ALU64, NEG), \
1256 /* Immediate based. */ \
1257 INSN_3(ALU64, ADD, K), \
1258 INSN_3(ALU64, SUB, K), \
1259 INSN_3(ALU64, AND, K), \
1260 INSN_3(ALU64, OR, K), \
1261 INSN_3(ALU64, LSH, K), \
1262 INSN_3(ALU64, RSH, K), \
1263 INSN_3(ALU64, XOR, K), \
1264 INSN_3(ALU64, MUL, K), \
1265 INSN_3(ALU64, MOV, K), \
1266 INSN_3(ALU64, ARSH, K), \
1267 INSN_3(ALU64, DIV, K), \
1268 INSN_3(ALU64, MOD, K), \
1269 /* Call instruction. */ \
1270 INSN_2(JMP, CALL), \
1271 /* Exit instruction. */ \
1272 INSN_2(JMP, EXIT), \
1273 /* 32-bit Jump instructions. */ \
1274 /* Register based. */ \
1275 INSN_3(JMP32, JEQ, X), \
1276 INSN_3(JMP32, JNE, X), \
1277 INSN_3(JMP32, JGT, X), \
1278 INSN_3(JMP32, JLT, X), \
1279 INSN_3(JMP32, JGE, X), \
1280 INSN_3(JMP32, JLE, X), \
1281 INSN_3(JMP32, JSGT, X), \
1282 INSN_3(JMP32, JSLT, X), \
1283 INSN_3(JMP32, JSGE, X), \
1284 INSN_3(JMP32, JSLE, X), \
1285 INSN_3(JMP32, JSET, X), \
1286 /* Immediate based. */ \
1287 INSN_3(JMP32, JEQ, K), \
1288 INSN_3(JMP32, JNE, K), \
1289 INSN_3(JMP32, JGT, K), \
1290 INSN_3(JMP32, JLT, K), \
1291 INSN_3(JMP32, JGE, K), \
1292 INSN_3(JMP32, JLE, K), \
1293 INSN_3(JMP32, JSGT, K), \
1294 INSN_3(JMP32, JSLT, K), \
1295 INSN_3(JMP32, JSGE, K), \
1296 INSN_3(JMP32, JSLE, K), \
1297 INSN_3(JMP32, JSET, K), \
1298 /* Jump instructions. */ \
1299 /* Register based. */ \
1300 INSN_3(JMP, JEQ, X), \
1301 INSN_3(JMP, JNE, X), \
1302 INSN_3(JMP, JGT, X), \
1303 INSN_3(JMP, JLT, X), \
1304 INSN_3(JMP, JGE, X), \
1305 INSN_3(JMP, JLE, X), \
1306 INSN_3(JMP, JSGT, X), \
1307 INSN_3(JMP, JSLT, X), \
1308 INSN_3(JMP, JSGE, X), \
1309 INSN_3(JMP, JSLE, X), \
1310 INSN_3(JMP, JSET, X), \
1311 /* Immediate based. */ \
1312 INSN_3(JMP, JEQ, K), \
1313 INSN_3(JMP, JNE, K), \
1314 INSN_3(JMP, JGT, K), \
1315 INSN_3(JMP, JLT, K), \
1316 INSN_3(JMP, JGE, K), \
1317 INSN_3(JMP, JLE, K), \
1318 INSN_3(JMP, JSGT, K), \
1319 INSN_3(JMP, JSLT, K), \
1320 INSN_3(JMP, JSGE, K), \
1321 INSN_3(JMP, JSLE, K), \
1322 INSN_3(JMP, JSET, K), \
1323 INSN_2(JMP, JA), \
1324 /* Store instructions. */ \
1325 /* Register based. */ \
1326 INSN_3(STX, MEM, B), \
1327 INSN_3(STX, MEM, H), \
1328 INSN_3(STX, MEM, W), \
1329 INSN_3(STX, MEM, DW), \
1330 INSN_3(STX, XADD, W), \
1331 INSN_3(STX, XADD, DW), \
1332 /* Immediate based. */ \
1333 INSN_3(ST, MEM, B), \
1334 INSN_3(ST, MEM, H), \
1335 INSN_3(ST, MEM, W), \
1336 INSN_3(ST, MEM, DW), \
1337 /* Load instructions. */ \
1338 /* Register based. */ \
1339 INSN_3(LDX, MEM, B), \
1340 INSN_3(LDX, MEM, H), \
1341 INSN_3(LDX, MEM, W), \
1342 INSN_3(LDX, MEM, DW), \
1343 /* Immediate based. */ \
1344 INSN_3(LD, IMM, DW)
1345
bpf_opcode_in_insntable(u8 code)1346 bool bpf_opcode_in_insntable(u8 code)
1347 {
1348 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1349 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1350 static const bool public_insntable[256] = {
1351 [0 ... 255] = false,
1352 /* Now overwrite non-defaults ... */
1353 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1354 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1355 [BPF_LD | BPF_ABS | BPF_B] = true,
1356 [BPF_LD | BPF_ABS | BPF_H] = true,
1357 [BPF_LD | BPF_ABS | BPF_W] = true,
1358 [BPF_LD | BPF_IND | BPF_B] = true,
1359 [BPF_LD | BPF_IND | BPF_H] = true,
1360 [BPF_LD | BPF_IND | BPF_W] = true,
1361 };
1362 #undef BPF_INSN_3_TBL
1363 #undef BPF_INSN_2_TBL
1364 return public_insntable[code];
1365 }
1366
1367 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
bpf_probe_read_kernel(void * dst,u32 size,const void * unsafe_ptr)1368 u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1369 {
1370 memset(dst, 0, size);
1371 return -EFAULT;
1372 }
1373
1374 /**
1375 * __bpf_prog_run - run eBPF program on a given context
1376 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1377 * @insn: is the array of eBPF instructions
1378 * @stack: is the eBPF storage stack
1379 *
1380 * Decode and execute eBPF instructions.
1381 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1382 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1383 {
1384 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1385 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1386 static const void * const jumptable[256] __annotate_jump_table = {
1387 [0 ... 255] = &&default_label,
1388 /* Now overwrite non-defaults ... */
1389 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1390 /* Non-UAPI available opcodes. */
1391 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1392 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1393 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1394 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1395 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1396 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1397 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1398 };
1399 #undef BPF_INSN_3_LBL
1400 #undef BPF_INSN_2_LBL
1401 u32 tail_call_cnt = 0;
1402
1403 #define CONT ({ insn++; goto select_insn; })
1404 #define CONT_JMP ({ insn++; goto select_insn; })
1405
1406 select_insn:
1407 goto *jumptable[insn->code];
1408
1409 /* Explicitly mask the register-based shift amounts with 63 or 31
1410 * to avoid undefined behavior. Normally this won't affect the
1411 * generated code, for example, in case of native 64 bit archs such
1412 * as x86-64 or arm64, the compiler is optimizing the AND away for
1413 * the interpreter. In case of JITs, each of the JIT backends compiles
1414 * the BPF shift operations to machine instructions which produce
1415 * implementation-defined results in such a case; the resulting
1416 * contents of the register may be arbitrary, but program behaviour
1417 * as a whole remains defined. In other words, in case of JIT backends,
1418 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1419 */
1420 /* ALU (shifts) */
1421 #define SHT(OPCODE, OP) \
1422 ALU64_##OPCODE##_X: \
1423 DST = DST OP (SRC & 63); \
1424 CONT; \
1425 ALU_##OPCODE##_X: \
1426 DST = (u32) DST OP ((u32) SRC & 31); \
1427 CONT; \
1428 ALU64_##OPCODE##_K: \
1429 DST = DST OP IMM; \
1430 CONT; \
1431 ALU_##OPCODE##_K: \
1432 DST = (u32) DST OP (u32) IMM; \
1433 CONT;
1434 /* ALU (rest) */
1435 #define ALU(OPCODE, OP) \
1436 ALU64_##OPCODE##_X: \
1437 DST = DST OP SRC; \
1438 CONT; \
1439 ALU_##OPCODE##_X: \
1440 DST = (u32) DST OP (u32) SRC; \
1441 CONT; \
1442 ALU64_##OPCODE##_K: \
1443 DST = DST OP IMM; \
1444 CONT; \
1445 ALU_##OPCODE##_K: \
1446 DST = (u32) DST OP (u32) IMM; \
1447 CONT;
1448 ALU(ADD, +)
1449 ALU(SUB, -)
1450 ALU(AND, &)
1451 ALU(OR, |)
1452 ALU(XOR, ^)
1453 ALU(MUL, *)
1454 SHT(LSH, <<)
1455 SHT(RSH, >>)
1456 #undef SHT
1457 #undef ALU
1458 ALU_NEG:
1459 DST = (u32) -DST;
1460 CONT;
1461 ALU64_NEG:
1462 DST = -DST;
1463 CONT;
1464 ALU_MOV_X:
1465 DST = (u32) SRC;
1466 CONT;
1467 ALU_MOV_K:
1468 DST = (u32) IMM;
1469 CONT;
1470 ALU64_MOV_X:
1471 DST = SRC;
1472 CONT;
1473 ALU64_MOV_K:
1474 DST = IMM;
1475 CONT;
1476 LD_IMM_DW:
1477 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1478 insn++;
1479 CONT;
1480 ALU_ARSH_X:
1481 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1482 CONT;
1483 ALU_ARSH_K:
1484 DST = (u64) (u32) (((s32) DST) >> IMM);
1485 CONT;
1486 ALU64_ARSH_X:
1487 (*(s64 *) &DST) >>= (SRC & 63);
1488 CONT;
1489 ALU64_ARSH_K:
1490 (*(s64 *) &DST) >>= IMM;
1491 CONT;
1492 ALU64_MOD_X:
1493 div64_u64_rem(DST, SRC, &AX);
1494 DST = AX;
1495 CONT;
1496 ALU_MOD_X:
1497 AX = (u32) DST;
1498 DST = do_div(AX, (u32) SRC);
1499 CONT;
1500 ALU64_MOD_K:
1501 div64_u64_rem(DST, IMM, &AX);
1502 DST = AX;
1503 CONT;
1504 ALU_MOD_K:
1505 AX = (u32) DST;
1506 DST = do_div(AX, (u32) IMM);
1507 CONT;
1508 ALU64_DIV_X:
1509 DST = div64_u64(DST, SRC);
1510 CONT;
1511 ALU_DIV_X:
1512 AX = (u32) DST;
1513 do_div(AX, (u32) SRC);
1514 DST = (u32) AX;
1515 CONT;
1516 ALU64_DIV_K:
1517 DST = div64_u64(DST, IMM);
1518 CONT;
1519 ALU_DIV_K:
1520 AX = (u32) DST;
1521 do_div(AX, (u32) IMM);
1522 DST = (u32) AX;
1523 CONT;
1524 ALU_END_TO_BE:
1525 switch (IMM) {
1526 case 16:
1527 DST = (__force u16) cpu_to_be16(DST);
1528 break;
1529 case 32:
1530 DST = (__force u32) cpu_to_be32(DST);
1531 break;
1532 case 64:
1533 DST = (__force u64) cpu_to_be64(DST);
1534 break;
1535 }
1536 CONT;
1537 ALU_END_TO_LE:
1538 switch (IMM) {
1539 case 16:
1540 DST = (__force u16) cpu_to_le16(DST);
1541 break;
1542 case 32:
1543 DST = (__force u32) cpu_to_le32(DST);
1544 break;
1545 case 64:
1546 DST = (__force u64) cpu_to_le64(DST);
1547 break;
1548 }
1549 CONT;
1550
1551 /* CALL */
1552 JMP_CALL:
1553 /* Function call scratches BPF_R1-BPF_R5 registers,
1554 * preserves BPF_R6-BPF_R9, and stores return value
1555 * into BPF_R0.
1556 */
1557 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1558 BPF_R4, BPF_R5);
1559 CONT;
1560
1561 JMP_CALL_ARGS:
1562 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1563 BPF_R3, BPF_R4,
1564 BPF_R5,
1565 insn + insn->off + 1);
1566 CONT;
1567
1568 JMP_TAIL_CALL: {
1569 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1570 struct bpf_array *array = container_of(map, struct bpf_array, map);
1571 struct bpf_prog *prog;
1572 u32 index = BPF_R3;
1573
1574 if (unlikely(index >= array->map.max_entries))
1575 goto out;
1576 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1577 goto out;
1578
1579 tail_call_cnt++;
1580
1581 prog = READ_ONCE(array->ptrs[index]);
1582 if (!prog)
1583 goto out;
1584
1585 /* ARG1 at this point is guaranteed to point to CTX from
1586 * the verifier side due to the fact that the tail call is
1587 * handled like a helper, that is, bpf_tail_call_proto,
1588 * where arg1_type is ARG_PTR_TO_CTX.
1589 */
1590 insn = prog->insnsi;
1591 goto select_insn;
1592 out:
1593 CONT;
1594 }
1595 JMP_JA:
1596 insn += insn->off;
1597 CONT;
1598 JMP_EXIT:
1599 return BPF_R0;
1600 /* JMP */
1601 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1602 JMP_##OPCODE##_X: \
1603 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1604 insn += insn->off; \
1605 CONT_JMP; \
1606 } \
1607 CONT; \
1608 JMP32_##OPCODE##_X: \
1609 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1610 insn += insn->off; \
1611 CONT_JMP; \
1612 } \
1613 CONT; \
1614 JMP_##OPCODE##_K: \
1615 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1616 insn += insn->off; \
1617 CONT_JMP; \
1618 } \
1619 CONT; \
1620 JMP32_##OPCODE##_K: \
1621 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1622 insn += insn->off; \
1623 CONT_JMP; \
1624 } \
1625 CONT;
1626 COND_JMP(u, JEQ, ==)
1627 COND_JMP(u, JNE, !=)
1628 COND_JMP(u, JGT, >)
1629 COND_JMP(u, JLT, <)
1630 COND_JMP(u, JGE, >=)
1631 COND_JMP(u, JLE, <=)
1632 COND_JMP(u, JSET, &)
1633 COND_JMP(s, JSGT, >)
1634 COND_JMP(s, JSLT, <)
1635 COND_JMP(s, JSGE, >=)
1636 COND_JMP(s, JSLE, <=)
1637 #undef COND_JMP
1638 /* ST, STX and LDX*/
1639 ST_NOSPEC:
1640 /* Speculation barrier for mitigating Speculative Store Bypass.
1641 * In case of arm64, we rely on the firmware mitigation as
1642 * controlled via the ssbd kernel parameter. Whenever the
1643 * mitigation is enabled, it works for all of the kernel code
1644 * with no need to provide any additional instructions here.
1645 * In case of x86, we use 'lfence' insn for mitigation. We
1646 * reuse preexisting logic from Spectre v1 mitigation that
1647 * happens to produce the required code on x86 for v4 as well.
1648 */
1649 #ifdef CONFIG_X86
1650 barrier_nospec();
1651 #endif
1652 CONT;
1653 #define LDST(SIZEOP, SIZE) \
1654 STX_MEM_##SIZEOP: \
1655 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1656 CONT; \
1657 ST_MEM_##SIZEOP: \
1658 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1659 CONT; \
1660 LDX_MEM_##SIZEOP: \
1661 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1662 CONT; \
1663 LDX_PROBE_MEM_##SIZEOP: \
1664 bpf_probe_read_kernel(&DST, sizeof(SIZE), \
1665 (const void *)(long) (SRC + insn->off)); \
1666 DST = *((SIZE *)&DST); \
1667 CONT;
1668
1669 LDST(B, u8)
1670 LDST(H, u16)
1671 LDST(W, u32)
1672 LDST(DW, u64)
1673 #undef LDST
1674
1675 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1676 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1677 (DST + insn->off));
1678 CONT;
1679 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1680 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1681 (DST + insn->off));
1682 CONT;
1683
1684 default_label:
1685 /* If we ever reach this, we have a bug somewhere. Die hard here
1686 * instead of just returning 0; we could be somewhere in a subprog,
1687 * so execution could continue otherwise which we do /not/ want.
1688 *
1689 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1690 */
1691 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1692 BUG_ON(1);
1693 return 0;
1694 }
1695
1696 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1697 #define DEFINE_BPF_PROG_RUN(stack_size) \
1698 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1699 { \
1700 u64 stack[stack_size / sizeof(u64)]; \
1701 u64 regs[MAX_BPF_EXT_REG]; \
1702 \
1703 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1704 ARG1 = (u64) (unsigned long) ctx; \
1705 return ___bpf_prog_run(regs, insn, stack); \
1706 }
1707
1708 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1709 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1710 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1711 const struct bpf_insn *insn) \
1712 { \
1713 u64 stack[stack_size / sizeof(u64)]; \
1714 u64 regs[MAX_BPF_EXT_REG]; \
1715 \
1716 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1717 BPF_R1 = r1; \
1718 BPF_R2 = r2; \
1719 BPF_R3 = r3; \
1720 BPF_R4 = r4; \
1721 BPF_R5 = r5; \
1722 return ___bpf_prog_run(regs, insn, stack); \
1723 }
1724
1725 #define EVAL1(FN, X) FN(X)
1726 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1727 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1728 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1729 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1730 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1731
1732 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1733 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1734 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1735
1736 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1737 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1738 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1739
1740 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1741
1742 static unsigned int (*interpreters[])(const void *ctx,
1743 const struct bpf_insn *insn) = {
1744 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1745 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1746 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1747 };
1748 #undef PROG_NAME_LIST
1749 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1750 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1751 const struct bpf_insn *insn) = {
1752 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1753 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1754 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1755 };
1756 #undef PROG_NAME_LIST
1757
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1758 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1759 {
1760 stack_depth = max_t(u32, stack_depth, 1);
1761 insn->off = (s16) insn->imm;
1762 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1763 __bpf_call_base_args;
1764 insn->code = BPF_JMP | BPF_CALL_ARGS;
1765 }
1766
1767 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1768 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1769 const struct bpf_insn *insn)
1770 {
1771 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1772 * is not working properly, so warn about it!
1773 */
1774 WARN_ON_ONCE(1);
1775 return 0;
1776 }
1777 #endif
1778
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1779 bool bpf_prog_array_compatible(struct bpf_array *array,
1780 const struct bpf_prog *fp)
1781 {
1782 bool ret;
1783
1784 if (fp->kprobe_override)
1785 return false;
1786
1787 spin_lock(&array->aux->owner.lock);
1788
1789 if (!array->aux->owner.type) {
1790 /* There's no owner yet where we could check for
1791 * compatibility.
1792 */
1793 array->aux->owner.type = fp->type;
1794 array->aux->owner.jited = fp->jited;
1795 ret = true;
1796 } else {
1797 ret = array->aux->owner.type == fp->type &&
1798 array->aux->owner.jited == fp->jited;
1799 }
1800 spin_unlock(&array->aux->owner.lock);
1801 return ret;
1802 }
1803
bpf_check_tail_call(const struct bpf_prog * fp)1804 static int bpf_check_tail_call(const struct bpf_prog *fp)
1805 {
1806 struct bpf_prog_aux *aux = fp->aux;
1807 int i, ret = 0;
1808
1809 mutex_lock(&aux->used_maps_mutex);
1810 for (i = 0; i < aux->used_map_cnt; i++) {
1811 struct bpf_map *map = aux->used_maps[i];
1812 struct bpf_array *array;
1813
1814 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1815 continue;
1816
1817 array = container_of(map, struct bpf_array, map);
1818 if (!bpf_prog_array_compatible(array, fp)) {
1819 ret = -EINVAL;
1820 goto out;
1821 }
1822 }
1823
1824 out:
1825 mutex_unlock(&aux->used_maps_mutex);
1826 return ret;
1827 }
1828
bpf_prog_select_func(struct bpf_prog * fp)1829 static void bpf_prog_select_func(struct bpf_prog *fp)
1830 {
1831 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1832 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1833
1834 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1835 #else
1836 fp->bpf_func = __bpf_prog_ret0_warn;
1837 #endif
1838 }
1839
1840 /**
1841 * bpf_prog_select_runtime - select exec runtime for BPF program
1842 * @fp: bpf_prog populated with internal BPF program
1843 * @err: pointer to error variable
1844 *
1845 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1846 * The BPF program will be executed via BPF_PROG_RUN() macro.
1847 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1848 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1849 {
1850 /* In case of BPF to BPF calls, verifier did all the prep
1851 * work with regards to JITing, etc.
1852 */
1853 if (fp->bpf_func)
1854 goto finalize;
1855
1856 bpf_prog_select_func(fp);
1857
1858 /* eBPF JITs can rewrite the program in case constant
1859 * blinding is active. However, in case of error during
1860 * blinding, bpf_int_jit_compile() must always return a
1861 * valid program, which in this case would simply not
1862 * be JITed, but falls back to the interpreter.
1863 */
1864 if (!bpf_prog_is_dev_bound(fp->aux)) {
1865 *err = bpf_prog_alloc_jited_linfo(fp);
1866 if (*err)
1867 return fp;
1868
1869 fp = bpf_int_jit_compile(fp);
1870 if (!fp->jited) {
1871 bpf_prog_free_jited_linfo(fp);
1872 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1873 *err = -ENOTSUPP;
1874 return fp;
1875 #endif
1876 } else {
1877 bpf_prog_free_unused_jited_linfo(fp);
1878 }
1879 } else {
1880 *err = bpf_prog_offload_compile(fp);
1881 if (*err)
1882 return fp;
1883 }
1884
1885 finalize:
1886 bpf_prog_lock_ro(fp);
1887
1888 /* The tail call compatibility check can only be done at
1889 * this late stage as we need to determine, if we deal
1890 * with JITed or non JITed program concatenations and not
1891 * all eBPF JITs might immediately support all features.
1892 */
1893 *err = bpf_check_tail_call(fp);
1894
1895 return fp;
1896 }
1897 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1898
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1899 static unsigned int __bpf_prog_ret1(const void *ctx,
1900 const struct bpf_insn *insn)
1901 {
1902 return 1;
1903 }
1904
1905 static struct bpf_prog_dummy {
1906 struct bpf_prog prog;
1907 } dummy_bpf_prog = {
1908 .prog = {
1909 .bpf_func = __bpf_prog_ret1,
1910 },
1911 };
1912
1913 /* to avoid allocating empty bpf_prog_array for cgroups that
1914 * don't have bpf program attached use one global 'empty_prog_array'
1915 * It will not be modified the caller of bpf_prog_array_alloc()
1916 * (since caller requested prog_cnt == 0)
1917 * that pointer should be 'freed' by bpf_prog_array_free()
1918 */
1919 static struct {
1920 struct bpf_prog_array hdr;
1921 struct bpf_prog *null_prog;
1922 } empty_prog_array = {
1923 .null_prog = NULL,
1924 };
1925
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1926 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1927 {
1928 if (prog_cnt)
1929 return kzalloc(sizeof(struct bpf_prog_array) +
1930 sizeof(struct bpf_prog_array_item) *
1931 (prog_cnt + 1),
1932 flags);
1933
1934 return &empty_prog_array.hdr;
1935 }
1936
bpf_prog_array_free(struct bpf_prog_array * progs)1937 void bpf_prog_array_free(struct bpf_prog_array *progs)
1938 {
1939 if (!progs || progs == &empty_prog_array.hdr)
1940 return;
1941 kfree_rcu(progs, rcu);
1942 }
1943
bpf_prog_array_length(struct bpf_prog_array * array)1944 int bpf_prog_array_length(struct bpf_prog_array *array)
1945 {
1946 struct bpf_prog_array_item *item;
1947 u32 cnt = 0;
1948
1949 for (item = array->items; item->prog; item++)
1950 if (item->prog != &dummy_bpf_prog.prog)
1951 cnt++;
1952 return cnt;
1953 }
1954
bpf_prog_array_is_empty(struct bpf_prog_array * array)1955 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1956 {
1957 struct bpf_prog_array_item *item;
1958
1959 for (item = array->items; item->prog; item++)
1960 if (item->prog != &dummy_bpf_prog.prog)
1961 return false;
1962 return true;
1963 }
1964
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1965 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1966 u32 *prog_ids,
1967 u32 request_cnt)
1968 {
1969 struct bpf_prog_array_item *item;
1970 int i = 0;
1971
1972 for (item = array->items; item->prog; item++) {
1973 if (item->prog == &dummy_bpf_prog.prog)
1974 continue;
1975 prog_ids[i] = item->prog->aux->id;
1976 if (++i == request_cnt) {
1977 item++;
1978 break;
1979 }
1980 }
1981
1982 return !!(item->prog);
1983 }
1984
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1985 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1986 __u32 __user *prog_ids, u32 cnt)
1987 {
1988 unsigned long err = 0;
1989 bool nospc;
1990 u32 *ids;
1991
1992 /* users of this function are doing:
1993 * cnt = bpf_prog_array_length();
1994 * if (cnt > 0)
1995 * bpf_prog_array_copy_to_user(..., cnt);
1996 * so below kcalloc doesn't need extra cnt > 0 check.
1997 */
1998 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1999 if (!ids)
2000 return -ENOMEM;
2001 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2002 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2003 kfree(ids);
2004 if (err)
2005 return -EFAULT;
2006 if (nospc)
2007 return -ENOSPC;
2008 return 0;
2009 }
2010
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)2011 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2012 struct bpf_prog *old_prog)
2013 {
2014 struct bpf_prog_array_item *item;
2015
2016 for (item = array->items; item->prog; item++)
2017 if (item->prog == old_prog) {
2018 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2019 break;
2020 }
2021 }
2022
2023 /**
2024 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2025 * index into the program array with
2026 * a dummy no-op program.
2027 * @array: a bpf_prog_array
2028 * @index: the index of the program to replace
2029 *
2030 * Skips over dummy programs, by not counting them, when calculating
2031 * the position of the program to replace.
2032 *
2033 * Return:
2034 * * 0 - Success
2035 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2036 * * -ENOENT - Index out of range
2037 */
bpf_prog_array_delete_safe_at(struct bpf_prog_array * array,int index)2038 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2039 {
2040 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2041 }
2042
2043 /**
2044 * bpf_prog_array_update_at() - Updates the program at the given index
2045 * into the program array.
2046 * @array: a bpf_prog_array
2047 * @index: the index of the program to update
2048 * @prog: the program to insert into the array
2049 *
2050 * Skips over dummy programs, by not counting them, when calculating
2051 * the position of the program to update.
2052 *
2053 * Return:
2054 * * 0 - Success
2055 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2056 * * -ENOENT - Index out of range
2057 */
bpf_prog_array_update_at(struct bpf_prog_array * array,int index,struct bpf_prog * prog)2058 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2059 struct bpf_prog *prog)
2060 {
2061 struct bpf_prog_array_item *item;
2062
2063 if (unlikely(index < 0))
2064 return -EINVAL;
2065
2066 for (item = array->items; item->prog; item++) {
2067 if (item->prog == &dummy_bpf_prog.prog)
2068 continue;
2069 if (!index) {
2070 WRITE_ONCE(item->prog, prog);
2071 return 0;
2072 }
2073 index--;
2074 }
2075 return -ENOENT;
2076 }
2077
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)2078 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2079 struct bpf_prog *exclude_prog,
2080 struct bpf_prog *include_prog,
2081 struct bpf_prog_array **new_array)
2082 {
2083 int new_prog_cnt, carry_prog_cnt = 0;
2084 struct bpf_prog_array_item *existing;
2085 struct bpf_prog_array *array;
2086 bool found_exclude = false;
2087 int new_prog_idx = 0;
2088
2089 /* Figure out how many existing progs we need to carry over to
2090 * the new array.
2091 */
2092 if (old_array) {
2093 existing = old_array->items;
2094 for (; existing->prog; existing++) {
2095 if (existing->prog == exclude_prog) {
2096 found_exclude = true;
2097 continue;
2098 }
2099 if (existing->prog != &dummy_bpf_prog.prog)
2100 carry_prog_cnt++;
2101 if (existing->prog == include_prog)
2102 return -EEXIST;
2103 }
2104 }
2105
2106 if (exclude_prog && !found_exclude)
2107 return -ENOENT;
2108
2109 /* How many progs (not NULL) will be in the new array? */
2110 new_prog_cnt = carry_prog_cnt;
2111 if (include_prog)
2112 new_prog_cnt += 1;
2113
2114 /* Do we have any prog (not NULL) in the new array? */
2115 if (!new_prog_cnt) {
2116 *new_array = NULL;
2117 return 0;
2118 }
2119
2120 /* +1 as the end of prog_array is marked with NULL */
2121 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2122 if (!array)
2123 return -ENOMEM;
2124
2125 /* Fill in the new prog array */
2126 if (carry_prog_cnt) {
2127 existing = old_array->items;
2128 for (; existing->prog; existing++)
2129 if (existing->prog != exclude_prog &&
2130 existing->prog != &dummy_bpf_prog.prog) {
2131 array->items[new_prog_idx++].prog =
2132 existing->prog;
2133 }
2134 }
2135 if (include_prog)
2136 array->items[new_prog_idx++].prog = include_prog;
2137 array->items[new_prog_idx].prog = NULL;
2138 *new_array = array;
2139 return 0;
2140 }
2141
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2142 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2143 u32 *prog_ids, u32 request_cnt,
2144 u32 *prog_cnt)
2145 {
2146 u32 cnt = 0;
2147
2148 if (array)
2149 cnt = bpf_prog_array_length(array);
2150
2151 *prog_cnt = cnt;
2152
2153 /* return early if user requested only program count or nothing to copy */
2154 if (!request_cnt || !cnt)
2155 return 0;
2156
2157 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2158 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2159 : 0;
2160 }
2161
__bpf_free_used_maps(struct bpf_prog_aux * aux,struct bpf_map ** used_maps,u32 len)2162 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2163 struct bpf_map **used_maps, u32 len)
2164 {
2165 struct bpf_map *map;
2166 u32 i;
2167
2168 for (i = 0; i < len; i++) {
2169 map = used_maps[i];
2170 if (map->ops->map_poke_untrack)
2171 map->ops->map_poke_untrack(map, aux);
2172 bpf_map_put(map);
2173 }
2174 }
2175
bpf_free_used_maps(struct bpf_prog_aux * aux)2176 static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2177 {
2178 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2179 kfree(aux->used_maps);
2180 }
2181
bpf_prog_free_deferred(struct work_struct * work)2182 static void bpf_prog_free_deferred(struct work_struct *work)
2183 {
2184 struct bpf_prog_aux *aux;
2185 int i;
2186
2187 aux = container_of(work, struct bpf_prog_aux, work);
2188 bpf_free_used_maps(aux);
2189 if (bpf_prog_is_dev_bound(aux))
2190 bpf_prog_offload_destroy(aux->prog);
2191 #ifdef CONFIG_PERF_EVENTS
2192 if (aux->prog->has_callchain_buf)
2193 put_callchain_buffers();
2194 #endif
2195 if (aux->dst_trampoline)
2196 bpf_trampoline_put(aux->dst_trampoline);
2197 for (i = 0; i < aux->func_cnt; i++)
2198 bpf_jit_free(aux->func[i]);
2199 if (aux->func_cnt) {
2200 kfree(aux->func);
2201 bpf_prog_unlock_free(aux->prog);
2202 } else {
2203 bpf_jit_free(aux->prog);
2204 }
2205 }
2206
2207 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2208 void bpf_prog_free(struct bpf_prog *fp)
2209 {
2210 struct bpf_prog_aux *aux = fp->aux;
2211
2212 if (aux->dst_prog)
2213 bpf_prog_put(aux->dst_prog);
2214 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2215 schedule_work(&aux->work);
2216 }
2217 EXPORT_SYMBOL_GPL(bpf_prog_free);
2218
2219 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2220 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2221
bpf_user_rnd_init_once(void)2222 void bpf_user_rnd_init_once(void)
2223 {
2224 prandom_init_once(&bpf_user_rnd_state);
2225 }
2226
BPF_CALL_0(bpf_user_rnd_u32)2227 BPF_CALL_0(bpf_user_rnd_u32)
2228 {
2229 /* Should someone ever have the rather unwise idea to use some
2230 * of the registers passed into this function, then note that
2231 * this function is called from native eBPF and classic-to-eBPF
2232 * transformations. Register assignments from both sides are
2233 * different, f.e. classic always sets fn(ctx, A, X) here.
2234 */
2235 struct rnd_state *state;
2236 u32 res;
2237
2238 state = &get_cpu_var(bpf_user_rnd_state);
2239 res = prandom_u32_state(state);
2240 put_cpu_var(bpf_user_rnd_state);
2241
2242 return res;
2243 }
2244
BPF_CALL_0(bpf_get_raw_cpu_id)2245 BPF_CALL_0(bpf_get_raw_cpu_id)
2246 {
2247 return raw_smp_processor_id();
2248 }
2249
2250 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2251 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2252 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2253 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2254 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2255 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2256 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2257 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2258 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2259 const struct bpf_func_proto bpf_jiffies64_proto __weak;
2260
2261 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2262 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2263 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2264 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2265 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2266
2267 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2268 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2269 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2270 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2271 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2272 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2273 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2274 const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2275 const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2276
bpf_get_trace_printk_proto(void)2277 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2278 {
2279 return NULL;
2280 }
2281
2282 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2283 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2284 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2285 {
2286 return -ENOTSUPP;
2287 }
2288 EXPORT_SYMBOL_GPL(bpf_event_output);
2289
2290 /* Always built-in helper functions. */
2291 const struct bpf_func_proto bpf_tail_call_proto = {
2292 .func = NULL,
2293 .gpl_only = false,
2294 .ret_type = RET_VOID,
2295 .arg1_type = ARG_PTR_TO_CTX,
2296 .arg2_type = ARG_CONST_MAP_PTR,
2297 .arg3_type = ARG_ANYTHING,
2298 };
2299
2300 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2301 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2302 * eBPF and implicitly also cBPF can get JITed!
2303 */
bpf_int_jit_compile(struct bpf_prog * prog)2304 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2305 {
2306 return prog;
2307 }
2308
2309 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2310 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2311 */
bpf_jit_compile(struct bpf_prog * prog)2312 void __weak bpf_jit_compile(struct bpf_prog *prog)
2313 {
2314 }
2315
bpf_helper_changes_pkt_data(void * func)2316 bool __weak bpf_helper_changes_pkt_data(void *func)
2317 {
2318 return false;
2319 }
2320
2321 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2322 * analysis code and wants explicit zero extension inserted by verifier.
2323 * Otherwise, return FALSE.
2324 */
bpf_jit_needs_zext(void)2325 bool __weak bpf_jit_needs_zext(void)
2326 {
2327 return false;
2328 }
2329
2330 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2331 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2332 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2333 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2334 int len)
2335 {
2336 return -EFAULT;
2337 }
2338
bpf_arch_text_poke(void * ip,enum bpf_text_poke_type t,void * addr1,void * addr2)2339 int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2340 void *addr1, void *addr2)
2341 {
2342 return -ENOTSUPP;
2343 }
2344
2345 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2346 EXPORT_SYMBOL(bpf_stats_enabled_key);
2347
2348 /* All definitions of tracepoints related to BPF. */
2349 #undef TRACE_INCLUDE_PATH
2350 #define CREATE_TRACE_POINTS
2351 #include <linux/bpf_trace.h>
2352
2353 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2354 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2355