xref: /OK3568_Linux_fs/kernel/include/linux/blk-mq.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/srcu.h>
8 
9 struct blk_mq_tags;
10 struct blk_flush_queue;
11 
12 /**
13  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
14  * block device
15  */
16 struct blk_mq_hw_ctx {
17 	struct {
18 		/** @lock: Protects the dispatch list. */
19 		spinlock_t		lock;
20 		/**
21 		 * @dispatch: Used for requests that are ready to be
22 		 * dispatched to the hardware but for some reason (e.g. lack of
23 		 * resources) could not be sent to the hardware. As soon as the
24 		 * driver can send new requests, requests at this list will
25 		 * be sent first for a fairer dispatch.
26 		 */
27 		struct list_head	dispatch;
28 		 /**
29 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
30 		  * queue (active, scheduled to restart, stopped).
31 		  */
32 		unsigned long		state;
33 	} ____cacheline_aligned_in_smp;
34 
35 	/**
36 	 * @run_work: Used for scheduling a hardware queue run at a later time.
37 	 */
38 	struct delayed_work	run_work;
39 	/** @cpumask: Map of available CPUs where this hctx can run. */
40 	cpumask_var_t		cpumask;
41 	/**
42 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
43 	 * selection from @cpumask.
44 	 */
45 	int			next_cpu;
46 	/**
47 	 * @next_cpu_batch: Counter of how many works left in the batch before
48 	 * changing to the next CPU.
49 	 */
50 	int			next_cpu_batch;
51 
52 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
53 	unsigned long		flags;
54 
55 	/**
56 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
57 	 * queue. It's up to the IO scheduler how to use this pointer.
58 	 */
59 	void			*sched_data;
60 	/**
61 	 * @queue: Pointer to the request queue that owns this hardware context.
62 	 */
63 	struct request_queue	*queue;
64 	/** @fq: Queue of requests that need to perform a flush operation. */
65 	struct blk_flush_queue	*fq;
66 
67 	/**
68 	 * @driver_data: Pointer to data owned by the block driver that created
69 	 * this hctx
70 	 */
71 	void			*driver_data;
72 
73 	/**
74 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
75 	 * pending request in that software queue.
76 	 */
77 	struct sbitmap		ctx_map;
78 
79 	/**
80 	 * @dispatch_from: Software queue to be used when no scheduler was
81 	 * selected.
82 	 */
83 	struct blk_mq_ctx	*dispatch_from;
84 	/**
85 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
86 	 * decide if the hw_queue is busy using Exponential Weighted Moving
87 	 * Average algorithm.
88 	 */
89 	unsigned int		dispatch_busy;
90 
91 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
92 	unsigned short		type;
93 	/** @nr_ctx: Number of software queues. */
94 	unsigned short		nr_ctx;
95 	/** @ctxs: Array of software queues. */
96 	struct blk_mq_ctx	**ctxs;
97 
98 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
99 	spinlock_t		dispatch_wait_lock;
100 	/**
101 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
102 	 * available at the moment, to wait for another try in the future.
103 	 */
104 	wait_queue_entry_t	dispatch_wait;
105 
106 	/**
107 	 * @wait_index: Index of next available dispatch_wait queue to insert
108 	 * requests.
109 	 */
110 	atomic_t		wait_index;
111 
112 	/**
113 	 * @tags: Tags owned by the block driver. A tag at this set is only
114 	 * assigned when a request is dispatched from a hardware queue.
115 	 */
116 	struct blk_mq_tags	*tags;
117 	/**
118 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
119 	 * scheduler associated with a request queue, a tag is assigned when
120 	 * that request is allocated. Else, this member is not used.
121 	 */
122 	struct blk_mq_tags	*sched_tags;
123 
124 	/** @queued: Number of queued requests. */
125 	unsigned long		queued;
126 	/** @run: Number of dispatched requests. */
127 	unsigned long		run;
128 #define BLK_MQ_MAX_DISPATCH_ORDER	7
129 	/** @dispatched: Number of dispatch requests by queue. */
130 	unsigned long		dispatched[BLK_MQ_MAX_DISPATCH_ORDER];
131 
132 	/** @numa_node: NUMA node the storage adapter has been connected to. */
133 	unsigned int		numa_node;
134 	/** @queue_num: Index of this hardware queue. */
135 	unsigned int		queue_num;
136 
137 	/**
138 	 * @nr_active: Number of active requests. Only used when a tag set is
139 	 * shared across request queues.
140 	 */
141 	atomic_t		nr_active;
142 
143 	/** @cpuhp_online: List to store request if CPU is going to die */
144 	struct hlist_node	cpuhp_online;
145 	/** @cpuhp_dead: List to store request if some CPU die. */
146 	struct hlist_node	cpuhp_dead;
147 	/** @kobj: Kernel object for sysfs. */
148 	struct kobject		kobj;
149 
150 	/** @poll_considered: Count times blk_poll() was called. */
151 	unsigned long		poll_considered;
152 	/** @poll_invoked: Count how many requests blk_poll() polled. */
153 	unsigned long		poll_invoked;
154 	/** @poll_success: Count how many polled requests were completed. */
155 	unsigned long		poll_success;
156 
157 #ifdef CONFIG_BLK_DEBUG_FS
158 	/**
159 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
160 	 * as cpu<cpu_number>.
161 	 */
162 	struct dentry		*debugfs_dir;
163 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
164 	struct dentry		*sched_debugfs_dir;
165 #endif
166 
167 	/**
168 	 * @hctx_list: if this hctx is not in use, this is an entry in
169 	 * q->unused_hctx_list.
170 	 */
171 	struct list_head	hctx_list;
172 
173 	/**
174 	 * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is
175 	 * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also
176 	 * blk_mq_hw_ctx_size().
177 	 */
178 	struct srcu_struct	srcu[];
179 };
180 
181 /**
182  * struct blk_mq_queue_map - Map software queues to hardware queues
183  * @mq_map:       CPU ID to hardware queue index map. This is an array
184  *	with nr_cpu_ids elements. Each element has a value in the range
185  *	[@queue_offset, @queue_offset + @nr_queues).
186  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
187  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
188  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
189  *	set of hardware queues.
190  */
191 struct blk_mq_queue_map {
192 	unsigned int *mq_map;
193 	unsigned int nr_queues;
194 	unsigned int queue_offset;
195 };
196 
197 /**
198  * enum hctx_type - Type of hardware queue
199  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
200  * @HCTX_TYPE_READ:	Just for READ I/O.
201  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
202  * @HCTX_MAX_TYPES:	Number of types of hctx.
203  */
204 enum hctx_type {
205 	HCTX_TYPE_DEFAULT,
206 	HCTX_TYPE_READ,
207 	HCTX_TYPE_POLL,
208 
209 	HCTX_MAX_TYPES,
210 };
211 
212 /**
213  * struct blk_mq_tag_set - tag set that can be shared between request queues
214  * @map:	   One or more ctx -> hctx mappings. One map exists for each
215  *		   hardware queue type (enum hctx_type) that the driver wishes
216  *		   to support. There are no restrictions on maps being of the
217  *		   same size, and it's perfectly legal to share maps between
218  *		   types.
219  * @nr_maps:	   Number of elements in the @map array. A number in the range
220  *		   [1, HCTX_MAX_TYPES].
221  * @ops:	   Pointers to functions that implement block driver behavior.
222  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
223  *		   owns this data structure.
224  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
225  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
226  *		   allocations.
227  * @cmd_size:	   Number of additional bytes to allocate per request. The block
228  *		   driver owns these additional bytes.
229  * @numa_node:	   NUMA node the storage adapter has been connected to.
230  * @timeout:	   Request processing timeout in jiffies.
231  * @flags:	   Zero or more BLK_MQ_F_* flags.
232  * @driver_data:   Pointer to data owned by the block driver that created this
233  *		   tag set.
234  * @active_queues_shared_sbitmap:
235  * 		   number of active request queues per tag set.
236  * @__bitmap_tags: A shared tags sbitmap, used over all hctx's
237  * @__breserved_tags:
238  *		   A shared reserved tags sbitmap, used over all hctx's
239  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
240  *		   elements.
241  * @tag_list_lock: Serializes tag_list accesses.
242  * @tag_list:	   List of the request queues that use this tag set. See also
243  *		   request_queue.tag_set_list.
244  */
245 struct blk_mq_tag_set {
246 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
247 	unsigned int		nr_maps;
248 	const struct blk_mq_ops	*ops;
249 	unsigned int		nr_hw_queues;
250 	unsigned int		queue_depth;
251 	unsigned int		reserved_tags;
252 	unsigned int		cmd_size;
253 	int			numa_node;
254 	unsigned int		timeout;
255 	unsigned int		flags;
256 	void			*driver_data;
257 	atomic_t		active_queues_shared_sbitmap;
258 
259 	struct sbitmap_queue	__bitmap_tags;
260 	struct sbitmap_queue	__breserved_tags;
261 	struct blk_mq_tags	**tags;
262 
263 	struct mutex		tag_list_lock;
264 	struct list_head	tag_list;
265 };
266 
267 /**
268  * struct blk_mq_queue_data - Data about a request inserted in a queue
269  *
270  * @rq:   Request pointer.
271  * @last: If it is the last request in the queue.
272  */
273 struct blk_mq_queue_data {
274 	struct request *rq;
275 	bool last;
276 };
277 
278 typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *,
279 		bool);
280 typedef bool (busy_tag_iter_fn)(struct request *, void *, bool);
281 
282 /**
283  * struct blk_mq_ops - Callback functions that implements block driver
284  * behaviour.
285  */
286 struct blk_mq_ops {
287 	/**
288 	 * @queue_rq: Queue a new request from block IO.
289 	 */
290 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
291 				 const struct blk_mq_queue_data *);
292 
293 	/**
294 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
295 	 * requests to hardware, it must define this function. In case of errors
296 	 * that make us stop issuing further requests, this hook serves the
297 	 * purpose of kicking the hardware (which the last request otherwise
298 	 * would have done).
299 	 */
300 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
301 
302 	/**
303 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
304 	 * run, it is driver's responsibility to release the
305 	 * reserved budget. Also we have to handle failure case
306 	 * of .get_budget for avoiding I/O deadlock.
307 	 */
308 	bool (*get_budget)(struct request_queue *);
309 
310 	/**
311 	 * @put_budget: Release the reserved budget.
312 	 */
313 	void (*put_budget)(struct request_queue *);
314 
315 	/**
316 	 * @timeout: Called on request timeout.
317 	 */
318 	enum blk_eh_timer_return (*timeout)(struct request *, bool);
319 
320 	/**
321 	 * @poll: Called to poll for completion of a specific tag.
322 	 */
323 	int (*poll)(struct blk_mq_hw_ctx *);
324 
325 	/**
326 	 * @complete: Mark the request as complete.
327 	 */
328 	void (*complete)(struct request *);
329 
330 	/**
331 	 * @init_hctx: Called when the block layer side of a hardware queue has
332 	 * been set up, allowing the driver to allocate/init matching
333 	 * structures.
334 	 */
335 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
336 	/**
337 	 * @exit_hctx: Ditto for exit/teardown.
338 	 */
339 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
340 
341 	/**
342 	 * @init_request: Called for every command allocated by the block layer
343 	 * to allow the driver to set up driver specific data.
344 	 *
345 	 * Tag greater than or equal to queue_depth is for setting up
346 	 * flush request.
347 	 */
348 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
349 			    unsigned int, unsigned int);
350 	/**
351 	 * @exit_request: Ditto for exit/teardown.
352 	 */
353 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
354 			     unsigned int);
355 
356 	/**
357 	 * @initialize_rq_fn: Called from inside blk_get_request().
358 	 */
359 	void (*initialize_rq_fn)(struct request *rq);
360 
361 	/**
362 	 * @cleanup_rq: Called before freeing one request which isn't completed
363 	 * yet, and usually for freeing the driver private data.
364 	 */
365 	void (*cleanup_rq)(struct request *);
366 
367 	/**
368 	 * @busy: If set, returns whether or not this queue currently is busy.
369 	 */
370 	bool (*busy)(struct request_queue *);
371 
372 	/**
373 	 * @map_queues: This allows drivers specify their own queue mapping by
374 	 * overriding the setup-time function that builds the mq_map.
375 	 */
376 	int (*map_queues)(struct blk_mq_tag_set *set);
377 
378 #ifdef CONFIG_BLK_DEBUG_FS
379 	/**
380 	 * @show_rq: Used by the debugfs implementation to show driver-specific
381 	 * information about a request.
382 	 */
383 	void (*show_rq)(struct seq_file *m, struct request *rq);
384 #endif
385 };
386 
387 enum {
388 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
389 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
390 	/*
391 	 * Set when this device requires underlying blk-mq device for
392 	 * completing IO:
393 	 */
394 	BLK_MQ_F_STACKING	= 1 << 2,
395 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
396 	BLK_MQ_F_BLOCKING	= 1 << 5,
397 	/* Do not allow an I/O scheduler to be configured. */
398 	BLK_MQ_F_NO_SCHED	= 1 << 6,
399 	/*
400 	 * Select 'none' during queue registration in case of a single hwq
401 	 * or shared hwqs instead of 'mq-deadline'.
402 	 */
403 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
404 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
405 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
406 
407 	BLK_MQ_S_STOPPED	= 0,
408 	BLK_MQ_S_TAG_ACTIVE	= 1,
409 	BLK_MQ_S_SCHED_RESTART	= 2,
410 
411 	/* hw queue is inactive after all its CPUs become offline */
412 	BLK_MQ_S_INACTIVE	= 3,
413 
414 	BLK_MQ_MAX_DEPTH	= 10240,
415 
416 	BLK_MQ_CPU_WORK_BATCH	= 8,
417 };
418 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
419 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
420 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
421 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
422 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
423 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
424 
425 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
426 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
427 		void *queuedata);
428 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
429 						  struct request_queue *q,
430 						  bool elevator_init);
431 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
432 						const struct blk_mq_ops *ops,
433 						unsigned int queue_depth,
434 						unsigned int set_flags);
435 void blk_mq_unregister_dev(struct device *, struct request_queue *);
436 
437 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
438 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
439 
440 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
441 
442 void blk_mq_free_request(struct request *rq);
443 
444 bool blk_mq_queue_inflight(struct request_queue *q);
445 
446 enum {
447 	/* return when out of requests */
448 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
449 	/* allocate from reserved pool */
450 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
451 	/* set RQF_PM */
452 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
453 };
454 
455 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
456 		blk_mq_req_flags_t flags);
457 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
458 		unsigned int op, blk_mq_req_flags_t flags,
459 		unsigned int hctx_idx);
460 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag);
461 
462 enum {
463 	BLK_MQ_UNIQUE_TAG_BITS = 16,
464 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
465 };
466 
467 u32 blk_mq_unique_tag(struct request *rq);
468 
blk_mq_unique_tag_to_hwq(u32 unique_tag)469 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
470 {
471 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
472 }
473 
blk_mq_unique_tag_to_tag(u32 unique_tag)474 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
475 {
476 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
477 }
478 
479 /**
480  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
481  * @rq: target request.
482  */
blk_mq_rq_state(struct request * rq)483 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
484 {
485 	return READ_ONCE(rq->state);
486 }
487 
blk_mq_request_started(struct request * rq)488 static inline int blk_mq_request_started(struct request *rq)
489 {
490 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
491 }
492 
blk_mq_request_completed(struct request * rq)493 static inline int blk_mq_request_completed(struct request *rq)
494 {
495 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
496 }
497 
498 void blk_mq_start_request(struct request *rq);
499 void blk_mq_end_request(struct request *rq, blk_status_t error);
500 void __blk_mq_end_request(struct request *rq, blk_status_t error);
501 
502 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
503 void blk_mq_kick_requeue_list(struct request_queue *q);
504 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
505 void blk_mq_complete_request(struct request *rq);
506 bool blk_mq_complete_request_remote(struct request *rq);
507 bool blk_mq_queue_stopped(struct request_queue *q);
508 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
509 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
510 void blk_mq_stop_hw_queues(struct request_queue *q);
511 void blk_mq_start_hw_queues(struct request_queue *q);
512 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
513 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
514 void blk_mq_quiesce_queue(struct request_queue *q);
515 void blk_mq_unquiesce_queue(struct request_queue *q);
516 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
517 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
518 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
519 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
520 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
521 		busy_tag_iter_fn *fn, void *priv);
522 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
523 void blk_mq_freeze_queue(struct request_queue *q);
524 void blk_mq_unfreeze_queue(struct request_queue *q);
525 void blk_freeze_queue_start(struct request_queue *q);
526 void blk_mq_freeze_queue_wait(struct request_queue *q);
527 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
528 				     unsigned long timeout);
529 
530 int blk_mq_map_queues(struct blk_mq_queue_map *qmap);
531 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
532 
533 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
534 
535 unsigned int blk_mq_rq_cpu(struct request *rq);
536 
537 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)538 static inline bool blk_should_fake_timeout(struct request_queue *q)
539 {
540 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
541 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
542 		return __blk_should_fake_timeout(q);
543 	return false;
544 }
545 
546 /**
547  * blk_mq_rq_from_pdu - cast a PDU to a request
548  * @pdu: the PDU (Protocol Data Unit) to be casted
549  *
550  * Return: request
551  *
552  * Driver command data is immediately after the request. So subtract request
553  * size to get back to the original request.
554  */
blk_mq_rq_from_pdu(void * pdu)555 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
556 {
557 	return pdu - sizeof(struct request);
558 }
559 
560 /**
561  * blk_mq_rq_to_pdu - cast a request to a PDU
562  * @rq: the request to be casted
563  *
564  * Return: pointer to the PDU
565  *
566  * Driver command data is immediately after the request. So add request to get
567  * the PDU.
568  */
blk_mq_rq_to_pdu(struct request * rq)569 static inline void *blk_mq_rq_to_pdu(struct request *rq)
570 {
571 	return rq + 1;
572 }
573 
574 #define queue_for_each_hw_ctx(q, hctx, i)				\
575 	for ((i) = 0; (i) < (q)->nr_hw_queues &&			\
576 	     ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++)
577 
578 #define hctx_for_each_ctx(hctx, ctx, i)					\
579 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
580 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
581 
request_to_qc_t(struct blk_mq_hw_ctx * hctx,struct request * rq)582 static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx,
583 		struct request *rq)
584 {
585 	if (rq->tag != -1)
586 		return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT);
587 
588 	return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) |
589 			BLK_QC_T_INTERNAL;
590 }
591 
blk_mq_cleanup_rq(struct request * rq)592 static inline void blk_mq_cleanup_rq(struct request *rq)
593 {
594 	if (rq->q->mq_ops->cleanup_rq)
595 		rq->q->mq_ops->cleanup_rq(rq);
596 }
597 
598 blk_qc_t blk_mq_submit_bio(struct bio *bio);
599 
600 #endif
601