xref: /OK3568_Linux_fs/kernel/block/blk-mq.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 #include <trace/hooks/block.h>
45 
46 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
47 
48 static void blk_mq_poll_stats_start(struct request_queue *q);
49 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
50 
blk_mq_poll_stats_bkt(const struct request * rq)51 static int blk_mq_poll_stats_bkt(const struct request *rq)
52 {
53 	int ddir, sectors, bucket;
54 
55 	ddir = rq_data_dir(rq);
56 	sectors = blk_rq_stats_sectors(rq);
57 
58 	bucket = ddir + 2 * ilog2(sectors);
59 
60 	if (bucket < 0)
61 		return -1;
62 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
63 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
64 
65 	return bucket;
66 }
67 
68 /*
69  * Check if any of the ctx, dispatch list or elevator
70  * have pending work in this hardware queue.
71  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)72 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
73 {
74 	return !list_empty_careful(&hctx->dispatch) ||
75 		sbitmap_any_bit_set(&hctx->ctx_map) ||
76 			blk_mq_sched_has_work(hctx);
77 }
78 
79 /*
80  * Mark this ctx as having pending work in this hardware queue
81  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)82 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
83 				     struct blk_mq_ctx *ctx)
84 {
85 	const int bit = ctx->index_hw[hctx->type];
86 
87 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
88 		sbitmap_set_bit(&hctx->ctx_map, bit);
89 }
90 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)91 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
92 				      struct blk_mq_ctx *ctx)
93 {
94 	const int bit = ctx->index_hw[hctx->type];
95 
96 	sbitmap_clear_bit(&hctx->ctx_map, bit);
97 }
98 
99 struct mq_inflight {
100 	struct hd_struct *part;
101 	unsigned int inflight[2];
102 };
103 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)104 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
105 				  struct request *rq, void *priv,
106 				  bool reserved)
107 {
108 	struct mq_inflight *mi = priv;
109 
110 	if ((!mi->part->partno || rq->part == mi->part) &&
111 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
112 		mi->inflight[rq_data_dir(rq)]++;
113 
114 	return true;
115 }
116 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)117 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
118 {
119 	struct mq_inflight mi = { .part = part };
120 
121 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
122 
123 	return mi.inflight[0] + mi.inflight[1];
124 }
125 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])126 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
127 			 unsigned int inflight[2])
128 {
129 	struct mq_inflight mi = { .part = part };
130 
131 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
132 	inflight[0] = mi.inflight[0];
133 	inflight[1] = mi.inflight[1];
134 }
135 
blk_freeze_queue_start(struct request_queue * q)136 void blk_freeze_queue_start(struct request_queue *q)
137 {
138 	mutex_lock(&q->mq_freeze_lock);
139 	if (++q->mq_freeze_depth == 1) {
140 		percpu_ref_kill(&q->q_usage_counter);
141 		mutex_unlock(&q->mq_freeze_lock);
142 		if (queue_is_mq(q))
143 			blk_mq_run_hw_queues(q, false);
144 	} else {
145 		mutex_unlock(&q->mq_freeze_lock);
146 	}
147 }
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
149 
blk_mq_freeze_queue_wait(struct request_queue * q)150 void blk_mq_freeze_queue_wait(struct request_queue *q)
151 {
152 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
153 }
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
155 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 				     unsigned long timeout)
158 {
159 	return wait_event_timeout(q->mq_freeze_wq,
160 					percpu_ref_is_zero(&q->q_usage_counter),
161 					timeout);
162 }
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
164 
165 /*
166  * Guarantee no request is in use, so we can change any data structure of
167  * the queue afterward.
168  */
blk_freeze_queue(struct request_queue * q)169 void blk_freeze_queue(struct request_queue *q)
170 {
171 	/*
172 	 * In the !blk_mq case we are only calling this to kill the
173 	 * q_usage_counter, otherwise this increases the freeze depth
174 	 * and waits for it to return to zero.  For this reason there is
175 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 	 * exported to drivers as the only user for unfreeze is blk_mq.
177 	 */
178 	blk_freeze_queue_start(q);
179 	blk_mq_freeze_queue_wait(q);
180 }
181 
blk_mq_freeze_queue(struct request_queue * q)182 void blk_mq_freeze_queue(struct request_queue *q)
183 {
184 	/*
185 	 * ...just an alias to keep freeze and unfreeze actions balanced
186 	 * in the blk_mq_* namespace
187 	 */
188 	blk_freeze_queue(q);
189 }
190 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
191 
blk_mq_unfreeze_queue(struct request_queue * q)192 void blk_mq_unfreeze_queue(struct request_queue *q)
193 {
194 	mutex_lock(&q->mq_freeze_lock);
195 	q->mq_freeze_depth--;
196 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
197 	if (!q->mq_freeze_depth) {
198 		percpu_ref_resurrect(&q->q_usage_counter);
199 		wake_up_all(&q->mq_freeze_wq);
200 	}
201 	mutex_unlock(&q->mq_freeze_lock);
202 }
203 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
204 
205 /*
206  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
207  * mpt3sas driver such that this function can be removed.
208  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)209 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
210 {
211 	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
212 }
213 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
214 
215 /**
216  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
217  * @q: request queue.
218  *
219  * Note: this function does not prevent that the struct request end_io()
220  * callback function is invoked. Once this function is returned, we make
221  * sure no dispatch can happen until the queue is unquiesced via
222  * blk_mq_unquiesce_queue().
223  */
blk_mq_quiesce_queue(struct request_queue * q)224 void blk_mq_quiesce_queue(struct request_queue *q)
225 {
226 	struct blk_mq_hw_ctx *hctx;
227 	unsigned int i;
228 	bool rcu = false;
229 
230 	blk_mq_quiesce_queue_nowait(q);
231 
232 	queue_for_each_hw_ctx(q, hctx, i) {
233 		if (hctx->flags & BLK_MQ_F_BLOCKING)
234 			synchronize_srcu(hctx->srcu);
235 		else
236 			rcu = true;
237 	}
238 	if (rcu)
239 		synchronize_rcu();
240 }
241 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
242 
243 /*
244  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
245  * @q: request queue.
246  *
247  * This function recovers queue into the state before quiescing
248  * which is done by blk_mq_quiesce_queue.
249  */
blk_mq_unquiesce_queue(struct request_queue * q)250 void blk_mq_unquiesce_queue(struct request_queue *q)
251 {
252 	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
253 
254 	/* dispatch requests which are inserted during quiescing */
255 	blk_mq_run_hw_queues(q, true);
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
258 
blk_mq_wake_waiters(struct request_queue * q)259 void blk_mq_wake_waiters(struct request_queue *q)
260 {
261 	struct blk_mq_hw_ctx *hctx;
262 	unsigned int i;
263 
264 	queue_for_each_hw_ctx(q, hctx, i)
265 		if (blk_mq_hw_queue_mapped(hctx))
266 			blk_mq_tag_wakeup_all(hctx->tags, true);
267 }
268 
269 /*
270  * Only need start/end time stamping if we have iostat or
271  * blk stats enabled, or using an IO scheduler.
272  */
blk_mq_need_time_stamp(struct request * rq)273 static inline bool blk_mq_need_time_stamp(struct request *rq)
274 {
275 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
276 }
277 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)278 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
279 		unsigned int tag, u64 alloc_time_ns)
280 {
281 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
282 	struct request *rq = tags->static_rqs[tag];
283 
284 	if (data->q->elevator) {
285 		rq->tag = BLK_MQ_NO_TAG;
286 		rq->internal_tag = tag;
287 	} else {
288 		rq->tag = tag;
289 		rq->internal_tag = BLK_MQ_NO_TAG;
290 	}
291 
292 	/* csd/requeue_work/fifo_time is initialized before use */
293 	rq->q = data->q;
294 	rq->mq_ctx = data->ctx;
295 	rq->mq_hctx = data->hctx;
296 	rq->rq_flags = 0;
297 	rq->cmd_flags = data->cmd_flags;
298 	if (data->flags & BLK_MQ_REQ_PM)
299 		rq->rq_flags |= RQF_PM;
300 	if (blk_queue_io_stat(data->q))
301 		rq->rq_flags |= RQF_IO_STAT;
302 	INIT_LIST_HEAD(&rq->queuelist);
303 	INIT_HLIST_NODE(&rq->hash);
304 	RB_CLEAR_NODE(&rq->rb_node);
305 	rq->rq_disk = NULL;
306 	rq->part = NULL;
307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
308 	rq->alloc_time_ns = alloc_time_ns;
309 #endif
310 	if (blk_mq_need_time_stamp(rq))
311 		rq->start_time_ns = ktime_get_ns();
312 	else
313 		rq->start_time_ns = 0;
314 	rq->io_start_time_ns = 0;
315 	rq->stats_sectors = 0;
316 	rq->nr_phys_segments = 0;
317 #if defined(CONFIG_BLK_DEV_INTEGRITY)
318 	rq->nr_integrity_segments = 0;
319 #endif
320 	blk_crypto_rq_set_defaults(rq);
321 	/* tag was already set */
322 	WRITE_ONCE(rq->deadline, 0);
323 
324 	rq->timeout = 0;
325 
326 	rq->end_io = NULL;
327 	rq->end_io_data = NULL;
328 
329 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
330 	refcount_set(&rq->ref, 1);
331 
332 	if (!op_is_flush(data->cmd_flags)) {
333 		struct elevator_queue *e = data->q->elevator;
334 
335 		rq->elv.icq = NULL;
336 		if (e && e->type->ops.prepare_request) {
337 			if (e->type->icq_cache)
338 				blk_mq_sched_assign_ioc(rq);
339 
340 			e->type->ops.prepare_request(rq);
341 			rq->rq_flags |= RQF_ELVPRIV;
342 		}
343 	}
344 
345 	data->hctx->queued++;
346 	trace_android_vh_blk_rq_ctx_init(rq, tags, data, alloc_time_ns);
347 	return rq;
348 }
349 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)350 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
351 {
352 	struct request_queue *q = data->q;
353 	struct elevator_queue *e = q->elevator;
354 	u64 alloc_time_ns = 0;
355 	unsigned int tag;
356 
357 	/* alloc_time includes depth and tag waits */
358 	if (blk_queue_rq_alloc_time(q))
359 		alloc_time_ns = ktime_get_ns();
360 
361 	if (data->cmd_flags & REQ_NOWAIT)
362 		data->flags |= BLK_MQ_REQ_NOWAIT;
363 
364 	if (e) {
365 		/*
366 		 * Flush requests are special and go directly to the
367 		 * dispatch list. Don't include reserved tags in the
368 		 * limiting, as it isn't useful.
369 		 */
370 		if (!op_is_flush(data->cmd_flags) &&
371 		    e->type->ops.limit_depth &&
372 		    !(data->flags & BLK_MQ_REQ_RESERVED))
373 			e->type->ops.limit_depth(data->cmd_flags, data);
374 	}
375 
376 retry:
377 	data->ctx = blk_mq_get_ctx(q);
378 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
379 	if (!e)
380 		blk_mq_tag_busy(data->hctx);
381 
382 	/*
383 	 * Waiting allocations only fail because of an inactive hctx.  In that
384 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
385 	 * should have migrated us to an online CPU by now.
386 	 */
387 	tag = blk_mq_get_tag(data);
388 	if (tag == BLK_MQ_NO_TAG) {
389 		if (data->flags & BLK_MQ_REQ_NOWAIT)
390 			return NULL;
391 
392 		/*
393 		 * Give up the CPU and sleep for a random short time to ensure
394 		 * that thread using a realtime scheduling class are migrated
395 		 * off the CPU, and thus off the hctx that is going away.
396 		 */
397 		msleep(3);
398 		goto retry;
399 	}
400 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
401 }
402 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)403 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
404 		blk_mq_req_flags_t flags)
405 {
406 	struct blk_mq_alloc_data data = {
407 		.q		= q,
408 		.flags		= flags,
409 		.cmd_flags	= op,
410 	};
411 	struct request *rq;
412 	int ret;
413 
414 	ret = blk_queue_enter(q, flags);
415 	if (ret)
416 		return ERR_PTR(ret);
417 
418 	rq = __blk_mq_alloc_request(&data);
419 	if (!rq)
420 		goto out_queue_exit;
421 	rq->__data_len = 0;
422 	rq->__sector = (sector_t) -1;
423 	rq->bio = rq->biotail = NULL;
424 	return rq;
425 out_queue_exit:
426 	blk_queue_exit(q);
427 	return ERR_PTR(-EWOULDBLOCK);
428 }
429 EXPORT_SYMBOL(blk_mq_alloc_request);
430 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)431 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
432 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
433 {
434 	struct blk_mq_alloc_data data = {
435 		.q		= q,
436 		.flags		= flags,
437 		.cmd_flags	= op,
438 	};
439 	u64 alloc_time_ns = 0;
440 	unsigned int cpu;
441 	unsigned int tag;
442 	int ret;
443 
444 	/* alloc_time includes depth and tag waits */
445 	if (blk_queue_rq_alloc_time(q))
446 		alloc_time_ns = ktime_get_ns();
447 
448 	/*
449 	 * If the tag allocator sleeps we could get an allocation for a
450 	 * different hardware context.  No need to complicate the low level
451 	 * allocator for this for the rare use case of a command tied to
452 	 * a specific queue.
453 	 */
454 	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
455 		return ERR_PTR(-EINVAL);
456 
457 	if (hctx_idx >= q->nr_hw_queues)
458 		return ERR_PTR(-EIO);
459 
460 	ret = blk_queue_enter(q, flags);
461 	if (ret)
462 		return ERR_PTR(ret);
463 
464 	/*
465 	 * Check if the hardware context is actually mapped to anything.
466 	 * If not tell the caller that it should skip this queue.
467 	 */
468 	ret = -EXDEV;
469 	data.hctx = q->queue_hw_ctx[hctx_idx];
470 	if (!blk_mq_hw_queue_mapped(data.hctx))
471 		goto out_queue_exit;
472 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
473 	if (cpu >= nr_cpu_ids)
474 		goto out_queue_exit;
475 	data.ctx = __blk_mq_get_ctx(q, cpu);
476 
477 	if (!q->elevator)
478 		blk_mq_tag_busy(data.hctx);
479 
480 	ret = -EWOULDBLOCK;
481 	tag = blk_mq_get_tag(&data);
482 	if (tag == BLK_MQ_NO_TAG)
483 		goto out_queue_exit;
484 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
485 
486 out_queue_exit:
487 	blk_queue_exit(q);
488 	return ERR_PTR(ret);
489 }
490 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
491 
__blk_mq_free_request(struct request * rq)492 static void __blk_mq_free_request(struct request *rq)
493 {
494 	struct request_queue *q = rq->q;
495 	struct blk_mq_ctx *ctx = rq->mq_ctx;
496 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
497 	const int sched_tag = rq->internal_tag;
498 
499 	blk_crypto_free_request(rq);
500 	blk_pm_mark_last_busy(rq);
501 	rq->mq_hctx = NULL;
502 	if (rq->tag != BLK_MQ_NO_TAG)
503 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
504 	if (sched_tag != BLK_MQ_NO_TAG)
505 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
506 	blk_mq_sched_restart(hctx);
507 	blk_queue_exit(q);
508 }
509 
blk_mq_free_request(struct request * rq)510 void blk_mq_free_request(struct request *rq)
511 {
512 	struct request_queue *q = rq->q;
513 	struct elevator_queue *e = q->elevator;
514 	struct blk_mq_ctx *ctx = rq->mq_ctx;
515 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
516 
517 	if (rq->rq_flags & RQF_ELVPRIV) {
518 		if (e && e->type->ops.finish_request)
519 			e->type->ops.finish_request(rq);
520 		if (rq->elv.icq) {
521 			put_io_context(rq->elv.icq->ioc);
522 			rq->elv.icq = NULL;
523 		}
524 	}
525 
526 	ctx->rq_completed[rq_is_sync(rq)]++;
527 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
528 		__blk_mq_dec_active_requests(hctx);
529 
530 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
531 		laptop_io_completion(q->backing_dev_info);
532 
533 	rq_qos_done(q, rq);
534 
535 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
536 	if (refcount_dec_and_test(&rq->ref))
537 		__blk_mq_free_request(rq);
538 }
539 EXPORT_SYMBOL_GPL(blk_mq_free_request);
540 
__blk_mq_end_request(struct request * rq,blk_status_t error)541 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
542 {
543 	u64 now = 0;
544 
545 	if (blk_mq_need_time_stamp(rq))
546 		now = ktime_get_ns();
547 
548 	if (rq->rq_flags & RQF_STATS) {
549 		blk_mq_poll_stats_start(rq->q);
550 		blk_stat_add(rq, now);
551 	}
552 
553 	blk_mq_sched_completed_request(rq, now);
554 
555 	blk_account_io_done(rq, now);
556 
557 	if (rq->end_io) {
558 		rq_qos_done(rq->q, rq);
559 		rq->end_io(rq, error);
560 	} else {
561 		blk_mq_free_request(rq);
562 	}
563 }
564 EXPORT_SYMBOL(__blk_mq_end_request);
565 
blk_mq_end_request(struct request * rq,blk_status_t error)566 void blk_mq_end_request(struct request *rq, blk_status_t error)
567 {
568 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
569 		BUG();
570 	__blk_mq_end_request(rq, error);
571 }
572 EXPORT_SYMBOL(blk_mq_end_request);
573 
574 /*
575  * Softirq action handler - move entries to local list and loop over them
576  * while passing them to the queue registered handler.
577  */
blk_done_softirq(struct softirq_action * h)578 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
579 {
580 	struct list_head *cpu_list, local_list;
581 
582 	local_irq_disable();
583 	cpu_list = this_cpu_ptr(&blk_cpu_done);
584 	list_replace_init(cpu_list, &local_list);
585 	local_irq_enable();
586 
587 	while (!list_empty(&local_list)) {
588 		struct request *rq;
589 
590 		rq = list_entry(local_list.next, struct request, ipi_list);
591 		list_del_init(&rq->ipi_list);
592 		rq->q->mq_ops->complete(rq);
593 	}
594 }
595 
blk_mq_trigger_softirq(struct request * rq)596 static void blk_mq_trigger_softirq(struct request *rq)
597 {
598 	struct list_head *list;
599 	unsigned long flags;
600 
601 	local_irq_save(flags);
602 	list = this_cpu_ptr(&blk_cpu_done);
603 	list_add_tail(&rq->ipi_list, list);
604 
605 	/*
606 	 * If the list only contains our just added request, signal a raise of
607 	 * the softirq.  If there are already entries there, someone already
608 	 * raised the irq but it hasn't run yet.
609 	 */
610 	if (list->next == &rq->ipi_list)
611 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
612 	local_irq_restore(flags);
613 }
614 
blk_softirq_cpu_dead(unsigned int cpu)615 static int blk_softirq_cpu_dead(unsigned int cpu)
616 {
617 	/*
618 	 * If a CPU goes away, splice its entries to the current CPU
619 	 * and trigger a run of the softirq
620 	 */
621 	local_irq_disable();
622 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
623 			 this_cpu_ptr(&blk_cpu_done));
624 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
625 	local_irq_enable();
626 
627 	return 0;
628 }
629 
630 
__blk_mq_complete_request_remote(void * data)631 static void __blk_mq_complete_request_remote(void *data)
632 {
633 	struct request *rq = data;
634 
635 	/*
636 	 * For most of single queue controllers, there is only one irq vector
637 	 * for handling I/O completion, and the only irq's affinity is set
638 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
639 	 * is handled on one specific CPU.
640 	 *
641 	 * So complete I/O requests in softirq context in case of single queue
642 	 * devices to avoid degrading I/O performance due to irqsoff latency.
643 	 */
644 	if (rq->q->nr_hw_queues == 1)
645 		blk_mq_trigger_softirq(rq);
646 	else
647 		rq->q->mq_ops->complete(rq);
648 }
649 
blk_mq_complete_need_ipi(struct request * rq)650 static inline bool blk_mq_complete_need_ipi(struct request *rq)
651 {
652 	int cpu = raw_smp_processor_id();
653 
654 	if (!IS_ENABLED(CONFIG_SMP) ||
655 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
656 		return false;
657 
658 	/* same CPU or cache domain?  Complete locally */
659 	if (cpu == rq->mq_ctx->cpu ||
660 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
661 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
662 		return false;
663 
664 	/* don't try to IPI to an offline CPU */
665 	return cpu_online(rq->mq_ctx->cpu);
666 }
667 
blk_mq_complete_request_remote(struct request * rq)668 bool blk_mq_complete_request_remote(struct request *rq)
669 {
670 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
671 
672 	/*
673 	 * For a polled request, always complete locallly, it's pointless
674 	 * to redirect the completion.
675 	 */
676 	if (rq->cmd_flags & REQ_HIPRI)
677 		return false;
678 
679 	if (blk_mq_complete_need_ipi(rq)) {
680 		rq->csd.func = __blk_mq_complete_request_remote;
681 		rq->csd.info = rq;
682 		rq->csd.flags = 0;
683 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
684 	} else {
685 		if (rq->q->nr_hw_queues > 1)
686 			return false;
687 		blk_mq_trigger_softirq(rq);
688 	}
689 
690 	return true;
691 }
692 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
693 
694 /**
695  * blk_mq_complete_request - end I/O on a request
696  * @rq:		the request being processed
697  *
698  * Description:
699  *	Complete a request by scheduling the ->complete_rq operation.
700  **/
blk_mq_complete_request(struct request * rq)701 void blk_mq_complete_request(struct request *rq)
702 {
703 	if (!blk_mq_complete_request_remote(rq))
704 		rq->q->mq_ops->complete(rq);
705 }
706 EXPORT_SYMBOL(blk_mq_complete_request);
707 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)708 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
709 	__releases(hctx->srcu)
710 {
711 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
712 		rcu_read_unlock();
713 	else
714 		srcu_read_unlock(hctx->srcu, srcu_idx);
715 }
716 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)717 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
718 	__acquires(hctx->srcu)
719 {
720 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
721 		/* shut up gcc false positive */
722 		*srcu_idx = 0;
723 		rcu_read_lock();
724 	} else
725 		*srcu_idx = srcu_read_lock(hctx->srcu);
726 }
727 
728 /**
729  * blk_mq_start_request - Start processing a request
730  * @rq: Pointer to request to be started
731  *
732  * Function used by device drivers to notify the block layer that a request
733  * is going to be processed now, so blk layer can do proper initializations
734  * such as starting the timeout timer.
735  */
blk_mq_start_request(struct request * rq)736 void blk_mq_start_request(struct request *rq)
737 {
738 	struct request_queue *q = rq->q;
739 
740 	trace_block_rq_issue(q, rq);
741 
742 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
743 		rq->io_start_time_ns = ktime_get_ns();
744 		rq->stats_sectors = blk_rq_sectors(rq);
745 		rq->rq_flags |= RQF_STATS;
746 		rq_qos_issue(q, rq);
747 	}
748 
749 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
750 
751 	blk_add_timer(rq);
752 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
753 
754 #ifdef CONFIG_BLK_DEV_INTEGRITY
755 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
756 		q->integrity.profile->prepare_fn(rq);
757 #endif
758 }
759 EXPORT_SYMBOL(blk_mq_start_request);
760 
__blk_mq_requeue_request(struct request * rq)761 static void __blk_mq_requeue_request(struct request *rq)
762 {
763 	struct request_queue *q = rq->q;
764 
765 	blk_mq_put_driver_tag(rq);
766 
767 	trace_block_rq_requeue(q, rq);
768 	rq_qos_requeue(q, rq);
769 
770 	if (blk_mq_request_started(rq)) {
771 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
772 		rq->rq_flags &= ~RQF_TIMED_OUT;
773 	}
774 }
775 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)776 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
777 {
778 	__blk_mq_requeue_request(rq);
779 
780 	/* this request will be re-inserted to io scheduler queue */
781 	blk_mq_sched_requeue_request(rq);
782 
783 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
784 }
785 EXPORT_SYMBOL(blk_mq_requeue_request);
786 
blk_mq_requeue_work(struct work_struct * work)787 static void blk_mq_requeue_work(struct work_struct *work)
788 {
789 	struct request_queue *q =
790 		container_of(work, struct request_queue, requeue_work.work);
791 	LIST_HEAD(rq_list);
792 	struct request *rq, *next;
793 
794 	spin_lock_irq(&q->requeue_lock);
795 	list_splice_init(&q->requeue_list, &rq_list);
796 	spin_unlock_irq(&q->requeue_lock);
797 
798 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
799 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
800 			continue;
801 
802 		rq->rq_flags &= ~RQF_SOFTBARRIER;
803 		list_del_init(&rq->queuelist);
804 		/*
805 		 * If RQF_DONTPREP, rq has contained some driver specific
806 		 * data, so insert it to hctx dispatch list to avoid any
807 		 * merge.
808 		 */
809 		if (rq->rq_flags & RQF_DONTPREP)
810 			blk_mq_request_bypass_insert(rq, false, false);
811 		else
812 			blk_mq_sched_insert_request(rq, true, false, false);
813 	}
814 
815 	while (!list_empty(&rq_list)) {
816 		rq = list_entry(rq_list.next, struct request, queuelist);
817 		list_del_init(&rq->queuelist);
818 		blk_mq_sched_insert_request(rq, false, false, false);
819 	}
820 
821 	blk_mq_run_hw_queues(q, false);
822 }
823 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)824 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
825 				bool kick_requeue_list)
826 {
827 	struct request_queue *q = rq->q;
828 	unsigned long flags;
829 
830 	/*
831 	 * We abuse this flag that is otherwise used by the I/O scheduler to
832 	 * request head insertion from the workqueue.
833 	 */
834 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
835 
836 	spin_lock_irqsave(&q->requeue_lock, flags);
837 	if (at_head) {
838 		rq->rq_flags |= RQF_SOFTBARRIER;
839 		list_add(&rq->queuelist, &q->requeue_list);
840 	} else {
841 		list_add_tail(&rq->queuelist, &q->requeue_list);
842 	}
843 	spin_unlock_irqrestore(&q->requeue_lock, flags);
844 
845 	if (kick_requeue_list)
846 		blk_mq_kick_requeue_list(q);
847 }
848 
blk_mq_kick_requeue_list(struct request_queue * q)849 void blk_mq_kick_requeue_list(struct request_queue *q)
850 {
851 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
852 }
853 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
854 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)855 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
856 				    unsigned long msecs)
857 {
858 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
859 				    msecs_to_jiffies(msecs));
860 }
861 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
862 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)863 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
864 {
865 	if (tag < tags->nr_tags) {
866 		prefetch(tags->rqs[tag]);
867 		return tags->rqs[tag];
868 	}
869 
870 	return NULL;
871 }
872 EXPORT_SYMBOL(blk_mq_tag_to_rq);
873 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)874 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
875 			       void *priv, bool reserved)
876 {
877 	/*
878 	 * If we find a request that isn't idle and the queue matches,
879 	 * we know the queue is busy. Return false to stop the iteration.
880 	 */
881 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
882 		bool *busy = priv;
883 
884 		*busy = true;
885 		return false;
886 	}
887 
888 	return true;
889 }
890 
blk_mq_queue_inflight(struct request_queue * q)891 bool blk_mq_queue_inflight(struct request_queue *q)
892 {
893 	bool busy = false;
894 
895 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
896 	return busy;
897 }
898 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
899 
blk_mq_rq_timed_out(struct request * req,bool reserved)900 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
901 {
902 	req->rq_flags |= RQF_TIMED_OUT;
903 	if (req->q->mq_ops->timeout) {
904 		enum blk_eh_timer_return ret;
905 
906 		ret = req->q->mq_ops->timeout(req, reserved);
907 		if (ret == BLK_EH_DONE)
908 			return;
909 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
910 	}
911 
912 	blk_add_timer(req);
913 }
914 
blk_mq_req_expired(struct request * rq,unsigned long * next)915 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
916 {
917 	unsigned long deadline;
918 
919 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
920 		return false;
921 	if (rq->rq_flags & RQF_TIMED_OUT)
922 		return false;
923 
924 	deadline = READ_ONCE(rq->deadline);
925 	if (time_after_eq(jiffies, deadline))
926 		return true;
927 
928 	if (*next == 0)
929 		*next = deadline;
930 	else if (time_after(*next, deadline))
931 		*next = deadline;
932 	return false;
933 }
934 
blk_mq_put_rq_ref(struct request * rq)935 void blk_mq_put_rq_ref(struct request *rq)
936 {
937 	if (is_flush_rq(rq))
938 		rq->end_io(rq, 0);
939 	else if (refcount_dec_and_test(&rq->ref))
940 		__blk_mq_free_request(rq);
941 }
942 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)943 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
944 		struct request *rq, void *priv, bool reserved)
945 {
946 	unsigned long *next = priv;
947 
948 	/*
949 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
950 	 * be reallocated underneath the timeout handler's processing, then
951 	 * the expire check is reliable. If the request is not expired, then
952 	 * it was completed and reallocated as a new request after returning
953 	 * from blk_mq_check_expired().
954 	 */
955 	if (blk_mq_req_expired(rq, next))
956 		blk_mq_rq_timed_out(rq, reserved);
957 	return true;
958 }
959 
blk_mq_timeout_work(struct work_struct * work)960 static void blk_mq_timeout_work(struct work_struct *work)
961 {
962 	struct request_queue *q =
963 		container_of(work, struct request_queue, timeout_work);
964 	unsigned long next = 0;
965 	struct blk_mq_hw_ctx *hctx;
966 	int i;
967 
968 	/* A deadlock might occur if a request is stuck requiring a
969 	 * timeout at the same time a queue freeze is waiting
970 	 * completion, since the timeout code would not be able to
971 	 * acquire the queue reference here.
972 	 *
973 	 * That's why we don't use blk_queue_enter here; instead, we use
974 	 * percpu_ref_tryget directly, because we need to be able to
975 	 * obtain a reference even in the short window between the queue
976 	 * starting to freeze, by dropping the first reference in
977 	 * blk_freeze_queue_start, and the moment the last request is
978 	 * consumed, marked by the instant q_usage_counter reaches
979 	 * zero.
980 	 */
981 	if (!percpu_ref_tryget(&q->q_usage_counter))
982 		return;
983 
984 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
985 
986 	if (next != 0) {
987 		mod_timer(&q->timeout, next);
988 	} else {
989 		/*
990 		 * Request timeouts are handled as a forward rolling timer. If
991 		 * we end up here it means that no requests are pending and
992 		 * also that no request has been pending for a while. Mark
993 		 * each hctx as idle.
994 		 */
995 		queue_for_each_hw_ctx(q, hctx, i) {
996 			/* the hctx may be unmapped, so check it here */
997 			if (blk_mq_hw_queue_mapped(hctx))
998 				blk_mq_tag_idle(hctx);
999 		}
1000 	}
1001 	blk_queue_exit(q);
1002 }
1003 
1004 struct flush_busy_ctx_data {
1005 	struct blk_mq_hw_ctx *hctx;
1006 	struct list_head *list;
1007 };
1008 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1009 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1010 {
1011 	struct flush_busy_ctx_data *flush_data = data;
1012 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1013 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1014 	enum hctx_type type = hctx->type;
1015 
1016 	spin_lock(&ctx->lock);
1017 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1018 	sbitmap_clear_bit(sb, bitnr);
1019 	spin_unlock(&ctx->lock);
1020 	return true;
1021 }
1022 
1023 /*
1024  * Process software queues that have been marked busy, splicing them
1025  * to the for-dispatch
1026  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1027 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1028 {
1029 	struct flush_busy_ctx_data data = {
1030 		.hctx = hctx,
1031 		.list = list,
1032 	};
1033 
1034 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1035 }
1036 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1037 
1038 struct dispatch_rq_data {
1039 	struct blk_mq_hw_ctx *hctx;
1040 	struct request *rq;
1041 };
1042 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1043 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1044 		void *data)
1045 {
1046 	struct dispatch_rq_data *dispatch_data = data;
1047 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1048 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1049 	enum hctx_type type = hctx->type;
1050 
1051 	spin_lock(&ctx->lock);
1052 	if (!list_empty(&ctx->rq_lists[type])) {
1053 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1054 		list_del_init(&dispatch_data->rq->queuelist);
1055 		if (list_empty(&ctx->rq_lists[type]))
1056 			sbitmap_clear_bit(sb, bitnr);
1057 	}
1058 	spin_unlock(&ctx->lock);
1059 
1060 	return !dispatch_data->rq;
1061 }
1062 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1063 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1064 					struct blk_mq_ctx *start)
1065 {
1066 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1067 	struct dispatch_rq_data data = {
1068 		.hctx = hctx,
1069 		.rq   = NULL,
1070 	};
1071 
1072 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1073 			       dispatch_rq_from_ctx, &data);
1074 
1075 	return data.rq;
1076 }
1077 
queued_to_index(unsigned int queued)1078 static inline unsigned int queued_to_index(unsigned int queued)
1079 {
1080 	if (!queued)
1081 		return 0;
1082 
1083 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1084 }
1085 
__blk_mq_get_driver_tag(struct request * rq)1086 static bool __blk_mq_get_driver_tag(struct request *rq)
1087 {
1088 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1089 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1090 	int tag;
1091 
1092 	blk_mq_tag_busy(rq->mq_hctx);
1093 
1094 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1095 		bt = rq->mq_hctx->tags->breserved_tags;
1096 		tag_offset = 0;
1097 	} else {
1098 		if (!hctx_may_queue(rq->mq_hctx, bt))
1099 			return false;
1100 	}
1101 
1102 	tag = __sbitmap_queue_get(bt);
1103 	if (tag == BLK_MQ_NO_TAG)
1104 		return false;
1105 
1106 	rq->tag = tag + tag_offset;
1107 	return true;
1108 }
1109 
blk_mq_get_driver_tag(struct request * rq)1110 static bool blk_mq_get_driver_tag(struct request *rq)
1111 {
1112 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1113 
1114 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1115 		return false;
1116 
1117 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1118 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1119 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1120 		__blk_mq_inc_active_requests(hctx);
1121 	}
1122 	hctx->tags->rqs[rq->tag] = rq;
1123 	return true;
1124 }
1125 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1126 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1127 				int flags, void *key)
1128 {
1129 	struct blk_mq_hw_ctx *hctx;
1130 
1131 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1132 
1133 	spin_lock(&hctx->dispatch_wait_lock);
1134 	if (!list_empty(&wait->entry)) {
1135 		struct sbitmap_queue *sbq;
1136 
1137 		list_del_init(&wait->entry);
1138 		sbq = hctx->tags->bitmap_tags;
1139 		atomic_dec(&sbq->ws_active);
1140 	}
1141 	spin_unlock(&hctx->dispatch_wait_lock);
1142 
1143 	blk_mq_run_hw_queue(hctx, true);
1144 	return 1;
1145 }
1146 
1147 /*
1148  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1149  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1150  * restart. For both cases, take care to check the condition again after
1151  * marking us as waiting.
1152  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1153 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1154 				 struct request *rq)
1155 {
1156 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1157 	struct wait_queue_head *wq;
1158 	wait_queue_entry_t *wait;
1159 	bool ret;
1160 
1161 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1162 		blk_mq_sched_mark_restart_hctx(hctx);
1163 
1164 		/*
1165 		 * It's possible that a tag was freed in the window between the
1166 		 * allocation failure and adding the hardware queue to the wait
1167 		 * queue.
1168 		 *
1169 		 * Don't clear RESTART here, someone else could have set it.
1170 		 * At most this will cost an extra queue run.
1171 		 */
1172 		return blk_mq_get_driver_tag(rq);
1173 	}
1174 
1175 	wait = &hctx->dispatch_wait;
1176 	if (!list_empty_careful(&wait->entry))
1177 		return false;
1178 
1179 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1180 
1181 	spin_lock_irq(&wq->lock);
1182 	spin_lock(&hctx->dispatch_wait_lock);
1183 	if (!list_empty(&wait->entry)) {
1184 		spin_unlock(&hctx->dispatch_wait_lock);
1185 		spin_unlock_irq(&wq->lock);
1186 		return false;
1187 	}
1188 
1189 	atomic_inc(&sbq->ws_active);
1190 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1191 	__add_wait_queue(wq, wait);
1192 
1193 	/*
1194 	 * It's possible that a tag was freed in the window between the
1195 	 * allocation failure and adding the hardware queue to the wait
1196 	 * queue.
1197 	 */
1198 	ret = blk_mq_get_driver_tag(rq);
1199 	if (!ret) {
1200 		spin_unlock(&hctx->dispatch_wait_lock);
1201 		spin_unlock_irq(&wq->lock);
1202 		return false;
1203 	}
1204 
1205 	/*
1206 	 * We got a tag, remove ourselves from the wait queue to ensure
1207 	 * someone else gets the wakeup.
1208 	 */
1209 	list_del_init(&wait->entry);
1210 	atomic_dec(&sbq->ws_active);
1211 	spin_unlock(&hctx->dispatch_wait_lock);
1212 	spin_unlock_irq(&wq->lock);
1213 
1214 	return true;
1215 }
1216 
1217 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1218 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1219 /*
1220  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1221  * - EWMA is one simple way to compute running average value
1222  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1223  * - take 4 as factor for avoiding to get too small(0) result, and this
1224  *   factor doesn't matter because EWMA decreases exponentially
1225  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1226 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1227 {
1228 	unsigned int ewma;
1229 
1230 	ewma = hctx->dispatch_busy;
1231 
1232 	if (!ewma && !busy)
1233 		return;
1234 
1235 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1236 	if (busy)
1237 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1238 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1239 
1240 	hctx->dispatch_busy = ewma;
1241 }
1242 
1243 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1244 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1245 static void blk_mq_handle_dev_resource(struct request *rq,
1246 				       struct list_head *list)
1247 {
1248 	struct request *next =
1249 		list_first_entry_or_null(list, struct request, queuelist);
1250 
1251 	/*
1252 	 * If an I/O scheduler has been configured and we got a driver tag for
1253 	 * the next request already, free it.
1254 	 */
1255 	if (next)
1256 		blk_mq_put_driver_tag(next);
1257 
1258 	list_add(&rq->queuelist, list);
1259 	__blk_mq_requeue_request(rq);
1260 }
1261 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1262 static void blk_mq_handle_zone_resource(struct request *rq,
1263 					struct list_head *zone_list)
1264 {
1265 	/*
1266 	 * If we end up here it is because we cannot dispatch a request to a
1267 	 * specific zone due to LLD level zone-write locking or other zone
1268 	 * related resource not being available. In this case, set the request
1269 	 * aside in zone_list for retrying it later.
1270 	 */
1271 	list_add(&rq->queuelist, zone_list);
1272 	__blk_mq_requeue_request(rq);
1273 }
1274 
1275 enum prep_dispatch {
1276 	PREP_DISPATCH_OK,
1277 	PREP_DISPATCH_NO_TAG,
1278 	PREP_DISPATCH_NO_BUDGET,
1279 };
1280 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1281 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1282 						  bool need_budget)
1283 {
1284 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1285 
1286 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1287 		blk_mq_put_driver_tag(rq);
1288 		return PREP_DISPATCH_NO_BUDGET;
1289 	}
1290 
1291 	if (!blk_mq_get_driver_tag(rq)) {
1292 		/*
1293 		 * The initial allocation attempt failed, so we need to
1294 		 * rerun the hardware queue when a tag is freed. The
1295 		 * waitqueue takes care of that. If the queue is run
1296 		 * before we add this entry back on the dispatch list,
1297 		 * we'll re-run it below.
1298 		 */
1299 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1300 			/*
1301 			 * All budgets not got from this function will be put
1302 			 * together during handling partial dispatch
1303 			 */
1304 			if (need_budget)
1305 				blk_mq_put_dispatch_budget(rq->q);
1306 			return PREP_DISPATCH_NO_TAG;
1307 		}
1308 	}
1309 
1310 	return PREP_DISPATCH_OK;
1311 }
1312 
1313 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1314 static void blk_mq_release_budgets(struct request_queue *q,
1315 		unsigned int nr_budgets)
1316 {
1317 	int i;
1318 
1319 	for (i = 0; i < nr_budgets; i++)
1320 		blk_mq_put_dispatch_budget(q);
1321 }
1322 
1323 /*
1324  * Returns true if we did some work AND can potentially do more.
1325  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1326 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1327 			     unsigned int nr_budgets)
1328 {
1329 	enum prep_dispatch prep;
1330 	struct request_queue *q = hctx->queue;
1331 	struct request *rq, *nxt;
1332 	int errors, queued;
1333 	blk_status_t ret = BLK_STS_OK;
1334 	LIST_HEAD(zone_list);
1335 	bool needs_resource = false;
1336 
1337 	if (list_empty(list))
1338 		return false;
1339 
1340 	/*
1341 	 * Now process all the entries, sending them to the driver.
1342 	 */
1343 	errors = queued = 0;
1344 	do {
1345 		struct blk_mq_queue_data bd;
1346 
1347 		rq = list_first_entry(list, struct request, queuelist);
1348 
1349 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1350 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1351 		if (prep != PREP_DISPATCH_OK)
1352 			break;
1353 
1354 		list_del_init(&rq->queuelist);
1355 
1356 		bd.rq = rq;
1357 
1358 		/*
1359 		 * Flag last if we have no more requests, or if we have more
1360 		 * but can't assign a driver tag to it.
1361 		 */
1362 		if (list_empty(list))
1363 			bd.last = true;
1364 		else {
1365 			nxt = list_first_entry(list, struct request, queuelist);
1366 			bd.last = !blk_mq_get_driver_tag(nxt);
1367 		}
1368 
1369 		/*
1370 		 * once the request is queued to lld, no need to cover the
1371 		 * budget any more
1372 		 */
1373 		if (nr_budgets)
1374 			nr_budgets--;
1375 		ret = q->mq_ops->queue_rq(hctx, &bd);
1376 		switch (ret) {
1377 		case BLK_STS_OK:
1378 			queued++;
1379 			break;
1380 		case BLK_STS_RESOURCE:
1381 			needs_resource = true;
1382 			fallthrough;
1383 		case BLK_STS_DEV_RESOURCE:
1384 			blk_mq_handle_dev_resource(rq, list);
1385 			goto out;
1386 		case BLK_STS_ZONE_RESOURCE:
1387 			/*
1388 			 * Move the request to zone_list and keep going through
1389 			 * the dispatch list to find more requests the drive can
1390 			 * accept.
1391 			 */
1392 			blk_mq_handle_zone_resource(rq, &zone_list);
1393 			needs_resource = true;
1394 			break;
1395 		default:
1396 			errors++;
1397 			blk_mq_end_request(rq, BLK_STS_IOERR);
1398 		}
1399 	} while (!list_empty(list));
1400 out:
1401 	if (!list_empty(&zone_list))
1402 		list_splice_tail_init(&zone_list, list);
1403 
1404 	hctx->dispatched[queued_to_index(queued)]++;
1405 
1406 	/* If we didn't flush the entire list, we could have told the driver
1407 	 * there was more coming, but that turned out to be a lie.
1408 	 */
1409 	if ((!list_empty(list) || errors || needs_resource ||
1410 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1411 		q->mq_ops->commit_rqs(hctx);
1412 	/*
1413 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1414 	 * that is where we will continue on next queue run.
1415 	 */
1416 	if (!list_empty(list)) {
1417 		bool needs_restart;
1418 		/* For non-shared tags, the RESTART check will suffice */
1419 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1420 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1421 
1422 		blk_mq_release_budgets(q, nr_budgets);
1423 
1424 		spin_lock(&hctx->lock);
1425 		list_splice_tail_init(list, &hctx->dispatch);
1426 		spin_unlock(&hctx->lock);
1427 
1428 		/*
1429 		 * Order adding requests to hctx->dispatch and checking
1430 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1431 		 * in blk_mq_sched_restart(). Avoid restart code path to
1432 		 * miss the new added requests to hctx->dispatch, meantime
1433 		 * SCHED_RESTART is observed here.
1434 		 */
1435 		smp_mb();
1436 
1437 		/*
1438 		 * If SCHED_RESTART was set by the caller of this function and
1439 		 * it is no longer set that means that it was cleared by another
1440 		 * thread and hence that a queue rerun is needed.
1441 		 *
1442 		 * If 'no_tag' is set, that means that we failed getting
1443 		 * a driver tag with an I/O scheduler attached. If our dispatch
1444 		 * waitqueue is no longer active, ensure that we run the queue
1445 		 * AFTER adding our entries back to the list.
1446 		 *
1447 		 * If no I/O scheduler has been configured it is possible that
1448 		 * the hardware queue got stopped and restarted before requests
1449 		 * were pushed back onto the dispatch list. Rerun the queue to
1450 		 * avoid starvation. Notes:
1451 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1452 		 *   been stopped before rerunning a queue.
1453 		 * - Some but not all block drivers stop a queue before
1454 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1455 		 *   and dm-rq.
1456 		 *
1457 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1458 		 * bit is set, run queue after a delay to avoid IO stalls
1459 		 * that could otherwise occur if the queue is idle.  We'll do
1460 		 * similar if we couldn't get budget or couldn't lock a zone
1461 		 * and SCHED_RESTART is set.
1462 		 */
1463 		needs_restart = blk_mq_sched_needs_restart(hctx);
1464 		if (prep == PREP_DISPATCH_NO_BUDGET)
1465 			needs_resource = true;
1466 		if (!needs_restart ||
1467 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1468 			blk_mq_run_hw_queue(hctx, true);
1469 		else if (needs_restart && needs_resource)
1470 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1471 
1472 		blk_mq_update_dispatch_busy(hctx, true);
1473 		return false;
1474 	} else
1475 		blk_mq_update_dispatch_busy(hctx, false);
1476 
1477 	return (queued + errors) != 0;
1478 }
1479 
1480 /**
1481  * __blk_mq_run_hw_queue - Run a hardware queue.
1482  * @hctx: Pointer to the hardware queue to run.
1483  *
1484  * Send pending requests to the hardware.
1485  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1486 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1487 {
1488 	int srcu_idx;
1489 
1490 	/*
1491 	 * We should be running this queue from one of the CPUs that
1492 	 * are mapped to it.
1493 	 *
1494 	 * There are at least two related races now between setting
1495 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1496 	 * __blk_mq_run_hw_queue():
1497 	 *
1498 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1499 	 *   but later it becomes online, then this warning is harmless
1500 	 *   at all
1501 	 *
1502 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1503 	 *   but later it becomes offline, then the warning can't be
1504 	 *   triggered, and we depend on blk-mq timeout handler to
1505 	 *   handle dispatched requests to this hctx
1506 	 */
1507 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1508 		cpu_online(hctx->next_cpu)) {
1509 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1510 			raw_smp_processor_id(),
1511 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1512 		dump_stack();
1513 	}
1514 
1515 	/*
1516 	 * We can't run the queue inline with ints disabled. Ensure that
1517 	 * we catch bad users of this early.
1518 	 */
1519 	WARN_ON_ONCE(in_interrupt());
1520 
1521 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1522 
1523 	hctx_lock(hctx, &srcu_idx);
1524 	blk_mq_sched_dispatch_requests(hctx);
1525 	hctx_unlock(hctx, srcu_idx);
1526 }
1527 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1528 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1529 {
1530 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1531 
1532 	if (cpu >= nr_cpu_ids)
1533 		cpu = cpumask_first(hctx->cpumask);
1534 	return cpu;
1535 }
1536 
1537 /*
1538  * It'd be great if the workqueue API had a way to pass
1539  * in a mask and had some smarts for more clever placement.
1540  * For now we just round-robin here, switching for every
1541  * BLK_MQ_CPU_WORK_BATCH queued items.
1542  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1543 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1544 {
1545 	bool tried = false;
1546 	int next_cpu = hctx->next_cpu;
1547 
1548 	if (hctx->queue->nr_hw_queues == 1)
1549 		return WORK_CPU_UNBOUND;
1550 
1551 	if (--hctx->next_cpu_batch <= 0) {
1552 select_cpu:
1553 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1554 				cpu_online_mask);
1555 		if (next_cpu >= nr_cpu_ids)
1556 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1557 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1558 	}
1559 
1560 	/*
1561 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1562 	 * and it should only happen in the path of handling CPU DEAD.
1563 	 */
1564 	if (!cpu_online(next_cpu)) {
1565 		if (!tried) {
1566 			tried = true;
1567 			goto select_cpu;
1568 		}
1569 
1570 		/*
1571 		 * Make sure to re-select CPU next time once after CPUs
1572 		 * in hctx->cpumask become online again.
1573 		 */
1574 		hctx->next_cpu = next_cpu;
1575 		hctx->next_cpu_batch = 1;
1576 		return WORK_CPU_UNBOUND;
1577 	}
1578 
1579 	hctx->next_cpu = next_cpu;
1580 	return next_cpu;
1581 }
1582 
1583 /**
1584  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1585  * @hctx: Pointer to the hardware queue to run.
1586  * @async: If we want to run the queue asynchronously.
1587  * @msecs: Microseconds of delay to wait before running the queue.
1588  *
1589  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1590  * with a delay of @msecs.
1591  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1592 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1593 					unsigned long msecs)
1594 {
1595 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1596 		return;
1597 
1598 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1599 		int cpu = get_cpu();
1600 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1601 			__blk_mq_run_hw_queue(hctx);
1602 			put_cpu();
1603 			return;
1604 		}
1605 
1606 		put_cpu();
1607 	}
1608 
1609 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1610 				    msecs_to_jiffies(msecs));
1611 }
1612 
1613 /**
1614  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1615  * @hctx: Pointer to the hardware queue to run.
1616  * @msecs: Microseconds of delay to wait before running the queue.
1617  *
1618  * Run a hardware queue asynchronously with a delay of @msecs.
1619  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1620 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1621 {
1622 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1623 }
1624 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1625 
1626 /**
1627  * blk_mq_run_hw_queue - Start to run a hardware queue.
1628  * @hctx: Pointer to the hardware queue to run.
1629  * @async: If we want to run the queue asynchronously.
1630  *
1631  * Check if the request queue is not in a quiesced state and if there are
1632  * pending requests to be sent. If this is true, run the queue to send requests
1633  * to hardware.
1634  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1635 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1636 {
1637 	int srcu_idx;
1638 	bool need_run;
1639 
1640 	/*
1641 	 * When queue is quiesced, we may be switching io scheduler, or
1642 	 * updating nr_hw_queues, or other things, and we can't run queue
1643 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1644 	 *
1645 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1646 	 * quiesced.
1647 	 */
1648 	hctx_lock(hctx, &srcu_idx);
1649 	need_run = !blk_queue_quiesced(hctx->queue) &&
1650 		blk_mq_hctx_has_pending(hctx);
1651 	hctx_unlock(hctx, srcu_idx);
1652 
1653 	if (need_run)
1654 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1655 }
1656 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1657 
1658 /*
1659  * Is the request queue handled by an IO scheduler that does not respect
1660  * hardware queues when dispatching?
1661  */
blk_mq_has_sqsched(struct request_queue * q)1662 static bool blk_mq_has_sqsched(struct request_queue *q)
1663 {
1664 	struct elevator_queue *e = q->elevator;
1665 
1666 	if (e && e->type->ops.dispatch_request &&
1667 	    !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE))
1668 		return true;
1669 	return false;
1670 }
1671 
1672 /*
1673  * Return prefered queue to dispatch from (if any) for non-mq aware IO
1674  * scheduler.
1675  */
blk_mq_get_sq_hctx(struct request_queue * q)1676 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
1677 {
1678 	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
1679 	/*
1680 	 * If the IO scheduler does not respect hardware queues when
1681 	 * dispatching, we just don't bother with multiple HW queues and
1682 	 * dispatch from hctx for the current CPU since running multiple queues
1683 	 * just causes lock contention inside the scheduler and pointless cache
1684 	 * bouncing.
1685 	 */
1686 	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, 0, ctx);
1687 
1688 	if (!blk_mq_hctx_stopped(hctx))
1689 		return hctx;
1690 	return NULL;
1691 }
1692 
1693 /**
1694  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1695  * @q: Pointer to the request queue to run.
1696  * @async: If we want to run the queue asynchronously.
1697  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1698 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1699 {
1700 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1701 	int i;
1702 
1703 	sq_hctx = NULL;
1704 	if (blk_mq_has_sqsched(q))
1705 		sq_hctx = blk_mq_get_sq_hctx(q);
1706 	queue_for_each_hw_ctx(q, hctx, i) {
1707 		if (blk_mq_hctx_stopped(hctx))
1708 			continue;
1709 		/*
1710 		 * Dispatch from this hctx either if there's no hctx preferred
1711 		 * by IO scheduler or if it has requests that bypass the
1712 		 * scheduler.
1713 		 */
1714 		if (!sq_hctx || sq_hctx == hctx ||
1715 		    !list_empty_careful(&hctx->dispatch))
1716 			blk_mq_run_hw_queue(hctx, async);
1717 	}
1718 }
1719 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1720 
1721 /**
1722  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1723  * @q: Pointer to the request queue to run.
1724  * @msecs: Microseconds of delay to wait before running the queues.
1725  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1726 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1727 {
1728 	struct blk_mq_hw_ctx *hctx, *sq_hctx;
1729 	int i;
1730 
1731 	sq_hctx = NULL;
1732 	if (blk_mq_has_sqsched(q))
1733 		sq_hctx = blk_mq_get_sq_hctx(q);
1734 	queue_for_each_hw_ctx(q, hctx, i) {
1735 		if (blk_mq_hctx_stopped(hctx))
1736 			continue;
1737 		/*
1738 		 * Dispatch from this hctx either if there's no hctx preferred
1739 		 * by IO scheduler or if it has requests that bypass the
1740 		 * scheduler.
1741 		 */
1742 		if (!sq_hctx || sq_hctx == hctx ||
1743 		    !list_empty_careful(&hctx->dispatch))
1744 			blk_mq_delay_run_hw_queue(hctx, msecs);
1745 	}
1746 }
1747 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1748 
1749 /**
1750  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1751  * @q: request queue.
1752  *
1753  * The caller is responsible for serializing this function against
1754  * blk_mq_{start,stop}_hw_queue().
1755  */
blk_mq_queue_stopped(struct request_queue * q)1756 bool blk_mq_queue_stopped(struct request_queue *q)
1757 {
1758 	struct blk_mq_hw_ctx *hctx;
1759 	int i;
1760 
1761 	queue_for_each_hw_ctx(q, hctx, i)
1762 		if (blk_mq_hctx_stopped(hctx))
1763 			return true;
1764 
1765 	return false;
1766 }
1767 EXPORT_SYMBOL(blk_mq_queue_stopped);
1768 
1769 /*
1770  * This function is often used for pausing .queue_rq() by driver when
1771  * there isn't enough resource or some conditions aren't satisfied, and
1772  * BLK_STS_RESOURCE is usually returned.
1773  *
1774  * We do not guarantee that dispatch can be drained or blocked
1775  * after blk_mq_stop_hw_queue() returns. Please use
1776  * blk_mq_quiesce_queue() for that requirement.
1777  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1778 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1779 {
1780 	cancel_delayed_work(&hctx->run_work);
1781 
1782 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1783 }
1784 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1785 
1786 /*
1787  * This function is often used for pausing .queue_rq() by driver when
1788  * there isn't enough resource or some conditions aren't satisfied, and
1789  * BLK_STS_RESOURCE is usually returned.
1790  *
1791  * We do not guarantee that dispatch can be drained or blocked
1792  * after blk_mq_stop_hw_queues() returns. Please use
1793  * blk_mq_quiesce_queue() for that requirement.
1794  */
blk_mq_stop_hw_queues(struct request_queue * q)1795 void blk_mq_stop_hw_queues(struct request_queue *q)
1796 {
1797 	struct blk_mq_hw_ctx *hctx;
1798 	int i;
1799 
1800 	queue_for_each_hw_ctx(q, hctx, i)
1801 		blk_mq_stop_hw_queue(hctx);
1802 }
1803 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1804 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1805 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1806 {
1807 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1808 
1809 	blk_mq_run_hw_queue(hctx, false);
1810 }
1811 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1812 
blk_mq_start_hw_queues(struct request_queue * q)1813 void blk_mq_start_hw_queues(struct request_queue *q)
1814 {
1815 	struct blk_mq_hw_ctx *hctx;
1816 	int i;
1817 
1818 	queue_for_each_hw_ctx(q, hctx, i)
1819 		blk_mq_start_hw_queue(hctx);
1820 }
1821 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1822 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1823 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1824 {
1825 	if (!blk_mq_hctx_stopped(hctx))
1826 		return;
1827 
1828 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1829 	blk_mq_run_hw_queue(hctx, async);
1830 }
1831 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1832 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1833 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1834 {
1835 	struct blk_mq_hw_ctx *hctx;
1836 	int i;
1837 
1838 	queue_for_each_hw_ctx(q, hctx, i)
1839 		blk_mq_start_stopped_hw_queue(hctx, async);
1840 }
1841 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1842 
blk_mq_run_work_fn(struct work_struct * work)1843 static void blk_mq_run_work_fn(struct work_struct *work)
1844 {
1845 	struct blk_mq_hw_ctx *hctx;
1846 
1847 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1848 
1849 	/*
1850 	 * If we are stopped, don't run the queue.
1851 	 */
1852 	if (blk_mq_hctx_stopped(hctx))
1853 		return;
1854 
1855 	__blk_mq_run_hw_queue(hctx);
1856 }
1857 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1858 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1859 					    struct request *rq,
1860 					    bool at_head)
1861 {
1862 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1863 	enum hctx_type type = hctx->type;
1864 
1865 	lockdep_assert_held(&ctx->lock);
1866 
1867 	trace_block_rq_insert(hctx->queue, rq);
1868 
1869 	if (at_head)
1870 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1871 	else
1872 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1873 }
1874 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1875 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1876 			     bool at_head)
1877 {
1878 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1879 
1880 	lockdep_assert_held(&ctx->lock);
1881 
1882 	__blk_mq_insert_req_list(hctx, rq, at_head);
1883 	blk_mq_hctx_mark_pending(hctx, ctx);
1884 }
1885 
1886 /**
1887  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1888  * @rq: Pointer to request to be inserted.
1889  * @at_head: true if the request should be inserted at the head of the list.
1890  * @run_queue: If we should run the hardware queue after inserting the request.
1891  *
1892  * Should only be used carefully, when the caller knows we want to
1893  * bypass a potential IO scheduler on the target device.
1894  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1895 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1896 				  bool run_queue)
1897 {
1898 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1899 
1900 	spin_lock(&hctx->lock);
1901 	if (at_head)
1902 		list_add(&rq->queuelist, &hctx->dispatch);
1903 	else
1904 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1905 	spin_unlock(&hctx->lock);
1906 
1907 	if (run_queue)
1908 		blk_mq_run_hw_queue(hctx, false);
1909 }
1910 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1911 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1912 			    struct list_head *list)
1913 
1914 {
1915 	struct request *rq;
1916 	enum hctx_type type = hctx->type;
1917 
1918 	/*
1919 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1920 	 * offline now
1921 	 */
1922 	list_for_each_entry(rq, list, queuelist) {
1923 		BUG_ON(rq->mq_ctx != ctx);
1924 		trace_block_rq_insert(hctx->queue, rq);
1925 	}
1926 
1927 	spin_lock(&ctx->lock);
1928 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1929 	blk_mq_hctx_mark_pending(hctx, ctx);
1930 	spin_unlock(&ctx->lock);
1931 }
1932 
plug_rq_cmp(void * priv,struct list_head * a,struct list_head * b)1933 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1934 {
1935 	struct request *rqa = container_of(a, struct request, queuelist);
1936 	struct request *rqb = container_of(b, struct request, queuelist);
1937 
1938 	if (rqa->mq_ctx != rqb->mq_ctx)
1939 		return rqa->mq_ctx > rqb->mq_ctx;
1940 	if (rqa->mq_hctx != rqb->mq_hctx)
1941 		return rqa->mq_hctx > rqb->mq_hctx;
1942 
1943 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1944 }
1945 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1946 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1947 {
1948 	LIST_HEAD(list);
1949 
1950 	if (list_empty(&plug->mq_list))
1951 		return;
1952 	list_splice_init(&plug->mq_list, &list);
1953 
1954 	if (plug->rq_count > 2 && plug->multiple_queues)
1955 		list_sort(NULL, &list, plug_rq_cmp);
1956 
1957 	plug->rq_count = 0;
1958 
1959 	do {
1960 		struct list_head rq_list;
1961 		struct request *rq, *head_rq = list_entry_rq(list.next);
1962 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1963 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1964 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1965 		unsigned int depth = 1;
1966 
1967 		list_for_each_continue(pos, &list) {
1968 			rq = list_entry_rq(pos);
1969 			BUG_ON(!rq->q);
1970 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1971 				break;
1972 			depth++;
1973 		}
1974 
1975 		list_cut_before(&rq_list, &list, pos);
1976 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1977 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1978 						from_schedule);
1979 	} while(!list_empty(&list));
1980 }
1981 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1982 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1983 		unsigned int nr_segs)
1984 {
1985 	int err;
1986 
1987 	if (bio->bi_opf & REQ_RAHEAD)
1988 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1989 
1990 	rq->__sector = bio->bi_iter.bi_sector;
1991 	rq->write_hint = bio->bi_write_hint;
1992 	blk_rq_bio_prep(rq, bio, nr_segs);
1993 
1994 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1995 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1996 	WARN_ON_ONCE(err);
1997 
1998 	blk_account_io_start(rq);
1999 }
2000 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)2001 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2002 					    struct request *rq,
2003 					    blk_qc_t *cookie, bool last)
2004 {
2005 	struct request_queue *q = rq->q;
2006 	struct blk_mq_queue_data bd = {
2007 		.rq = rq,
2008 		.last = last,
2009 	};
2010 	blk_qc_t new_cookie;
2011 	blk_status_t ret;
2012 
2013 	new_cookie = request_to_qc_t(hctx, rq);
2014 
2015 	/*
2016 	 * For OK queue, we are done. For error, caller may kill it.
2017 	 * Any other error (busy), just add it to our list as we
2018 	 * previously would have done.
2019 	 */
2020 	ret = q->mq_ops->queue_rq(hctx, &bd);
2021 	switch (ret) {
2022 	case BLK_STS_OK:
2023 		blk_mq_update_dispatch_busy(hctx, false);
2024 		*cookie = new_cookie;
2025 		break;
2026 	case BLK_STS_RESOURCE:
2027 	case BLK_STS_DEV_RESOURCE:
2028 		blk_mq_update_dispatch_busy(hctx, true);
2029 		__blk_mq_requeue_request(rq);
2030 		break;
2031 	default:
2032 		blk_mq_update_dispatch_busy(hctx, false);
2033 		*cookie = BLK_QC_T_NONE;
2034 		break;
2035 	}
2036 
2037 	return ret;
2038 }
2039 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2040 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2041 						struct request *rq,
2042 						blk_qc_t *cookie,
2043 						bool bypass_insert, bool last)
2044 {
2045 	struct request_queue *q = rq->q;
2046 	bool run_queue = true;
2047 
2048 	/*
2049 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2050 	 *
2051 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2052 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2053 	 * and avoid driver to try to dispatch again.
2054 	 */
2055 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2056 		run_queue = false;
2057 		bypass_insert = false;
2058 		goto insert;
2059 	}
2060 
2061 	if (q->elevator && !bypass_insert)
2062 		goto insert;
2063 
2064 	if (!blk_mq_get_dispatch_budget(q))
2065 		goto insert;
2066 
2067 	if (!blk_mq_get_driver_tag(rq)) {
2068 		blk_mq_put_dispatch_budget(q);
2069 		goto insert;
2070 	}
2071 
2072 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2073 insert:
2074 	if (bypass_insert)
2075 		return BLK_STS_RESOURCE;
2076 
2077 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2078 
2079 	return BLK_STS_OK;
2080 }
2081 
2082 /**
2083  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2084  * @hctx: Pointer of the associated hardware queue.
2085  * @rq: Pointer to request to be sent.
2086  * @cookie: Request queue cookie.
2087  *
2088  * If the device has enough resources to accept a new request now, send the
2089  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2090  * we can try send it another time in the future. Requests inserted at this
2091  * queue have higher priority.
2092  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2093 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2094 		struct request *rq, blk_qc_t *cookie)
2095 {
2096 	blk_status_t ret;
2097 	int srcu_idx;
2098 
2099 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2100 
2101 	hctx_lock(hctx, &srcu_idx);
2102 
2103 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2104 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2105 		blk_mq_request_bypass_insert(rq, false, true);
2106 	else if (ret != BLK_STS_OK)
2107 		blk_mq_end_request(rq, ret);
2108 
2109 	hctx_unlock(hctx, srcu_idx);
2110 }
2111 
blk_mq_request_issue_directly(struct request * rq,bool last)2112 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2113 {
2114 	blk_status_t ret;
2115 	int srcu_idx;
2116 	blk_qc_t unused_cookie;
2117 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2118 
2119 	hctx_lock(hctx, &srcu_idx);
2120 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2121 	hctx_unlock(hctx, srcu_idx);
2122 
2123 	return ret;
2124 }
2125 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2126 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2127 		struct list_head *list)
2128 {
2129 	int queued = 0;
2130 	int errors = 0;
2131 
2132 	while (!list_empty(list)) {
2133 		blk_status_t ret;
2134 		struct request *rq = list_first_entry(list, struct request,
2135 				queuelist);
2136 
2137 		list_del_init(&rq->queuelist);
2138 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2139 		if (ret != BLK_STS_OK) {
2140 			errors++;
2141 			if (ret == BLK_STS_RESOURCE ||
2142 					ret == BLK_STS_DEV_RESOURCE) {
2143 				blk_mq_request_bypass_insert(rq, false,
2144 							list_empty(list));
2145 				break;
2146 			}
2147 			blk_mq_end_request(rq, ret);
2148 		} else
2149 			queued++;
2150 	}
2151 
2152 	/*
2153 	 * If we didn't flush the entire list, we could have told
2154 	 * the driver there was more coming, but that turned out to
2155 	 * be a lie.
2156 	 */
2157 	if ((!list_empty(list) || errors) &&
2158 	     hctx->queue->mq_ops->commit_rqs && queued)
2159 		hctx->queue->mq_ops->commit_rqs(hctx);
2160 }
2161 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2162 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2163 {
2164 	list_add_tail(&rq->queuelist, &plug->mq_list);
2165 	plug->rq_count++;
2166 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2167 		struct request *tmp;
2168 
2169 		tmp = list_first_entry(&plug->mq_list, struct request,
2170 						queuelist);
2171 		if (tmp->q != rq->q)
2172 			plug->multiple_queues = true;
2173 	}
2174 }
2175 
2176 /*
2177  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2178  * queues. This is important for md arrays to benefit from merging
2179  * requests.
2180  */
blk_plug_max_rq_count(struct blk_plug * plug)2181 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2182 {
2183 	if (plug->multiple_queues)
2184 		return BLK_MAX_REQUEST_COUNT * 2;
2185 	return BLK_MAX_REQUEST_COUNT;
2186 }
2187 
2188 /**
2189  * blk_mq_submit_bio - Create and send a request to block device.
2190  * @bio: Bio pointer.
2191  *
2192  * Builds up a request structure from @q and @bio and send to the device. The
2193  * request may not be queued directly to hardware if:
2194  * * This request can be merged with another one
2195  * * We want to place request at plug queue for possible future merging
2196  * * There is an IO scheduler active at this queue
2197  *
2198  * It will not queue the request if there is an error with the bio, or at the
2199  * request creation.
2200  *
2201  * Returns: Request queue cookie.
2202  */
blk_mq_submit_bio(struct bio * bio)2203 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2204 {
2205 	struct request_queue *q = bio->bi_disk->queue;
2206 	const int is_sync = op_is_sync(bio->bi_opf);
2207 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2208 	struct blk_mq_alloc_data data = {
2209 		.q		= q,
2210 	};
2211 	struct request *rq;
2212 	struct blk_plug *plug;
2213 	struct request *same_queue_rq = NULL;
2214 	unsigned int nr_segs;
2215 	blk_qc_t cookie;
2216 	blk_status_t ret;
2217 
2218 	blk_queue_bounce(q, &bio);
2219 	__blk_queue_split(&bio, &nr_segs);
2220 
2221 	if (!bio_integrity_prep(bio))
2222 		goto queue_exit;
2223 
2224 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2225 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2226 		goto queue_exit;
2227 
2228 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2229 		goto queue_exit;
2230 
2231 	rq_qos_throttle(q, bio);
2232 
2233 	data.cmd_flags = bio->bi_opf;
2234 	rq = __blk_mq_alloc_request(&data);
2235 	if (unlikely(!rq)) {
2236 		rq_qos_cleanup(q, bio);
2237 		if (bio->bi_opf & REQ_NOWAIT)
2238 			bio_wouldblock_error(bio);
2239 		goto queue_exit;
2240 	}
2241 
2242 	trace_block_getrq(q, bio, bio->bi_opf);
2243 
2244 	rq_qos_track(q, rq, bio);
2245 
2246 	cookie = request_to_qc_t(data.hctx, rq);
2247 
2248 	blk_mq_bio_to_request(rq, bio, nr_segs);
2249 
2250 	ret = blk_crypto_init_request(rq);
2251 	if (ret != BLK_STS_OK) {
2252 		bio->bi_status = ret;
2253 		bio_endio(bio);
2254 		blk_mq_free_request(rq);
2255 		return BLK_QC_T_NONE;
2256 	}
2257 
2258 	plug = blk_mq_plug(q, bio);
2259 	if (unlikely(is_flush_fua)) {
2260 		/* Bypass scheduler for flush requests */
2261 		blk_insert_flush(rq);
2262 		blk_mq_run_hw_queue(data.hctx, true);
2263 	} else if (plug && (q->nr_hw_queues == 1 ||
2264 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2265 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2266 		/*
2267 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2268 		 * we know the driver uses bd->last in a smart fashion.
2269 		 *
2270 		 * Use normal plugging if this disk is slow HDD, as sequential
2271 		 * IO may benefit a lot from plug merging.
2272 		 */
2273 		unsigned int request_count = plug->rq_count;
2274 		struct request *last = NULL;
2275 
2276 		if (!request_count)
2277 			trace_block_plug(q);
2278 		else
2279 			last = list_entry_rq(plug->mq_list.prev);
2280 
2281 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2282 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2283 			blk_flush_plug_list(plug, false);
2284 			trace_block_plug(q);
2285 		}
2286 
2287 		blk_add_rq_to_plug(plug, rq);
2288 	} else if (q->elevator) {
2289 		/* Insert the request at the IO scheduler queue */
2290 		blk_mq_sched_insert_request(rq, false, true, true);
2291 	} else if (plug && !blk_queue_nomerges(q)) {
2292 		/*
2293 		 * We do limited plugging. If the bio can be merged, do that.
2294 		 * Otherwise the existing request in the plug list will be
2295 		 * issued. So the plug list will have one request at most
2296 		 * The plug list might get flushed before this. If that happens,
2297 		 * the plug list is empty, and same_queue_rq is invalid.
2298 		 */
2299 		if (list_empty(&plug->mq_list))
2300 			same_queue_rq = NULL;
2301 		if (same_queue_rq) {
2302 			list_del_init(&same_queue_rq->queuelist);
2303 			plug->rq_count--;
2304 		}
2305 		blk_add_rq_to_plug(plug, rq);
2306 		trace_block_plug(q);
2307 
2308 		if (same_queue_rq) {
2309 			data.hctx = same_queue_rq->mq_hctx;
2310 			trace_block_unplug(q, 1, true);
2311 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2312 					&cookie);
2313 		}
2314 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2315 			!data.hctx->dispatch_busy) {
2316 		/*
2317 		 * There is no scheduler and we can try to send directly
2318 		 * to the hardware.
2319 		 */
2320 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2321 	} else {
2322 		/* Default case. */
2323 		blk_mq_sched_insert_request(rq, false, true, true);
2324 	}
2325 
2326 	return cookie;
2327 queue_exit:
2328 	blk_queue_exit(q);
2329 	return BLK_QC_T_NONE;
2330 }
2331 
order_to_size(unsigned int order)2332 static size_t order_to_size(unsigned int order)
2333 {
2334 	return (size_t)PAGE_SIZE << order;
2335 }
2336 
2337 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2338 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2339 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2340 {
2341 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2342 	struct page *page;
2343 	unsigned long flags;
2344 
2345 	list_for_each_entry(page, &tags->page_list, lru) {
2346 		unsigned long start = (unsigned long)page_address(page);
2347 		unsigned long end = start + order_to_size(page->private);
2348 		int i;
2349 
2350 		for (i = 0; i < set->queue_depth; i++) {
2351 			struct request *rq = drv_tags->rqs[i];
2352 			unsigned long rq_addr = (unsigned long)rq;
2353 
2354 			if (rq_addr >= start && rq_addr < end) {
2355 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2356 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2357 			}
2358 		}
2359 	}
2360 
2361 	/*
2362 	 * Wait until all pending iteration is done.
2363 	 *
2364 	 * Request reference is cleared and it is guaranteed to be observed
2365 	 * after the ->lock is released.
2366 	 */
2367 	spin_lock_irqsave(&drv_tags->lock, flags);
2368 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2369 }
2370 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2371 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2372 		     unsigned int hctx_idx)
2373 {
2374 	struct page *page;
2375 
2376 	if (tags->rqs && set->ops->exit_request) {
2377 		int i;
2378 
2379 		for (i = 0; i < tags->nr_tags; i++) {
2380 			struct request *rq = tags->static_rqs[i];
2381 
2382 			if (!rq)
2383 				continue;
2384 			set->ops->exit_request(set, rq, hctx_idx);
2385 			tags->static_rqs[i] = NULL;
2386 		}
2387 	}
2388 
2389 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2390 
2391 	while (!list_empty(&tags->page_list)) {
2392 		page = list_first_entry(&tags->page_list, struct page, lru);
2393 		list_del_init(&page->lru);
2394 		/*
2395 		 * Remove kmemleak object previously allocated in
2396 		 * blk_mq_alloc_rqs().
2397 		 */
2398 		kmemleak_free(page_address(page));
2399 		__free_pages(page, page->private);
2400 	}
2401 }
2402 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2403 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2404 {
2405 	kfree(tags->rqs);
2406 	tags->rqs = NULL;
2407 	kfree(tags->static_rqs);
2408 	tags->static_rqs = NULL;
2409 
2410 	blk_mq_free_tags(tags, flags);
2411 }
2412 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2413 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2414 					unsigned int hctx_idx,
2415 					unsigned int nr_tags,
2416 					unsigned int reserved_tags,
2417 					unsigned int flags)
2418 {
2419 	struct blk_mq_tags *tags;
2420 	int node;
2421 
2422 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2423 	if (node == NUMA_NO_NODE)
2424 		node = set->numa_node;
2425 
2426 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2427 	if (!tags)
2428 		return NULL;
2429 
2430 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2431 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2432 				 node);
2433 	if (!tags->rqs) {
2434 		blk_mq_free_tags(tags, flags);
2435 		return NULL;
2436 	}
2437 
2438 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2439 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2440 					node);
2441 	if (!tags->static_rqs) {
2442 		kfree(tags->rqs);
2443 		blk_mq_free_tags(tags, flags);
2444 		return NULL;
2445 	}
2446 
2447 	return tags;
2448 }
2449 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2450 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2451 			       unsigned int hctx_idx, int node)
2452 {
2453 	int ret;
2454 
2455 	if (set->ops->init_request) {
2456 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2457 		if (ret)
2458 			return ret;
2459 	}
2460 
2461 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2462 	return 0;
2463 }
2464 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2465 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2466 		     unsigned int hctx_idx, unsigned int depth)
2467 {
2468 	unsigned int i, j, entries_per_page, max_order = 4;
2469 	size_t rq_size, left;
2470 	int node;
2471 
2472 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2473 	if (node == NUMA_NO_NODE)
2474 		node = set->numa_node;
2475 
2476 	INIT_LIST_HEAD(&tags->page_list);
2477 
2478 	/*
2479 	 * rq_size is the size of the request plus driver payload, rounded
2480 	 * to the cacheline size
2481 	 */
2482 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2483 				cache_line_size());
2484 	trace_android_vh_blk_alloc_rqs(&rq_size, set, tags);
2485 	left = rq_size * depth;
2486 
2487 	for (i = 0; i < depth; ) {
2488 		int this_order = max_order;
2489 		struct page *page;
2490 		int to_do;
2491 		void *p;
2492 
2493 		while (this_order && left < order_to_size(this_order - 1))
2494 			this_order--;
2495 
2496 		do {
2497 			page = alloc_pages_node(node,
2498 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2499 				this_order);
2500 			if (page)
2501 				break;
2502 			if (!this_order--)
2503 				break;
2504 			if (order_to_size(this_order) < rq_size)
2505 				break;
2506 		} while (1);
2507 
2508 		if (!page)
2509 			goto fail;
2510 
2511 		page->private = this_order;
2512 		list_add_tail(&page->lru, &tags->page_list);
2513 
2514 		p = page_address(page);
2515 		/*
2516 		 * Allow kmemleak to scan these pages as they contain pointers
2517 		 * to additional allocations like via ops->init_request().
2518 		 */
2519 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2520 		entries_per_page = order_to_size(this_order) / rq_size;
2521 		to_do = min(entries_per_page, depth - i);
2522 		left -= to_do * rq_size;
2523 		for (j = 0; j < to_do; j++) {
2524 			struct request *rq = p;
2525 
2526 			tags->static_rqs[i] = rq;
2527 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2528 				tags->static_rqs[i] = NULL;
2529 				goto fail;
2530 			}
2531 
2532 			p += rq_size;
2533 			i++;
2534 		}
2535 	}
2536 	return 0;
2537 
2538 fail:
2539 	blk_mq_free_rqs(set, tags, hctx_idx);
2540 	return -ENOMEM;
2541 }
2542 
2543 struct rq_iter_data {
2544 	struct blk_mq_hw_ctx *hctx;
2545 	bool has_rq;
2546 };
2547 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2548 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2549 {
2550 	struct rq_iter_data *iter_data = data;
2551 
2552 	if (rq->mq_hctx != iter_data->hctx)
2553 		return true;
2554 	iter_data->has_rq = true;
2555 	return false;
2556 }
2557 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2558 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2559 {
2560 	struct blk_mq_tags *tags = hctx->sched_tags ?
2561 			hctx->sched_tags : hctx->tags;
2562 	struct rq_iter_data data = {
2563 		.hctx	= hctx,
2564 	};
2565 
2566 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2567 	return data.has_rq;
2568 }
2569 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2570 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2571 		struct blk_mq_hw_ctx *hctx)
2572 {
2573 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2574 		return false;
2575 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2576 		return false;
2577 	return true;
2578 }
2579 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2580 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2581 {
2582 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2583 			struct blk_mq_hw_ctx, cpuhp_online);
2584 
2585 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2586 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2587 		return 0;
2588 
2589 	/*
2590 	 * Prevent new request from being allocated on the current hctx.
2591 	 *
2592 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2593 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2594 	 * seen once we return from the tag allocator.
2595 	 */
2596 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2597 	smp_mb__after_atomic();
2598 
2599 	/*
2600 	 * Try to grab a reference to the queue and wait for any outstanding
2601 	 * requests.  If we could not grab a reference the queue has been
2602 	 * frozen and there are no requests.
2603 	 */
2604 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2605 		while (blk_mq_hctx_has_requests(hctx))
2606 			msleep(5);
2607 		percpu_ref_put(&hctx->queue->q_usage_counter);
2608 	}
2609 
2610 	return 0;
2611 }
2612 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2613 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2614 {
2615 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2616 			struct blk_mq_hw_ctx, cpuhp_online);
2617 
2618 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2619 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2620 	return 0;
2621 }
2622 
2623 /*
2624  * 'cpu' is going away. splice any existing rq_list entries from this
2625  * software queue to the hw queue dispatch list, and ensure that it
2626  * gets run.
2627  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2628 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2629 {
2630 	struct blk_mq_hw_ctx *hctx;
2631 	struct blk_mq_ctx *ctx;
2632 	LIST_HEAD(tmp);
2633 	enum hctx_type type;
2634 
2635 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2636 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2637 		return 0;
2638 
2639 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2640 	type = hctx->type;
2641 
2642 	spin_lock(&ctx->lock);
2643 	if (!list_empty(&ctx->rq_lists[type])) {
2644 		list_splice_init(&ctx->rq_lists[type], &tmp);
2645 		blk_mq_hctx_clear_pending(hctx, ctx);
2646 	}
2647 	spin_unlock(&ctx->lock);
2648 
2649 	if (list_empty(&tmp))
2650 		return 0;
2651 
2652 	spin_lock(&hctx->lock);
2653 	list_splice_tail_init(&tmp, &hctx->dispatch);
2654 	spin_unlock(&hctx->lock);
2655 
2656 	blk_mq_run_hw_queue(hctx, true);
2657 	return 0;
2658 }
2659 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2660 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2661 {
2662 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2663 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2664 						    &hctx->cpuhp_online);
2665 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2666 					    &hctx->cpuhp_dead);
2667 }
2668 
2669 /*
2670  * Before freeing hw queue, clearing the flush request reference in
2671  * tags->rqs[] for avoiding potential UAF.
2672  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2673 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2674 		unsigned int queue_depth, struct request *flush_rq)
2675 {
2676 	int i;
2677 	unsigned long flags;
2678 
2679 	/* The hw queue may not be mapped yet */
2680 	if (!tags)
2681 		return;
2682 
2683 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2684 
2685 	for (i = 0; i < queue_depth; i++)
2686 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2687 
2688 	/*
2689 	 * Wait until all pending iteration is done.
2690 	 *
2691 	 * Request reference is cleared and it is guaranteed to be observed
2692 	 * after the ->lock is released.
2693 	 */
2694 	spin_lock_irqsave(&tags->lock, flags);
2695 	spin_unlock_irqrestore(&tags->lock, flags);
2696 }
2697 
2698 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2699 static void blk_mq_exit_hctx(struct request_queue *q,
2700 		struct blk_mq_tag_set *set,
2701 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2702 {
2703 	struct request *flush_rq = hctx->fq->flush_rq;
2704 
2705 	if (blk_mq_hw_queue_mapped(hctx))
2706 		blk_mq_tag_idle(hctx);
2707 
2708 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2709 			set->queue_depth, flush_rq);
2710 	if (set->ops->exit_request)
2711 		set->ops->exit_request(set, flush_rq, hctx_idx);
2712 
2713 	if (set->ops->exit_hctx)
2714 		set->ops->exit_hctx(hctx, hctx_idx);
2715 
2716 	blk_mq_remove_cpuhp(hctx);
2717 
2718 	spin_lock(&q->unused_hctx_lock);
2719 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2720 	spin_unlock(&q->unused_hctx_lock);
2721 }
2722 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2723 static void blk_mq_exit_hw_queues(struct request_queue *q,
2724 		struct blk_mq_tag_set *set, int nr_queue)
2725 {
2726 	struct blk_mq_hw_ctx *hctx;
2727 	unsigned int i;
2728 
2729 	queue_for_each_hw_ctx(q, hctx, i) {
2730 		if (i == nr_queue)
2731 			break;
2732 		blk_mq_debugfs_unregister_hctx(hctx);
2733 		blk_mq_exit_hctx(q, set, hctx, i);
2734 	}
2735 }
2736 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2737 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2738 {
2739 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2740 
2741 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2742 			   __alignof__(struct blk_mq_hw_ctx)) !=
2743 		     sizeof(struct blk_mq_hw_ctx));
2744 
2745 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2746 		hw_ctx_size += sizeof(struct srcu_struct);
2747 
2748 	return hw_ctx_size;
2749 }
2750 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2751 static int blk_mq_init_hctx(struct request_queue *q,
2752 		struct blk_mq_tag_set *set,
2753 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2754 {
2755 	hctx->queue_num = hctx_idx;
2756 
2757 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2758 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2759 				&hctx->cpuhp_online);
2760 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2761 
2762 	hctx->tags = set->tags[hctx_idx];
2763 
2764 	if (set->ops->init_hctx &&
2765 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2766 		goto unregister_cpu_notifier;
2767 
2768 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2769 				hctx->numa_node))
2770 		goto exit_hctx;
2771 	return 0;
2772 
2773  exit_hctx:
2774 	if (set->ops->exit_hctx)
2775 		set->ops->exit_hctx(hctx, hctx_idx);
2776  unregister_cpu_notifier:
2777 	blk_mq_remove_cpuhp(hctx);
2778 	return -1;
2779 }
2780 
2781 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2782 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2783 		int node)
2784 {
2785 	struct blk_mq_hw_ctx *hctx;
2786 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2787 
2788 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2789 	if (!hctx)
2790 		goto fail_alloc_hctx;
2791 
2792 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2793 		goto free_hctx;
2794 
2795 	atomic_set(&hctx->nr_active, 0);
2796 	if (node == NUMA_NO_NODE)
2797 		node = set->numa_node;
2798 	hctx->numa_node = node;
2799 
2800 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2801 	spin_lock_init(&hctx->lock);
2802 	INIT_LIST_HEAD(&hctx->dispatch);
2803 	hctx->queue = q;
2804 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2805 
2806 	INIT_LIST_HEAD(&hctx->hctx_list);
2807 
2808 	/*
2809 	 * Allocate space for all possible cpus to avoid allocation at
2810 	 * runtime
2811 	 */
2812 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2813 			gfp, node);
2814 	if (!hctx->ctxs)
2815 		goto free_cpumask;
2816 
2817 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2818 				gfp, node))
2819 		goto free_ctxs;
2820 	hctx->nr_ctx = 0;
2821 
2822 	spin_lock_init(&hctx->dispatch_wait_lock);
2823 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2824 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2825 
2826 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2827 	if (!hctx->fq)
2828 		goto free_bitmap;
2829 
2830 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2831 		init_srcu_struct(hctx->srcu);
2832 	blk_mq_hctx_kobj_init(hctx);
2833 
2834 	return hctx;
2835 
2836  free_bitmap:
2837 	sbitmap_free(&hctx->ctx_map);
2838  free_ctxs:
2839 	kfree(hctx->ctxs);
2840  free_cpumask:
2841 	free_cpumask_var(hctx->cpumask);
2842  free_hctx:
2843 	kfree(hctx);
2844  fail_alloc_hctx:
2845 	return NULL;
2846 }
2847 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2848 static void blk_mq_init_cpu_queues(struct request_queue *q,
2849 				   unsigned int nr_hw_queues)
2850 {
2851 	struct blk_mq_tag_set *set = q->tag_set;
2852 	unsigned int i, j;
2853 
2854 	for_each_possible_cpu(i) {
2855 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2856 		struct blk_mq_hw_ctx *hctx;
2857 		int k;
2858 
2859 		__ctx->cpu = i;
2860 		spin_lock_init(&__ctx->lock);
2861 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2862 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2863 
2864 		__ctx->queue = q;
2865 
2866 		/*
2867 		 * Set local node, IFF we have more than one hw queue. If
2868 		 * not, we remain on the home node of the device
2869 		 */
2870 		for (j = 0; j < set->nr_maps; j++) {
2871 			hctx = blk_mq_map_queue_type(q, j, i);
2872 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2873 				hctx->numa_node = cpu_to_node(i);
2874 		}
2875 	}
2876 }
2877 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2878 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2879 					int hctx_idx)
2880 {
2881 	unsigned int flags = set->flags;
2882 	int ret = 0;
2883 
2884 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2885 					set->queue_depth, set->reserved_tags, flags);
2886 	if (!set->tags[hctx_idx])
2887 		return false;
2888 
2889 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2890 				set->queue_depth);
2891 	if (!ret)
2892 		return true;
2893 
2894 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2895 	set->tags[hctx_idx] = NULL;
2896 	return false;
2897 }
2898 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2899 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2900 					 unsigned int hctx_idx)
2901 {
2902 	unsigned int flags = set->flags;
2903 
2904 	if (set->tags && set->tags[hctx_idx]) {
2905 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2906 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2907 		set->tags[hctx_idx] = NULL;
2908 	}
2909 }
2910 
blk_mq_map_swqueue(struct request_queue * q)2911 static void blk_mq_map_swqueue(struct request_queue *q)
2912 {
2913 	unsigned int i, j, hctx_idx;
2914 	struct blk_mq_hw_ctx *hctx;
2915 	struct blk_mq_ctx *ctx;
2916 	struct blk_mq_tag_set *set = q->tag_set;
2917 
2918 	queue_for_each_hw_ctx(q, hctx, i) {
2919 		cpumask_clear(hctx->cpumask);
2920 		hctx->nr_ctx = 0;
2921 		hctx->dispatch_from = NULL;
2922 	}
2923 
2924 	/*
2925 	 * Map software to hardware queues.
2926 	 *
2927 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2928 	 */
2929 	for_each_possible_cpu(i) {
2930 
2931 		ctx = per_cpu_ptr(q->queue_ctx, i);
2932 		for (j = 0; j < set->nr_maps; j++) {
2933 			if (!set->map[j].nr_queues) {
2934 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2935 						HCTX_TYPE_DEFAULT, i);
2936 				continue;
2937 			}
2938 			hctx_idx = set->map[j].mq_map[i];
2939 			/* unmapped hw queue can be remapped after CPU topo changed */
2940 			if (!set->tags[hctx_idx] &&
2941 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2942 				/*
2943 				 * If tags initialization fail for some hctx,
2944 				 * that hctx won't be brought online.  In this
2945 				 * case, remap the current ctx to hctx[0] which
2946 				 * is guaranteed to always have tags allocated
2947 				 */
2948 				set->map[j].mq_map[i] = 0;
2949 			}
2950 
2951 			hctx = blk_mq_map_queue_type(q, j, i);
2952 			ctx->hctxs[j] = hctx;
2953 			/*
2954 			 * If the CPU is already set in the mask, then we've
2955 			 * mapped this one already. This can happen if
2956 			 * devices share queues across queue maps.
2957 			 */
2958 			if (cpumask_test_cpu(i, hctx->cpumask))
2959 				continue;
2960 
2961 			cpumask_set_cpu(i, hctx->cpumask);
2962 			hctx->type = j;
2963 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2964 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2965 
2966 			/*
2967 			 * If the nr_ctx type overflows, we have exceeded the
2968 			 * amount of sw queues we can support.
2969 			 */
2970 			BUG_ON(!hctx->nr_ctx);
2971 		}
2972 
2973 		for (; j < HCTX_MAX_TYPES; j++)
2974 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2975 					HCTX_TYPE_DEFAULT, i);
2976 	}
2977 
2978 	queue_for_each_hw_ctx(q, hctx, i) {
2979 		/*
2980 		 * If no software queues are mapped to this hardware queue,
2981 		 * disable it and free the request entries.
2982 		 */
2983 		if (!hctx->nr_ctx) {
2984 			/* Never unmap queue 0.  We need it as a
2985 			 * fallback in case of a new remap fails
2986 			 * allocation
2987 			 */
2988 			if (i && set->tags[i])
2989 				blk_mq_free_map_and_requests(set, i);
2990 
2991 			hctx->tags = NULL;
2992 			continue;
2993 		}
2994 
2995 		hctx->tags = set->tags[i];
2996 		WARN_ON(!hctx->tags);
2997 
2998 		/*
2999 		 * Set the map size to the number of mapped software queues.
3000 		 * This is more accurate and more efficient than looping
3001 		 * over all possibly mapped software queues.
3002 		 */
3003 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3004 
3005 		/*
3006 		 * Initialize batch roundrobin counts
3007 		 */
3008 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3009 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3010 	}
3011 }
3012 
3013 /*
3014  * Caller needs to ensure that we're either frozen/quiesced, or that
3015  * the queue isn't live yet.
3016  */
queue_set_hctx_shared(struct request_queue * q,bool shared)3017 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3018 {
3019 	struct blk_mq_hw_ctx *hctx;
3020 	int i;
3021 
3022 	queue_for_each_hw_ctx(q, hctx, i) {
3023 		if (shared)
3024 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3025 		else
3026 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3027 	}
3028 }
3029 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3030 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3031 					 bool shared)
3032 {
3033 	struct request_queue *q;
3034 
3035 	lockdep_assert_held(&set->tag_list_lock);
3036 
3037 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3038 		blk_mq_freeze_queue(q);
3039 		queue_set_hctx_shared(q, shared);
3040 		blk_mq_unfreeze_queue(q);
3041 	}
3042 }
3043 
blk_mq_del_queue_tag_set(struct request_queue * q)3044 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3045 {
3046 	struct blk_mq_tag_set *set = q->tag_set;
3047 
3048 	mutex_lock(&set->tag_list_lock);
3049 	list_del(&q->tag_set_list);
3050 	if (list_is_singular(&set->tag_list)) {
3051 		/* just transitioned to unshared */
3052 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3053 		/* update existing queue */
3054 		blk_mq_update_tag_set_shared(set, false);
3055 	}
3056 	mutex_unlock(&set->tag_list_lock);
3057 	INIT_LIST_HEAD(&q->tag_set_list);
3058 }
3059 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3060 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3061 				     struct request_queue *q)
3062 {
3063 	mutex_lock(&set->tag_list_lock);
3064 
3065 	/*
3066 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3067 	 */
3068 	if (!list_empty(&set->tag_list) &&
3069 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3070 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3071 		/* update existing queue */
3072 		blk_mq_update_tag_set_shared(set, true);
3073 	}
3074 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3075 		queue_set_hctx_shared(q, true);
3076 	list_add_tail(&q->tag_set_list, &set->tag_list);
3077 
3078 	mutex_unlock(&set->tag_list_lock);
3079 }
3080 
3081 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3082 static int blk_mq_alloc_ctxs(struct request_queue *q)
3083 {
3084 	struct blk_mq_ctxs *ctxs;
3085 	int cpu;
3086 
3087 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3088 	if (!ctxs)
3089 		return -ENOMEM;
3090 
3091 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3092 	if (!ctxs->queue_ctx)
3093 		goto fail;
3094 
3095 	for_each_possible_cpu(cpu) {
3096 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3097 		ctx->ctxs = ctxs;
3098 	}
3099 
3100 	q->mq_kobj = &ctxs->kobj;
3101 	q->queue_ctx = ctxs->queue_ctx;
3102 
3103 	return 0;
3104  fail:
3105 	kfree(ctxs);
3106 	return -ENOMEM;
3107 }
3108 
3109 /*
3110  * It is the actual release handler for mq, but we do it from
3111  * request queue's release handler for avoiding use-after-free
3112  * and headache because q->mq_kobj shouldn't have been introduced,
3113  * but we can't group ctx/kctx kobj without it.
3114  */
blk_mq_release(struct request_queue * q)3115 void blk_mq_release(struct request_queue *q)
3116 {
3117 	struct blk_mq_hw_ctx *hctx, *next;
3118 	int i;
3119 
3120 	queue_for_each_hw_ctx(q, hctx, i)
3121 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3122 
3123 	/* all hctx are in .unused_hctx_list now */
3124 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3125 		list_del_init(&hctx->hctx_list);
3126 		kobject_put(&hctx->kobj);
3127 	}
3128 
3129 	kfree(q->queue_hw_ctx);
3130 
3131 	/*
3132 	 * release .mq_kobj and sw queue's kobject now because
3133 	 * both share lifetime with request queue.
3134 	 */
3135 	blk_mq_sysfs_deinit(q);
3136 }
3137 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3138 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3139 		void *queuedata)
3140 {
3141 	struct request_queue *uninit_q, *q;
3142 
3143 	uninit_q = blk_alloc_queue(set->numa_node);
3144 	if (!uninit_q)
3145 		return ERR_PTR(-ENOMEM);
3146 	uninit_q->queuedata = queuedata;
3147 
3148 	/*
3149 	 * Initialize the queue without an elevator. device_add_disk() will do
3150 	 * the initialization.
3151 	 */
3152 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3153 	if (IS_ERR(q))
3154 		blk_cleanup_queue(uninit_q);
3155 
3156 	return q;
3157 }
3158 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3159 
blk_mq_init_queue(struct blk_mq_tag_set * set)3160 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3161 {
3162 	return blk_mq_init_queue_data(set, NULL);
3163 }
3164 EXPORT_SYMBOL(blk_mq_init_queue);
3165 
3166 /*
3167  * Helper for setting up a queue with mq ops, given queue depth, and
3168  * the passed in mq ops flags.
3169  */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3170 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3171 					   const struct blk_mq_ops *ops,
3172 					   unsigned int queue_depth,
3173 					   unsigned int set_flags)
3174 {
3175 	struct request_queue *q;
3176 	int ret;
3177 
3178 	memset(set, 0, sizeof(*set));
3179 	set->ops = ops;
3180 	set->nr_hw_queues = 1;
3181 	set->nr_maps = 1;
3182 	set->queue_depth = queue_depth;
3183 	set->numa_node = NUMA_NO_NODE;
3184 	set->flags = set_flags;
3185 
3186 	ret = blk_mq_alloc_tag_set(set);
3187 	if (ret)
3188 		return ERR_PTR(ret);
3189 
3190 	q = blk_mq_init_queue(set);
3191 	if (IS_ERR(q)) {
3192 		blk_mq_free_tag_set(set);
3193 		return q;
3194 	}
3195 
3196 	return q;
3197 }
3198 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3199 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3200 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3201 		struct blk_mq_tag_set *set, struct request_queue *q,
3202 		int hctx_idx, int node)
3203 {
3204 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3205 
3206 	/* reuse dead hctx first */
3207 	spin_lock(&q->unused_hctx_lock);
3208 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3209 		if (tmp->numa_node == node) {
3210 			hctx = tmp;
3211 			break;
3212 		}
3213 	}
3214 	if (hctx)
3215 		list_del_init(&hctx->hctx_list);
3216 	spin_unlock(&q->unused_hctx_lock);
3217 
3218 	if (!hctx)
3219 		hctx = blk_mq_alloc_hctx(q, set, node);
3220 	if (!hctx)
3221 		goto fail;
3222 
3223 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3224 		goto free_hctx;
3225 
3226 	return hctx;
3227 
3228  free_hctx:
3229 	kobject_put(&hctx->kobj);
3230  fail:
3231 	return NULL;
3232 }
3233 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3234 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3235 						struct request_queue *q)
3236 {
3237 	int i, j, end;
3238 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3239 
3240 	if (q->nr_hw_queues < set->nr_hw_queues) {
3241 		struct blk_mq_hw_ctx **new_hctxs;
3242 
3243 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3244 				       sizeof(*new_hctxs), GFP_KERNEL,
3245 				       set->numa_node);
3246 		if (!new_hctxs)
3247 			return;
3248 		if (hctxs)
3249 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3250 			       sizeof(*hctxs));
3251 		q->queue_hw_ctx = new_hctxs;
3252 		kfree(hctxs);
3253 		hctxs = new_hctxs;
3254 	}
3255 
3256 	/* protect against switching io scheduler  */
3257 	mutex_lock(&q->sysfs_lock);
3258 	for (i = 0; i < set->nr_hw_queues; i++) {
3259 		int node;
3260 		struct blk_mq_hw_ctx *hctx;
3261 
3262 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3263 		/*
3264 		 * If the hw queue has been mapped to another numa node,
3265 		 * we need to realloc the hctx. If allocation fails, fallback
3266 		 * to use the previous one.
3267 		 */
3268 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3269 			continue;
3270 
3271 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3272 		if (hctx) {
3273 			if (hctxs[i])
3274 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3275 			hctxs[i] = hctx;
3276 		} else {
3277 			if (hctxs[i])
3278 				pr_warn("Allocate new hctx on node %d fails,\
3279 						fallback to previous one on node %d\n",
3280 						node, hctxs[i]->numa_node);
3281 			else
3282 				break;
3283 		}
3284 	}
3285 	/*
3286 	 * Increasing nr_hw_queues fails. Free the newly allocated
3287 	 * hctxs and keep the previous q->nr_hw_queues.
3288 	 */
3289 	if (i != set->nr_hw_queues) {
3290 		j = q->nr_hw_queues;
3291 		end = i;
3292 	} else {
3293 		j = i;
3294 		end = q->nr_hw_queues;
3295 		q->nr_hw_queues = set->nr_hw_queues;
3296 	}
3297 
3298 	for (; j < end; j++) {
3299 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3300 
3301 		if (hctx) {
3302 			if (hctx->tags)
3303 				blk_mq_free_map_and_requests(set, j);
3304 			blk_mq_exit_hctx(q, set, hctx, j);
3305 			hctxs[j] = NULL;
3306 		}
3307 	}
3308 	mutex_unlock(&q->sysfs_lock);
3309 }
3310 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3311 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3312 						  struct request_queue *q,
3313 						  bool elevator_init)
3314 {
3315 	/* mark the queue as mq asap */
3316 	q->mq_ops = set->ops;
3317 
3318 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3319 					     blk_mq_poll_stats_bkt,
3320 					     BLK_MQ_POLL_STATS_BKTS, q);
3321 	if (!q->poll_cb)
3322 		goto err_exit;
3323 
3324 	if (blk_mq_alloc_ctxs(q))
3325 		goto err_poll;
3326 
3327 	/* init q->mq_kobj and sw queues' kobjects */
3328 	blk_mq_sysfs_init(q);
3329 
3330 	INIT_LIST_HEAD(&q->unused_hctx_list);
3331 	spin_lock_init(&q->unused_hctx_lock);
3332 
3333 	blk_mq_realloc_hw_ctxs(set, q);
3334 	if (!q->nr_hw_queues)
3335 		goto err_hctxs;
3336 
3337 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3338 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3339 
3340 	q->tag_set = set;
3341 
3342 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3343 	if (set->nr_maps > HCTX_TYPE_POLL &&
3344 	    set->map[HCTX_TYPE_POLL].nr_queues)
3345 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3346 
3347 	q->sg_reserved_size = INT_MAX;
3348 
3349 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3350 	INIT_LIST_HEAD(&q->requeue_list);
3351 	spin_lock_init(&q->requeue_lock);
3352 
3353 	q->nr_requests = set->queue_depth;
3354 
3355 	/*
3356 	 * Default to classic polling
3357 	 */
3358 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3359 
3360 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3361 	blk_mq_add_queue_tag_set(set, q);
3362 	blk_mq_map_swqueue(q);
3363 
3364 	if (elevator_init)
3365 		elevator_init_mq(q);
3366 
3367 	return q;
3368 
3369 err_hctxs:
3370 	kfree(q->queue_hw_ctx);
3371 	q->nr_hw_queues = 0;
3372 	blk_mq_sysfs_deinit(q);
3373 err_poll:
3374 	blk_stat_free_callback(q->poll_cb);
3375 	q->poll_cb = NULL;
3376 err_exit:
3377 	q->mq_ops = NULL;
3378 	return ERR_PTR(-ENOMEM);
3379 }
3380 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3381 
3382 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3383 void blk_mq_exit_queue(struct request_queue *q)
3384 {
3385 	struct blk_mq_tag_set *set = q->tag_set;
3386 
3387 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3388 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3389 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3390 	blk_mq_del_queue_tag_set(q);
3391 }
3392 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3393 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3394 {
3395 	int i;
3396 
3397 	for (i = 0; i < set->nr_hw_queues; i++) {
3398 		if (!__blk_mq_alloc_map_and_request(set, i))
3399 			goto out_unwind;
3400 		cond_resched();
3401 	}
3402 
3403 	return 0;
3404 
3405 out_unwind:
3406 	while (--i >= 0)
3407 		blk_mq_free_map_and_requests(set, i);
3408 
3409 	return -ENOMEM;
3410 }
3411 
3412 /*
3413  * Allocate the request maps associated with this tag_set. Note that this
3414  * may reduce the depth asked for, if memory is tight. set->queue_depth
3415  * will be updated to reflect the allocated depth.
3416  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3417 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3418 {
3419 	unsigned int depth;
3420 	int err;
3421 
3422 	depth = set->queue_depth;
3423 	do {
3424 		err = __blk_mq_alloc_rq_maps(set);
3425 		if (!err)
3426 			break;
3427 
3428 		set->queue_depth >>= 1;
3429 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3430 			err = -ENOMEM;
3431 			break;
3432 		}
3433 	} while (set->queue_depth);
3434 
3435 	if (!set->queue_depth || err) {
3436 		pr_err("blk-mq: failed to allocate request map\n");
3437 		return -ENOMEM;
3438 	}
3439 
3440 	if (depth != set->queue_depth)
3441 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3442 						depth, set->queue_depth);
3443 
3444 	return 0;
3445 }
3446 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3447 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3448 {
3449 	/*
3450 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3451 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3452 	 * number of hardware queues.
3453 	 */
3454 	if (set->nr_maps == 1)
3455 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3456 
3457 	if (set->ops->map_queues && !is_kdump_kernel()) {
3458 		int i;
3459 
3460 		/*
3461 		 * transport .map_queues is usually done in the following
3462 		 * way:
3463 		 *
3464 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3465 		 * 	mask = get_cpu_mask(queue)
3466 		 * 	for_each_cpu(cpu, mask)
3467 		 * 		set->map[x].mq_map[cpu] = queue;
3468 		 * }
3469 		 *
3470 		 * When we need to remap, the table has to be cleared for
3471 		 * killing stale mapping since one CPU may not be mapped
3472 		 * to any hw queue.
3473 		 */
3474 		for (i = 0; i < set->nr_maps; i++)
3475 			blk_mq_clear_mq_map(&set->map[i]);
3476 
3477 		return set->ops->map_queues(set);
3478 	} else {
3479 		BUG_ON(set->nr_maps > 1);
3480 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3481 	}
3482 }
3483 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3484 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3485 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3486 {
3487 	struct blk_mq_tags **new_tags;
3488 
3489 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3490 		return 0;
3491 
3492 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3493 				GFP_KERNEL, set->numa_node);
3494 	if (!new_tags)
3495 		return -ENOMEM;
3496 
3497 	if (set->tags)
3498 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3499 		       sizeof(*set->tags));
3500 	kfree(set->tags);
3501 	set->tags = new_tags;
3502 	set->nr_hw_queues = new_nr_hw_queues;
3503 
3504 	return 0;
3505 }
3506 
3507 /*
3508  * Alloc a tag set to be associated with one or more request queues.
3509  * May fail with EINVAL for various error conditions. May adjust the
3510  * requested depth down, if it's too large. In that case, the set
3511  * value will be stored in set->queue_depth.
3512  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3513 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3514 {
3515 	int i, ret;
3516 
3517 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3518 
3519 	if (!set->nr_hw_queues)
3520 		return -EINVAL;
3521 	if (!set->queue_depth)
3522 		return -EINVAL;
3523 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3524 		return -EINVAL;
3525 
3526 	if (!set->ops->queue_rq)
3527 		return -EINVAL;
3528 
3529 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3530 		return -EINVAL;
3531 
3532 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3533 		pr_info("blk-mq: reduced tag depth to %u\n",
3534 			BLK_MQ_MAX_DEPTH);
3535 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3536 	}
3537 
3538 	if (!set->nr_maps)
3539 		set->nr_maps = 1;
3540 	else if (set->nr_maps > HCTX_MAX_TYPES)
3541 		return -EINVAL;
3542 
3543 	/*
3544 	 * If a crashdump is active, then we are potentially in a very
3545 	 * memory constrained environment. Limit us to 1 queue and
3546 	 * 64 tags to prevent using too much memory.
3547 	 */
3548 	if (is_kdump_kernel()) {
3549 		set->nr_hw_queues = 1;
3550 		set->nr_maps = 1;
3551 		set->queue_depth = min(64U, set->queue_depth);
3552 	}
3553 	/*
3554 	 * There is no use for more h/w queues than cpus if we just have
3555 	 * a single map
3556 	 */
3557 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3558 		set->nr_hw_queues = nr_cpu_ids;
3559 
3560 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3561 		return -ENOMEM;
3562 
3563 	ret = -ENOMEM;
3564 	for (i = 0; i < set->nr_maps; i++) {
3565 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3566 						  sizeof(set->map[i].mq_map[0]),
3567 						  GFP_KERNEL, set->numa_node);
3568 		if (!set->map[i].mq_map)
3569 			goto out_free_mq_map;
3570 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3571 	}
3572 
3573 	ret = blk_mq_update_queue_map(set);
3574 	if (ret)
3575 		goto out_free_mq_map;
3576 
3577 	ret = blk_mq_alloc_map_and_requests(set);
3578 	if (ret)
3579 		goto out_free_mq_map;
3580 
3581 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3582 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3583 
3584 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3585 			ret = -ENOMEM;
3586 			goto out_free_mq_rq_maps;
3587 		}
3588 	}
3589 
3590 	mutex_init(&set->tag_list_lock);
3591 	INIT_LIST_HEAD(&set->tag_list);
3592 
3593 	return 0;
3594 
3595 out_free_mq_rq_maps:
3596 	for (i = 0; i < set->nr_hw_queues; i++)
3597 		blk_mq_free_map_and_requests(set, i);
3598 out_free_mq_map:
3599 	for (i = 0; i < set->nr_maps; i++) {
3600 		kfree(set->map[i].mq_map);
3601 		set->map[i].mq_map = NULL;
3602 	}
3603 	kfree(set->tags);
3604 	set->tags = NULL;
3605 	return ret;
3606 }
3607 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3608 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3609 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3610 {
3611 	int i, j;
3612 
3613 	for (i = 0; i < set->nr_hw_queues; i++)
3614 		blk_mq_free_map_and_requests(set, i);
3615 
3616 	if (blk_mq_is_sbitmap_shared(set->flags))
3617 		blk_mq_exit_shared_sbitmap(set);
3618 
3619 	for (j = 0; j < set->nr_maps; j++) {
3620 		kfree(set->map[j].mq_map);
3621 		set->map[j].mq_map = NULL;
3622 	}
3623 
3624 	kfree(set->tags);
3625 	set->tags = NULL;
3626 }
3627 EXPORT_SYMBOL(blk_mq_free_tag_set);
3628 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3629 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3630 {
3631 	struct blk_mq_tag_set *set = q->tag_set;
3632 	struct blk_mq_hw_ctx *hctx;
3633 	int i, ret;
3634 
3635 	if (!set)
3636 		return -EINVAL;
3637 
3638 	if (q->nr_requests == nr)
3639 		return 0;
3640 
3641 	blk_mq_freeze_queue(q);
3642 	blk_mq_quiesce_queue(q);
3643 
3644 	ret = 0;
3645 	queue_for_each_hw_ctx(q, hctx, i) {
3646 		if (!hctx->tags)
3647 			continue;
3648 		/*
3649 		 * If we're using an MQ scheduler, just update the scheduler
3650 		 * queue depth. This is similar to what the old code would do.
3651 		 */
3652 		if (!hctx->sched_tags) {
3653 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3654 							false);
3655 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3656 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3657 		} else {
3658 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3659 							nr, true);
3660 		}
3661 		if (ret)
3662 			break;
3663 		if (q->elevator && q->elevator->type->ops.depth_updated)
3664 			q->elevator->type->ops.depth_updated(hctx);
3665 	}
3666 
3667 	if (!ret)
3668 		q->nr_requests = nr;
3669 
3670 	blk_mq_unquiesce_queue(q);
3671 	blk_mq_unfreeze_queue(q);
3672 
3673 	return ret;
3674 }
3675 
3676 /*
3677  * request_queue and elevator_type pair.
3678  * It is just used by __blk_mq_update_nr_hw_queues to cache
3679  * the elevator_type associated with a request_queue.
3680  */
3681 struct blk_mq_qe_pair {
3682 	struct list_head node;
3683 	struct request_queue *q;
3684 	struct elevator_type *type;
3685 };
3686 
3687 /*
3688  * Cache the elevator_type in qe pair list and switch the
3689  * io scheduler to 'none'
3690  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3691 static bool blk_mq_elv_switch_none(struct list_head *head,
3692 		struct request_queue *q)
3693 {
3694 	struct blk_mq_qe_pair *qe;
3695 
3696 	if (!q->elevator)
3697 		return true;
3698 
3699 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3700 	if (!qe)
3701 		return false;
3702 
3703 	INIT_LIST_HEAD(&qe->node);
3704 	qe->q = q;
3705 	qe->type = q->elevator->type;
3706 	list_add(&qe->node, head);
3707 
3708 	mutex_lock(&q->sysfs_lock);
3709 	/*
3710 	 * After elevator_switch_mq, the previous elevator_queue will be
3711 	 * released by elevator_release. The reference of the io scheduler
3712 	 * module get by elevator_get will also be put. So we need to get
3713 	 * a reference of the io scheduler module here to prevent it to be
3714 	 * removed.
3715 	 */
3716 	__module_get(qe->type->elevator_owner);
3717 	elevator_switch_mq(q, NULL);
3718 	mutex_unlock(&q->sysfs_lock);
3719 
3720 	return true;
3721 }
3722 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3723 static void blk_mq_elv_switch_back(struct list_head *head,
3724 		struct request_queue *q)
3725 {
3726 	struct blk_mq_qe_pair *qe;
3727 	struct elevator_type *t = NULL;
3728 
3729 	list_for_each_entry(qe, head, node)
3730 		if (qe->q == q) {
3731 			t = qe->type;
3732 			break;
3733 		}
3734 
3735 	if (!t)
3736 		return;
3737 
3738 	list_del(&qe->node);
3739 	kfree(qe);
3740 
3741 	mutex_lock(&q->sysfs_lock);
3742 	elevator_switch_mq(q, t);
3743 	mutex_unlock(&q->sysfs_lock);
3744 }
3745 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3746 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3747 							int nr_hw_queues)
3748 {
3749 	struct request_queue *q;
3750 	LIST_HEAD(head);
3751 	int prev_nr_hw_queues;
3752 
3753 	lockdep_assert_held(&set->tag_list_lock);
3754 
3755 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3756 		nr_hw_queues = nr_cpu_ids;
3757 	if (nr_hw_queues < 1)
3758 		return;
3759 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3760 		return;
3761 
3762 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3763 		blk_mq_freeze_queue(q);
3764 	/*
3765 	 * Switch IO scheduler to 'none', cleaning up the data associated
3766 	 * with the previous scheduler. We will switch back once we are done
3767 	 * updating the new sw to hw queue mappings.
3768 	 */
3769 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3770 		if (!blk_mq_elv_switch_none(&head, q))
3771 			goto switch_back;
3772 
3773 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3774 		blk_mq_debugfs_unregister_hctxs(q);
3775 		blk_mq_sysfs_unregister(q);
3776 	}
3777 
3778 	prev_nr_hw_queues = set->nr_hw_queues;
3779 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3780 	    0)
3781 		goto reregister;
3782 
3783 	set->nr_hw_queues = nr_hw_queues;
3784 fallback:
3785 	blk_mq_update_queue_map(set);
3786 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3787 		blk_mq_realloc_hw_ctxs(set, q);
3788 		if (q->nr_hw_queues != set->nr_hw_queues) {
3789 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3790 					nr_hw_queues, prev_nr_hw_queues);
3791 			set->nr_hw_queues = prev_nr_hw_queues;
3792 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3793 			goto fallback;
3794 		}
3795 		blk_mq_map_swqueue(q);
3796 	}
3797 
3798 reregister:
3799 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3800 		blk_mq_sysfs_register(q);
3801 		blk_mq_debugfs_register_hctxs(q);
3802 	}
3803 
3804 switch_back:
3805 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3806 		blk_mq_elv_switch_back(&head, q);
3807 
3808 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3809 		blk_mq_unfreeze_queue(q);
3810 }
3811 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3812 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3813 {
3814 	mutex_lock(&set->tag_list_lock);
3815 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3816 	mutex_unlock(&set->tag_list_lock);
3817 }
3818 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3819 
3820 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3821 static bool blk_poll_stats_enable(struct request_queue *q)
3822 {
3823 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3824 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3825 		return true;
3826 	blk_stat_add_callback(q, q->poll_cb);
3827 	return false;
3828 }
3829 
blk_mq_poll_stats_start(struct request_queue * q)3830 static void blk_mq_poll_stats_start(struct request_queue *q)
3831 {
3832 	/*
3833 	 * We don't arm the callback if polling stats are not enabled or the
3834 	 * callback is already active.
3835 	 */
3836 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3837 	    blk_stat_is_active(q->poll_cb))
3838 		return;
3839 
3840 	blk_stat_activate_msecs(q->poll_cb, 100);
3841 }
3842 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3843 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3844 {
3845 	struct request_queue *q = cb->data;
3846 	int bucket;
3847 
3848 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3849 		if (cb->stat[bucket].nr_samples)
3850 			q->poll_stat[bucket] = cb->stat[bucket];
3851 	}
3852 }
3853 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3854 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3855 				       struct request *rq)
3856 {
3857 	unsigned long ret = 0;
3858 	int bucket;
3859 
3860 	/*
3861 	 * If stats collection isn't on, don't sleep but turn it on for
3862 	 * future users
3863 	 */
3864 	if (!blk_poll_stats_enable(q))
3865 		return 0;
3866 
3867 	/*
3868 	 * As an optimistic guess, use half of the mean service time
3869 	 * for this type of request. We can (and should) make this smarter.
3870 	 * For instance, if the completion latencies are tight, we can
3871 	 * get closer than just half the mean. This is especially
3872 	 * important on devices where the completion latencies are longer
3873 	 * than ~10 usec. We do use the stats for the relevant IO size
3874 	 * if available which does lead to better estimates.
3875 	 */
3876 	bucket = blk_mq_poll_stats_bkt(rq);
3877 	if (bucket < 0)
3878 		return ret;
3879 
3880 	if (q->poll_stat[bucket].nr_samples)
3881 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3882 
3883 	return ret;
3884 }
3885 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3886 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3887 				     struct request *rq)
3888 {
3889 	struct hrtimer_sleeper hs;
3890 	enum hrtimer_mode mode;
3891 	unsigned int nsecs;
3892 	ktime_t kt;
3893 
3894 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3895 		return false;
3896 
3897 	/*
3898 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3899 	 *
3900 	 *  0:	use half of prev avg
3901 	 * >0:	use this specific value
3902 	 */
3903 	if (q->poll_nsec > 0)
3904 		nsecs = q->poll_nsec;
3905 	else
3906 		nsecs = blk_mq_poll_nsecs(q, rq);
3907 
3908 	if (!nsecs)
3909 		return false;
3910 
3911 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3912 
3913 	/*
3914 	 * This will be replaced with the stats tracking code, using
3915 	 * 'avg_completion_time / 2' as the pre-sleep target.
3916 	 */
3917 	kt = nsecs;
3918 
3919 	mode = HRTIMER_MODE_REL;
3920 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3921 	hrtimer_set_expires(&hs.timer, kt);
3922 
3923 	do {
3924 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3925 			break;
3926 		set_current_state(TASK_UNINTERRUPTIBLE);
3927 		hrtimer_sleeper_start_expires(&hs, mode);
3928 		if (hs.task)
3929 			io_schedule();
3930 		hrtimer_cancel(&hs.timer);
3931 		mode = HRTIMER_MODE_ABS;
3932 	} while (hs.task && !signal_pending(current));
3933 
3934 	__set_current_state(TASK_RUNNING);
3935 	destroy_hrtimer_on_stack(&hs.timer);
3936 	return true;
3937 }
3938 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3939 static bool blk_mq_poll_hybrid(struct request_queue *q,
3940 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3941 {
3942 	struct request *rq;
3943 
3944 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3945 		return false;
3946 
3947 	if (!blk_qc_t_is_internal(cookie))
3948 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3949 	else {
3950 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3951 		/*
3952 		 * With scheduling, if the request has completed, we'll
3953 		 * get a NULL return here, as we clear the sched tag when
3954 		 * that happens. The request still remains valid, like always,
3955 		 * so we should be safe with just the NULL check.
3956 		 */
3957 		if (!rq)
3958 			return false;
3959 	}
3960 
3961 	return blk_mq_poll_hybrid_sleep(q, rq);
3962 }
3963 
3964 /**
3965  * blk_poll - poll for IO completions
3966  * @q:  the queue
3967  * @cookie: cookie passed back at IO submission time
3968  * @spin: whether to spin for completions
3969  *
3970  * Description:
3971  *    Poll for completions on the passed in queue. Returns number of
3972  *    completed entries found. If @spin is true, then blk_poll will continue
3973  *    looping until at least one completion is found, unless the task is
3974  *    otherwise marked running (or we need to reschedule).
3975  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3976 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3977 {
3978 	struct blk_mq_hw_ctx *hctx;
3979 	long state;
3980 
3981 	if (!blk_qc_t_valid(cookie) ||
3982 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3983 		return 0;
3984 
3985 	if (current->plug)
3986 		blk_flush_plug_list(current->plug, false);
3987 
3988 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3989 
3990 	/*
3991 	 * If we sleep, have the caller restart the poll loop to reset
3992 	 * the state. Like for the other success return cases, the
3993 	 * caller is responsible for checking if the IO completed. If
3994 	 * the IO isn't complete, we'll get called again and will go
3995 	 * straight to the busy poll loop.
3996 	 */
3997 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3998 		return 1;
3999 
4000 	hctx->poll_considered++;
4001 
4002 	state = current->state;
4003 	do {
4004 		int ret;
4005 
4006 		hctx->poll_invoked++;
4007 
4008 		ret = q->mq_ops->poll(hctx);
4009 		if (ret > 0) {
4010 			hctx->poll_success++;
4011 			__set_current_state(TASK_RUNNING);
4012 			return ret;
4013 		}
4014 
4015 		if (signal_pending_state(state, current))
4016 			__set_current_state(TASK_RUNNING);
4017 
4018 		if (current->state == TASK_RUNNING)
4019 			return 1;
4020 		if (ret < 0 || !spin)
4021 			break;
4022 		cpu_relax();
4023 	} while (!need_resched());
4024 
4025 	__set_current_state(TASK_RUNNING);
4026 	return 0;
4027 }
4028 EXPORT_SYMBOL_GPL(blk_poll);
4029 
blk_mq_rq_cpu(struct request * rq)4030 unsigned int blk_mq_rq_cpu(struct request *rq)
4031 {
4032 	return rq->mq_ctx->cpu;
4033 }
4034 EXPORT_SYMBOL(blk_mq_rq_cpu);
4035 
blk_mq_init(void)4036 static int __init blk_mq_init(void)
4037 {
4038 	int i;
4039 
4040 	for_each_possible_cpu(i)
4041 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4042 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4043 
4044 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4045 				  "block/softirq:dead", NULL,
4046 				  blk_softirq_cpu_dead);
4047 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4048 				blk_mq_hctx_notify_dead);
4049 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4050 				blk_mq_hctx_notify_online,
4051 				blk_mq_hctx_notify_offline);
4052 	return 0;
4053 }
4054 subsys_initcall(blk_mq_init);
4055