1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Google LLC
4 */
5
6 /**
7 * DOC: The Keyslot Manager
8 *
9 * Many devices with inline encryption support have a limited number of "slots"
10 * into which encryption contexts may be programmed, and requests can be tagged
11 * with a slot number to specify the key to use for en/decryption.
12 *
13 * As the number of slots is limited, and programming keys is expensive on
14 * many inline encryption hardware, we don't want to program the same key into
15 * multiple slots - if multiple requests are using the same key, we want to
16 * program just one slot with that key and use that slot for all requests.
17 *
18 * The keyslot manager manages these keyslots appropriately, and also acts as
19 * an abstraction between the inline encryption hardware and the upper layers.
20 *
21 * Lower layer devices will set up a keyslot manager in their request queue
22 * and tell it how to perform device specific operations like programming/
23 * evicting keys from keyslots.
24 *
25 * Upper layers will call blk_ksm_get_slot_for_key() to program a
26 * key into some slot in the inline encryption hardware.
27 */
28
29 #define pr_fmt(fmt) "blk-crypto: " fmt
30
31 #include <linux/keyslot-manager.h>
32 #include <linux/device.h>
33 #include <linux/atomic.h>
34 #include <linux/mutex.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/wait.h>
37 #include <linux/blkdev.h>
38
39 struct blk_ksm_keyslot {
40 atomic_t slot_refs;
41 struct list_head idle_slot_node;
42 struct hlist_node hash_node;
43 const struct blk_crypto_key *key;
44 struct blk_keyslot_manager *ksm;
45 };
46
blk_ksm_hw_enter(struct blk_keyslot_manager * ksm)47 static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
48 {
49 /*
50 * Calling into the driver requires ksm->lock held and the device
51 * resumed. But we must resume the device first, since that can acquire
52 * and release ksm->lock via blk_ksm_reprogram_all_keys().
53 */
54 if (ksm->dev)
55 pm_runtime_get_sync(ksm->dev);
56 down_write(&ksm->lock);
57 }
58
blk_ksm_hw_exit(struct blk_keyslot_manager * ksm)59 static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
60 {
61 up_write(&ksm->lock);
62 if (ksm->dev)
63 pm_runtime_put_sync(ksm->dev);
64 }
65
blk_ksm_is_passthrough(struct blk_keyslot_manager * ksm)66 static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
67 {
68 return ksm->num_slots == 0;
69 }
70
71 /**
72 * blk_ksm_init() - Initialize a keyslot manager
73 * @ksm: The keyslot_manager to initialize.
74 * @num_slots: The number of key slots to manage.
75 *
76 * Allocate memory for keyslots and initialize a keyslot manager. Called by
77 * e.g. storage drivers to set up a keyslot manager in their request_queue.
78 *
79 * Return: 0 on success, or else a negative error code.
80 */
blk_ksm_init(struct blk_keyslot_manager * ksm,unsigned int num_slots)81 int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
82 {
83 unsigned int slot;
84 unsigned int i;
85 unsigned int slot_hashtable_size;
86
87 memset(ksm, 0, sizeof(*ksm));
88
89 if (num_slots == 0)
90 return -EINVAL;
91
92 ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
93 if (!ksm->slots)
94 return -ENOMEM;
95
96 ksm->num_slots = num_slots;
97
98 init_rwsem(&ksm->lock);
99
100 init_waitqueue_head(&ksm->idle_slots_wait_queue);
101 INIT_LIST_HEAD(&ksm->idle_slots);
102
103 for (slot = 0; slot < num_slots; slot++) {
104 ksm->slots[slot].ksm = ksm;
105 list_add_tail(&ksm->slots[slot].idle_slot_node,
106 &ksm->idle_slots);
107 }
108
109 spin_lock_init(&ksm->idle_slots_lock);
110
111 slot_hashtable_size = roundup_pow_of_two(num_slots);
112 /*
113 * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
114 * buckets. This only makes a difference when there is only 1 keyslot.
115 */
116 if (slot_hashtable_size < 2)
117 slot_hashtable_size = 2;
118
119 ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
120 ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
121 sizeof(ksm->slot_hashtable[0]),
122 GFP_KERNEL);
123 if (!ksm->slot_hashtable)
124 goto err_destroy_ksm;
125 for (i = 0; i < slot_hashtable_size; i++)
126 INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
127
128 return 0;
129
130 err_destroy_ksm:
131 blk_ksm_destroy(ksm);
132 return -ENOMEM;
133 }
134 EXPORT_SYMBOL_GPL(blk_ksm_init);
135
blk_ksm_destroy_callback(void * ksm)136 static void blk_ksm_destroy_callback(void *ksm)
137 {
138 blk_ksm_destroy(ksm);
139 }
140
141 /**
142 * devm_blk_ksm_init() - Resource-managed blk_ksm_init()
143 * @dev: The device which owns the blk_keyslot_manager.
144 * @ksm: The blk_keyslot_manager to initialize.
145 * @num_slots: The number of key slots to manage.
146 *
147 * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
148 * on driver detach.
149 *
150 * Return: 0 on success, or else a negative error code.
151 */
devm_blk_ksm_init(struct device * dev,struct blk_keyslot_manager * ksm,unsigned int num_slots)152 int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
153 unsigned int num_slots)
154 {
155 int err = blk_ksm_init(ksm, num_slots);
156
157 if (err)
158 return err;
159
160 return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
161 }
162 EXPORT_SYMBOL_GPL(devm_blk_ksm_init);
163
164 static inline struct hlist_head *
blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)165 blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
166 const struct blk_crypto_key *key)
167 {
168 return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
169 }
170
blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot * slot)171 static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
172 {
173 struct blk_keyslot_manager *ksm = slot->ksm;
174 unsigned long flags;
175
176 spin_lock_irqsave(&ksm->idle_slots_lock, flags);
177 list_del(&slot->idle_slot_node);
178 spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
179 }
180
blk_ksm_find_keyslot(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)181 static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
182 struct blk_keyslot_manager *ksm,
183 const struct blk_crypto_key *key)
184 {
185 const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
186 struct blk_ksm_keyslot *slotp;
187
188 hlist_for_each_entry(slotp, head, hash_node) {
189 if (slotp->key == key)
190 return slotp;
191 }
192 return NULL;
193 }
194
blk_ksm_find_and_grab_keyslot(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)195 static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
196 struct blk_keyslot_manager *ksm,
197 const struct blk_crypto_key *key)
198 {
199 struct blk_ksm_keyslot *slot;
200
201 slot = blk_ksm_find_keyslot(ksm, key);
202 if (!slot)
203 return NULL;
204 if (atomic_inc_return(&slot->slot_refs) == 1) {
205 /* Took first reference to this slot; remove it from LRU list */
206 blk_ksm_remove_slot_from_lru_list(slot);
207 }
208 return slot;
209 }
210
blk_ksm_get_slot_idx(struct blk_ksm_keyslot * slot)211 unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
212 {
213 return slot - slot->ksm->slots;
214 }
215 EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
216
217 /**
218 * blk_ksm_get_slot_for_key() - Program a key into a keyslot.
219 * @ksm: The keyslot manager to program the key into.
220 * @key: Pointer to the key object to program, including the raw key, crypto
221 * mode, and data unit size.
222 * @slot_ptr: A pointer to return the pointer of the allocated keyslot.
223 *
224 * Get a keyslot that's been programmed with the specified key. If one already
225 * exists, return it with incremented refcount. Otherwise, wait for a keyslot
226 * to become idle and program it.
227 *
228 * Context: Process context. Takes and releases ksm->lock.
229 * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
230 * allocated keyslot), or some other blk_status_t otherwise (and
231 * keyslot is set to NULL).
232 */
blk_ksm_get_slot_for_key(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,struct blk_ksm_keyslot ** slot_ptr)233 blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
234 const struct blk_crypto_key *key,
235 struct blk_ksm_keyslot **slot_ptr)
236 {
237 struct blk_ksm_keyslot *slot;
238 int slot_idx;
239 int err;
240
241 *slot_ptr = NULL;
242
243 if (blk_ksm_is_passthrough(ksm))
244 return BLK_STS_OK;
245
246 down_read(&ksm->lock);
247 slot = blk_ksm_find_and_grab_keyslot(ksm, key);
248 up_read(&ksm->lock);
249 if (slot)
250 goto success;
251
252 for (;;) {
253 blk_ksm_hw_enter(ksm);
254 slot = blk_ksm_find_and_grab_keyslot(ksm, key);
255 if (slot) {
256 blk_ksm_hw_exit(ksm);
257 goto success;
258 }
259
260 /*
261 * If we're here, that means there wasn't a slot that was
262 * already programmed with the key. So try to program it.
263 */
264 if (!list_empty(&ksm->idle_slots))
265 break;
266
267 blk_ksm_hw_exit(ksm);
268 wait_event(ksm->idle_slots_wait_queue,
269 !list_empty(&ksm->idle_slots));
270 }
271
272 slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
273 idle_slot_node);
274 slot_idx = blk_ksm_get_slot_idx(slot);
275
276 err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
277 if (err) {
278 wake_up(&ksm->idle_slots_wait_queue);
279 blk_ksm_hw_exit(ksm);
280 return errno_to_blk_status(err);
281 }
282
283 /* Move this slot to the hash list for the new key. */
284 if (slot->key)
285 hlist_del(&slot->hash_node);
286 slot->key = key;
287 hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
288
289 atomic_set(&slot->slot_refs, 1);
290
291 blk_ksm_remove_slot_from_lru_list(slot);
292
293 blk_ksm_hw_exit(ksm);
294 success:
295 *slot_ptr = slot;
296 return BLK_STS_OK;
297 }
298
299 /**
300 * blk_ksm_put_slot() - Release a reference to a slot
301 * @slot: The keyslot to release the reference of.
302 *
303 * Context: Any context.
304 */
blk_ksm_put_slot(struct blk_ksm_keyslot * slot)305 void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
306 {
307 struct blk_keyslot_manager *ksm;
308 unsigned long flags;
309
310 if (!slot)
311 return;
312
313 ksm = slot->ksm;
314
315 if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
316 &ksm->idle_slots_lock, flags)) {
317 list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
318 spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
319 wake_up(&ksm->idle_slots_wait_queue);
320 }
321 }
322
323 /**
324 * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
325 * supported by a ksm.
326 * @ksm: The keyslot manager to check
327 * @cfg: The crypto configuration to check for.
328 *
329 * Checks for crypto_mode/data unit size/dun bytes support.
330 *
331 * Return: Whether or not this ksm supports the specified crypto config.
332 */
blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager * ksm,const struct blk_crypto_config * cfg)333 bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
334 const struct blk_crypto_config *cfg)
335 {
336 if (!ksm)
337 return false;
338 if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
339 cfg->data_unit_size))
340 return false;
341 if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
342 return false;
343 if (cfg->is_hw_wrapped) {
344 if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
345 return false;
346 } else {
347 if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
348 return false;
349 }
350 return true;
351 }
352
353 /**
354 * blk_ksm_evict_key() - Evict a key from the lower layer device.
355 * @ksm: The keyslot manager to evict from
356 * @key: The key to evict
357 *
358 * Find the keyslot that the specified key was programmed into, and evict that
359 * slot from the lower layer device. The slot must not be in use by any
360 * in-flight IO when this function is called.
361 *
362 * Context: Process context. Takes and releases ksm->lock.
363 * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
364 * if the keyslot is still in use, or another -errno value on other
365 * error.
366 */
blk_ksm_evict_key(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key)367 int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
368 const struct blk_crypto_key *key)
369 {
370 struct blk_ksm_keyslot *slot;
371 int err = 0;
372
373 if (blk_ksm_is_passthrough(ksm)) {
374 if (ksm->ksm_ll_ops.keyslot_evict) {
375 blk_ksm_hw_enter(ksm);
376 err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
377 blk_ksm_hw_exit(ksm);
378 return err;
379 }
380 return 0;
381 }
382
383 blk_ksm_hw_enter(ksm);
384 slot = blk_ksm_find_keyslot(ksm, key);
385 if (!slot)
386 goto out_unlock;
387
388 if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
389 err = -EBUSY;
390 goto out_unlock;
391 }
392 err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
393 blk_ksm_get_slot_idx(slot));
394 if (err)
395 goto out_unlock;
396
397 hlist_del(&slot->hash_node);
398 slot->key = NULL;
399 err = 0;
400 out_unlock:
401 blk_ksm_hw_exit(ksm);
402 return err;
403 }
404
405 /**
406 * blk_ksm_reprogram_all_keys() - Re-program all keyslots.
407 * @ksm: The keyslot manager
408 *
409 * Re-program all keyslots that are supposed to have a key programmed. This is
410 * intended only for use by drivers for hardware that loses its keys on reset.
411 *
412 * Context: Process context. Takes and releases ksm->lock.
413 */
blk_ksm_reprogram_all_keys(struct blk_keyslot_manager * ksm)414 void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
415 {
416 unsigned int slot;
417
418 if (blk_ksm_is_passthrough(ksm))
419 return;
420
421 /* This is for device initialization, so don't resume the device */
422 down_write(&ksm->lock);
423 for (slot = 0; slot < ksm->num_slots; slot++) {
424 const struct blk_crypto_key *key = ksm->slots[slot].key;
425 int err;
426
427 if (!key)
428 continue;
429
430 err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
431 WARN_ON(err);
432 }
433 up_write(&ksm->lock);
434 }
435 EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
436
blk_ksm_destroy(struct blk_keyslot_manager * ksm)437 void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
438 {
439 if (!ksm)
440 return;
441 kvfree(ksm->slot_hashtable);
442 kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
443 memzero_explicit(ksm, sizeof(*ksm));
444 }
445 EXPORT_SYMBOL_GPL(blk_ksm_destroy);
446
blk_ksm_register(struct blk_keyslot_manager * ksm,struct request_queue * q)447 bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
448 {
449 if (blk_integrity_queue_supports_integrity(q)) {
450 pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
451 return false;
452 }
453 q->ksm = ksm;
454 return true;
455 }
456 EXPORT_SYMBOL_GPL(blk_ksm_register);
457
blk_ksm_unregister(struct request_queue * q)458 void blk_ksm_unregister(struct request_queue *q)
459 {
460 q->ksm = NULL;
461 }
462
463 /**
464 * blk_ksm_derive_raw_secret() - Derive software secret from wrapped key
465 * @ksm: The keyslot manager
466 * @wrapped_key: The wrapped key
467 * @wrapped_key_size: Size of the wrapped key in bytes
468 * @secret: (output) the software secret
469 * @secret_size: (output) the number of secret bytes to derive
470 *
471 * Given a hardware-wrapped key, ask the hardware to derive a secret which
472 * software can use for cryptographic tasks other than inline encryption. The
473 * derived secret is guaranteed to be cryptographically isolated from the key
474 * with which any inline encryption with this wrapped key would actually be
475 * done. I.e., both will be derived from the unwrapped key.
476 *
477 * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
478 * or another -errno code.
479 */
blk_ksm_derive_raw_secret(struct blk_keyslot_manager * ksm,const u8 * wrapped_key,unsigned int wrapped_key_size,u8 * secret,unsigned int secret_size)480 int blk_ksm_derive_raw_secret(struct blk_keyslot_manager *ksm,
481 const u8 *wrapped_key,
482 unsigned int wrapped_key_size,
483 u8 *secret, unsigned int secret_size)
484 {
485 int err;
486
487 if (ksm->ksm_ll_ops.derive_raw_secret) {
488 blk_ksm_hw_enter(ksm);
489 err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
490 wrapped_key_size,
491 secret, secret_size);
492 blk_ksm_hw_exit(ksm);
493 } else {
494 err = -EOPNOTSUPP;
495 }
496
497 return err;
498 }
499 EXPORT_SYMBOL_GPL(blk_ksm_derive_raw_secret);
500
501 /**
502 * blk_ksm_intersect_modes() - restrict supported modes by child device
503 * @parent: The keyslot manager for parent device
504 * @child: The keyslot manager for child device, or NULL
505 *
506 * Clear any crypto mode support bits in @parent that aren't set in @child.
507 * If @child is NULL, then all parent bits are cleared.
508 *
509 * Only use this when setting up the keyslot manager for a layered device,
510 * before it's been exposed yet.
511 */
blk_ksm_intersect_modes(struct blk_keyslot_manager * parent,const struct blk_keyslot_manager * child)512 void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
513 const struct blk_keyslot_manager *child)
514 {
515 if (child) {
516 unsigned int i;
517
518 parent->max_dun_bytes_supported =
519 min(parent->max_dun_bytes_supported,
520 child->max_dun_bytes_supported);
521 for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
522 i++) {
523 parent->crypto_modes_supported[i] &=
524 child->crypto_modes_supported[i];
525 }
526 parent->features &= child->features;
527 } else {
528 parent->max_dun_bytes_supported = 0;
529 memset(parent->crypto_modes_supported, 0,
530 sizeof(parent->crypto_modes_supported));
531 parent->features = 0;
532 }
533 }
534 EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
535
536 /**
537 * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
538 * and DUN bytes that another KSM supports. Here,
539 * "superset" refers to the mathematical meaning of the
540 * word - i.e. if two KSMs have the *same* capabilities,
541 * they *are* considered supersets of each other.
542 * @ksm_superset: The KSM that we want to verify is a superset
543 * @ksm_subset: The KSM that we want to verify is a subset
544 *
545 * Return: True if @ksm_superset supports a superset of the crypto modes and DUN
546 * bytes that @ksm_subset supports.
547 */
blk_ksm_is_superset(struct blk_keyslot_manager * ksm_superset,struct blk_keyslot_manager * ksm_subset)548 bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
549 struct blk_keyslot_manager *ksm_subset)
550 {
551 int i;
552
553 if (!ksm_subset)
554 return true;
555
556 if (!ksm_superset)
557 return false;
558
559 for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
560 if (ksm_subset->crypto_modes_supported[i] &
561 (~ksm_superset->crypto_modes_supported[i])) {
562 return false;
563 }
564 }
565
566 if (ksm_subset->max_dun_bytes_supported >
567 ksm_superset->max_dun_bytes_supported) {
568 return false;
569 }
570
571 if (ksm_subset->features & ~ksm_superset->features)
572 return false;
573
574 return true;
575 }
576 EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
577
578 /**
579 * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
580 * another KSM
581 * @target_ksm: The KSM whose restrictions to update.
582 * @reference_ksm: The KSM to whose restrictions this function will update
583 * @target_ksm's restrictions to.
584 *
585 * Blk-crypto requires that crypto capabilities that were
586 * advertised when a bio was created continue to be supported by the
587 * device until that bio is ended. This is turn means that a device cannot
588 * shrink its advertised crypto capabilities without any explicit
589 * synchronization with upper layers. So if there's no such explicit
590 * synchronization, @reference_ksm must support all the crypto capabilities that
591 * @target_ksm does
592 * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
593 *
594 * Note also that as long as the crypto capabilities are being expanded, the
595 * order of updates becoming visible is not important because it's alright
596 * for blk-crypto to see stale values - they only cause blk-crypto to
597 * believe that a crypto capability isn't supported when it actually is (which
598 * might result in blk-crypto-fallback being used if available, or the bio being
599 * failed).
600 */
blk_ksm_update_capabilities(struct blk_keyslot_manager * target_ksm,struct blk_keyslot_manager * reference_ksm)601 void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
602 struct blk_keyslot_manager *reference_ksm)
603 {
604 memcpy(target_ksm->crypto_modes_supported,
605 reference_ksm->crypto_modes_supported,
606 sizeof(target_ksm->crypto_modes_supported));
607
608 target_ksm->max_dun_bytes_supported =
609 reference_ksm->max_dun_bytes_supported;
610
611 target_ksm->features = reference_ksm->features;
612 }
613 EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
614
615 /**
616 * blk_ksm_init_passthrough() - Init a passthrough keyslot manager
617 * @ksm: The keyslot manager to init
618 *
619 * Initialize a passthrough keyslot manager.
620 * Called by e.g. storage drivers to set up a keyslot manager in their
621 * request_queue, when the storage driver wants to manage its keys by itself.
622 * This is useful for inline encryption hardware that doesn't have the concept
623 * of keyslots, and for layered devices.
624 */
blk_ksm_init_passthrough(struct blk_keyslot_manager * ksm)625 void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
626 {
627 memset(ksm, 0, sizeof(*ksm));
628 init_rwsem(&ksm->lock);
629 }
630 EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);
631