xref: /OK3568_Linux_fs/kernel/block/blk-crypto.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2019 Google LLC
4  */
5 
6 /*
7  * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8  */
9 
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11 
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/keyslot-manager.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 
18 #include "blk-crypto-internal.h"
19 
20 const struct blk_crypto_mode blk_crypto_modes[] = {
21 	[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
22 		.cipher_str = "xts(aes)",
23 		.keysize = 64,
24 		.ivsize = 16,
25 	},
26 	[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
27 		.cipher_str = "essiv(cbc(aes),sha256)",
28 		.keysize = 16,
29 		.ivsize = 16,
30 	},
31 	[BLK_ENCRYPTION_MODE_ADIANTUM] = {
32 		.cipher_str = "adiantum(xchacha12,aes)",
33 		.keysize = 32,
34 		.ivsize = 32,
35 	},
36 };
37 
38 /*
39  * This number needs to be at least (the number of threads doing IO
40  * concurrently) * (maximum recursive depth of a bio), so that we don't
41  * deadlock on crypt_ctx allocations. The default is chosen to be the same
42  * as the default number of post read contexts in both EXT4 and F2FS.
43  */
44 static int num_prealloc_crypt_ctxs = 128;
45 
46 module_param(num_prealloc_crypt_ctxs, int, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
48 		"Number of bio crypto contexts to preallocate");
49 
50 static struct kmem_cache *bio_crypt_ctx_cache;
51 static mempool_t *bio_crypt_ctx_pool;
52 
bio_crypt_ctx_init(void)53 static int __init bio_crypt_ctx_init(void)
54 {
55 	size_t i;
56 
57 	bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
58 	if (!bio_crypt_ctx_cache)
59 		goto out_no_mem;
60 
61 	bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
62 						      bio_crypt_ctx_cache);
63 	if (!bio_crypt_ctx_pool)
64 		goto out_no_mem;
65 
66 	/* This is assumed in various places. */
67 	BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
68 
69 	/* Sanity check that no algorithm exceeds the defined limits. */
70 	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
71 		BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
72 		BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
73 	}
74 
75 	return 0;
76 out_no_mem:
77 	panic("Failed to allocate mem for bio crypt ctxs\n");
78 }
79 subsys_initcall(bio_crypt_ctx_init);
80 
bio_crypt_set_ctx(struct bio * bio,const struct blk_crypto_key * key,const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],gfp_t gfp_mask)81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
82 		       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
83 {
84 	struct bio_crypt_ctx *bc;
85 
86 	/*
87 	 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
88 	 * that the mempool_alloc() can't fail.
89 	 */
90 	WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
91 
92 	bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
93 
94 	bc->bc_key = key;
95 	memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
96 
97 	bio->bi_crypt_context = bc;
98 }
99 EXPORT_SYMBOL_GPL(bio_crypt_set_ctx);
100 
__bio_crypt_free_ctx(struct bio * bio)101 void __bio_crypt_free_ctx(struct bio *bio)
102 {
103 	mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
104 	bio->bi_crypt_context = NULL;
105 }
106 
__bio_crypt_clone(struct bio * dst,struct bio * src,gfp_t gfp_mask)107 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
108 {
109 	dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
110 	if (!dst->bi_crypt_context)
111 		return -ENOMEM;
112 	*dst->bi_crypt_context = *src->bi_crypt_context;
113 	return 0;
114 }
115 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
116 
117 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],unsigned int inc)118 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
119 			     unsigned int inc)
120 {
121 	int i;
122 
123 	for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
124 		dun[i] += inc;
125 		/*
126 		 * If the addition in this limb overflowed, then we need to
127 		 * carry 1 into the next limb. Else the carry is 0.
128 		 */
129 		if (dun[i] < inc)
130 			inc = 1;
131 		else
132 			inc = 0;
133 	}
134 }
135 
__bio_crypt_advance(struct bio * bio,unsigned int bytes)136 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
137 {
138 	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
139 
140 	bio_crypt_dun_increment(bc->bc_dun,
141 				bytes >> bc->bc_key->data_unit_size_bits);
142 }
143 
144 /*
145  * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
146  * @next_dun, treating the DUNs as multi-limb integers.
147  */
bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx * bc,unsigned int bytes,const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])148 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
149 				 unsigned int bytes,
150 				 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
151 {
152 	int i;
153 	unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
154 
155 	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
156 		if (bc->bc_dun[i] + carry != next_dun[i])
157 			return false;
158 		/*
159 		 * If the addition in this limb overflowed, then we need to
160 		 * carry 1 into the next limb. Else the carry is 0.
161 		 */
162 		if ((bc->bc_dun[i] + carry) < carry)
163 			carry = 1;
164 		else
165 			carry = 0;
166 	}
167 
168 	/* If the DUN wrapped through 0, don't treat it as contiguous. */
169 	return carry == 0;
170 }
171 
172 /*
173  * Checks that two bio crypt contexts are compatible - i.e. that
174  * they are mergeable except for data_unit_num continuity.
175  */
bio_crypt_ctx_compatible(struct bio_crypt_ctx * bc1,struct bio_crypt_ctx * bc2)176 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
177 				     struct bio_crypt_ctx *bc2)
178 {
179 	if (!bc1)
180 		return !bc2;
181 
182 	return bc2 && bc1->bc_key == bc2->bc_key;
183 }
184 
bio_crypt_rq_ctx_compatible(struct request * rq,struct bio * bio)185 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
186 {
187 	return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
188 }
189 
190 /*
191  * Checks that two bio crypt contexts are compatible, and also
192  * that their data_unit_nums are continuous (and can hence be merged)
193  * in the order @bc1 followed by @bc2.
194  */
bio_crypt_ctx_mergeable(struct bio_crypt_ctx * bc1,unsigned int bc1_bytes,struct bio_crypt_ctx * bc2)195 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
196 			     struct bio_crypt_ctx *bc2)
197 {
198 	if (!bio_crypt_ctx_compatible(bc1, bc2))
199 		return false;
200 
201 	return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
202 }
203 
204 /* Check that all I/O segments are data unit aligned. */
bio_crypt_check_alignment(struct bio * bio)205 static bool bio_crypt_check_alignment(struct bio *bio)
206 {
207 	const unsigned int data_unit_size =
208 		bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
209 	struct bvec_iter iter;
210 	struct bio_vec bv;
211 
212 	bio_for_each_segment(bv, bio, iter) {
213 		if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
214 			return false;
215 	}
216 
217 	return true;
218 }
219 
__blk_crypto_init_request(struct request * rq)220 blk_status_t __blk_crypto_init_request(struct request *rq)
221 {
222 	return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
223 					&rq->crypt_keyslot);
224 }
225 
226 /**
227  * __blk_crypto_free_request - Uninitialize the crypto fields of a request.
228  *
229  * @rq: The request whose crypto fields to uninitialize.
230  *
231  * Completely uninitializes the crypto fields of a request. If a keyslot has
232  * been programmed into some inline encryption hardware, that keyslot is
233  * released. The rq->crypt_ctx is also freed.
234  */
__blk_crypto_free_request(struct request * rq)235 void __blk_crypto_free_request(struct request *rq)
236 {
237 	blk_ksm_put_slot(rq->crypt_keyslot);
238 	mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
239 	blk_crypto_rq_set_defaults(rq);
240 }
241 
242 /**
243  * __blk_crypto_bio_prep - Prepare bio for inline encryption
244  *
245  * @bio_ptr: pointer to original bio pointer
246  *
247  * If the bio crypt context provided for the bio is supported by the underlying
248  * device's inline encryption hardware, do nothing.
249  *
250  * Otherwise, try to perform en/decryption for this bio by falling back to the
251  * kernel crypto API. When the crypto API fallback is used for encryption,
252  * blk-crypto may choose to split the bio into 2 - the first one that will
253  * continue to be processed and the second one that will be resubmitted via
254  * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
255  * of the aforementioned "first one", and *bio_ptr will be updated to this
256  * bounce bio.
257  *
258  * Caller must ensure bio has bio_crypt_ctx.
259  *
260  * Return: true on success; false on error (and bio->bi_status will be set
261  *	   appropriately, and bio_endio() will have been called so bio
262  *	   submission should abort).
263  */
__blk_crypto_bio_prep(struct bio ** bio_ptr)264 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
265 {
266 	struct bio *bio = *bio_ptr;
267 	const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
268 
269 	/* Error if bio has no data. */
270 	if (WARN_ON_ONCE(!bio_has_data(bio))) {
271 		bio->bi_status = BLK_STS_IOERR;
272 		goto fail;
273 	}
274 
275 	if (!bio_crypt_check_alignment(bio)) {
276 		bio->bi_status = BLK_STS_IOERR;
277 		goto fail;
278 	}
279 
280 	/*
281 	 * Success if device supports the encryption context, or if we succeeded
282 	 * in falling back to the crypto API.
283 	 */
284 	if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm,
285 					 &bc_key->crypto_cfg))
286 		return true;
287 
288 	if (blk_crypto_fallback_bio_prep(bio_ptr))
289 		return true;
290 fail:
291 	bio_endio(*bio_ptr);
292 	return false;
293 }
294 
__blk_crypto_rq_bio_prep(struct request * rq,struct bio * bio,gfp_t gfp_mask)295 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
296 			     gfp_t gfp_mask)
297 {
298 	if (!rq->crypt_ctx) {
299 		rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
300 		if (!rq->crypt_ctx)
301 			return -ENOMEM;
302 	}
303 	*rq->crypt_ctx = *bio->bi_crypt_context;
304 	return 0;
305 }
306 
307 /**
308  * blk_crypto_init_key() - Prepare a key for use with blk-crypto
309  * @blk_key: Pointer to the blk_crypto_key to initialize.
310  * @raw_key: Pointer to the raw key.
311  * @raw_key_size: Size of raw key.  Must be at least the required size for the
312  *                chosen @crypto_mode; see blk_crypto_modes[].  (It's allowed
313  *                to be longer than the mode's actual key size, in order to
314  *                support inline encryption hardware that accepts wrapped keys.
315  *                @is_hw_wrapped has to be set for such keys)
316  * @is_hw_wrapped: Denotes @raw_key is wrapped.
317  * @crypto_mode: identifier for the encryption algorithm to use
318  * @dun_bytes: number of bytes that will be used to specify the DUN when this
319  *	       key is used
320  * @data_unit_size: the data unit size to use for en/decryption
321  *
322  * Return: 0 on success, -errno on failure.  The caller is responsible for
323  *	   zeroizing both blk_key and raw_key when done with them.
324  */
blk_crypto_init_key(struct blk_crypto_key * blk_key,const u8 * raw_key,unsigned int raw_key_size,bool is_hw_wrapped,enum blk_crypto_mode_num crypto_mode,unsigned int dun_bytes,unsigned int data_unit_size)325 int blk_crypto_init_key(struct blk_crypto_key *blk_key,
326 			const u8 *raw_key, unsigned int raw_key_size,
327 			bool is_hw_wrapped,
328 			enum blk_crypto_mode_num crypto_mode,
329 			unsigned int dun_bytes,
330 			unsigned int data_unit_size)
331 {
332 	const struct blk_crypto_mode *mode;
333 
334 	memset(blk_key, 0, sizeof(*blk_key));
335 
336 	if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
337 		return -EINVAL;
338 
339 	BUILD_BUG_ON(BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE < BLK_CRYPTO_MAX_KEY_SIZE);
340 
341 	mode = &blk_crypto_modes[crypto_mode];
342 	if (is_hw_wrapped) {
343 		if (raw_key_size < mode->keysize ||
344 		    raw_key_size > BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE)
345 			return -EINVAL;
346 	} else {
347 		if (raw_key_size != mode->keysize)
348 			return -EINVAL;
349 	}
350 
351 	if (dun_bytes == 0 || dun_bytes > mode->ivsize)
352 		return -EINVAL;
353 
354 	if (!is_power_of_2(data_unit_size))
355 		return -EINVAL;
356 
357 	blk_key->crypto_cfg.crypto_mode = crypto_mode;
358 	blk_key->crypto_cfg.dun_bytes = dun_bytes;
359 	blk_key->crypto_cfg.data_unit_size = data_unit_size;
360 	blk_key->crypto_cfg.is_hw_wrapped = is_hw_wrapped;
361 	blk_key->data_unit_size_bits = ilog2(data_unit_size);
362 	blk_key->size = raw_key_size;
363 	memcpy(blk_key->raw, raw_key, raw_key_size);
364 
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(blk_crypto_init_key);
368 
369 /*
370  * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
371  * request queue it's submitted to supports inline crypto, or the
372  * blk-crypto-fallback is enabled and supports the cfg).
373  */
blk_crypto_config_supported(struct request_queue * q,const struct blk_crypto_config * cfg)374 bool blk_crypto_config_supported(struct request_queue *q,
375 				 const struct blk_crypto_config *cfg)
376 {
377 	if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
378 	    !cfg->is_hw_wrapped)
379 		return true;
380 	return blk_ksm_crypto_cfg_supported(q->ksm, cfg);
381 }
382 
383 /**
384  * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
385  * @key: A key to use on the device
386  * @q: the request queue for the device
387  *
388  * Upper layers must call this function to ensure that either the hardware
389  * supports the key's crypto settings, or the crypto API fallback has transforms
390  * for the needed mode allocated and ready to go. This function may allocate
391  * an skcipher, and *should not* be called from the data path, since that might
392  * cause a deadlock
393  *
394  * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
395  *	   blk-crypto-fallback is either disabled or the needed algorithm
396  *	   is disabled in the crypto API; or another -errno code.
397  */
blk_crypto_start_using_key(const struct blk_crypto_key * key,struct request_queue * q)398 int blk_crypto_start_using_key(const struct blk_crypto_key *key,
399 			       struct request_queue *q)
400 {
401 	if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
402 		return 0;
403 	if (key->crypto_cfg.is_hw_wrapped) {
404 		pr_warn_once("hardware doesn't support wrapped keys\n");
405 		return -EOPNOTSUPP;
406 	}
407 	return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
408 }
409 EXPORT_SYMBOL_GPL(blk_crypto_start_using_key);
410 
411 /**
412  * blk_crypto_evict_key() - Evict a key from any inline encryption hardware
413  *			    it may have been programmed into
414  * @q: The request queue who's associated inline encryption hardware this key
415  *     might have been programmed into
416  * @key: The key to evict
417  *
418  * Upper layers (filesystems) must call this function to ensure that a key is
419  * evicted from any hardware that it might have been programmed into.  The key
420  * must not be in use by any in-flight IO when this function is called.
421  *
422  * Return: 0 on success or if key is not present in the q's ksm, -err on error.
423  */
blk_crypto_evict_key(struct request_queue * q,const struct blk_crypto_key * key)424 int blk_crypto_evict_key(struct request_queue *q,
425 			 const struct blk_crypto_key *key)
426 {
427 	if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
428 		return blk_ksm_evict_key(q->ksm, key);
429 
430 	/*
431 	 * If the request queue's associated inline encryption hardware didn't
432 	 * have support for the key, then the key might have been programmed
433 	 * into the fallback keyslot manager, so try to evict from there.
434 	 */
435 	return blk_crypto_fallback_evict_key(key);
436 }
437 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
438