xref: /OK3568_Linux_fs/kernel/block/bfq-iosched.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Budget Fair Queueing (BFQ) I/O scheduler.
4  *
5  * Based on ideas and code from CFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12  *                    Arianna Avanzini <avanzini@google.com>
13  *
14  * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15  *
16  * BFQ is a proportional-share I/O scheduler, with some extra
17  * low-latency capabilities. BFQ also supports full hierarchical
18  * scheduling through cgroups. Next paragraphs provide an introduction
19  * on BFQ inner workings. Details on BFQ benefits, usage and
20  * limitations can be found in Documentation/block/bfq-iosched.rst.
21  *
22  * BFQ is a proportional-share storage-I/O scheduling algorithm based
23  * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24  * budgets, measured in number of sectors, to processes instead of
25  * time slices. The device is not granted to the in-service process
26  * for a given time slice, but until it has exhausted its assigned
27  * budget. This change from the time to the service domain enables BFQ
28  * to distribute the device throughput among processes as desired,
29  * without any distortion due to throughput fluctuations, or to device
30  * internal queueing. BFQ uses an ad hoc internal scheduler, called
31  * B-WF2Q+, to schedule processes according to their budgets. More
32  * precisely, BFQ schedules queues associated with processes. Each
33  * process/queue is assigned a user-configurable weight, and B-WF2Q+
34  * guarantees that each queue receives a fraction of the throughput
35  * proportional to its weight. Thanks to the accurate policy of
36  * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37  * processes issuing sequential requests (to boost the throughput),
38  * and yet guarantee a low latency to interactive and soft real-time
39  * applications.
40  *
41  * In particular, to provide these low-latency guarantees, BFQ
42  * explicitly privileges the I/O of two classes of time-sensitive
43  * applications: interactive and soft real-time. In more detail, BFQ
44  * behaves this way if the low_latency parameter is set (default
45  * configuration). This feature enables BFQ to provide applications in
46  * these classes with a very low latency.
47  *
48  * To implement this feature, BFQ constantly tries to detect whether
49  * the I/O requests in a bfq_queue come from an interactive or a soft
50  * real-time application. For brevity, in these cases, the queue is
51  * said to be interactive or soft real-time. In both cases, BFQ
52  * privileges the service of the queue, over that of non-interactive
53  * and non-soft-real-time queues. This privileging is performed,
54  * mainly, by raising the weight of the queue. So, for brevity, we
55  * call just weight-raising periods the time periods during which a
56  * queue is privileged, because deemed interactive or soft real-time.
57  *
58  * The detection of soft real-time queues/applications is described in
59  * detail in the comments on the function
60  * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61  * interactive queue works as follows: a queue is deemed interactive
62  * if it is constantly non empty only for a limited time interval,
63  * after which it does become empty. The queue may be deemed
64  * interactive again (for a limited time), if it restarts being
65  * constantly non empty, provided that this happens only after the
66  * queue has remained empty for a given minimum idle time.
67  *
68  * By default, BFQ computes automatically the above maximum time
69  * interval, i.e., the time interval after which a constantly
70  * non-empty queue stops being deemed interactive. Since a queue is
71  * weight-raised while it is deemed interactive, this maximum time
72  * interval happens to coincide with the (maximum) duration of the
73  * weight-raising for interactive queues.
74  *
75  * Finally, BFQ also features additional heuristics for
76  * preserving both a low latency and a high throughput on NCQ-capable,
77  * rotational or flash-based devices, and to get the job done quickly
78  * for applications consisting in many I/O-bound processes.
79  *
80  * NOTE: if the main or only goal, with a given device, is to achieve
81  * the maximum-possible throughput at all times, then do switch off
82  * all low-latency heuristics for that device, by setting low_latency
83  * to 0.
84  *
85  * BFQ is described in [1], where also a reference to the initial,
86  * more theoretical paper on BFQ can be found. The interested reader
87  * can find in the latter paper full details on the main algorithm, as
88  * well as formulas of the guarantees and formal proofs of all the
89  * properties.  With respect to the version of BFQ presented in these
90  * papers, this implementation adds a few more heuristics, such as the
91  * ones that guarantee a low latency to interactive and soft real-time
92  * applications, and a hierarchical extension based on H-WF2Q+.
93  *
94  * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95  * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96  * with O(log N) complexity derives from the one introduced with EEVDF
97  * in [3].
98  *
99  * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100  *     Scheduler", Proceedings of the First Workshop on Mobile System
101  *     Technologies (MST-2015), May 2015.
102  *     http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103  *
104  * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105  *     Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106  *     Oct 1997.
107  *
108  * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109  *
110  * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111  *     First: A Flexible and Accurate Mechanism for Proportional Share
112  *     Resource Allocation", technical report.
113  *
114  * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115  */
116 #include <linux/module.h>
117 #include <linux/slab.h>
118 #include <linux/blkdev.h>
119 #include <linux/cgroup.h>
120 #include <linux/elevator.h>
121 #include <linux/ktime.h>
122 #include <linux/rbtree.h>
123 #include <linux/ioprio.h>
124 #include <linux/sbitmap.h>
125 #include <linux/delay.h>
126 #include <linux/backing-dev.h>
127 
128 #include "blk.h"
129 #include "blk-mq.h"
130 #include "blk-mq-tag.h"
131 #include "blk-mq-sched.h"
132 #include "bfq-iosched.h"
133 #include "blk-wbt.h"
134 
135 #define BFQ_BFQQ_FNS(name)						\
136 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq)			\
137 {									\
138 	__set_bit(BFQQF_##name, &(bfqq)->flags);			\
139 }									\
140 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq)			\
141 {									\
142 	__clear_bit(BFQQF_##name, &(bfqq)->flags);		\
143 }									\
144 int bfq_bfqq_##name(const struct bfq_queue *bfqq)			\
145 {									\
146 	return test_bit(BFQQF_##name, &(bfqq)->flags);		\
147 }
148 
149 BFQ_BFQQ_FNS(just_created);
150 BFQ_BFQQ_FNS(busy);
151 BFQ_BFQQ_FNS(wait_request);
152 BFQ_BFQQ_FNS(non_blocking_wait_rq);
153 BFQ_BFQQ_FNS(fifo_expire);
154 BFQ_BFQQ_FNS(has_short_ttime);
155 BFQ_BFQQ_FNS(sync);
156 BFQ_BFQQ_FNS(IO_bound);
157 BFQ_BFQQ_FNS(in_large_burst);
158 BFQ_BFQQ_FNS(coop);
159 BFQ_BFQQ_FNS(split_coop);
160 BFQ_BFQQ_FNS(softrt_update);
161 BFQ_BFQQ_FNS(has_waker);
162 #undef BFQ_BFQQ_FNS						\
163 
164 /* Expiration time of sync (0) and async (1) requests, in ns. */
165 static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
166 
167 /* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
168 static const int bfq_back_max = 16 * 1024;
169 
170 /* Penalty of a backwards seek, in number of sectors. */
171 static const int bfq_back_penalty = 2;
172 
173 /* Idling period duration, in ns. */
174 static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
175 
176 /* Minimum number of assigned budgets for which stats are safe to compute. */
177 static const int bfq_stats_min_budgets = 194;
178 
179 /* Default maximum budget values, in sectors and number of requests. */
180 static const int bfq_default_max_budget = 16 * 1024;
181 
182 /*
183  * When a sync request is dispatched, the queue that contains that
184  * request, and all the ancestor entities of that queue, are charged
185  * with the number of sectors of the request. In contrast, if the
186  * request is async, then the queue and its ancestor entities are
187  * charged with the number of sectors of the request, multiplied by
188  * the factor below. This throttles the bandwidth for async I/O,
189  * w.r.t. to sync I/O, and it is done to counter the tendency of async
190  * writes to steal I/O throughput to reads.
191  *
192  * The current value of this parameter is the result of a tuning with
193  * several hardware and software configurations. We tried to find the
194  * lowest value for which writes do not cause noticeable problems to
195  * reads. In fact, the lower this parameter, the stabler I/O control,
196  * in the following respect.  The lower this parameter is, the less
197  * the bandwidth enjoyed by a group decreases
198  * - when the group does writes, w.r.t. to when it does reads;
199  * - when other groups do reads, w.r.t. to when they do writes.
200  */
201 static const int bfq_async_charge_factor = 3;
202 
203 /* Default timeout values, in jiffies, approximating CFQ defaults. */
204 const int bfq_timeout = HZ / 8;
205 
206 /*
207  * Time limit for merging (see comments in bfq_setup_cooperator). Set
208  * to the slowest value that, in our tests, proved to be effective in
209  * removing false positives, while not causing true positives to miss
210  * queue merging.
211  *
212  * As can be deduced from the low time limit below, queue merging, if
213  * successful, happens at the very beginning of the I/O of the involved
214  * cooperating processes, as a consequence of the arrival of the very
215  * first requests from each cooperator.  After that, there is very
216  * little chance to find cooperators.
217  */
218 static const unsigned long bfq_merge_time_limit = HZ/10;
219 
220 static struct kmem_cache *bfq_pool;
221 
222 /* Below this threshold (in ns), we consider thinktime immediate. */
223 #define BFQ_MIN_TT		(2 * NSEC_PER_MSEC)
224 
225 /* hw_tag detection: parallel requests threshold and min samples needed. */
226 #define BFQ_HW_QUEUE_THRESHOLD	3
227 #define BFQ_HW_QUEUE_SAMPLES	32
228 
229 #define BFQQ_SEEK_THR		(sector_t)(8 * 100)
230 #define BFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
231 #define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
232 	(get_sdist(last_pos, rq) >			\
233 	 BFQQ_SEEK_THR &&				\
234 	 (!blk_queue_nonrot(bfqd->queue) ||		\
235 	  blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
236 #define BFQQ_CLOSE_THR		(sector_t)(8 * 1024)
237 #define BFQQ_SEEKY(bfqq)	(hweight32(bfqq->seek_history) > 19)
238 /*
239  * Sync random I/O is likely to be confused with soft real-time I/O,
240  * because it is characterized by limited throughput and apparently
241  * isochronous arrival pattern. To avoid false positives, queues
242  * containing only random (seeky) I/O are prevented from being tagged
243  * as soft real-time.
244  */
245 #define BFQQ_TOTALLY_SEEKY(bfqq)	(bfqq->seek_history == -1)
246 
247 /* Min number of samples required to perform peak-rate update */
248 #define BFQ_RATE_MIN_SAMPLES	32
249 /* Min observation time interval required to perform a peak-rate update (ns) */
250 #define BFQ_RATE_MIN_INTERVAL	(300*NSEC_PER_MSEC)
251 /* Target observation time interval for a peak-rate update (ns) */
252 #define BFQ_RATE_REF_INTERVAL	NSEC_PER_SEC
253 
254 /*
255  * Shift used for peak-rate fixed precision calculations.
256  * With
257  * - the current shift: 16 positions
258  * - the current type used to store rate: u32
259  * - the current unit of measure for rate: [sectors/usec], or, more precisely,
260  *   [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
261  * the range of rates that can be stored is
262  * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
263  * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
264  * [15, 65G] sectors/sec
265  * Which, assuming a sector size of 512B, corresponds to a range of
266  * [7.5K, 33T] B/sec
267  */
268 #define BFQ_RATE_SHIFT		16
269 
270 /*
271  * When configured for computing the duration of the weight-raising
272  * for interactive queues automatically (see the comments at the
273  * beginning of this file), BFQ does it using the following formula:
274  * duration = (ref_rate / r) * ref_wr_duration,
275  * where r is the peak rate of the device, and ref_rate and
276  * ref_wr_duration are two reference parameters.  In particular,
277  * ref_rate is the peak rate of the reference storage device (see
278  * below), and ref_wr_duration is about the maximum time needed, with
279  * BFQ and while reading two files in parallel, to load typical large
280  * applications on the reference device (see the comments on
281  * max_service_from_wr below, for more details on how ref_wr_duration
282  * is obtained).  In practice, the slower/faster the device at hand
283  * is, the more/less it takes to load applications with respect to the
284  * reference device.  Accordingly, the longer/shorter BFQ grants
285  * weight raising to interactive applications.
286  *
287  * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
288  * depending on whether the device is rotational or non-rotational.
289  *
290  * In the following definitions, ref_rate[0] and ref_wr_duration[0]
291  * are the reference values for a rotational device, whereas
292  * ref_rate[1] and ref_wr_duration[1] are the reference values for a
293  * non-rotational device. The reference rates are not the actual peak
294  * rates of the devices used as a reference, but slightly lower
295  * values. The reason for using slightly lower values is that the
296  * peak-rate estimator tends to yield slightly lower values than the
297  * actual peak rate (it can yield the actual peak rate only if there
298  * is only one process doing I/O, and the process does sequential
299  * I/O).
300  *
301  * The reference peak rates are measured in sectors/usec, left-shifted
302  * by BFQ_RATE_SHIFT.
303  */
304 static int ref_rate[2] = {14000, 33000};
305 /*
306  * To improve readability, a conversion function is used to initialize
307  * the following array, which entails that the array can be
308  * initialized only in a function.
309  */
310 static int ref_wr_duration[2];
311 
312 /*
313  * BFQ uses the above-detailed, time-based weight-raising mechanism to
314  * privilege interactive tasks. This mechanism is vulnerable to the
315  * following false positives: I/O-bound applications that will go on
316  * doing I/O for much longer than the duration of weight
317  * raising. These applications have basically no benefit from being
318  * weight-raised at the beginning of their I/O. On the opposite end,
319  * while being weight-raised, these applications
320  * a) unjustly steal throughput to applications that may actually need
321  * low latency;
322  * b) make BFQ uselessly perform device idling; device idling results
323  * in loss of device throughput with most flash-based storage, and may
324  * increase latencies when used purposelessly.
325  *
326  * BFQ tries to reduce these problems, by adopting the following
327  * countermeasure. To introduce this countermeasure, we need first to
328  * finish explaining how the duration of weight-raising for
329  * interactive tasks is computed.
330  *
331  * For a bfq_queue deemed as interactive, the duration of weight
332  * raising is dynamically adjusted, as a function of the estimated
333  * peak rate of the device, so as to be equal to the time needed to
334  * execute the 'largest' interactive task we benchmarked so far. By
335  * largest task, we mean the task for which each involved process has
336  * to do more I/O than for any of the other tasks we benchmarked. This
337  * reference interactive task is the start-up of LibreOffice Writer,
338  * and in this task each process/bfq_queue needs to have at most ~110K
339  * sectors transferred.
340  *
341  * This last piece of information enables BFQ to reduce the actual
342  * duration of weight-raising for at least one class of I/O-bound
343  * applications: those doing sequential or quasi-sequential I/O. An
344  * example is file copy. In fact, once started, the main I/O-bound
345  * processes of these applications usually consume the above 110K
346  * sectors in much less time than the processes of an application that
347  * is starting, because these I/O-bound processes will greedily devote
348  * almost all their CPU cycles only to their target,
349  * throughput-friendly I/O operations. This is even more true if BFQ
350  * happens to be underestimating the device peak rate, and thus
351  * overestimating the duration of weight raising. But, according to
352  * our measurements, once transferred 110K sectors, these processes
353  * have no right to be weight-raised any longer.
354  *
355  * Basing on the last consideration, BFQ ends weight-raising for a
356  * bfq_queue if the latter happens to have received an amount of
357  * service at least equal to the following constant. The constant is
358  * set to slightly more than 110K, to have a minimum safety margin.
359  *
360  * This early ending of weight-raising reduces the amount of time
361  * during which interactive false positives cause the two problems
362  * described at the beginning of these comments.
363  */
364 static const unsigned long max_service_from_wr = 120000;
365 
366 #define RQ_BIC(rq)		icq_to_bic((rq)->elv.priv[0])
367 #define RQ_BFQQ(rq)		((rq)->elv.priv[1])
368 
bic_to_bfqq(struct bfq_io_cq * bic,bool is_sync)369 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
370 {
371 	return bic->bfqq[is_sync];
372 }
373 
bic_set_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq,bool is_sync)374 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
375 {
376 	bic->bfqq[is_sync] = bfqq;
377 }
378 
bic_to_bfqd(struct bfq_io_cq * bic)379 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
380 {
381 	return bic->icq.q->elevator->elevator_data;
382 }
383 
384 /**
385  * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
386  * @icq: the iocontext queue.
387  */
icq_to_bic(struct io_cq * icq)388 static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
389 {
390 	/* bic->icq is the first member, %NULL will convert to %NULL */
391 	return container_of(icq, struct bfq_io_cq, icq);
392 }
393 
394 /**
395  * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
396  * @bfqd: the lookup key.
397  * @ioc: the io_context of the process doing I/O.
398  * @q: the request queue.
399  */
bfq_bic_lookup(struct bfq_data * bfqd,struct io_context * ioc,struct request_queue * q)400 static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
401 					struct io_context *ioc,
402 					struct request_queue *q)
403 {
404 	if (ioc) {
405 		unsigned long flags;
406 		struct bfq_io_cq *icq;
407 
408 		spin_lock_irqsave(&q->queue_lock, flags);
409 		icq = icq_to_bic(ioc_lookup_icq(ioc, q));
410 		spin_unlock_irqrestore(&q->queue_lock, flags);
411 
412 		return icq;
413 	}
414 
415 	return NULL;
416 }
417 
418 /*
419  * Scheduler run of queue, if there are requests pending and no one in the
420  * driver that will restart queueing.
421  */
bfq_schedule_dispatch(struct bfq_data * bfqd)422 void bfq_schedule_dispatch(struct bfq_data *bfqd)
423 {
424 	lockdep_assert_held(&bfqd->lock);
425 
426 	if (bfqd->queued != 0) {
427 		bfq_log(bfqd, "schedule dispatch");
428 		blk_mq_run_hw_queues(bfqd->queue, true);
429 	}
430 }
431 
432 #define bfq_class_idle(bfqq)	((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
433 
434 #define bfq_sample_valid(samples)	((samples) > 80)
435 
436 /*
437  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
438  * We choose the request that is closer to the head right now.  Distance
439  * behind the head is penalized and only allowed to a certain extent.
440  */
bfq_choose_req(struct bfq_data * bfqd,struct request * rq1,struct request * rq2,sector_t last)441 static struct request *bfq_choose_req(struct bfq_data *bfqd,
442 				      struct request *rq1,
443 				      struct request *rq2,
444 				      sector_t last)
445 {
446 	sector_t s1, s2, d1 = 0, d2 = 0;
447 	unsigned long back_max;
448 #define BFQ_RQ1_WRAP	0x01 /* request 1 wraps */
449 #define BFQ_RQ2_WRAP	0x02 /* request 2 wraps */
450 	unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
451 
452 	if (!rq1 || rq1 == rq2)
453 		return rq2;
454 	if (!rq2)
455 		return rq1;
456 
457 	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
458 		return rq1;
459 	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
460 		return rq2;
461 	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
462 		return rq1;
463 	else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
464 		return rq2;
465 
466 	s1 = blk_rq_pos(rq1);
467 	s2 = blk_rq_pos(rq2);
468 
469 	/*
470 	 * By definition, 1KiB is 2 sectors.
471 	 */
472 	back_max = bfqd->bfq_back_max * 2;
473 
474 	/*
475 	 * Strict one way elevator _except_ in the case where we allow
476 	 * short backward seeks which are biased as twice the cost of a
477 	 * similar forward seek.
478 	 */
479 	if (s1 >= last)
480 		d1 = s1 - last;
481 	else if (s1 + back_max >= last)
482 		d1 = (last - s1) * bfqd->bfq_back_penalty;
483 	else
484 		wrap |= BFQ_RQ1_WRAP;
485 
486 	if (s2 >= last)
487 		d2 = s2 - last;
488 	else if (s2 + back_max >= last)
489 		d2 = (last - s2) * bfqd->bfq_back_penalty;
490 	else
491 		wrap |= BFQ_RQ2_WRAP;
492 
493 	/* Found required data */
494 
495 	/*
496 	 * By doing switch() on the bit mask "wrap" we avoid having to
497 	 * check two variables for all permutations: --> faster!
498 	 */
499 	switch (wrap) {
500 	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
501 		if (d1 < d2)
502 			return rq1;
503 		else if (d2 < d1)
504 			return rq2;
505 
506 		if (s1 >= s2)
507 			return rq1;
508 		else
509 			return rq2;
510 
511 	case BFQ_RQ2_WRAP:
512 		return rq1;
513 	case BFQ_RQ1_WRAP:
514 		return rq2;
515 	case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
516 	default:
517 		/*
518 		 * Since both rqs are wrapped,
519 		 * start with the one that's further behind head
520 		 * (--> only *one* back seek required),
521 		 * since back seek takes more time than forward.
522 		 */
523 		if (s1 <= s2)
524 			return rq1;
525 		else
526 			return rq2;
527 	}
528 }
529 
530 /*
531  * Async I/O can easily starve sync I/O (both sync reads and sync
532  * writes), by consuming all tags. Similarly, storms of sync writes,
533  * such as those that sync(2) may trigger, can starve sync reads.
534  * Limit depths of async I/O and sync writes so as to counter both
535  * problems.
536  */
bfq_limit_depth(unsigned int op,struct blk_mq_alloc_data * data)537 static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
538 {
539 	struct bfq_data *bfqd = data->q->elevator->elevator_data;
540 
541 	if (op_is_sync(op) && !op_is_write(op))
542 		return;
543 
544 	data->shallow_depth =
545 		bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
546 
547 	bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
548 			__func__, bfqd->wr_busy_queues, op_is_sync(op),
549 			data->shallow_depth);
550 }
551 
552 static struct bfq_queue *
bfq_rq_pos_tree_lookup(struct bfq_data * bfqd,struct rb_root * root,sector_t sector,struct rb_node ** ret_parent,struct rb_node *** rb_link)553 bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
554 		     sector_t sector, struct rb_node **ret_parent,
555 		     struct rb_node ***rb_link)
556 {
557 	struct rb_node **p, *parent;
558 	struct bfq_queue *bfqq = NULL;
559 
560 	parent = NULL;
561 	p = &root->rb_node;
562 	while (*p) {
563 		struct rb_node **n;
564 
565 		parent = *p;
566 		bfqq = rb_entry(parent, struct bfq_queue, pos_node);
567 
568 		/*
569 		 * Sort strictly based on sector. Smallest to the left,
570 		 * largest to the right.
571 		 */
572 		if (sector > blk_rq_pos(bfqq->next_rq))
573 			n = &(*p)->rb_right;
574 		else if (sector < blk_rq_pos(bfqq->next_rq))
575 			n = &(*p)->rb_left;
576 		else
577 			break;
578 		p = n;
579 		bfqq = NULL;
580 	}
581 
582 	*ret_parent = parent;
583 	if (rb_link)
584 		*rb_link = p;
585 
586 	bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
587 		(unsigned long long)sector,
588 		bfqq ? bfqq->pid : 0);
589 
590 	return bfqq;
591 }
592 
bfq_too_late_for_merging(struct bfq_queue * bfqq)593 static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
594 {
595 	return bfqq->service_from_backlogged > 0 &&
596 		time_is_before_jiffies(bfqq->first_IO_time +
597 				       bfq_merge_time_limit);
598 }
599 
600 /*
601  * The following function is not marked as __cold because it is
602  * actually cold, but for the same performance goal described in the
603  * comments on the likely() at the beginning of
604  * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
605  * execution time for the case where this function is not invoked, we
606  * had to add an unlikely() in each involved if().
607  */
608 void __cold
bfq_pos_tree_add_move(struct bfq_data * bfqd,struct bfq_queue * bfqq)609 bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
610 {
611 	struct rb_node **p, *parent;
612 	struct bfq_queue *__bfqq;
613 
614 	if (bfqq->pos_root) {
615 		rb_erase(&bfqq->pos_node, bfqq->pos_root);
616 		bfqq->pos_root = NULL;
617 	}
618 
619 	/* oom_bfqq does not participate in queue merging */
620 	if (bfqq == &bfqd->oom_bfqq)
621 		return;
622 
623 	/*
624 	 * bfqq cannot be merged any longer (see comments in
625 	 * bfq_setup_cooperator): no point in adding bfqq into the
626 	 * position tree.
627 	 */
628 	if (bfq_too_late_for_merging(bfqq))
629 		return;
630 
631 	if (bfq_class_idle(bfqq))
632 		return;
633 	if (!bfqq->next_rq)
634 		return;
635 
636 	bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
637 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
638 			blk_rq_pos(bfqq->next_rq), &parent, &p);
639 	if (!__bfqq) {
640 		rb_link_node(&bfqq->pos_node, parent, p);
641 		rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
642 	} else
643 		bfqq->pos_root = NULL;
644 }
645 
646 /*
647  * The following function returns false either if every active queue
648  * must receive the same share of the throughput (symmetric scenario),
649  * or, as a special case, if bfqq must receive a share of the
650  * throughput lower than or equal to the share that every other active
651  * queue must receive.  If bfqq does sync I/O, then these are the only
652  * two cases where bfqq happens to be guaranteed its share of the
653  * throughput even if I/O dispatching is not plugged when bfqq remains
654  * temporarily empty (for more details, see the comments in the
655  * function bfq_better_to_idle()). For this reason, the return value
656  * of this function is used to check whether I/O-dispatch plugging can
657  * be avoided.
658  *
659  * The above first case (symmetric scenario) occurs when:
660  * 1) all active queues have the same weight,
661  * 2) all active queues belong to the same I/O-priority class,
662  * 3) all active groups at the same level in the groups tree have the same
663  *    weight,
664  * 4) all active groups at the same level in the groups tree have the same
665  *    number of children.
666  *
667  * Unfortunately, keeping the necessary state for evaluating exactly
668  * the last two symmetry sub-conditions above would be quite complex
669  * and time consuming. Therefore this function evaluates, instead,
670  * only the following stronger three sub-conditions, for which it is
671  * much easier to maintain the needed state:
672  * 1) all active queues have the same weight,
673  * 2) all active queues belong to the same I/O-priority class,
674  * 3) there are no active groups.
675  * In particular, the last condition is always true if hierarchical
676  * support or the cgroups interface are not enabled, thus no state
677  * needs to be maintained in this case.
678  */
bfq_asymmetric_scenario(struct bfq_data * bfqd,struct bfq_queue * bfqq)679 static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
680 				   struct bfq_queue *bfqq)
681 {
682 	bool smallest_weight = bfqq &&
683 		bfqq->weight_counter &&
684 		bfqq->weight_counter ==
685 		container_of(
686 			rb_first_cached(&bfqd->queue_weights_tree),
687 			struct bfq_weight_counter,
688 			weights_node);
689 
690 	/*
691 	 * For queue weights to differ, queue_weights_tree must contain
692 	 * at least two nodes.
693 	 */
694 	bool varied_queue_weights = !smallest_weight &&
695 		!RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
696 		(bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
697 		 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
698 
699 	bool multiple_classes_busy =
700 		(bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
701 		(bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
702 		(bfqd->busy_queues[1] && bfqd->busy_queues[2]);
703 
704 	return varied_queue_weights || multiple_classes_busy
705 #ifdef CONFIG_BFQ_GROUP_IOSCHED
706 	       || bfqd->num_groups_with_pending_reqs > 0
707 #endif
708 		;
709 }
710 
711 /*
712  * If the weight-counter tree passed as input contains no counter for
713  * the weight of the input queue, then add that counter; otherwise just
714  * increment the existing counter.
715  *
716  * Note that weight-counter trees contain few nodes in mostly symmetric
717  * scenarios. For example, if all queues have the same weight, then the
718  * weight-counter tree for the queues may contain at most one node.
719  * This holds even if low_latency is on, because weight-raised queues
720  * are not inserted in the tree.
721  * In most scenarios, the rate at which nodes are created/destroyed
722  * should be low too.
723  */
bfq_weights_tree_add(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)724 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
725 			  struct rb_root_cached *root)
726 {
727 	struct bfq_entity *entity = &bfqq->entity;
728 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
729 	bool leftmost = true;
730 
731 	/*
732 	 * Do not insert if the queue is already associated with a
733 	 * counter, which happens if:
734 	 *   1) a request arrival has caused the queue to become both
735 	 *      non-weight-raised, and hence change its weight, and
736 	 *      backlogged; in this respect, each of the two events
737 	 *      causes an invocation of this function,
738 	 *   2) this is the invocation of this function caused by the
739 	 *      second event. This second invocation is actually useless,
740 	 *      and we handle this fact by exiting immediately. More
741 	 *      efficient or clearer solutions might possibly be adopted.
742 	 */
743 	if (bfqq->weight_counter)
744 		return;
745 
746 	while (*new) {
747 		struct bfq_weight_counter *__counter = container_of(*new,
748 						struct bfq_weight_counter,
749 						weights_node);
750 		parent = *new;
751 
752 		if (entity->weight == __counter->weight) {
753 			bfqq->weight_counter = __counter;
754 			goto inc_counter;
755 		}
756 		if (entity->weight < __counter->weight)
757 			new = &((*new)->rb_left);
758 		else {
759 			new = &((*new)->rb_right);
760 			leftmost = false;
761 		}
762 	}
763 
764 	bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
765 				       GFP_ATOMIC);
766 
767 	/*
768 	 * In the unlucky event of an allocation failure, we just
769 	 * exit. This will cause the weight of queue to not be
770 	 * considered in bfq_asymmetric_scenario, which, in its turn,
771 	 * causes the scenario to be deemed wrongly symmetric in case
772 	 * bfqq's weight would have been the only weight making the
773 	 * scenario asymmetric.  On the bright side, no unbalance will
774 	 * however occur when bfqq becomes inactive again (the
775 	 * invocation of this function is triggered by an activation
776 	 * of queue).  In fact, bfq_weights_tree_remove does nothing
777 	 * if !bfqq->weight_counter.
778 	 */
779 	if (unlikely(!bfqq->weight_counter))
780 		return;
781 
782 	bfqq->weight_counter->weight = entity->weight;
783 	rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
784 	rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
785 				leftmost);
786 
787 inc_counter:
788 	bfqq->weight_counter->num_active++;
789 	bfqq->ref++;
790 }
791 
792 /*
793  * Decrement the weight counter associated with the queue, and, if the
794  * counter reaches 0, remove the counter from the tree.
795  * See the comments to the function bfq_weights_tree_add() for considerations
796  * about overhead.
797  */
__bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct rb_root_cached * root)798 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
799 			       struct bfq_queue *bfqq,
800 			       struct rb_root_cached *root)
801 {
802 	if (!bfqq->weight_counter)
803 		return;
804 
805 	bfqq->weight_counter->num_active--;
806 	if (bfqq->weight_counter->num_active > 0)
807 		goto reset_entity_pointer;
808 
809 	rb_erase_cached(&bfqq->weight_counter->weights_node, root);
810 	kfree(bfqq->weight_counter);
811 
812 reset_entity_pointer:
813 	bfqq->weight_counter = NULL;
814 	bfq_put_queue(bfqq);
815 }
816 
817 /*
818  * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
819  * of active groups for each queue's inactive parent entity.
820  */
bfq_weights_tree_remove(struct bfq_data * bfqd,struct bfq_queue * bfqq)821 void bfq_weights_tree_remove(struct bfq_data *bfqd,
822 			     struct bfq_queue *bfqq)
823 {
824 	struct bfq_entity *entity = bfqq->entity.parent;
825 
826 	for_each_entity(entity) {
827 		struct bfq_sched_data *sd = entity->my_sched_data;
828 
829 		if (sd->next_in_service || sd->in_service_entity) {
830 			/*
831 			 * entity is still active, because either
832 			 * next_in_service or in_service_entity is not
833 			 * NULL (see the comments on the definition of
834 			 * next_in_service for details on why
835 			 * in_service_entity must be checked too).
836 			 *
837 			 * As a consequence, its parent entities are
838 			 * active as well, and thus this loop must
839 			 * stop here.
840 			 */
841 			break;
842 		}
843 
844 		/*
845 		 * The decrement of num_groups_with_pending_reqs is
846 		 * not performed immediately upon the deactivation of
847 		 * entity, but it is delayed to when it also happens
848 		 * that the first leaf descendant bfqq of entity gets
849 		 * all its pending requests completed. The following
850 		 * instructions perform this delayed decrement, if
851 		 * needed. See the comments on
852 		 * num_groups_with_pending_reqs for details.
853 		 */
854 		if (entity->in_groups_with_pending_reqs) {
855 			entity->in_groups_with_pending_reqs = false;
856 			bfqd->num_groups_with_pending_reqs--;
857 		}
858 	}
859 
860 	/*
861 	 * Next function is invoked last, because it causes bfqq to be
862 	 * freed if the following holds: bfqq is not in service and
863 	 * has no dispatched request. DO NOT use bfqq after the next
864 	 * function invocation.
865 	 */
866 	__bfq_weights_tree_remove(bfqd, bfqq,
867 				  &bfqd->queue_weights_tree);
868 }
869 
870 /*
871  * Return expired entry, or NULL to just start from scratch in rbtree.
872  */
bfq_check_fifo(struct bfq_queue * bfqq,struct request * last)873 static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
874 				      struct request *last)
875 {
876 	struct request *rq;
877 
878 	if (bfq_bfqq_fifo_expire(bfqq))
879 		return NULL;
880 
881 	bfq_mark_bfqq_fifo_expire(bfqq);
882 
883 	rq = rq_entry_fifo(bfqq->fifo.next);
884 
885 	if (rq == last || ktime_get_ns() < rq->fifo_time)
886 		return NULL;
887 
888 	bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
889 	return rq;
890 }
891 
bfq_find_next_rq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * last)892 static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
893 					struct bfq_queue *bfqq,
894 					struct request *last)
895 {
896 	struct rb_node *rbnext = rb_next(&last->rb_node);
897 	struct rb_node *rbprev = rb_prev(&last->rb_node);
898 	struct request *next, *prev = NULL;
899 
900 	/* Follow expired path, else get first next available. */
901 	next = bfq_check_fifo(bfqq, last);
902 	if (next)
903 		return next;
904 
905 	if (rbprev)
906 		prev = rb_entry_rq(rbprev);
907 
908 	if (rbnext)
909 		next = rb_entry_rq(rbnext);
910 	else {
911 		rbnext = rb_first(&bfqq->sort_list);
912 		if (rbnext && rbnext != &last->rb_node)
913 			next = rb_entry_rq(rbnext);
914 	}
915 
916 	return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
917 }
918 
919 /* see the definition of bfq_async_charge_factor for details */
bfq_serv_to_charge(struct request * rq,struct bfq_queue * bfqq)920 static unsigned long bfq_serv_to_charge(struct request *rq,
921 					struct bfq_queue *bfqq)
922 {
923 	if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
924 	    bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
925 		return blk_rq_sectors(rq);
926 
927 	return blk_rq_sectors(rq) * bfq_async_charge_factor;
928 }
929 
930 /**
931  * bfq_updated_next_req - update the queue after a new next_rq selection.
932  * @bfqd: the device data the queue belongs to.
933  * @bfqq: the queue to update.
934  *
935  * If the first request of a queue changes we make sure that the queue
936  * has enough budget to serve at least its first request (if the
937  * request has grown).  We do this because if the queue has not enough
938  * budget for its first request, it has to go through two dispatch
939  * rounds to actually get it dispatched.
940  */
bfq_updated_next_req(struct bfq_data * bfqd,struct bfq_queue * bfqq)941 static void bfq_updated_next_req(struct bfq_data *bfqd,
942 				 struct bfq_queue *bfqq)
943 {
944 	struct bfq_entity *entity = &bfqq->entity;
945 	struct request *next_rq = bfqq->next_rq;
946 	unsigned long new_budget;
947 
948 	if (!next_rq)
949 		return;
950 
951 	if (bfqq == bfqd->in_service_queue)
952 		/*
953 		 * In order not to break guarantees, budgets cannot be
954 		 * changed after an entity has been selected.
955 		 */
956 		return;
957 
958 	new_budget = max_t(unsigned long,
959 			   max_t(unsigned long, bfqq->max_budget,
960 				 bfq_serv_to_charge(next_rq, bfqq)),
961 			   entity->service);
962 	if (entity->budget != new_budget) {
963 		entity->budget = new_budget;
964 		bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
965 					 new_budget);
966 		bfq_requeue_bfqq(bfqd, bfqq, false);
967 	}
968 }
969 
bfq_wr_duration(struct bfq_data * bfqd)970 static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
971 {
972 	u64 dur;
973 
974 	if (bfqd->bfq_wr_max_time > 0)
975 		return bfqd->bfq_wr_max_time;
976 
977 	dur = bfqd->rate_dur_prod;
978 	do_div(dur, bfqd->peak_rate);
979 
980 	/*
981 	 * Limit duration between 3 and 25 seconds. The upper limit
982 	 * has been conservatively set after the following worst case:
983 	 * on a QEMU/KVM virtual machine
984 	 * - running in a slow PC
985 	 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
986 	 * - serving a heavy I/O workload, such as the sequential reading
987 	 *   of several files
988 	 * mplayer took 23 seconds to start, if constantly weight-raised.
989 	 *
990 	 * As for higher values than that accommodating the above bad
991 	 * scenario, tests show that higher values would often yield
992 	 * the opposite of the desired result, i.e., would worsen
993 	 * responsiveness by allowing non-interactive applications to
994 	 * preserve weight raising for too long.
995 	 *
996 	 * On the other end, lower values than 3 seconds make it
997 	 * difficult for most interactive tasks to complete their jobs
998 	 * before weight-raising finishes.
999 	 */
1000 	return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
1001 }
1002 
1003 /* switch back from soft real-time to interactive weight raising */
switch_back_to_interactive_wr(struct bfq_queue * bfqq,struct bfq_data * bfqd)1004 static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1005 					  struct bfq_data *bfqd)
1006 {
1007 	bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1008 	bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1009 	bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1010 }
1011 
1012 static void
bfq_bfqq_resume_state(struct bfq_queue * bfqq,struct bfq_data * bfqd,struct bfq_io_cq * bic,bool bfq_already_existing)1013 bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1014 		      struct bfq_io_cq *bic, bool bfq_already_existing)
1015 {
1016 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1017 	bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1018 
1019 	if (bic->saved_has_short_ttime)
1020 		bfq_mark_bfqq_has_short_ttime(bfqq);
1021 	else
1022 		bfq_clear_bfqq_has_short_ttime(bfqq);
1023 
1024 	if (bic->saved_IO_bound)
1025 		bfq_mark_bfqq_IO_bound(bfqq);
1026 	else
1027 		bfq_clear_bfqq_IO_bound(bfqq);
1028 
1029 	bfqq->entity.new_weight = bic->saved_weight;
1030 	bfqq->ttime = bic->saved_ttime;
1031 	bfqq->wr_coeff = bic->saved_wr_coeff;
1032 	bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1033 	bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1034 	bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1035 
1036 	if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
1037 	    time_is_before_jiffies(bfqq->last_wr_start_finish +
1038 				   bfqq->wr_cur_max_time))) {
1039 		if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1040 		    !bfq_bfqq_in_large_burst(bfqq) &&
1041 		    time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1042 					     bfq_wr_duration(bfqd))) {
1043 			switch_back_to_interactive_wr(bfqq, bfqd);
1044 		} else {
1045 			bfqq->wr_coeff = 1;
1046 			bfq_log_bfqq(bfqq->bfqd, bfqq,
1047 				     "resume state: switching off wr");
1048 		}
1049 	}
1050 
1051 	/* make sure weight will be updated, however we got here */
1052 	bfqq->entity.prio_changed = 1;
1053 
1054 	if (likely(!busy))
1055 		return;
1056 
1057 	if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1058 		bfqd->wr_busy_queues++;
1059 	else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1060 		bfqd->wr_busy_queues--;
1061 }
1062 
bfqq_process_refs(struct bfq_queue * bfqq)1063 static int bfqq_process_refs(struct bfq_queue *bfqq)
1064 {
1065 	return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
1066 		(bfqq->weight_counter != NULL);
1067 }
1068 
1069 /* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
bfq_reset_burst_list(struct bfq_data * bfqd,struct bfq_queue * bfqq)1070 static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1071 {
1072 	struct bfq_queue *item;
1073 	struct hlist_node *n;
1074 
1075 	hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1076 		hlist_del_init(&item->burst_list_node);
1077 
1078 	/*
1079 	 * Start the creation of a new burst list only if there is no
1080 	 * active queue. See comments on the conditional invocation of
1081 	 * bfq_handle_burst().
1082 	 */
1083 	if (bfq_tot_busy_queues(bfqd) == 0) {
1084 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1085 		bfqd->burst_size = 1;
1086 	} else
1087 		bfqd->burst_size = 0;
1088 
1089 	bfqd->burst_parent_entity = bfqq->entity.parent;
1090 }
1091 
1092 /* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
bfq_add_to_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1093 static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1094 {
1095 	/* Increment burst size to take into account also bfqq */
1096 	bfqd->burst_size++;
1097 
1098 	if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1099 		struct bfq_queue *pos, *bfqq_item;
1100 		struct hlist_node *n;
1101 
1102 		/*
1103 		 * Enough queues have been activated shortly after each
1104 		 * other to consider this burst as large.
1105 		 */
1106 		bfqd->large_burst = true;
1107 
1108 		/*
1109 		 * We can now mark all queues in the burst list as
1110 		 * belonging to a large burst.
1111 		 */
1112 		hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1113 				     burst_list_node)
1114 			bfq_mark_bfqq_in_large_burst(bfqq_item);
1115 		bfq_mark_bfqq_in_large_burst(bfqq);
1116 
1117 		/*
1118 		 * From now on, and until the current burst finishes, any
1119 		 * new queue being activated shortly after the last queue
1120 		 * was inserted in the burst can be immediately marked as
1121 		 * belonging to a large burst. So the burst list is not
1122 		 * needed any more. Remove it.
1123 		 */
1124 		hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1125 					  burst_list_node)
1126 			hlist_del_init(&pos->burst_list_node);
1127 	} else /*
1128 		* Burst not yet large: add bfqq to the burst list. Do
1129 		* not increment the ref counter for bfqq, because bfqq
1130 		* is removed from the burst list before freeing bfqq
1131 		* in put_queue.
1132 		*/
1133 		hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1134 }
1135 
1136 /*
1137  * If many queues belonging to the same group happen to be created
1138  * shortly after each other, then the processes associated with these
1139  * queues have typically a common goal. In particular, bursts of queue
1140  * creations are usually caused by services or applications that spawn
1141  * many parallel threads/processes. Examples are systemd during boot,
1142  * or git grep. To help these processes get their job done as soon as
1143  * possible, it is usually better to not grant either weight-raising
1144  * or device idling to their queues, unless these queues must be
1145  * protected from the I/O flowing through other active queues.
1146  *
1147  * In this comment we describe, firstly, the reasons why this fact
1148  * holds, and, secondly, the next function, which implements the main
1149  * steps needed to properly mark these queues so that they can then be
1150  * treated in a different way.
1151  *
1152  * The above services or applications benefit mostly from a high
1153  * throughput: the quicker the requests of the activated queues are
1154  * cumulatively served, the sooner the target job of these queues gets
1155  * completed. As a consequence, weight-raising any of these queues,
1156  * which also implies idling the device for it, is almost always
1157  * counterproductive, unless there are other active queues to isolate
1158  * these new queues from. If there no other active queues, then
1159  * weight-raising these new queues just lowers throughput in most
1160  * cases.
1161  *
1162  * On the other hand, a burst of queue creations may be caused also by
1163  * the start of an application that does not consist of a lot of
1164  * parallel I/O-bound threads. In fact, with a complex application,
1165  * several short processes may need to be executed to start-up the
1166  * application. In this respect, to start an application as quickly as
1167  * possible, the best thing to do is in any case to privilege the I/O
1168  * related to the application with respect to all other
1169  * I/O. Therefore, the best strategy to start as quickly as possible
1170  * an application that causes a burst of queue creations is to
1171  * weight-raise all the queues created during the burst. This is the
1172  * exact opposite of the best strategy for the other type of bursts.
1173  *
1174  * In the end, to take the best action for each of the two cases, the
1175  * two types of bursts need to be distinguished. Fortunately, this
1176  * seems relatively easy, by looking at the sizes of the bursts. In
1177  * particular, we found a threshold such that only bursts with a
1178  * larger size than that threshold are apparently caused by
1179  * services or commands such as systemd or git grep. For brevity,
1180  * hereafter we call just 'large' these bursts. BFQ *does not*
1181  * weight-raise queues whose creation occurs in a large burst. In
1182  * addition, for each of these queues BFQ performs or does not perform
1183  * idling depending on which choice boosts the throughput more. The
1184  * exact choice depends on the device and request pattern at
1185  * hand.
1186  *
1187  * Unfortunately, false positives may occur while an interactive task
1188  * is starting (e.g., an application is being started). The
1189  * consequence is that the queues associated with the task do not
1190  * enjoy weight raising as expected. Fortunately these false positives
1191  * are very rare. They typically occur if some service happens to
1192  * start doing I/O exactly when the interactive task starts.
1193  *
1194  * Turning back to the next function, it is invoked only if there are
1195  * no active queues (apart from active queues that would belong to the
1196  * same, possible burst bfqq would belong to), and it implements all
1197  * the steps needed to detect the occurrence of a large burst and to
1198  * properly mark all the queues belonging to it (so that they can then
1199  * be treated in a different way). This goal is achieved by
1200  * maintaining a "burst list" that holds, temporarily, the queues that
1201  * belong to the burst in progress. The list is then used to mark
1202  * these queues as belonging to a large burst if the burst does become
1203  * large. The main steps are the following.
1204  *
1205  * . when the very first queue is created, the queue is inserted into the
1206  *   list (as it could be the first queue in a possible burst)
1207  *
1208  * . if the current burst has not yet become large, and a queue Q that does
1209  *   not yet belong to the burst is activated shortly after the last time
1210  *   at which a new queue entered the burst list, then the function appends
1211  *   Q to the burst list
1212  *
1213  * . if, as a consequence of the previous step, the burst size reaches
1214  *   the large-burst threshold, then
1215  *
1216  *     . all the queues in the burst list are marked as belonging to a
1217  *       large burst
1218  *
1219  *     . the burst list is deleted; in fact, the burst list already served
1220  *       its purpose (keeping temporarily track of the queues in a burst,
1221  *       so as to be able to mark them as belonging to a large burst in the
1222  *       previous sub-step), and now is not needed any more
1223  *
1224  *     . the device enters a large-burst mode
1225  *
1226  * . if a queue Q that does not belong to the burst is created while
1227  *   the device is in large-burst mode and shortly after the last time
1228  *   at which a queue either entered the burst list or was marked as
1229  *   belonging to the current large burst, then Q is immediately marked
1230  *   as belonging to a large burst.
1231  *
1232  * . if a queue Q that does not belong to the burst is created a while
1233  *   later, i.e., not shortly after, than the last time at which a queue
1234  *   either entered the burst list or was marked as belonging to the
1235  *   current large burst, then the current burst is deemed as finished and:
1236  *
1237  *        . the large-burst mode is reset if set
1238  *
1239  *        . the burst list is emptied
1240  *
1241  *        . Q is inserted in the burst list, as Q may be the first queue
1242  *          in a possible new burst (then the burst list contains just Q
1243  *          after this step).
1244  */
bfq_handle_burst(struct bfq_data * bfqd,struct bfq_queue * bfqq)1245 static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1246 {
1247 	/*
1248 	 * If bfqq is already in the burst list or is part of a large
1249 	 * burst, or finally has just been split, then there is
1250 	 * nothing else to do.
1251 	 */
1252 	if (!hlist_unhashed(&bfqq->burst_list_node) ||
1253 	    bfq_bfqq_in_large_burst(bfqq) ||
1254 	    time_is_after_eq_jiffies(bfqq->split_time +
1255 				     msecs_to_jiffies(10)))
1256 		return;
1257 
1258 	/*
1259 	 * If bfqq's creation happens late enough, or bfqq belongs to
1260 	 * a different group than the burst group, then the current
1261 	 * burst is finished, and related data structures must be
1262 	 * reset.
1263 	 *
1264 	 * In this respect, consider the special case where bfqq is
1265 	 * the very first queue created after BFQ is selected for this
1266 	 * device. In this case, last_ins_in_burst and
1267 	 * burst_parent_entity are not yet significant when we get
1268 	 * here. But it is easy to verify that, whether or not the
1269 	 * following condition is true, bfqq will end up being
1270 	 * inserted into the burst list. In particular the list will
1271 	 * happen to contain only bfqq. And this is exactly what has
1272 	 * to happen, as bfqq may be the first queue of the first
1273 	 * burst.
1274 	 */
1275 	if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1276 	    bfqd->bfq_burst_interval) ||
1277 	    bfqq->entity.parent != bfqd->burst_parent_entity) {
1278 		bfqd->large_burst = false;
1279 		bfq_reset_burst_list(bfqd, bfqq);
1280 		goto end;
1281 	}
1282 
1283 	/*
1284 	 * If we get here, then bfqq is being activated shortly after the
1285 	 * last queue. So, if the current burst is also large, we can mark
1286 	 * bfqq as belonging to this large burst immediately.
1287 	 */
1288 	if (bfqd->large_burst) {
1289 		bfq_mark_bfqq_in_large_burst(bfqq);
1290 		goto end;
1291 	}
1292 
1293 	/*
1294 	 * If we get here, then a large-burst state has not yet been
1295 	 * reached, but bfqq is being activated shortly after the last
1296 	 * queue. Then we add bfqq to the burst.
1297 	 */
1298 	bfq_add_to_burst(bfqd, bfqq);
1299 end:
1300 	/*
1301 	 * At this point, bfqq either has been added to the current
1302 	 * burst or has caused the current burst to terminate and a
1303 	 * possible new burst to start. In particular, in the second
1304 	 * case, bfqq has become the first queue in the possible new
1305 	 * burst.  In both cases last_ins_in_burst needs to be moved
1306 	 * forward.
1307 	 */
1308 	bfqd->last_ins_in_burst = jiffies;
1309 }
1310 
bfq_bfqq_budget_left(struct bfq_queue * bfqq)1311 static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1312 {
1313 	struct bfq_entity *entity = &bfqq->entity;
1314 
1315 	return entity->budget - entity->service;
1316 }
1317 
1318 /*
1319  * If enough samples have been computed, return the current max budget
1320  * stored in bfqd, which is dynamically updated according to the
1321  * estimated disk peak rate; otherwise return the default max budget
1322  */
bfq_max_budget(struct bfq_data * bfqd)1323 static int bfq_max_budget(struct bfq_data *bfqd)
1324 {
1325 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1326 		return bfq_default_max_budget;
1327 	else
1328 		return bfqd->bfq_max_budget;
1329 }
1330 
1331 /*
1332  * Return min budget, which is a fraction of the current or default
1333  * max budget (trying with 1/32)
1334  */
bfq_min_budget(struct bfq_data * bfqd)1335 static int bfq_min_budget(struct bfq_data *bfqd)
1336 {
1337 	if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1338 		return bfq_default_max_budget / 32;
1339 	else
1340 		return bfqd->bfq_max_budget / 32;
1341 }
1342 
1343 /*
1344  * The next function, invoked after the input queue bfqq switches from
1345  * idle to busy, updates the budget of bfqq. The function also tells
1346  * whether the in-service queue should be expired, by returning
1347  * true. The purpose of expiring the in-service queue is to give bfqq
1348  * the chance to possibly preempt the in-service queue, and the reason
1349  * for preempting the in-service queue is to achieve one of the two
1350  * goals below.
1351  *
1352  * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1353  * expired because it has remained idle. In particular, bfqq may have
1354  * expired for one of the following two reasons:
1355  *
1356  * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1357  *   and did not make it to issue a new request before its last
1358  *   request was served;
1359  *
1360  * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1361  *   a new request before the expiration of the idling-time.
1362  *
1363  * Even if bfqq has expired for one of the above reasons, the process
1364  * associated with the queue may be however issuing requests greedily,
1365  * and thus be sensitive to the bandwidth it receives (bfqq may have
1366  * remained idle for other reasons: CPU high load, bfqq not enjoying
1367  * idling, I/O throttling somewhere in the path from the process to
1368  * the I/O scheduler, ...). But if, after every expiration for one of
1369  * the above two reasons, bfqq has to wait for the service of at least
1370  * one full budget of another queue before being served again, then
1371  * bfqq is likely to get a much lower bandwidth or resource time than
1372  * its reserved ones. To address this issue, two countermeasures need
1373  * to be taken.
1374  *
1375  * First, the budget and the timestamps of bfqq need to be updated in
1376  * a special way on bfqq reactivation: they need to be updated as if
1377  * bfqq did not remain idle and did not expire. In fact, if they are
1378  * computed as if bfqq expired and remained idle until reactivation,
1379  * then the process associated with bfqq is treated as if, instead of
1380  * being greedy, it stopped issuing requests when bfqq remained idle,
1381  * and restarts issuing requests only on this reactivation. In other
1382  * words, the scheduler does not help the process recover the "service
1383  * hole" between bfqq expiration and reactivation. As a consequence,
1384  * the process receives a lower bandwidth than its reserved one. In
1385  * contrast, to recover this hole, the budget must be updated as if
1386  * bfqq was not expired at all before this reactivation, i.e., it must
1387  * be set to the value of the remaining budget when bfqq was
1388  * expired. Along the same line, timestamps need to be assigned the
1389  * value they had the last time bfqq was selected for service, i.e.,
1390  * before last expiration. Thus timestamps need to be back-shifted
1391  * with respect to their normal computation (see [1] for more details
1392  * on this tricky aspect).
1393  *
1394  * Secondly, to allow the process to recover the hole, the in-service
1395  * queue must be expired too, to give bfqq the chance to preempt it
1396  * immediately. In fact, if bfqq has to wait for a full budget of the
1397  * in-service queue to be completed, then it may become impossible to
1398  * let the process recover the hole, even if the back-shifted
1399  * timestamps of bfqq are lower than those of the in-service queue. If
1400  * this happens for most or all of the holes, then the process may not
1401  * receive its reserved bandwidth. In this respect, it is worth noting
1402  * that, being the service of outstanding requests unpreemptible, a
1403  * little fraction of the holes may however be unrecoverable, thereby
1404  * causing a little loss of bandwidth.
1405  *
1406  * The last important point is detecting whether bfqq does need this
1407  * bandwidth recovery. In this respect, the next function deems the
1408  * process associated with bfqq greedy, and thus allows it to recover
1409  * the hole, if: 1) the process is waiting for the arrival of a new
1410  * request (which implies that bfqq expired for one of the above two
1411  * reasons), and 2) such a request has arrived soon. The first
1412  * condition is controlled through the flag non_blocking_wait_rq,
1413  * while the second through the flag arrived_in_time. If both
1414  * conditions hold, then the function computes the budget in the
1415  * above-described special way, and signals that the in-service queue
1416  * should be expired. Timestamp back-shifting is done later in
1417  * __bfq_activate_entity.
1418  *
1419  * 2. Reduce latency. Even if timestamps are not backshifted to let
1420  * the process associated with bfqq recover a service hole, bfqq may
1421  * however happen to have, after being (re)activated, a lower finish
1422  * timestamp than the in-service queue.	 That is, the next budget of
1423  * bfqq may have to be completed before the one of the in-service
1424  * queue. If this is the case, then preempting the in-service queue
1425  * allows this goal to be achieved, apart from the unpreemptible,
1426  * outstanding requests mentioned above.
1427  *
1428  * Unfortunately, regardless of which of the above two goals one wants
1429  * to achieve, service trees need first to be updated to know whether
1430  * the in-service queue must be preempted. To have service trees
1431  * correctly updated, the in-service queue must be expired and
1432  * rescheduled, and bfqq must be scheduled too. This is one of the
1433  * most costly operations (in future versions, the scheduling
1434  * mechanism may be re-designed in such a way to make it possible to
1435  * know whether preemption is needed without needing to update service
1436  * trees). In addition, queue preemptions almost always cause random
1437  * I/O, which may in turn cause loss of throughput. Finally, there may
1438  * even be no in-service queue when the next function is invoked (so,
1439  * no queue to compare timestamps with). Because of these facts, the
1440  * next function adopts the following simple scheme to avoid costly
1441  * operations, too frequent preemptions and too many dependencies on
1442  * the state of the scheduler: it requests the expiration of the
1443  * in-service queue (unconditionally) only for queues that need to
1444  * recover a hole. Then it delegates to other parts of the code the
1445  * responsibility of handling the above case 2.
1446  */
bfq_bfqq_update_budg_for_activation(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool arrived_in_time)1447 static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1448 						struct bfq_queue *bfqq,
1449 						bool arrived_in_time)
1450 {
1451 	struct bfq_entity *entity = &bfqq->entity;
1452 
1453 	/*
1454 	 * In the next compound condition, we check also whether there
1455 	 * is some budget left, because otherwise there is no point in
1456 	 * trying to go on serving bfqq with this same budget: bfqq
1457 	 * would be expired immediately after being selected for
1458 	 * service. This would only cause useless overhead.
1459 	 */
1460 	if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1461 	    bfq_bfqq_budget_left(bfqq) > 0) {
1462 		/*
1463 		 * We do not clear the flag non_blocking_wait_rq here, as
1464 		 * the latter is used in bfq_activate_bfqq to signal
1465 		 * that timestamps need to be back-shifted (and is
1466 		 * cleared right after).
1467 		 */
1468 
1469 		/*
1470 		 * In next assignment we rely on that either
1471 		 * entity->service or entity->budget are not updated
1472 		 * on expiration if bfqq is empty (see
1473 		 * __bfq_bfqq_recalc_budget). Thus both quantities
1474 		 * remain unchanged after such an expiration, and the
1475 		 * following statement therefore assigns to
1476 		 * entity->budget the remaining budget on such an
1477 		 * expiration.
1478 		 */
1479 		entity->budget = min_t(unsigned long,
1480 				       bfq_bfqq_budget_left(bfqq),
1481 				       bfqq->max_budget);
1482 
1483 		/*
1484 		 * At this point, we have used entity->service to get
1485 		 * the budget left (needed for updating
1486 		 * entity->budget). Thus we finally can, and have to,
1487 		 * reset entity->service. The latter must be reset
1488 		 * because bfqq would otherwise be charged again for
1489 		 * the service it has received during its previous
1490 		 * service slot(s).
1491 		 */
1492 		entity->service = 0;
1493 
1494 		return true;
1495 	}
1496 
1497 	/*
1498 	 * We can finally complete expiration, by setting service to 0.
1499 	 */
1500 	entity->service = 0;
1501 	entity->budget = max_t(unsigned long, bfqq->max_budget,
1502 			       bfq_serv_to_charge(bfqq->next_rq, bfqq));
1503 	bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1504 	return false;
1505 }
1506 
1507 /*
1508  * Return the farthest past time instant according to jiffies
1509  * macros.
1510  */
bfq_smallest_from_now(void)1511 static unsigned long bfq_smallest_from_now(void)
1512 {
1513 	return jiffies - MAX_JIFFY_OFFSET;
1514 }
1515 
bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data * bfqd,struct bfq_queue * bfqq,unsigned int old_wr_coeff,bool wr_or_deserves_wr,bool interactive,bool in_burst,bool soft_rt)1516 static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1517 					     struct bfq_queue *bfqq,
1518 					     unsigned int old_wr_coeff,
1519 					     bool wr_or_deserves_wr,
1520 					     bool interactive,
1521 					     bool in_burst,
1522 					     bool soft_rt)
1523 {
1524 	if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1525 		/* start a weight-raising period */
1526 		if (interactive) {
1527 			bfqq->service_from_wr = 0;
1528 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1529 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1530 		} else {
1531 			/*
1532 			 * No interactive weight raising in progress
1533 			 * here: assign minus infinity to
1534 			 * wr_start_at_switch_to_srt, to make sure
1535 			 * that, at the end of the soft-real-time
1536 			 * weight raising periods that is starting
1537 			 * now, no interactive weight-raising period
1538 			 * may be wrongly considered as still in
1539 			 * progress (and thus actually started by
1540 			 * mistake).
1541 			 */
1542 			bfqq->wr_start_at_switch_to_srt =
1543 				bfq_smallest_from_now();
1544 			bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1545 				BFQ_SOFTRT_WEIGHT_FACTOR;
1546 			bfqq->wr_cur_max_time =
1547 				bfqd->bfq_wr_rt_max_time;
1548 		}
1549 
1550 		/*
1551 		 * If needed, further reduce budget to make sure it is
1552 		 * close to bfqq's backlog, so as to reduce the
1553 		 * scheduling-error component due to a too large
1554 		 * budget. Do not care about throughput consequences,
1555 		 * but only about latency. Finally, do not assign a
1556 		 * too small budget either, to avoid increasing
1557 		 * latency by causing too frequent expirations.
1558 		 */
1559 		bfqq->entity.budget = min_t(unsigned long,
1560 					    bfqq->entity.budget,
1561 					    2 * bfq_min_budget(bfqd));
1562 	} else if (old_wr_coeff > 1) {
1563 		if (interactive) { /* update wr coeff and duration */
1564 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1565 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1566 		} else if (in_burst)
1567 			bfqq->wr_coeff = 1;
1568 		else if (soft_rt) {
1569 			/*
1570 			 * The application is now or still meeting the
1571 			 * requirements for being deemed soft rt.  We
1572 			 * can then correctly and safely (re)charge
1573 			 * the weight-raising duration for the
1574 			 * application with the weight-raising
1575 			 * duration for soft rt applications.
1576 			 *
1577 			 * In particular, doing this recharge now, i.e.,
1578 			 * before the weight-raising period for the
1579 			 * application finishes, reduces the probability
1580 			 * of the following negative scenario:
1581 			 * 1) the weight of a soft rt application is
1582 			 *    raised at startup (as for any newly
1583 			 *    created application),
1584 			 * 2) since the application is not interactive,
1585 			 *    at a certain time weight-raising is
1586 			 *    stopped for the application,
1587 			 * 3) at that time the application happens to
1588 			 *    still have pending requests, and hence
1589 			 *    is destined to not have a chance to be
1590 			 *    deemed soft rt before these requests are
1591 			 *    completed (see the comments to the
1592 			 *    function bfq_bfqq_softrt_next_start()
1593 			 *    for details on soft rt detection),
1594 			 * 4) these pending requests experience a high
1595 			 *    latency because the application is not
1596 			 *    weight-raised while they are pending.
1597 			 */
1598 			if (bfqq->wr_cur_max_time !=
1599 				bfqd->bfq_wr_rt_max_time) {
1600 				bfqq->wr_start_at_switch_to_srt =
1601 					bfqq->last_wr_start_finish;
1602 
1603 				bfqq->wr_cur_max_time =
1604 					bfqd->bfq_wr_rt_max_time;
1605 				bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1606 					BFQ_SOFTRT_WEIGHT_FACTOR;
1607 			}
1608 			bfqq->last_wr_start_finish = jiffies;
1609 		}
1610 	}
1611 }
1612 
bfq_bfqq_idle_for_long_time(struct bfq_data * bfqd,struct bfq_queue * bfqq)1613 static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1614 					struct bfq_queue *bfqq)
1615 {
1616 	return bfqq->dispatched == 0 &&
1617 		time_is_before_jiffies(
1618 			bfqq->budget_timeout +
1619 			bfqd->bfq_wr_min_idle_time);
1620 }
1621 
1622 
1623 /*
1624  * Return true if bfqq is in a higher priority class, or has a higher
1625  * weight than the in-service queue.
1626  */
bfq_bfqq_higher_class_or_weight(struct bfq_queue * bfqq,struct bfq_queue * in_serv_bfqq)1627 static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1628 					    struct bfq_queue *in_serv_bfqq)
1629 {
1630 	int bfqq_weight, in_serv_weight;
1631 
1632 	if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1633 		return true;
1634 
1635 	if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1636 		bfqq_weight = bfqq->entity.weight;
1637 		in_serv_weight = in_serv_bfqq->entity.weight;
1638 	} else {
1639 		if (bfqq->entity.parent)
1640 			bfqq_weight = bfqq->entity.parent->weight;
1641 		else
1642 			bfqq_weight = bfqq->entity.weight;
1643 		if (in_serv_bfqq->entity.parent)
1644 			in_serv_weight = in_serv_bfqq->entity.parent->weight;
1645 		else
1646 			in_serv_weight = in_serv_bfqq->entity.weight;
1647 	}
1648 
1649 	return bfqq_weight > in_serv_weight;
1650 }
1651 
bfq_bfqq_handle_idle_busy_switch(struct bfq_data * bfqd,struct bfq_queue * bfqq,int old_wr_coeff,struct request * rq,bool * interactive)1652 static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1653 					     struct bfq_queue *bfqq,
1654 					     int old_wr_coeff,
1655 					     struct request *rq,
1656 					     bool *interactive)
1657 {
1658 	bool soft_rt, in_burst,	wr_or_deserves_wr,
1659 		bfqq_wants_to_preempt,
1660 		idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
1661 		/*
1662 		 * See the comments on
1663 		 * bfq_bfqq_update_budg_for_activation for
1664 		 * details on the usage of the next variable.
1665 		 */
1666 		arrived_in_time =  ktime_get_ns() <=
1667 			bfqq->ttime.last_end_request +
1668 			bfqd->bfq_slice_idle * 3;
1669 
1670 
1671 	/*
1672 	 * bfqq deserves to be weight-raised if:
1673 	 * - it is sync,
1674 	 * - it does not belong to a large burst,
1675 	 * - it has been idle for enough time or is soft real-time,
1676 	 * - is linked to a bfq_io_cq (it is not shared in any sense).
1677 	 */
1678 	in_burst = bfq_bfqq_in_large_burst(bfqq);
1679 	soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
1680 		!BFQQ_TOTALLY_SEEKY(bfqq) &&
1681 		!in_burst &&
1682 		time_is_before_jiffies(bfqq->soft_rt_next_start) &&
1683 		bfqq->dispatched == 0;
1684 	*interactive = !in_burst && idle_for_long_time;
1685 	wr_or_deserves_wr = bfqd->low_latency &&
1686 		(bfqq->wr_coeff > 1 ||
1687 		 (bfq_bfqq_sync(bfqq) &&
1688 		  bfqq->bic && (*interactive || soft_rt)));
1689 
1690 	/*
1691 	 * Using the last flag, update budget and check whether bfqq
1692 	 * may want to preempt the in-service queue.
1693 	 */
1694 	bfqq_wants_to_preempt =
1695 		bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
1696 						    arrived_in_time);
1697 
1698 	/*
1699 	 * If bfqq happened to be activated in a burst, but has been
1700 	 * idle for much more than an interactive queue, then we
1701 	 * assume that, in the overall I/O initiated in the burst, the
1702 	 * I/O associated with bfqq is finished. So bfqq does not need
1703 	 * to be treated as a queue belonging to a burst
1704 	 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1705 	 * if set, and remove bfqq from the burst list if it's
1706 	 * there. We do not decrement burst_size, because the fact
1707 	 * that bfqq does not need to belong to the burst list any
1708 	 * more does not invalidate the fact that bfqq was created in
1709 	 * a burst.
1710 	 */
1711 	if (likely(!bfq_bfqq_just_created(bfqq)) &&
1712 	    idle_for_long_time &&
1713 	    time_is_before_jiffies(
1714 		    bfqq->budget_timeout +
1715 		    msecs_to_jiffies(10000))) {
1716 		hlist_del_init(&bfqq->burst_list_node);
1717 		bfq_clear_bfqq_in_large_burst(bfqq);
1718 	}
1719 
1720 	bfq_clear_bfqq_just_created(bfqq);
1721 
1722 
1723 	if (!bfq_bfqq_IO_bound(bfqq)) {
1724 		if (arrived_in_time) {
1725 			bfqq->requests_within_timer++;
1726 			if (bfqq->requests_within_timer >=
1727 			    bfqd->bfq_requests_within_timer)
1728 				bfq_mark_bfqq_IO_bound(bfqq);
1729 		} else
1730 			bfqq->requests_within_timer = 0;
1731 	}
1732 
1733 	if (bfqd->low_latency) {
1734 		if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1735 			/* wraparound */
1736 			bfqq->split_time =
1737 				jiffies - bfqd->bfq_wr_min_idle_time - 1;
1738 
1739 		if (time_is_before_jiffies(bfqq->split_time +
1740 					   bfqd->bfq_wr_min_idle_time)) {
1741 			bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1742 							 old_wr_coeff,
1743 							 wr_or_deserves_wr,
1744 							 *interactive,
1745 							 in_burst,
1746 							 soft_rt);
1747 
1748 			if (old_wr_coeff != bfqq->wr_coeff)
1749 				bfqq->entity.prio_changed = 1;
1750 		}
1751 	}
1752 
1753 	bfqq->last_idle_bklogged = jiffies;
1754 	bfqq->service_from_backlogged = 0;
1755 	bfq_clear_bfqq_softrt_update(bfqq);
1756 
1757 	bfq_add_bfqq_busy(bfqd, bfqq);
1758 
1759 	/*
1760 	 * Expire in-service queue only if preemption may be needed
1761 	 * for guarantees. In particular, we care only about two
1762 	 * cases. The first is that bfqq has to recover a service
1763 	 * hole, as explained in the comments on
1764 	 * bfq_bfqq_update_budg_for_activation(), i.e., that
1765 	 * bfqq_wants_to_preempt is true. However, if bfqq does not
1766 	 * carry time-critical I/O, then bfqq's bandwidth is less
1767 	 * important than that of queues that carry time-critical I/O.
1768 	 * So, as a further constraint, we consider this case only if
1769 	 * bfqq is at least as weight-raised, i.e., at least as time
1770 	 * critical, as the in-service queue.
1771 	 *
1772 	 * The second case is that bfqq is in a higher priority class,
1773 	 * or has a higher weight than the in-service queue. If this
1774 	 * condition does not hold, we don't care because, even if
1775 	 * bfqq does not start to be served immediately, the resulting
1776 	 * delay for bfqq's I/O is however lower or much lower than
1777 	 * the ideal completion time to be guaranteed to bfqq's I/O.
1778 	 *
1779 	 * In both cases, preemption is needed only if, according to
1780 	 * the timestamps of both bfqq and of the in-service queue,
1781 	 * bfqq actually is the next queue to serve. So, to reduce
1782 	 * useless preemptions, the return value of
1783 	 * next_queue_may_preempt() is considered in the next compound
1784 	 * condition too. Yet next_queue_may_preempt() just checks a
1785 	 * simple, necessary condition for bfqq to be the next queue
1786 	 * to serve. In fact, to evaluate a sufficient condition, the
1787 	 * timestamps of the in-service queue would need to be
1788 	 * updated, and this operation is quite costly (see the
1789 	 * comments on bfq_bfqq_update_budg_for_activation()).
1790 	 */
1791 	if (bfqd->in_service_queue &&
1792 	    ((bfqq_wants_to_preempt &&
1793 	      bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
1794 	     bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue)) &&
1795 	    next_queue_may_preempt(bfqd))
1796 		bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1797 				false, BFQQE_PREEMPTED);
1798 }
1799 
bfq_reset_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)1800 static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1801 				   struct bfq_queue *bfqq)
1802 {
1803 	/* invalidate baseline total service time */
1804 	bfqq->last_serv_time_ns = 0;
1805 
1806 	/*
1807 	 * Reset pointer in case we are waiting for
1808 	 * some request completion.
1809 	 */
1810 	bfqd->waited_rq = NULL;
1811 
1812 	/*
1813 	 * If bfqq has a short think time, then start by setting the
1814 	 * inject limit to 0 prudentially, because the service time of
1815 	 * an injected I/O request may be higher than the think time
1816 	 * of bfqq, and therefore, if one request was injected when
1817 	 * bfqq remains empty, this injected request might delay the
1818 	 * service of the next I/O request for bfqq significantly. In
1819 	 * case bfqq can actually tolerate some injection, then the
1820 	 * adaptive update will however raise the limit soon. This
1821 	 * lucky circumstance holds exactly because bfqq has a short
1822 	 * think time, and thus, after remaining empty, is likely to
1823 	 * get new I/O enqueued---and then completed---before being
1824 	 * expired. This is the very pattern that gives the
1825 	 * limit-update algorithm the chance to measure the effect of
1826 	 * injection on request service times, and then to update the
1827 	 * limit accordingly.
1828 	 *
1829 	 * However, in the following special case, the inject limit is
1830 	 * left to 1 even if the think time is short: bfqq's I/O is
1831 	 * synchronized with that of some other queue, i.e., bfqq may
1832 	 * receive new I/O only after the I/O of the other queue is
1833 	 * completed. Keeping the inject limit to 1 allows the
1834 	 * blocking I/O to be served while bfqq is in service. And
1835 	 * this is very convenient both for bfqq and for overall
1836 	 * throughput, as explained in detail in the comments in
1837 	 * bfq_update_has_short_ttime().
1838 	 *
1839 	 * On the opposite end, if bfqq has a long think time, then
1840 	 * start directly by 1, because:
1841 	 * a) on the bright side, keeping at most one request in
1842 	 * service in the drive is unlikely to cause any harm to the
1843 	 * latency of bfqq's requests, as the service time of a single
1844 	 * request is likely to be lower than the think time of bfqq;
1845 	 * b) on the downside, after becoming empty, bfqq is likely to
1846 	 * expire before getting its next request. With this request
1847 	 * arrival pattern, it is very hard to sample total service
1848 	 * times and update the inject limit accordingly (see comments
1849 	 * on bfq_update_inject_limit()). So the limit is likely to be
1850 	 * never, or at least seldom, updated.  As a consequence, by
1851 	 * setting the limit to 1, we avoid that no injection ever
1852 	 * occurs with bfqq. On the downside, this proactive step
1853 	 * further reduces chances to actually compute the baseline
1854 	 * total service time. Thus it reduces chances to execute the
1855 	 * limit-update algorithm and possibly raise the limit to more
1856 	 * than 1.
1857 	 */
1858 	if (bfq_bfqq_has_short_ttime(bfqq))
1859 		bfqq->inject_limit = 0;
1860 	else
1861 		bfqq->inject_limit = 1;
1862 
1863 	bfqq->decrease_time_jif = jiffies;
1864 }
1865 
bfq_add_request(struct request * rq)1866 static void bfq_add_request(struct request *rq)
1867 {
1868 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
1869 	struct bfq_data *bfqd = bfqq->bfqd;
1870 	struct request *next_rq, *prev;
1871 	unsigned int old_wr_coeff = bfqq->wr_coeff;
1872 	bool interactive = false;
1873 
1874 	bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1875 	bfqq->queued[rq_is_sync(rq)]++;
1876 	bfqd->queued++;
1877 
1878 	if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
1879 		/*
1880 		 * Detect whether bfqq's I/O seems synchronized with
1881 		 * that of some other queue, i.e., whether bfqq, after
1882 		 * remaining empty, happens to receive new I/O only
1883 		 * right after some I/O request of the other queue has
1884 		 * been completed. We call waker queue the other
1885 		 * queue, and we assume, for simplicity, that bfqq may
1886 		 * have at most one waker queue.
1887 		 *
1888 		 * A remarkable throughput boost can be reached by
1889 		 * unconditionally injecting the I/O of the waker
1890 		 * queue, every time a new bfq_dispatch_request
1891 		 * happens to be invoked while I/O is being plugged
1892 		 * for bfqq.  In addition to boosting throughput, this
1893 		 * unblocks bfqq's I/O, thereby improving bandwidth
1894 		 * and latency for bfqq. Note that these same results
1895 		 * may be achieved with the general injection
1896 		 * mechanism, but less effectively. For details on
1897 		 * this aspect, see the comments on the choice of the
1898 		 * queue for injection in bfq_select_queue().
1899 		 *
1900 		 * Turning back to the detection of a waker queue, a
1901 		 * queue Q is deemed as a waker queue for bfqq if, for
1902 		 * two consecutive times, bfqq happens to become non
1903 		 * empty right after a request of Q has been
1904 		 * completed. In particular, on the first time, Q is
1905 		 * tentatively set as a candidate waker queue, while
1906 		 * on the second time, the flag
1907 		 * bfq_bfqq_has_waker(bfqq) is set to confirm that Q
1908 		 * is a waker queue for bfqq. These detection steps
1909 		 * are performed only if bfqq has a long think time,
1910 		 * so as to make it more likely that bfqq's I/O is
1911 		 * actually being blocked by a synchronization. This
1912 		 * last filter, plus the above two-times requirement,
1913 		 * make false positives less likely.
1914 		 *
1915 		 * NOTE
1916 		 *
1917 		 * The sooner a waker queue is detected, the sooner
1918 		 * throughput can be boosted by injecting I/O from the
1919 		 * waker queue. Fortunately, detection is likely to be
1920 		 * actually fast, for the following reasons. While
1921 		 * blocked by synchronization, bfqq has a long think
1922 		 * time. This implies that bfqq's inject limit is at
1923 		 * least equal to 1 (see the comments in
1924 		 * bfq_update_inject_limit()). So, thanks to
1925 		 * injection, the waker queue is likely to be served
1926 		 * during the very first I/O-plugging time interval
1927 		 * for bfqq. This triggers the first step of the
1928 		 * detection mechanism. Thanks again to injection, the
1929 		 * candidate waker queue is then likely to be
1930 		 * confirmed no later than during the next
1931 		 * I/O-plugging interval for bfqq.
1932 		 */
1933 		if (bfqd->last_completed_rq_bfqq &&
1934 		    !bfq_bfqq_has_short_ttime(bfqq) &&
1935 		    ktime_get_ns() - bfqd->last_completion <
1936 		    200 * NSEC_PER_USEC) {
1937 			if (bfqd->last_completed_rq_bfqq != bfqq &&
1938 			    bfqd->last_completed_rq_bfqq !=
1939 			    bfqq->waker_bfqq) {
1940 				/*
1941 				 * First synchronization detected with
1942 				 * a candidate waker queue, or with a
1943 				 * different candidate waker queue
1944 				 * from the current one.
1945 				 */
1946 				bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
1947 
1948 				/*
1949 				 * If the waker queue disappears, then
1950 				 * bfqq->waker_bfqq must be reset. To
1951 				 * this goal, we maintain in each
1952 				 * waker queue a list, woken_list, of
1953 				 * all the queues that reference the
1954 				 * waker queue through their
1955 				 * waker_bfqq pointer. When the waker
1956 				 * queue exits, the waker_bfqq pointer
1957 				 * of all the queues in the woken_list
1958 				 * is reset.
1959 				 *
1960 				 * In addition, if bfqq is already in
1961 				 * the woken_list of a waker queue,
1962 				 * then, before being inserted into
1963 				 * the woken_list of a new waker
1964 				 * queue, bfqq must be removed from
1965 				 * the woken_list of the old waker
1966 				 * queue.
1967 				 */
1968 				if (!hlist_unhashed(&bfqq->woken_list_node))
1969 					hlist_del_init(&bfqq->woken_list_node);
1970 				hlist_add_head(&bfqq->woken_list_node,
1971 				    &bfqd->last_completed_rq_bfqq->woken_list);
1972 
1973 				bfq_clear_bfqq_has_waker(bfqq);
1974 			} else if (bfqd->last_completed_rq_bfqq ==
1975 				   bfqq->waker_bfqq &&
1976 				   !bfq_bfqq_has_waker(bfqq)) {
1977 				/*
1978 				 * synchronization with waker_bfqq
1979 				 * seen for the second time
1980 				 */
1981 				bfq_mark_bfqq_has_waker(bfqq);
1982 			}
1983 		}
1984 
1985 		/*
1986 		 * Periodically reset inject limit, to make sure that
1987 		 * the latter eventually drops in case workload
1988 		 * changes, see step (3) in the comments on
1989 		 * bfq_update_inject_limit().
1990 		 */
1991 		if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
1992 					     msecs_to_jiffies(1000)))
1993 			bfq_reset_inject_limit(bfqd, bfqq);
1994 
1995 		/*
1996 		 * The following conditions must hold to setup a new
1997 		 * sampling of total service time, and then a new
1998 		 * update of the inject limit:
1999 		 * - bfqq is in service, because the total service
2000 		 *   time is evaluated only for the I/O requests of
2001 		 *   the queues in service;
2002 		 * - this is the right occasion to compute or to
2003 		 *   lower the baseline total service time, because
2004 		 *   there are actually no requests in the drive,
2005 		 *   or
2006 		 *   the baseline total service time is available, and
2007 		 *   this is the right occasion to compute the other
2008 		 *   quantity needed to update the inject limit, i.e.,
2009 		 *   the total service time caused by the amount of
2010 		 *   injection allowed by the current value of the
2011 		 *   limit. It is the right occasion because injection
2012 		 *   has actually been performed during the service
2013 		 *   hole, and there are still in-flight requests,
2014 		 *   which are very likely to be exactly the injected
2015 		 *   requests, or part of them;
2016 		 * - the minimum interval for sampling the total
2017 		 *   service time and updating the inject limit has
2018 		 *   elapsed.
2019 		 */
2020 		if (bfqq == bfqd->in_service_queue &&
2021 		    (bfqd->rq_in_driver == 0 ||
2022 		     (bfqq->last_serv_time_ns > 0 &&
2023 		      bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2024 		    time_is_before_eq_jiffies(bfqq->decrease_time_jif +
2025 					      msecs_to_jiffies(10))) {
2026 			bfqd->last_empty_occupied_ns = ktime_get_ns();
2027 			/*
2028 			 * Start the state machine for measuring the
2029 			 * total service time of rq: setting
2030 			 * wait_dispatch will cause bfqd->waited_rq to
2031 			 * be set when rq will be dispatched.
2032 			 */
2033 			bfqd->wait_dispatch = true;
2034 			/*
2035 			 * If there is no I/O in service in the drive,
2036 			 * then possible injection occurred before the
2037 			 * arrival of rq will not affect the total
2038 			 * service time of rq. So the injection limit
2039 			 * must not be updated as a function of such
2040 			 * total service time, unless new injection
2041 			 * occurs before rq is completed. To have the
2042 			 * injection limit updated only in the latter
2043 			 * case, reset rqs_injected here (rqs_injected
2044 			 * will be set in case injection is performed
2045 			 * on bfqq before rq is completed).
2046 			 */
2047 			if (bfqd->rq_in_driver == 0)
2048 				bfqd->rqs_injected = false;
2049 		}
2050 	}
2051 
2052 	elv_rb_add(&bfqq->sort_list, rq);
2053 
2054 	/*
2055 	 * Check if this request is a better next-serve candidate.
2056 	 */
2057 	prev = bfqq->next_rq;
2058 	next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2059 	bfqq->next_rq = next_rq;
2060 
2061 	/*
2062 	 * Adjust priority tree position, if next_rq changes.
2063 	 * See comments on bfq_pos_tree_add_move() for the unlikely().
2064 	 */
2065 	if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
2066 		bfq_pos_tree_add_move(bfqd, bfqq);
2067 
2068 	if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
2069 		bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2070 						 rq, &interactive);
2071 	else {
2072 		if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2073 		    time_is_before_jiffies(
2074 				bfqq->last_wr_start_finish +
2075 				bfqd->bfq_wr_min_inter_arr_async)) {
2076 			bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2077 			bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2078 
2079 			bfqd->wr_busy_queues++;
2080 			bfqq->entity.prio_changed = 1;
2081 		}
2082 		if (prev != bfqq->next_rq)
2083 			bfq_updated_next_req(bfqd, bfqq);
2084 	}
2085 
2086 	/*
2087 	 * Assign jiffies to last_wr_start_finish in the following
2088 	 * cases:
2089 	 *
2090 	 * . if bfqq is not going to be weight-raised, because, for
2091 	 *   non weight-raised queues, last_wr_start_finish stores the
2092 	 *   arrival time of the last request; as of now, this piece
2093 	 *   of information is used only for deciding whether to
2094 	 *   weight-raise async queues
2095 	 *
2096 	 * . if bfqq is not weight-raised, because, if bfqq is now
2097 	 *   switching to weight-raised, then last_wr_start_finish
2098 	 *   stores the time when weight-raising starts
2099 	 *
2100 	 * . if bfqq is interactive, because, regardless of whether
2101 	 *   bfqq is currently weight-raised, the weight-raising
2102 	 *   period must start or restart (this case is considered
2103 	 *   separately because it is not detected by the above
2104 	 *   conditions, if bfqq is already weight-raised)
2105 	 *
2106 	 * last_wr_start_finish has to be updated also if bfqq is soft
2107 	 * real-time, because the weight-raising period is constantly
2108 	 * restarted on idle-to-busy transitions for these queues, but
2109 	 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2110 	 * needed.
2111 	 */
2112 	if (bfqd->low_latency &&
2113 		(old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2114 		bfqq->last_wr_start_finish = jiffies;
2115 }
2116 
bfq_find_rq_fmerge(struct bfq_data * bfqd,struct bio * bio,struct request_queue * q)2117 static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2118 					  struct bio *bio,
2119 					  struct request_queue *q)
2120 {
2121 	struct bfq_queue *bfqq = bfqd->bio_bfqq;
2122 
2123 
2124 	if (bfqq)
2125 		return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2126 
2127 	return NULL;
2128 }
2129 
get_sdist(sector_t last_pos,struct request * rq)2130 static sector_t get_sdist(sector_t last_pos, struct request *rq)
2131 {
2132 	if (last_pos)
2133 		return abs(blk_rq_pos(rq) - last_pos);
2134 
2135 	return 0;
2136 }
2137 
2138 #if 0 /* Still not clear if we can do without next two functions */
2139 static void bfq_activate_request(struct request_queue *q, struct request *rq)
2140 {
2141 	struct bfq_data *bfqd = q->elevator->elevator_data;
2142 
2143 	bfqd->rq_in_driver++;
2144 }
2145 
2146 static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2147 {
2148 	struct bfq_data *bfqd = q->elevator->elevator_data;
2149 
2150 	bfqd->rq_in_driver--;
2151 }
2152 #endif
2153 
bfq_remove_request(struct request_queue * q,struct request * rq)2154 static void bfq_remove_request(struct request_queue *q,
2155 			       struct request *rq)
2156 {
2157 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
2158 	struct bfq_data *bfqd = bfqq->bfqd;
2159 	const int sync = rq_is_sync(rq);
2160 
2161 	if (bfqq->next_rq == rq) {
2162 		bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2163 		bfq_updated_next_req(bfqd, bfqq);
2164 	}
2165 
2166 	if (rq->queuelist.prev != &rq->queuelist)
2167 		list_del_init(&rq->queuelist);
2168 	bfqq->queued[sync]--;
2169 	bfqd->queued--;
2170 	elv_rb_del(&bfqq->sort_list, rq);
2171 
2172 	elv_rqhash_del(q, rq);
2173 	if (q->last_merge == rq)
2174 		q->last_merge = NULL;
2175 
2176 	if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2177 		bfqq->next_rq = NULL;
2178 
2179 		if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
2180 			bfq_del_bfqq_busy(bfqd, bfqq, false);
2181 			/*
2182 			 * bfqq emptied. In normal operation, when
2183 			 * bfqq is empty, bfqq->entity.service and
2184 			 * bfqq->entity.budget must contain,
2185 			 * respectively, the service received and the
2186 			 * budget used last time bfqq emptied. These
2187 			 * facts do not hold in this case, as at least
2188 			 * this last removal occurred while bfqq is
2189 			 * not in service. To avoid inconsistencies,
2190 			 * reset both bfqq->entity.service and
2191 			 * bfqq->entity.budget, if bfqq has still a
2192 			 * process that may issue I/O requests to it.
2193 			 */
2194 			bfqq->entity.budget = bfqq->entity.service = 0;
2195 		}
2196 
2197 		/*
2198 		 * Remove queue from request-position tree as it is empty.
2199 		 */
2200 		if (bfqq->pos_root) {
2201 			rb_erase(&bfqq->pos_node, bfqq->pos_root);
2202 			bfqq->pos_root = NULL;
2203 		}
2204 	} else {
2205 		/* see comments on bfq_pos_tree_add_move() for the unlikely() */
2206 		if (unlikely(!bfqd->nonrot_with_queueing))
2207 			bfq_pos_tree_add_move(bfqd, bfqq);
2208 	}
2209 
2210 	if (rq->cmd_flags & REQ_META)
2211 		bfqq->meta_pending--;
2212 
2213 }
2214 
bfq_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)2215 static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
2216 		unsigned int nr_segs)
2217 {
2218 	struct bfq_data *bfqd = q->elevator->elevator_data;
2219 	struct request *free = NULL;
2220 	/*
2221 	 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2222 	 * store its return value for later use, to avoid nesting
2223 	 * queue_lock inside the bfqd->lock. We assume that the bic
2224 	 * returned by bfq_bic_lookup does not go away before
2225 	 * bfqd->lock is taken.
2226 	 */
2227 	struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2228 	bool ret;
2229 
2230 	spin_lock_irq(&bfqd->lock);
2231 
2232 	if (bic) {
2233 		/*
2234 		 * Make sure cgroup info is uptodate for current process before
2235 		 * considering the merge.
2236 		 */
2237 		bfq_bic_update_cgroup(bic, bio);
2238 
2239 		bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2240 	} else {
2241 		bfqd->bio_bfqq = NULL;
2242 	}
2243 	bfqd->bio_bic = bic;
2244 
2245 	ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
2246 
2247 	if (free)
2248 		blk_mq_free_request(free);
2249 	spin_unlock_irq(&bfqd->lock);
2250 
2251 	return ret;
2252 }
2253 
bfq_request_merge(struct request_queue * q,struct request ** req,struct bio * bio)2254 static int bfq_request_merge(struct request_queue *q, struct request **req,
2255 			     struct bio *bio)
2256 {
2257 	struct bfq_data *bfqd = q->elevator->elevator_data;
2258 	struct request *__rq;
2259 
2260 	__rq = bfq_find_rq_fmerge(bfqd, bio, q);
2261 	if (__rq && elv_bio_merge_ok(__rq, bio)) {
2262 		*req = __rq;
2263 
2264 		if (blk_discard_mergable(__rq))
2265 			return ELEVATOR_DISCARD_MERGE;
2266 		return ELEVATOR_FRONT_MERGE;
2267 	}
2268 
2269 	return ELEVATOR_NO_MERGE;
2270 }
2271 
bfq_request_merged(struct request_queue * q,struct request * req,enum elv_merge type)2272 static void bfq_request_merged(struct request_queue *q, struct request *req,
2273 			       enum elv_merge type)
2274 {
2275 	if (type == ELEVATOR_FRONT_MERGE &&
2276 	    rb_prev(&req->rb_node) &&
2277 	    blk_rq_pos(req) <
2278 	    blk_rq_pos(container_of(rb_prev(&req->rb_node),
2279 				    struct request, rb_node))) {
2280 		struct bfq_queue *bfqq = RQ_BFQQ(req);
2281 		struct bfq_data *bfqd;
2282 		struct request *prev, *next_rq;
2283 
2284 		if (!bfqq)
2285 			return;
2286 
2287 		bfqd = bfqq->bfqd;
2288 
2289 		/* Reposition request in its sort_list */
2290 		elv_rb_del(&bfqq->sort_list, req);
2291 		elv_rb_add(&bfqq->sort_list, req);
2292 
2293 		/* Choose next request to be served for bfqq */
2294 		prev = bfqq->next_rq;
2295 		next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2296 					 bfqd->last_position);
2297 		bfqq->next_rq = next_rq;
2298 		/*
2299 		 * If next_rq changes, update both the queue's budget to
2300 		 * fit the new request and the queue's position in its
2301 		 * rq_pos_tree.
2302 		 */
2303 		if (prev != bfqq->next_rq) {
2304 			bfq_updated_next_req(bfqd, bfqq);
2305 			/*
2306 			 * See comments on bfq_pos_tree_add_move() for
2307 			 * the unlikely().
2308 			 */
2309 			if (unlikely(!bfqd->nonrot_with_queueing))
2310 				bfq_pos_tree_add_move(bfqd, bfqq);
2311 		}
2312 	}
2313 }
2314 
2315 /*
2316  * This function is called to notify the scheduler that the requests
2317  * rq and 'next' have been merged, with 'next' going away.  BFQ
2318  * exploits this hook to address the following issue: if 'next' has a
2319  * fifo_time lower that rq, then the fifo_time of rq must be set to
2320  * the value of 'next', to not forget the greater age of 'next'.
2321  *
2322  * NOTE: in this function we assume that rq is in a bfq_queue, basing
2323  * on that rq is picked from the hash table q->elevator->hash, which,
2324  * in its turn, is filled only with I/O requests present in
2325  * bfq_queues, while BFQ is in use for the request queue q. In fact,
2326  * the function that fills this hash table (elv_rqhash_add) is called
2327  * only by bfq_insert_request.
2328  */
bfq_requests_merged(struct request_queue * q,struct request * rq,struct request * next)2329 static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2330 				struct request *next)
2331 {
2332 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
2333 		*next_bfqq = RQ_BFQQ(next);
2334 
2335 	if (!bfqq)
2336 		return;
2337 
2338 	/*
2339 	 * If next and rq belong to the same bfq_queue and next is older
2340 	 * than rq, then reposition rq in the fifo (by substituting next
2341 	 * with rq). Otherwise, if next and rq belong to different
2342 	 * bfq_queues, never reposition rq: in fact, we would have to
2343 	 * reposition it with respect to next's position in its own fifo,
2344 	 * which would most certainly be too expensive with respect to
2345 	 * the benefits.
2346 	 */
2347 	if (bfqq == next_bfqq &&
2348 	    !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2349 	    next->fifo_time < rq->fifo_time) {
2350 		list_del_init(&rq->queuelist);
2351 		list_replace_init(&next->queuelist, &rq->queuelist);
2352 		rq->fifo_time = next->fifo_time;
2353 	}
2354 
2355 	if (bfqq->next_rq == next)
2356 		bfqq->next_rq = rq;
2357 
2358 	bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
2359 }
2360 
2361 /* Must be called with bfqq != NULL */
bfq_bfqq_end_wr(struct bfq_queue * bfqq)2362 static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2363 {
2364 	if (bfq_bfqq_busy(bfqq))
2365 		bfqq->bfqd->wr_busy_queues--;
2366 	bfqq->wr_coeff = 1;
2367 	bfqq->wr_cur_max_time = 0;
2368 	bfqq->last_wr_start_finish = jiffies;
2369 	/*
2370 	 * Trigger a weight change on the next invocation of
2371 	 * __bfq_entity_update_weight_prio.
2372 	 */
2373 	bfqq->entity.prio_changed = 1;
2374 }
2375 
bfq_end_wr_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)2376 void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2377 			     struct bfq_group *bfqg)
2378 {
2379 	int i, j;
2380 
2381 	for (i = 0; i < 2; i++)
2382 		for (j = 0; j < IOPRIO_BE_NR; j++)
2383 			if (bfqg->async_bfqq[i][j])
2384 				bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2385 	if (bfqg->async_idle_bfqq)
2386 		bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2387 }
2388 
bfq_end_wr(struct bfq_data * bfqd)2389 static void bfq_end_wr(struct bfq_data *bfqd)
2390 {
2391 	struct bfq_queue *bfqq;
2392 
2393 	spin_lock_irq(&bfqd->lock);
2394 
2395 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2396 		bfq_bfqq_end_wr(bfqq);
2397 	list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2398 		bfq_bfqq_end_wr(bfqq);
2399 	bfq_end_wr_async(bfqd);
2400 
2401 	spin_unlock_irq(&bfqd->lock);
2402 }
2403 
bfq_io_struct_pos(void * io_struct,bool request)2404 static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2405 {
2406 	if (request)
2407 		return blk_rq_pos(io_struct);
2408 	else
2409 		return ((struct bio *)io_struct)->bi_iter.bi_sector;
2410 }
2411 
bfq_rq_close_to_sector(void * io_struct,bool request,sector_t sector)2412 static int bfq_rq_close_to_sector(void *io_struct, bool request,
2413 				  sector_t sector)
2414 {
2415 	return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2416 	       BFQQ_CLOSE_THR;
2417 }
2418 
bfqq_find_close(struct bfq_data * bfqd,struct bfq_queue * bfqq,sector_t sector)2419 static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2420 					 struct bfq_queue *bfqq,
2421 					 sector_t sector)
2422 {
2423 	struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2424 	struct rb_node *parent, *node;
2425 	struct bfq_queue *__bfqq;
2426 
2427 	if (RB_EMPTY_ROOT(root))
2428 		return NULL;
2429 
2430 	/*
2431 	 * First, if we find a request starting at the end of the last
2432 	 * request, choose it.
2433 	 */
2434 	__bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2435 	if (__bfqq)
2436 		return __bfqq;
2437 
2438 	/*
2439 	 * If the exact sector wasn't found, the parent of the NULL leaf
2440 	 * will contain the closest sector (rq_pos_tree sorted by
2441 	 * next_request position).
2442 	 */
2443 	__bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2444 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2445 		return __bfqq;
2446 
2447 	if (blk_rq_pos(__bfqq->next_rq) < sector)
2448 		node = rb_next(&__bfqq->pos_node);
2449 	else
2450 		node = rb_prev(&__bfqq->pos_node);
2451 	if (!node)
2452 		return NULL;
2453 
2454 	__bfqq = rb_entry(node, struct bfq_queue, pos_node);
2455 	if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2456 		return __bfqq;
2457 
2458 	return NULL;
2459 }
2460 
bfq_find_close_cooperator(struct bfq_data * bfqd,struct bfq_queue * cur_bfqq,sector_t sector)2461 static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2462 						   struct bfq_queue *cur_bfqq,
2463 						   sector_t sector)
2464 {
2465 	struct bfq_queue *bfqq;
2466 
2467 	/*
2468 	 * We shall notice if some of the queues are cooperating,
2469 	 * e.g., working closely on the same area of the device. In
2470 	 * that case, we can group them together and: 1) don't waste
2471 	 * time idling, and 2) serve the union of their requests in
2472 	 * the best possible order for throughput.
2473 	 */
2474 	bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2475 	if (!bfqq || bfqq == cur_bfqq)
2476 		return NULL;
2477 
2478 	return bfqq;
2479 }
2480 
2481 static struct bfq_queue *
bfq_setup_merge(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2482 bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2483 {
2484 	int process_refs, new_process_refs;
2485 	struct bfq_queue *__bfqq;
2486 
2487 	/*
2488 	 * If there are no process references on the new_bfqq, then it is
2489 	 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2490 	 * may have dropped their last reference (not just their last process
2491 	 * reference).
2492 	 */
2493 	if (!bfqq_process_refs(new_bfqq))
2494 		return NULL;
2495 
2496 	/* Avoid a circular list and skip interim queue merges. */
2497 	while ((__bfqq = new_bfqq->new_bfqq)) {
2498 		if (__bfqq == bfqq)
2499 			return NULL;
2500 		new_bfqq = __bfqq;
2501 	}
2502 
2503 	process_refs = bfqq_process_refs(bfqq);
2504 	new_process_refs = bfqq_process_refs(new_bfqq);
2505 	/*
2506 	 * If the process for the bfqq has gone away, there is no
2507 	 * sense in merging the queues.
2508 	 */
2509 	if (process_refs == 0 || new_process_refs == 0)
2510 		return NULL;
2511 
2512 	/*
2513 	 * Make sure merged queues belong to the same parent. Parents could
2514 	 * have changed since the time we decided the two queues are suitable
2515 	 * for merging.
2516 	 */
2517 	if (new_bfqq->entity.parent != bfqq->entity.parent)
2518 		return NULL;
2519 
2520 	bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2521 		new_bfqq->pid);
2522 
2523 	/*
2524 	 * Merging is just a redirection: the requests of the process
2525 	 * owning one of the two queues are redirected to the other queue.
2526 	 * The latter queue, in its turn, is set as shared if this is the
2527 	 * first time that the requests of some process are redirected to
2528 	 * it.
2529 	 *
2530 	 * We redirect bfqq to new_bfqq and not the opposite, because
2531 	 * we are in the context of the process owning bfqq, thus we
2532 	 * have the io_cq of this process. So we can immediately
2533 	 * configure this io_cq to redirect the requests of the
2534 	 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2535 	 * not available any more (new_bfqq->bic == NULL).
2536 	 *
2537 	 * Anyway, even in case new_bfqq coincides with the in-service
2538 	 * queue, redirecting requests the in-service queue is the
2539 	 * best option, as we feed the in-service queue with new
2540 	 * requests close to the last request served and, by doing so,
2541 	 * are likely to increase the throughput.
2542 	 */
2543 	bfqq->new_bfqq = new_bfqq;
2544 	/*
2545 	 * The above assignment schedules the following redirections:
2546 	 * each time some I/O for bfqq arrives, the process that
2547 	 * generated that I/O is disassociated from bfqq and
2548 	 * associated with new_bfqq. Here we increases new_bfqq->ref
2549 	 * in advance, adding the number of processes that are
2550 	 * expected to be associated with new_bfqq as they happen to
2551 	 * issue I/O.
2552 	 */
2553 	new_bfqq->ref += process_refs;
2554 	return new_bfqq;
2555 }
2556 
bfq_may_be_close_cooperator(struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2557 static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2558 					struct bfq_queue *new_bfqq)
2559 {
2560 	if (bfq_too_late_for_merging(new_bfqq))
2561 		return false;
2562 
2563 	if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2564 	    (bfqq->ioprio_class != new_bfqq->ioprio_class))
2565 		return false;
2566 
2567 	/*
2568 	 * If either of the queues has already been detected as seeky,
2569 	 * then merging it with the other queue is unlikely to lead to
2570 	 * sequential I/O.
2571 	 */
2572 	if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2573 		return false;
2574 
2575 	/*
2576 	 * Interleaved I/O is known to be done by (some) applications
2577 	 * only for reads, so it does not make sense to merge async
2578 	 * queues.
2579 	 */
2580 	if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2581 		return false;
2582 
2583 	return true;
2584 }
2585 
2586 /*
2587  * Attempt to schedule a merge of bfqq with the currently in-service
2588  * queue or with a close queue among the scheduled queues.  Return
2589  * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2590  * structure otherwise.
2591  *
2592  * The OOM queue is not allowed to participate to cooperation: in fact, since
2593  * the requests temporarily redirected to the OOM queue could be redirected
2594  * again to dedicated queues at any time, the state needed to correctly
2595  * handle merging with the OOM queue would be quite complex and expensive
2596  * to maintain. Besides, in such a critical condition as an out of memory,
2597  * the benefits of queue merging may be little relevant, or even negligible.
2598  *
2599  * WARNING: queue merging may impair fairness among non-weight raised
2600  * queues, for at least two reasons: 1) the original weight of a
2601  * merged queue may change during the merged state, 2) even being the
2602  * weight the same, a merged queue may be bloated with many more
2603  * requests than the ones produced by its originally-associated
2604  * process.
2605  */
2606 static struct bfq_queue *
bfq_setup_cooperator(struct bfq_data * bfqd,struct bfq_queue * bfqq,void * io_struct,bool request)2607 bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2608 		     void *io_struct, bool request)
2609 {
2610 	struct bfq_queue *in_service_bfqq, *new_bfqq;
2611 
2612 	/* if a merge has already been setup, then proceed with that first */
2613 	if (bfqq->new_bfqq)
2614 		return bfqq->new_bfqq;
2615 
2616 	/*
2617 	 * Do not perform queue merging if the device is non
2618 	 * rotational and performs internal queueing. In fact, such a
2619 	 * device reaches a high speed through internal parallelism
2620 	 * and pipelining. This means that, to reach a high
2621 	 * throughput, it must have many requests enqueued at the same
2622 	 * time. But, in this configuration, the internal scheduling
2623 	 * algorithm of the device does exactly the job of queue
2624 	 * merging: it reorders requests so as to obtain as much as
2625 	 * possible a sequential I/O pattern. As a consequence, with
2626 	 * the workload generated by processes doing interleaved I/O,
2627 	 * the throughput reached by the device is likely to be the
2628 	 * same, with and without queue merging.
2629 	 *
2630 	 * Disabling merging also provides a remarkable benefit in
2631 	 * terms of throughput. Merging tends to make many workloads
2632 	 * artificially more uneven, because of shared queues
2633 	 * remaining non empty for incomparably more time than
2634 	 * non-merged queues. This may accentuate workload
2635 	 * asymmetries. For example, if one of the queues in a set of
2636 	 * merged queues has a higher weight than a normal queue, then
2637 	 * the shared queue may inherit such a high weight and, by
2638 	 * staying almost always active, may force BFQ to perform I/O
2639 	 * plugging most of the time. This evidently makes it harder
2640 	 * for BFQ to let the device reach a high throughput.
2641 	 *
2642 	 * Finally, the likely() macro below is not used because one
2643 	 * of the two branches is more likely than the other, but to
2644 	 * have the code path after the following if() executed as
2645 	 * fast as possible for the case of a non rotational device
2646 	 * with queueing. We want it because this is the fastest kind
2647 	 * of device. On the opposite end, the likely() may lengthen
2648 	 * the execution time of BFQ for the case of slower devices
2649 	 * (rotational or at least without queueing). But in this case
2650 	 * the execution time of BFQ matters very little, if not at
2651 	 * all.
2652 	 */
2653 	if (likely(bfqd->nonrot_with_queueing))
2654 		return NULL;
2655 
2656 	/*
2657 	 * Prevent bfqq from being merged if it has been created too
2658 	 * long ago. The idea is that true cooperating processes, and
2659 	 * thus their associated bfq_queues, are supposed to be
2660 	 * created shortly after each other. This is the case, e.g.,
2661 	 * for KVM/QEMU and dump I/O threads. Basing on this
2662 	 * assumption, the following filtering greatly reduces the
2663 	 * probability that two non-cooperating processes, which just
2664 	 * happen to do close I/O for some short time interval, have
2665 	 * their queues merged by mistake.
2666 	 */
2667 	if (bfq_too_late_for_merging(bfqq))
2668 		return NULL;
2669 
2670 	if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
2671 		return NULL;
2672 
2673 	/* If there is only one backlogged queue, don't search. */
2674 	if (bfq_tot_busy_queues(bfqd) == 1)
2675 		return NULL;
2676 
2677 	in_service_bfqq = bfqd->in_service_queue;
2678 
2679 	if (in_service_bfqq && in_service_bfqq != bfqq &&
2680 	    likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2681 	    bfq_rq_close_to_sector(io_struct, request,
2682 				   bfqd->in_serv_last_pos) &&
2683 	    bfqq->entity.parent == in_service_bfqq->entity.parent &&
2684 	    bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2685 		new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2686 		if (new_bfqq)
2687 			return new_bfqq;
2688 	}
2689 	/*
2690 	 * Check whether there is a cooperator among currently scheduled
2691 	 * queues. The only thing we need is that the bio/request is not
2692 	 * NULL, as we need it to establish whether a cooperator exists.
2693 	 */
2694 	new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2695 			bfq_io_struct_pos(io_struct, request));
2696 
2697 	if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
2698 	    bfq_may_be_close_cooperator(bfqq, new_bfqq))
2699 		return bfq_setup_merge(bfqq, new_bfqq);
2700 
2701 	return NULL;
2702 }
2703 
bfq_bfqq_save_state(struct bfq_queue * bfqq)2704 static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2705 {
2706 	struct bfq_io_cq *bic = bfqq->bic;
2707 
2708 	/*
2709 	 * If !bfqq->bic, the queue is already shared or its requests
2710 	 * have already been redirected to a shared queue; both idle window
2711 	 * and weight raising state have already been saved. Do nothing.
2712 	 */
2713 	if (!bic)
2714 		return;
2715 
2716 	bic->saved_weight = bfqq->entity.orig_weight;
2717 	bic->saved_ttime = bfqq->ttime;
2718 	bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
2719 	bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
2720 	bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2721 	bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
2722 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
2723 		     !bfq_bfqq_in_large_burst(bfqq) &&
2724 		     bfqq->bfqd->low_latency)) {
2725 		/*
2726 		 * bfqq being merged right after being created: bfqq
2727 		 * would have deserved interactive weight raising, but
2728 		 * did not make it to be set in a weight-raised state,
2729 		 * because of this early merge.	Store directly the
2730 		 * weight-raising state that would have been assigned
2731 		 * to bfqq, so that to avoid that bfqq unjustly fails
2732 		 * to enjoy weight raising if split soon.
2733 		 */
2734 		bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2735 		bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
2736 		bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2737 		bic->saved_last_wr_start_finish = jiffies;
2738 	} else {
2739 		bic->saved_wr_coeff = bfqq->wr_coeff;
2740 		bic->saved_wr_start_at_switch_to_srt =
2741 			bfqq->wr_start_at_switch_to_srt;
2742 		bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2743 		bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2744 	}
2745 }
2746 
bfq_release_process_ref(struct bfq_data * bfqd,struct bfq_queue * bfqq)2747 void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2748 {
2749 	/*
2750 	 * To prevent bfqq's service guarantees from being violated,
2751 	 * bfqq may be left busy, i.e., queued for service, even if
2752 	 * empty (see comments in __bfq_bfqq_expire() for
2753 	 * details). But, if no process will send requests to bfqq any
2754 	 * longer, then there is no point in keeping bfqq queued for
2755 	 * service. In addition, keeping bfqq queued for service, but
2756 	 * with no process ref any longer, may have caused bfqq to be
2757 	 * freed when dequeued from service. But this is assumed to
2758 	 * never happen.
2759 	 */
2760 	if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2761 	    bfqq != bfqd->in_service_queue)
2762 		bfq_del_bfqq_busy(bfqd, bfqq, false);
2763 
2764 	bfq_put_queue(bfqq);
2765 }
2766 
2767 static void
bfq_merge_bfqqs(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bfq_queue * bfqq,struct bfq_queue * new_bfqq)2768 bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2769 		struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2770 {
2771 	bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2772 		(unsigned long)new_bfqq->pid);
2773 	/* Save weight raising and idle window of the merged queues */
2774 	bfq_bfqq_save_state(bfqq);
2775 	bfq_bfqq_save_state(new_bfqq);
2776 	if (bfq_bfqq_IO_bound(bfqq))
2777 		bfq_mark_bfqq_IO_bound(new_bfqq);
2778 	bfq_clear_bfqq_IO_bound(bfqq);
2779 
2780 	/*
2781 	 * If bfqq is weight-raised, then let new_bfqq inherit
2782 	 * weight-raising. To reduce false positives, neglect the case
2783 	 * where bfqq has just been created, but has not yet made it
2784 	 * to be weight-raised (which may happen because EQM may merge
2785 	 * bfqq even before bfq_add_request is executed for the first
2786 	 * time for bfqq). Handling this case would however be very
2787 	 * easy, thanks to the flag just_created.
2788 	 */
2789 	if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2790 		new_bfqq->wr_coeff = bfqq->wr_coeff;
2791 		new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2792 		new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2793 		new_bfqq->wr_start_at_switch_to_srt =
2794 			bfqq->wr_start_at_switch_to_srt;
2795 		if (bfq_bfqq_busy(new_bfqq))
2796 			bfqd->wr_busy_queues++;
2797 		new_bfqq->entity.prio_changed = 1;
2798 	}
2799 
2800 	if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2801 		bfqq->wr_coeff = 1;
2802 		bfqq->entity.prio_changed = 1;
2803 		if (bfq_bfqq_busy(bfqq))
2804 			bfqd->wr_busy_queues--;
2805 	}
2806 
2807 	bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2808 		     bfqd->wr_busy_queues);
2809 
2810 	/*
2811 	 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2812 	 */
2813 	bic_set_bfqq(bic, new_bfqq, 1);
2814 	bfq_mark_bfqq_coop(new_bfqq);
2815 	/*
2816 	 * new_bfqq now belongs to at least two bics (it is a shared queue):
2817 	 * set new_bfqq->bic to NULL. bfqq either:
2818 	 * - does not belong to any bic any more, and hence bfqq->bic must
2819 	 *   be set to NULL, or
2820 	 * - is a queue whose owning bics have already been redirected to a
2821 	 *   different queue, hence the queue is destined to not belong to
2822 	 *   any bic soon and bfqq->bic is already NULL (therefore the next
2823 	 *   assignment causes no harm).
2824 	 */
2825 	new_bfqq->bic = NULL;
2826 	/*
2827 	 * If the queue is shared, the pid is the pid of one of the associated
2828 	 * processes. Which pid depends on the exact sequence of merge events
2829 	 * the queue underwent. So printing such a pid is useless and confusing
2830 	 * because it reports a random pid between those of the associated
2831 	 * processes.
2832 	 * We mark such a queue with a pid -1, and then print SHARED instead of
2833 	 * a pid in logging messages.
2834 	 */
2835 	new_bfqq->pid = -1;
2836 	bfqq->bic = NULL;
2837 	bfq_release_process_ref(bfqd, bfqq);
2838 }
2839 
bfq_allow_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio)2840 static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2841 				struct bio *bio)
2842 {
2843 	struct bfq_data *bfqd = q->elevator->elevator_data;
2844 	bool is_sync = op_is_sync(bio->bi_opf);
2845 	struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
2846 
2847 	/*
2848 	 * Disallow merge of a sync bio into an async request.
2849 	 */
2850 	if (is_sync && !rq_is_sync(rq))
2851 		return false;
2852 
2853 	/*
2854 	 * Lookup the bfqq that this bio will be queued with. Allow
2855 	 * merge only if rq is queued there.
2856 	 */
2857 	if (!bfqq)
2858 		return false;
2859 
2860 	/*
2861 	 * We take advantage of this function to perform an early merge
2862 	 * of the queues of possible cooperating processes.
2863 	 */
2864 	new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2865 	if (new_bfqq) {
2866 		/*
2867 		 * bic still points to bfqq, then it has not yet been
2868 		 * redirected to some other bfq_queue, and a queue
2869 		 * merge between bfqq and new_bfqq can be safely
2870 		 * fulfilled, i.e., bic can be redirected to new_bfqq
2871 		 * and bfqq can be put.
2872 		 */
2873 		bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2874 				new_bfqq);
2875 		/*
2876 		 * If we get here, bio will be queued into new_queue,
2877 		 * so use new_bfqq to decide whether bio and rq can be
2878 		 * merged.
2879 		 */
2880 		bfqq = new_bfqq;
2881 
2882 		/*
2883 		 * Change also bqfd->bio_bfqq, as
2884 		 * bfqd->bio_bic now points to new_bfqq, and
2885 		 * this function may be invoked again (and then may
2886 		 * use again bqfd->bio_bfqq).
2887 		 */
2888 		bfqd->bio_bfqq = bfqq;
2889 	}
2890 
2891 	return bfqq == RQ_BFQQ(rq);
2892 }
2893 
2894 /*
2895  * Set the maximum time for the in-service queue to consume its
2896  * budget. This prevents seeky processes from lowering the throughput.
2897  * In practice, a time-slice service scheme is used with seeky
2898  * processes.
2899  */
bfq_set_budget_timeout(struct bfq_data * bfqd,struct bfq_queue * bfqq)2900 static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2901 				   struct bfq_queue *bfqq)
2902 {
2903 	unsigned int timeout_coeff;
2904 
2905 	if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2906 		timeout_coeff = 1;
2907 	else
2908 		timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2909 
2910 	bfqd->last_budget_start = ktime_get();
2911 
2912 	bfqq->budget_timeout = jiffies +
2913 		bfqd->bfq_timeout * timeout_coeff;
2914 }
2915 
__bfq_set_in_service_queue(struct bfq_data * bfqd,struct bfq_queue * bfqq)2916 static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2917 				       struct bfq_queue *bfqq)
2918 {
2919 	if (bfqq) {
2920 		bfq_clear_bfqq_fifo_expire(bfqq);
2921 
2922 		bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2923 
2924 		if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2925 		    bfqq->wr_coeff > 1 &&
2926 		    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2927 		    time_is_before_jiffies(bfqq->budget_timeout)) {
2928 			/*
2929 			 * For soft real-time queues, move the start
2930 			 * of the weight-raising period forward by the
2931 			 * time the queue has not received any
2932 			 * service. Otherwise, a relatively long
2933 			 * service delay is likely to cause the
2934 			 * weight-raising period of the queue to end,
2935 			 * because of the short duration of the
2936 			 * weight-raising period of a soft real-time
2937 			 * queue.  It is worth noting that this move
2938 			 * is not so dangerous for the other queues,
2939 			 * because soft real-time queues are not
2940 			 * greedy.
2941 			 *
2942 			 * To not add a further variable, we use the
2943 			 * overloaded field budget_timeout to
2944 			 * determine for how long the queue has not
2945 			 * received service, i.e., how much time has
2946 			 * elapsed since the queue expired. However,
2947 			 * this is a little imprecise, because
2948 			 * budget_timeout is set to jiffies if bfqq
2949 			 * not only expires, but also remains with no
2950 			 * request.
2951 			 */
2952 			if (time_after(bfqq->budget_timeout,
2953 				       bfqq->last_wr_start_finish))
2954 				bfqq->last_wr_start_finish +=
2955 					jiffies - bfqq->budget_timeout;
2956 			else
2957 				bfqq->last_wr_start_finish = jiffies;
2958 		}
2959 
2960 		bfq_set_budget_timeout(bfqd, bfqq);
2961 		bfq_log_bfqq(bfqd, bfqq,
2962 			     "set_in_service_queue, cur-budget = %d",
2963 			     bfqq->entity.budget);
2964 	}
2965 
2966 	bfqd->in_service_queue = bfqq;
2967 	bfqd->in_serv_last_pos = 0;
2968 }
2969 
2970 /*
2971  * Get and set a new queue for service.
2972  */
bfq_set_in_service_queue(struct bfq_data * bfqd)2973 static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2974 {
2975 	struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2976 
2977 	__bfq_set_in_service_queue(bfqd, bfqq);
2978 	return bfqq;
2979 }
2980 
bfq_arm_slice_timer(struct bfq_data * bfqd)2981 static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2982 {
2983 	struct bfq_queue *bfqq = bfqd->in_service_queue;
2984 	u32 sl;
2985 
2986 	bfq_mark_bfqq_wait_request(bfqq);
2987 
2988 	/*
2989 	 * We don't want to idle for seeks, but we do want to allow
2990 	 * fair distribution of slice time for a process doing back-to-back
2991 	 * seeks. So allow a little bit of time for him to submit a new rq.
2992 	 */
2993 	sl = bfqd->bfq_slice_idle;
2994 	/*
2995 	 * Unless the queue is being weight-raised or the scenario is
2996 	 * asymmetric, grant only minimum idle time if the queue
2997 	 * is seeky. A long idling is preserved for a weight-raised
2998 	 * queue, or, more in general, in an asymmetric scenario,
2999 	 * because a long idling is needed for guaranteeing to a queue
3000 	 * its reserved share of the throughput (in particular, it is
3001 	 * needed if the queue has a higher weight than some other
3002 	 * queue).
3003 	 */
3004 	if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
3005 	    !bfq_asymmetric_scenario(bfqd, bfqq))
3006 		sl = min_t(u64, sl, BFQ_MIN_TT);
3007 	else if (bfqq->wr_coeff > 1)
3008 		sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
3009 
3010 	bfqd->last_idling_start = ktime_get();
3011 	bfqd->last_idling_start_jiffies = jiffies;
3012 
3013 	hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3014 		      HRTIMER_MODE_REL);
3015 	bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
3016 }
3017 
3018 /*
3019  * In autotuning mode, max_budget is dynamically recomputed as the
3020  * amount of sectors transferred in timeout at the estimated peak
3021  * rate. This enables BFQ to utilize a full timeslice with a full
3022  * budget, even if the in-service queue is served at peak rate. And
3023  * this maximises throughput with sequential workloads.
3024  */
bfq_calc_max_budget(struct bfq_data * bfqd)3025 static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3026 {
3027 	return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3028 		jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3029 }
3030 
3031 /*
3032  * Update parameters related to throughput and responsiveness, as a
3033  * function of the estimated peak rate. See comments on
3034  * bfq_calc_max_budget(), and on the ref_wr_duration array.
3035  */
update_thr_responsiveness_params(struct bfq_data * bfqd)3036 static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3037 {
3038 	if (bfqd->bfq_user_max_budget == 0) {
3039 		bfqd->bfq_max_budget =
3040 			bfq_calc_max_budget(bfqd);
3041 		bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
3042 	}
3043 }
3044 
bfq_reset_rate_computation(struct bfq_data * bfqd,struct request * rq)3045 static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3046 				       struct request *rq)
3047 {
3048 	if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3049 		bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3050 		bfqd->peak_rate_samples = 1;
3051 		bfqd->sequential_samples = 0;
3052 		bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3053 			blk_rq_sectors(rq);
3054 	} else /* no new rq dispatched, just reset the number of samples */
3055 		bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3056 
3057 	bfq_log(bfqd,
3058 		"reset_rate_computation at end, sample %u/%u tot_sects %llu",
3059 		bfqd->peak_rate_samples, bfqd->sequential_samples,
3060 		bfqd->tot_sectors_dispatched);
3061 }
3062 
bfq_update_rate_reset(struct bfq_data * bfqd,struct request * rq)3063 static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3064 {
3065 	u32 rate, weight, divisor;
3066 
3067 	/*
3068 	 * For the convergence property to hold (see comments on
3069 	 * bfq_update_peak_rate()) and for the assessment to be
3070 	 * reliable, a minimum number of samples must be present, and
3071 	 * a minimum amount of time must have elapsed. If not so, do
3072 	 * not compute new rate. Just reset parameters, to get ready
3073 	 * for a new evaluation attempt.
3074 	 */
3075 	if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3076 	    bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3077 		goto reset_computation;
3078 
3079 	/*
3080 	 * If a new request completion has occurred after last
3081 	 * dispatch, then, to approximate the rate at which requests
3082 	 * have been served by the device, it is more precise to
3083 	 * extend the observation interval to the last completion.
3084 	 */
3085 	bfqd->delta_from_first =
3086 		max_t(u64, bfqd->delta_from_first,
3087 		      bfqd->last_completion - bfqd->first_dispatch);
3088 
3089 	/*
3090 	 * Rate computed in sects/usec, and not sects/nsec, for
3091 	 * precision issues.
3092 	 */
3093 	rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3094 			div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3095 
3096 	/*
3097 	 * Peak rate not updated if:
3098 	 * - the percentage of sequential dispatches is below 3/4 of the
3099 	 *   total, and rate is below the current estimated peak rate
3100 	 * - rate is unreasonably high (> 20M sectors/sec)
3101 	 */
3102 	if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3103 	     rate <= bfqd->peak_rate) ||
3104 		rate > 20<<BFQ_RATE_SHIFT)
3105 		goto reset_computation;
3106 
3107 	/*
3108 	 * We have to update the peak rate, at last! To this purpose,
3109 	 * we use a low-pass filter. We compute the smoothing constant
3110 	 * of the filter as a function of the 'weight' of the new
3111 	 * measured rate.
3112 	 *
3113 	 * As can be seen in next formulas, we define this weight as a
3114 	 * quantity proportional to how sequential the workload is,
3115 	 * and to how long the observation time interval is.
3116 	 *
3117 	 * The weight runs from 0 to 8. The maximum value of the
3118 	 * weight, 8, yields the minimum value for the smoothing
3119 	 * constant. At this minimum value for the smoothing constant,
3120 	 * the measured rate contributes for half of the next value of
3121 	 * the estimated peak rate.
3122 	 *
3123 	 * So, the first step is to compute the weight as a function
3124 	 * of how sequential the workload is. Note that the weight
3125 	 * cannot reach 9, because bfqd->sequential_samples cannot
3126 	 * become equal to bfqd->peak_rate_samples, which, in its
3127 	 * turn, holds true because bfqd->sequential_samples is not
3128 	 * incremented for the first sample.
3129 	 */
3130 	weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3131 
3132 	/*
3133 	 * Second step: further refine the weight as a function of the
3134 	 * duration of the observation interval.
3135 	 */
3136 	weight = min_t(u32, 8,
3137 		       div_u64(weight * bfqd->delta_from_first,
3138 			       BFQ_RATE_REF_INTERVAL));
3139 
3140 	/*
3141 	 * Divisor ranging from 10, for minimum weight, to 2, for
3142 	 * maximum weight.
3143 	 */
3144 	divisor = 10 - weight;
3145 
3146 	/*
3147 	 * Finally, update peak rate:
3148 	 *
3149 	 * peak_rate = peak_rate * (divisor-1) / divisor  +  rate / divisor
3150 	 */
3151 	bfqd->peak_rate *= divisor-1;
3152 	bfqd->peak_rate /= divisor;
3153 	rate /= divisor; /* smoothing constant alpha = 1/divisor */
3154 
3155 	bfqd->peak_rate += rate;
3156 
3157 	/*
3158 	 * For a very slow device, bfqd->peak_rate can reach 0 (see
3159 	 * the minimum representable values reported in the comments
3160 	 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3161 	 * divisions by zero where bfqd->peak_rate is used as a
3162 	 * divisor.
3163 	 */
3164 	bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3165 
3166 	update_thr_responsiveness_params(bfqd);
3167 
3168 reset_computation:
3169 	bfq_reset_rate_computation(bfqd, rq);
3170 }
3171 
3172 /*
3173  * Update the read/write peak rate (the main quantity used for
3174  * auto-tuning, see update_thr_responsiveness_params()).
3175  *
3176  * It is not trivial to estimate the peak rate (correctly): because of
3177  * the presence of sw and hw queues between the scheduler and the
3178  * device components that finally serve I/O requests, it is hard to
3179  * say exactly when a given dispatched request is served inside the
3180  * device, and for how long. As a consequence, it is hard to know
3181  * precisely at what rate a given set of requests is actually served
3182  * by the device.
3183  *
3184  * On the opposite end, the dispatch time of any request is trivially
3185  * available, and, from this piece of information, the "dispatch rate"
3186  * of requests can be immediately computed. So, the idea in the next
3187  * function is to use what is known, namely request dispatch times
3188  * (plus, when useful, request completion times), to estimate what is
3189  * unknown, namely in-device request service rate.
3190  *
3191  * The main issue is that, because of the above facts, the rate at
3192  * which a certain set of requests is dispatched over a certain time
3193  * interval can vary greatly with respect to the rate at which the
3194  * same requests are then served. But, since the size of any
3195  * intermediate queue is limited, and the service scheme is lossless
3196  * (no request is silently dropped), the following obvious convergence
3197  * property holds: the number of requests dispatched MUST become
3198  * closer and closer to the number of requests completed as the
3199  * observation interval grows. This is the key property used in
3200  * the next function to estimate the peak service rate as a function
3201  * of the observed dispatch rate. The function assumes to be invoked
3202  * on every request dispatch.
3203  */
bfq_update_peak_rate(struct bfq_data * bfqd,struct request * rq)3204 static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3205 {
3206 	u64 now_ns = ktime_get_ns();
3207 
3208 	if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3209 		bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3210 			bfqd->peak_rate_samples);
3211 		bfq_reset_rate_computation(bfqd, rq);
3212 		goto update_last_values; /* will add one sample */
3213 	}
3214 
3215 	/*
3216 	 * Device idle for very long: the observation interval lasting
3217 	 * up to this dispatch cannot be a valid observation interval
3218 	 * for computing a new peak rate (similarly to the late-
3219 	 * completion event in bfq_completed_request()). Go to
3220 	 * update_rate_and_reset to have the following three steps
3221 	 * taken:
3222 	 * - close the observation interval at the last (previous)
3223 	 *   request dispatch or completion
3224 	 * - compute rate, if possible, for that observation interval
3225 	 * - start a new observation interval with this dispatch
3226 	 */
3227 	if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3228 	    bfqd->rq_in_driver == 0)
3229 		goto update_rate_and_reset;
3230 
3231 	/* Update sampling information */
3232 	bfqd->peak_rate_samples++;
3233 
3234 	if ((bfqd->rq_in_driver > 0 ||
3235 		now_ns - bfqd->last_completion < BFQ_MIN_TT)
3236 	    && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
3237 		bfqd->sequential_samples++;
3238 
3239 	bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3240 
3241 	/* Reset max observed rq size every 32 dispatches */
3242 	if (likely(bfqd->peak_rate_samples % 32))
3243 		bfqd->last_rq_max_size =
3244 			max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3245 	else
3246 		bfqd->last_rq_max_size = blk_rq_sectors(rq);
3247 
3248 	bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3249 
3250 	/* Target observation interval not yet reached, go on sampling */
3251 	if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3252 		goto update_last_values;
3253 
3254 update_rate_and_reset:
3255 	bfq_update_rate_reset(bfqd, rq);
3256 update_last_values:
3257 	bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
3258 	if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3259 		bfqd->in_serv_last_pos = bfqd->last_position;
3260 	bfqd->last_dispatch = now_ns;
3261 }
3262 
3263 /*
3264  * Remove request from internal lists.
3265  */
bfq_dispatch_remove(struct request_queue * q,struct request * rq)3266 static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3267 {
3268 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
3269 
3270 	/*
3271 	 * For consistency, the next instruction should have been
3272 	 * executed after removing the request from the queue and
3273 	 * dispatching it.  We execute instead this instruction before
3274 	 * bfq_remove_request() (and hence introduce a temporary
3275 	 * inconsistency), for efficiency.  In fact, should this
3276 	 * dispatch occur for a non in-service bfqq, this anticipated
3277 	 * increment prevents two counters related to bfqq->dispatched
3278 	 * from risking to be, first, uselessly decremented, and then
3279 	 * incremented again when the (new) value of bfqq->dispatched
3280 	 * happens to be taken into account.
3281 	 */
3282 	bfqq->dispatched++;
3283 	bfq_update_peak_rate(q->elevator->elevator_data, rq);
3284 
3285 	bfq_remove_request(q, rq);
3286 }
3287 
3288 /*
3289  * There is a case where idling does not have to be performed for
3290  * throughput concerns, but to preserve the throughput share of
3291  * the process associated with bfqq.
3292  *
3293  * To introduce this case, we can note that allowing the drive
3294  * to enqueue more than one request at a time, and hence
3295  * delegating de facto final scheduling decisions to the
3296  * drive's internal scheduler, entails loss of control on the
3297  * actual request service order. In particular, the critical
3298  * situation is when requests from different processes happen
3299  * to be present, at the same time, in the internal queue(s)
3300  * of the drive. In such a situation, the drive, by deciding
3301  * the service order of the internally-queued requests, does
3302  * determine also the actual throughput distribution among
3303  * these processes. But the drive typically has no notion or
3304  * concern about per-process throughput distribution, and
3305  * makes its decisions only on a per-request basis. Therefore,
3306  * the service distribution enforced by the drive's internal
3307  * scheduler is likely to coincide with the desired throughput
3308  * distribution only in a completely symmetric, or favorably
3309  * skewed scenario where:
3310  * (i-a) each of these processes must get the same throughput as
3311  *	 the others,
3312  * (i-b) in case (i-a) does not hold, it holds that the process
3313  *       associated with bfqq must receive a lower or equal
3314  *	 throughput than any of the other processes;
3315  * (ii)  the I/O of each process has the same properties, in
3316  *       terms of locality (sequential or random), direction
3317  *       (reads or writes), request sizes, greediness
3318  *       (from I/O-bound to sporadic), and so on;
3319 
3320  * In fact, in such a scenario, the drive tends to treat the requests
3321  * of each process in about the same way as the requests of the
3322  * others, and thus to provide each of these processes with about the
3323  * same throughput.  This is exactly the desired throughput
3324  * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3325  * even more convenient distribution for (the process associated with)
3326  * bfqq.
3327  *
3328  * In contrast, in any asymmetric or unfavorable scenario, device
3329  * idling (I/O-dispatch plugging) is certainly needed to guarantee
3330  * that bfqq receives its assigned fraction of the device throughput
3331  * (see [1] for details).
3332  *
3333  * The problem is that idling may significantly reduce throughput with
3334  * certain combinations of types of I/O and devices. An important
3335  * example is sync random I/O on flash storage with command
3336  * queueing. So, unless bfqq falls in cases where idling also boosts
3337  * throughput, it is important to check conditions (i-a), i(-b) and
3338  * (ii) accurately, so as to avoid idling when not strictly needed for
3339  * service guarantees.
3340  *
3341  * Unfortunately, it is extremely difficult to thoroughly check
3342  * condition (ii). And, in case there are active groups, it becomes
3343  * very difficult to check conditions (i-a) and (i-b) too.  In fact,
3344  * if there are active groups, then, for conditions (i-a) or (i-b) to
3345  * become false 'indirectly', it is enough that an active group
3346  * contains more active processes or sub-groups than some other active
3347  * group. More precisely, for conditions (i-a) or (i-b) to become
3348  * false because of such a group, it is not even necessary that the
3349  * group is (still) active: it is sufficient that, even if the group
3350  * has become inactive, some of its descendant processes still have
3351  * some request already dispatched but still waiting for
3352  * completion. In fact, requests have still to be guaranteed their
3353  * share of the throughput even after being dispatched. In this
3354  * respect, it is easy to show that, if a group frequently becomes
3355  * inactive while still having in-flight requests, and if, when this
3356  * happens, the group is not considered in the calculation of whether
3357  * the scenario is asymmetric, then the group may fail to be
3358  * guaranteed its fair share of the throughput (basically because
3359  * idling may not be performed for the descendant processes of the
3360  * group, but it had to be).  We address this issue with the following
3361  * bi-modal behavior, implemented in the function
3362  * bfq_asymmetric_scenario().
3363  *
3364  * If there are groups with requests waiting for completion
3365  * (as commented above, some of these groups may even be
3366  * already inactive), then the scenario is tagged as
3367  * asymmetric, conservatively, without checking any of the
3368  * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3369  * This behavior matches also the fact that groups are created
3370  * exactly if controlling I/O is a primary concern (to
3371  * preserve bandwidth and latency guarantees).
3372  *
3373  * On the opposite end, if there are no groups with requests waiting
3374  * for completion, then only conditions (i-a) and (i-b) are actually
3375  * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3376  * idling is not performed, regardless of whether condition (ii)
3377  * holds.  In other words, only if conditions (i-a) and (i-b) do not
3378  * hold, then idling is allowed, and the device tends to be prevented
3379  * from queueing many requests, possibly of several processes. Since
3380  * there are no groups with requests waiting for completion, then, to
3381  * control conditions (i-a) and (i-b) it is enough to check just
3382  * whether all the queues with requests waiting for completion also
3383  * have the same weight.
3384  *
3385  * Not checking condition (ii) evidently exposes bfqq to the
3386  * risk of getting less throughput than its fair share.
3387  * However, for queues with the same weight, a further
3388  * mechanism, preemption, mitigates or even eliminates this
3389  * problem. And it does so without consequences on overall
3390  * throughput. This mechanism and its benefits are explained
3391  * in the next three paragraphs.
3392  *
3393  * Even if a queue, say Q, is expired when it remains idle, Q
3394  * can still preempt the new in-service queue if the next
3395  * request of Q arrives soon (see the comments on
3396  * bfq_bfqq_update_budg_for_activation). If all queues and
3397  * groups have the same weight, this form of preemption,
3398  * combined with the hole-recovery heuristic described in the
3399  * comments on function bfq_bfqq_update_budg_for_activation,
3400  * are enough to preserve a correct bandwidth distribution in
3401  * the mid term, even without idling. In fact, even if not
3402  * idling allows the internal queues of the device to contain
3403  * many requests, and thus to reorder requests, we can rather
3404  * safely assume that the internal scheduler still preserves a
3405  * minimum of mid-term fairness.
3406  *
3407  * More precisely, this preemption-based, idleless approach
3408  * provides fairness in terms of IOPS, and not sectors per
3409  * second. This can be seen with a simple example. Suppose
3410  * that there are two queues with the same weight, but that
3411  * the first queue receives requests of 8 sectors, while the
3412  * second queue receives requests of 1024 sectors. In
3413  * addition, suppose that each of the two queues contains at
3414  * most one request at a time, which implies that each queue
3415  * always remains idle after it is served. Finally, after
3416  * remaining idle, each queue receives very quickly a new
3417  * request. It follows that the two queues are served
3418  * alternatively, preempting each other if needed. This
3419  * implies that, although both queues have the same weight,
3420  * the queue with large requests receives a service that is
3421  * 1024/8 times as high as the service received by the other
3422  * queue.
3423  *
3424  * The motivation for using preemption instead of idling (for
3425  * queues with the same weight) is that, by not idling,
3426  * service guarantees are preserved (completely or at least in
3427  * part) without minimally sacrificing throughput. And, if
3428  * there is no active group, then the primary expectation for
3429  * this device is probably a high throughput.
3430  *
3431  * We are now left only with explaining the two sub-conditions in the
3432  * additional compound condition that is checked below for deciding
3433  * whether the scenario is asymmetric. To explain the first
3434  * sub-condition, we need to add that the function
3435  * bfq_asymmetric_scenario checks the weights of only
3436  * non-weight-raised queues, for efficiency reasons (see comments on
3437  * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3438  * is checked explicitly here. More precisely, the compound condition
3439  * below takes into account also the fact that, even if bfqq is being
3440  * weight-raised, the scenario is still symmetric if all queues with
3441  * requests waiting for completion happen to be
3442  * weight-raised. Actually, we should be even more precise here, and
3443  * differentiate between interactive weight raising and soft real-time
3444  * weight raising.
3445  *
3446  * The second sub-condition checked in the compound condition is
3447  * whether there is a fair amount of already in-flight I/O not
3448  * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3449  * following reason. The drive may decide to serve in-flight
3450  * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3451  * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3452  * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3453  * basically uncontrolled amount of I/O from other queues may be
3454  * dispatched too, possibly causing the service of bfqq's I/O to be
3455  * delayed even longer in the drive. This problem gets more and more
3456  * serious as the speed and the queue depth of the drive grow,
3457  * because, as these two quantities grow, the probability to find no
3458  * queue busy but many requests in flight grows too. By contrast,
3459  * plugging I/O dispatching minimizes the delay induced by already
3460  * in-flight I/O, and enables bfqq to recover the bandwidth it may
3461  * lose because of this delay.
3462  *
3463  * As a side note, it is worth considering that the above
3464  * device-idling countermeasures may however fail in the following
3465  * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3466  * in a time period during which all symmetry sub-conditions hold, and
3467  * therefore the device is allowed to enqueue many requests, but at
3468  * some later point in time some sub-condition stops to hold, then it
3469  * may become impossible to make requests be served in the desired
3470  * order until all the requests already queued in the device have been
3471  * served. The last sub-condition commented above somewhat mitigates
3472  * this problem for weight-raised queues.
3473  */
idling_needed_for_service_guarantees(struct bfq_data * bfqd,struct bfq_queue * bfqq)3474 static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3475 						 struct bfq_queue *bfqq)
3476 {
3477 	/* No point in idling for bfqq if it won't get requests any longer */
3478 	if (unlikely(!bfqq_process_refs(bfqq)))
3479 		return false;
3480 
3481 	return (bfqq->wr_coeff > 1 &&
3482 		(bfqd->wr_busy_queues <
3483 		 bfq_tot_busy_queues(bfqd) ||
3484 		 bfqd->rq_in_driver >=
3485 		 bfqq->dispatched + 4)) ||
3486 		bfq_asymmetric_scenario(bfqd, bfqq);
3487 }
3488 
__bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3489 static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3490 			      enum bfqq_expiration reason)
3491 {
3492 	/*
3493 	 * If this bfqq is shared between multiple processes, check
3494 	 * to make sure that those processes are still issuing I/Os
3495 	 * within the mean seek distance. If not, it may be time to
3496 	 * break the queues apart again.
3497 	 */
3498 	if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3499 		bfq_mark_bfqq_split_coop(bfqq);
3500 
3501 	/*
3502 	 * Consider queues with a higher finish virtual time than
3503 	 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3504 	 * true, then bfqq's bandwidth would be violated if an
3505 	 * uncontrolled amount of I/O from these queues were
3506 	 * dispatched while bfqq is waiting for its new I/O to
3507 	 * arrive. This is exactly what may happen if this is a forced
3508 	 * expiration caused by a preemption attempt, and if bfqq is
3509 	 * not re-scheduled. To prevent this from happening, re-queue
3510 	 * bfqq if it needs I/O-dispatch plugging, even if it is
3511 	 * empty. By doing so, bfqq is granted to be served before the
3512 	 * above queues (provided that bfqq is of course eligible).
3513 	 */
3514 	if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3515 	    !(reason == BFQQE_PREEMPTED &&
3516 	      idling_needed_for_service_guarantees(bfqd, bfqq))) {
3517 		if (bfqq->dispatched == 0)
3518 			/*
3519 			 * Overloading budget_timeout field to store
3520 			 * the time at which the queue remains with no
3521 			 * backlog and no outstanding request; used by
3522 			 * the weight-raising mechanism.
3523 			 */
3524 			bfqq->budget_timeout = jiffies;
3525 
3526 		bfq_del_bfqq_busy(bfqd, bfqq, true);
3527 	} else {
3528 		bfq_requeue_bfqq(bfqd, bfqq, true);
3529 		/*
3530 		 * Resort priority tree of potential close cooperators.
3531 		 * See comments on bfq_pos_tree_add_move() for the unlikely().
3532 		 */
3533 		if (unlikely(!bfqd->nonrot_with_queueing &&
3534 			     !RB_EMPTY_ROOT(&bfqq->sort_list)))
3535 			bfq_pos_tree_add_move(bfqd, bfqq);
3536 	}
3537 
3538 	/*
3539 	 * All in-service entities must have been properly deactivated
3540 	 * or requeued before executing the next function, which
3541 	 * resets all in-service entities as no more in service. This
3542 	 * may cause bfqq to be freed. If this happens, the next
3543 	 * function returns true.
3544 	 */
3545 	return __bfq_bfqd_reset_in_service(bfqd);
3546 }
3547 
3548 /**
3549  * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3550  * @bfqd: device data.
3551  * @bfqq: queue to update.
3552  * @reason: reason for expiration.
3553  *
3554  * Handle the feedback on @bfqq budget at queue expiration.
3555  * See the body for detailed comments.
3556  */
__bfq_bfqq_recalc_budget(struct bfq_data * bfqd,struct bfq_queue * bfqq,enum bfqq_expiration reason)3557 static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3558 				     struct bfq_queue *bfqq,
3559 				     enum bfqq_expiration reason)
3560 {
3561 	struct request *next_rq;
3562 	int budget, min_budget;
3563 
3564 	min_budget = bfq_min_budget(bfqd);
3565 
3566 	if (bfqq->wr_coeff == 1)
3567 		budget = bfqq->max_budget;
3568 	else /*
3569 	      * Use a constant, low budget for weight-raised queues,
3570 	      * to help achieve a low latency. Keep it slightly higher
3571 	      * than the minimum possible budget, to cause a little
3572 	      * bit fewer expirations.
3573 	      */
3574 		budget = 2 * min_budget;
3575 
3576 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3577 		bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3578 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3579 		budget, bfq_min_budget(bfqd));
3580 	bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3581 		bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3582 
3583 	if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
3584 		switch (reason) {
3585 		/*
3586 		 * Caveat: in all the following cases we trade latency
3587 		 * for throughput.
3588 		 */
3589 		case BFQQE_TOO_IDLE:
3590 			/*
3591 			 * This is the only case where we may reduce
3592 			 * the budget: if there is no request of the
3593 			 * process still waiting for completion, then
3594 			 * we assume (tentatively) that the timer has
3595 			 * expired because the batch of requests of
3596 			 * the process could have been served with a
3597 			 * smaller budget.  Hence, betting that
3598 			 * process will behave in the same way when it
3599 			 * becomes backlogged again, we reduce its
3600 			 * next budget.  As long as we guess right,
3601 			 * this budget cut reduces the latency
3602 			 * experienced by the process.
3603 			 *
3604 			 * However, if there are still outstanding
3605 			 * requests, then the process may have not yet
3606 			 * issued its next request just because it is
3607 			 * still waiting for the completion of some of
3608 			 * the still outstanding ones.  So in this
3609 			 * subcase we do not reduce its budget, on the
3610 			 * contrary we increase it to possibly boost
3611 			 * the throughput, as discussed in the
3612 			 * comments to the BUDGET_TIMEOUT case.
3613 			 */
3614 			if (bfqq->dispatched > 0) /* still outstanding reqs */
3615 				budget = min(budget * 2, bfqd->bfq_max_budget);
3616 			else {
3617 				if (budget > 5 * min_budget)
3618 					budget -= 4 * min_budget;
3619 				else
3620 					budget = min_budget;
3621 			}
3622 			break;
3623 		case BFQQE_BUDGET_TIMEOUT:
3624 			/*
3625 			 * We double the budget here because it gives
3626 			 * the chance to boost the throughput if this
3627 			 * is not a seeky process (and has bumped into
3628 			 * this timeout because of, e.g., ZBR).
3629 			 */
3630 			budget = min(budget * 2, bfqd->bfq_max_budget);
3631 			break;
3632 		case BFQQE_BUDGET_EXHAUSTED:
3633 			/*
3634 			 * The process still has backlog, and did not
3635 			 * let either the budget timeout or the disk
3636 			 * idling timeout expire. Hence it is not
3637 			 * seeky, has a short thinktime and may be
3638 			 * happy with a higher budget too. So
3639 			 * definitely increase the budget of this good
3640 			 * candidate to boost the disk throughput.
3641 			 */
3642 			budget = min(budget * 4, bfqd->bfq_max_budget);
3643 			break;
3644 		case BFQQE_NO_MORE_REQUESTS:
3645 			/*
3646 			 * For queues that expire for this reason, it
3647 			 * is particularly important to keep the
3648 			 * budget close to the actual service they
3649 			 * need. Doing so reduces the timestamp
3650 			 * misalignment problem described in the
3651 			 * comments in the body of
3652 			 * __bfq_activate_entity. In fact, suppose
3653 			 * that a queue systematically expires for
3654 			 * BFQQE_NO_MORE_REQUESTS and presents a
3655 			 * new request in time to enjoy timestamp
3656 			 * back-shifting. The larger the budget of the
3657 			 * queue is with respect to the service the
3658 			 * queue actually requests in each service
3659 			 * slot, the more times the queue can be
3660 			 * reactivated with the same virtual finish
3661 			 * time. It follows that, even if this finish
3662 			 * time is pushed to the system virtual time
3663 			 * to reduce the consequent timestamp
3664 			 * misalignment, the queue unjustly enjoys for
3665 			 * many re-activations a lower finish time
3666 			 * than all newly activated queues.
3667 			 *
3668 			 * The service needed by bfqq is measured
3669 			 * quite precisely by bfqq->entity.service.
3670 			 * Since bfqq does not enjoy device idling,
3671 			 * bfqq->entity.service is equal to the number
3672 			 * of sectors that the process associated with
3673 			 * bfqq requested to read/write before waiting
3674 			 * for request completions, or blocking for
3675 			 * other reasons.
3676 			 */
3677 			budget = max_t(int, bfqq->entity.service, min_budget);
3678 			break;
3679 		default:
3680 			return;
3681 		}
3682 	} else if (!bfq_bfqq_sync(bfqq)) {
3683 		/*
3684 		 * Async queues get always the maximum possible
3685 		 * budget, as for them we do not care about latency
3686 		 * (in addition, their ability to dispatch is limited
3687 		 * by the charging factor).
3688 		 */
3689 		budget = bfqd->bfq_max_budget;
3690 	}
3691 
3692 	bfqq->max_budget = budget;
3693 
3694 	if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3695 	    !bfqd->bfq_user_max_budget)
3696 		bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3697 
3698 	/*
3699 	 * If there is still backlog, then assign a new budget, making
3700 	 * sure that it is large enough for the next request.  Since
3701 	 * the finish time of bfqq must be kept in sync with the
3702 	 * budget, be sure to call __bfq_bfqq_expire() *after* this
3703 	 * update.
3704 	 *
3705 	 * If there is no backlog, then no need to update the budget;
3706 	 * it will be updated on the arrival of a new request.
3707 	 */
3708 	next_rq = bfqq->next_rq;
3709 	if (next_rq)
3710 		bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3711 					    bfq_serv_to_charge(next_rq, bfqq));
3712 
3713 	bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3714 			next_rq ? blk_rq_sectors(next_rq) : 0,
3715 			bfqq->entity.budget);
3716 }
3717 
3718 /*
3719  * Return true if the process associated with bfqq is "slow". The slow
3720  * flag is used, in addition to the budget timeout, to reduce the
3721  * amount of service provided to seeky processes, and thus reduce
3722  * their chances to lower the throughput. More details in the comments
3723  * on the function bfq_bfqq_expire().
3724  *
3725  * An important observation is in order: as discussed in the comments
3726  * on the function bfq_update_peak_rate(), with devices with internal
3727  * queues, it is hard if ever possible to know when and for how long
3728  * an I/O request is processed by the device (apart from the trivial
3729  * I/O pattern where a new request is dispatched only after the
3730  * previous one has been completed). This makes it hard to evaluate
3731  * the real rate at which the I/O requests of each bfq_queue are
3732  * served.  In fact, for an I/O scheduler like BFQ, serving a
3733  * bfq_queue means just dispatching its requests during its service
3734  * slot (i.e., until the budget of the queue is exhausted, or the
3735  * queue remains idle, or, finally, a timeout fires). But, during the
3736  * service slot of a bfq_queue, around 100 ms at most, the device may
3737  * be even still processing requests of bfq_queues served in previous
3738  * service slots. On the opposite end, the requests of the in-service
3739  * bfq_queue may be completed after the service slot of the queue
3740  * finishes.
3741  *
3742  * Anyway, unless more sophisticated solutions are used
3743  * (where possible), the sum of the sizes of the requests dispatched
3744  * during the service slot of a bfq_queue is probably the only
3745  * approximation available for the service received by the bfq_queue
3746  * during its service slot. And this sum is the quantity used in this
3747  * function to evaluate the I/O speed of a process.
3748  */
bfq_bfqq_is_slow(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason,unsigned long * delta_ms)3749 static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3750 				 bool compensate, enum bfqq_expiration reason,
3751 				 unsigned long *delta_ms)
3752 {
3753 	ktime_t delta_ktime;
3754 	u32 delta_usecs;
3755 	bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
3756 
3757 	if (!bfq_bfqq_sync(bfqq))
3758 		return false;
3759 
3760 	if (compensate)
3761 		delta_ktime = bfqd->last_idling_start;
3762 	else
3763 		delta_ktime = ktime_get();
3764 	delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3765 	delta_usecs = ktime_to_us(delta_ktime);
3766 
3767 	/* don't use too short time intervals */
3768 	if (delta_usecs < 1000) {
3769 		if (blk_queue_nonrot(bfqd->queue))
3770 			 /*
3771 			  * give same worst-case guarantees as idling
3772 			  * for seeky
3773 			  */
3774 			*delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3775 		else /* charge at least one seek */
3776 			*delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3777 
3778 		return slow;
3779 	}
3780 
3781 	*delta_ms = delta_usecs / USEC_PER_MSEC;
3782 
3783 	/*
3784 	 * Use only long (> 20ms) intervals to filter out excessive
3785 	 * spikes in service rate estimation.
3786 	 */
3787 	if (delta_usecs > 20000) {
3788 		/*
3789 		 * Caveat for rotational devices: processes doing I/O
3790 		 * in the slower disk zones tend to be slow(er) even
3791 		 * if not seeky. In this respect, the estimated peak
3792 		 * rate is likely to be an average over the disk
3793 		 * surface. Accordingly, to not be too harsh with
3794 		 * unlucky processes, a process is deemed slow only if
3795 		 * its rate has been lower than half of the estimated
3796 		 * peak rate.
3797 		 */
3798 		slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
3799 	}
3800 
3801 	bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
3802 
3803 	return slow;
3804 }
3805 
3806 /*
3807  * To be deemed as soft real-time, an application must meet two
3808  * requirements. First, the application must not require an average
3809  * bandwidth higher than the approximate bandwidth required to playback or
3810  * record a compressed high-definition video.
3811  * The next function is invoked on the completion of the last request of a
3812  * batch, to compute the next-start time instant, soft_rt_next_start, such
3813  * that, if the next request of the application does not arrive before
3814  * soft_rt_next_start, then the above requirement on the bandwidth is met.
3815  *
3816  * The second requirement is that the request pattern of the application is
3817  * isochronous, i.e., that, after issuing a request or a batch of requests,
3818  * the application stops issuing new requests until all its pending requests
3819  * have been completed. After that, the application may issue a new batch,
3820  * and so on.
3821  * For this reason the next function is invoked to compute
3822  * soft_rt_next_start only for applications that meet this requirement,
3823  * whereas soft_rt_next_start is set to infinity for applications that do
3824  * not.
3825  *
3826  * Unfortunately, even a greedy (i.e., I/O-bound) application may
3827  * happen to meet, occasionally or systematically, both the above
3828  * bandwidth and isochrony requirements. This may happen at least in
3829  * the following circumstances. First, if the CPU load is high. The
3830  * application may stop issuing requests while the CPUs are busy
3831  * serving other processes, then restart, then stop again for a while,
3832  * and so on. The other circumstances are related to the storage
3833  * device: the storage device is highly loaded or reaches a low-enough
3834  * throughput with the I/O of the application (e.g., because the I/O
3835  * is random and/or the device is slow). In all these cases, the
3836  * I/O of the application may be simply slowed down enough to meet
3837  * the bandwidth and isochrony requirements. To reduce the probability
3838  * that greedy applications are deemed as soft real-time in these
3839  * corner cases, a further rule is used in the computation of
3840  * soft_rt_next_start: the return value of this function is forced to
3841  * be higher than the maximum between the following two quantities.
3842  *
3843  * (a) Current time plus: (1) the maximum time for which the arrival
3844  *     of a request is waited for when a sync queue becomes idle,
3845  *     namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3846  *     postpone for a moment the reason for adding a few extra
3847  *     jiffies; we get back to it after next item (b).  Lower-bounding
3848  *     the return value of this function with the current time plus
3849  *     bfqd->bfq_slice_idle tends to filter out greedy applications,
3850  *     because the latter issue their next request as soon as possible
3851  *     after the last one has been completed. In contrast, a soft
3852  *     real-time application spends some time processing data, after a
3853  *     batch of its requests has been completed.
3854  *
3855  * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3856  *     above, greedy applications may happen to meet both the
3857  *     bandwidth and isochrony requirements under heavy CPU or
3858  *     storage-device load. In more detail, in these scenarios, these
3859  *     applications happen, only for limited time periods, to do I/O
3860  *     slowly enough to meet all the requirements described so far,
3861  *     including the filtering in above item (a). These slow-speed
3862  *     time intervals are usually interspersed between other time
3863  *     intervals during which these applications do I/O at a very high
3864  *     speed. Fortunately, exactly because of the high speed of the
3865  *     I/O in the high-speed intervals, the values returned by this
3866  *     function happen to be so high, near the end of any such
3867  *     high-speed interval, to be likely to fall *after* the end of
3868  *     the low-speed time interval that follows. These high values are
3869  *     stored in bfqq->soft_rt_next_start after each invocation of
3870  *     this function. As a consequence, if the last value of
3871  *     bfqq->soft_rt_next_start is constantly used to lower-bound the
3872  *     next value that this function may return, then, from the very
3873  *     beginning of a low-speed interval, bfqq->soft_rt_next_start is
3874  *     likely to be constantly kept so high that any I/O request
3875  *     issued during the low-speed interval is considered as arriving
3876  *     to soon for the application to be deemed as soft
3877  *     real-time. Then, in the high-speed interval that follows, the
3878  *     application will not be deemed as soft real-time, just because
3879  *     it will do I/O at a high speed. And so on.
3880  *
3881  * Getting back to the filtering in item (a), in the following two
3882  * cases this filtering might be easily passed by a greedy
3883  * application, if the reference quantity was just
3884  * bfqd->bfq_slice_idle:
3885  * 1) HZ is so low that the duration of a jiffy is comparable to or
3886  *    higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3887  *    devices with HZ=100. The time granularity may be so coarse
3888  *    that the approximation, in jiffies, of bfqd->bfq_slice_idle
3889  *    is rather lower than the exact value.
3890  * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3891  *    for a while, then suddenly 'jump' by several units to recover the lost
3892  *    increments. This seems to happen, e.g., inside virtual machines.
3893  * To address this issue, in the filtering in (a) we do not use as a
3894  * reference time interval just bfqd->bfq_slice_idle, but
3895  * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3896  * minimum number of jiffies for which the filter seems to be quite
3897  * precise also in embedded systems and KVM/QEMU virtual machines.
3898  */
bfq_bfqq_softrt_next_start(struct bfq_data * bfqd,struct bfq_queue * bfqq)3899 static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3900 						struct bfq_queue *bfqq)
3901 {
3902 	return max3(bfqq->soft_rt_next_start,
3903 		    bfqq->last_idle_bklogged +
3904 		    HZ * bfqq->service_from_backlogged /
3905 		    bfqd->bfq_wr_max_softrt_rate,
3906 		    jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
3907 }
3908 
3909 /**
3910  * bfq_bfqq_expire - expire a queue.
3911  * @bfqd: device owning the queue.
3912  * @bfqq: the queue to expire.
3913  * @compensate: if true, compensate for the time spent idling.
3914  * @reason: the reason causing the expiration.
3915  *
3916  * If the process associated with bfqq does slow I/O (e.g., because it
3917  * issues random requests), we charge bfqq with the time it has been
3918  * in service instead of the service it has received (see
3919  * bfq_bfqq_charge_time for details on how this goal is achieved). As
3920  * a consequence, bfqq will typically get higher timestamps upon
3921  * reactivation, and hence it will be rescheduled as if it had
3922  * received more service than what it has actually received. In the
3923  * end, bfqq receives less service in proportion to how slowly its
3924  * associated process consumes its budgets (and hence how seriously it
3925  * tends to lower the throughput). In addition, this time-charging
3926  * strategy guarantees time fairness among slow processes. In
3927  * contrast, if the process associated with bfqq is not slow, we
3928  * charge bfqq exactly with the service it has received.
3929  *
3930  * Charging time to the first type of queues and the exact service to
3931  * the other has the effect of using the WF2Q+ policy to schedule the
3932  * former on a timeslice basis, without violating service domain
3933  * guarantees among the latter.
3934  */
bfq_bfqq_expire(struct bfq_data * bfqd,struct bfq_queue * bfqq,bool compensate,enum bfqq_expiration reason)3935 void bfq_bfqq_expire(struct bfq_data *bfqd,
3936 		     struct bfq_queue *bfqq,
3937 		     bool compensate,
3938 		     enum bfqq_expiration reason)
3939 {
3940 	bool slow;
3941 	unsigned long delta = 0;
3942 	struct bfq_entity *entity = &bfqq->entity;
3943 
3944 	/*
3945 	 * Check whether the process is slow (see bfq_bfqq_is_slow).
3946 	 */
3947 	slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
3948 
3949 	/*
3950 	 * As above explained, charge slow (typically seeky) and
3951 	 * timed-out queues with the time and not the service
3952 	 * received, to favor sequential workloads.
3953 	 *
3954 	 * Processes doing I/O in the slower disk zones will tend to
3955 	 * be slow(er) even if not seeky. Therefore, since the
3956 	 * estimated peak rate is actually an average over the disk
3957 	 * surface, these processes may timeout just for bad luck. To
3958 	 * avoid punishing them, do not charge time to processes that
3959 	 * succeeded in consuming at least 2/3 of their budget. This
3960 	 * allows BFQ to preserve enough elasticity to still perform
3961 	 * bandwidth, and not time, distribution with little unlucky
3962 	 * or quasi-sequential processes.
3963 	 */
3964 	if (bfqq->wr_coeff == 1 &&
3965 	    (slow ||
3966 	     (reason == BFQQE_BUDGET_TIMEOUT &&
3967 	      bfq_bfqq_budget_left(bfqq) >=  entity->budget / 3)))
3968 		bfq_bfqq_charge_time(bfqd, bfqq, delta);
3969 
3970 	if (reason == BFQQE_TOO_IDLE &&
3971 	    entity->service <= 2 * entity->budget / 10)
3972 		bfq_clear_bfqq_IO_bound(bfqq);
3973 
3974 	if (bfqd->low_latency && bfqq->wr_coeff == 1)
3975 		bfqq->last_wr_start_finish = jiffies;
3976 
3977 	if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3978 	    RB_EMPTY_ROOT(&bfqq->sort_list)) {
3979 		/*
3980 		 * If we get here, and there are no outstanding
3981 		 * requests, then the request pattern is isochronous
3982 		 * (see the comments on the function
3983 		 * bfq_bfqq_softrt_next_start()). Thus we can compute
3984 		 * soft_rt_next_start. And we do it, unless bfqq is in
3985 		 * interactive weight raising. We do not do it in the
3986 		 * latter subcase, for the following reason. bfqq may
3987 		 * be conveying the I/O needed to load a soft
3988 		 * real-time application. Such an application will
3989 		 * actually exhibit a soft real-time I/O pattern after
3990 		 * it finally starts doing its job. But, if
3991 		 * soft_rt_next_start is computed here for an
3992 		 * interactive bfqq, and bfqq had received a lot of
3993 		 * service before remaining with no outstanding
3994 		 * request (likely to happen on a fast device), then
3995 		 * soft_rt_next_start would be assigned such a high
3996 		 * value that, for a very long time, bfqq would be
3997 		 * prevented from being possibly considered as soft
3998 		 * real time.
3999 		 *
4000 		 * If, instead, the queue still has outstanding
4001 		 * requests, then we have to wait for the completion
4002 		 * of all the outstanding requests to discover whether
4003 		 * the request pattern is actually isochronous.
4004 		 */
4005 		if (bfqq->dispatched == 0 &&
4006 		    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
4007 			bfqq->soft_rt_next_start =
4008 				bfq_bfqq_softrt_next_start(bfqd, bfqq);
4009 		else if (bfqq->dispatched > 0) {
4010 			/*
4011 			 * Schedule an update of soft_rt_next_start to when
4012 			 * the task may be discovered to be isochronous.
4013 			 */
4014 			bfq_mark_bfqq_softrt_update(bfqq);
4015 		}
4016 	}
4017 
4018 	bfq_log_bfqq(bfqd, bfqq,
4019 		"expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4020 		slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
4021 
4022 	/*
4023 	 * bfqq expired, so no total service time needs to be computed
4024 	 * any longer: reset state machine for measuring total service
4025 	 * times.
4026 	 */
4027 	bfqd->rqs_injected = bfqd->wait_dispatch = false;
4028 	bfqd->waited_rq = NULL;
4029 
4030 	/*
4031 	 * Increase, decrease or leave budget unchanged according to
4032 	 * reason.
4033 	 */
4034 	__bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
4035 	if (__bfq_bfqq_expire(bfqd, bfqq, reason))
4036 		/* bfqq is gone, no more actions on it */
4037 		return;
4038 
4039 	/* mark bfqq as waiting a request only if a bic still points to it */
4040 	if (!bfq_bfqq_busy(bfqq) &&
4041 	    reason != BFQQE_BUDGET_TIMEOUT &&
4042 	    reason != BFQQE_BUDGET_EXHAUSTED) {
4043 		bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
4044 		/*
4045 		 * Not setting service to 0, because, if the next rq
4046 		 * arrives in time, the queue will go on receiving
4047 		 * service with this same budget (as if it never expired)
4048 		 */
4049 	} else
4050 		entity->service = 0;
4051 
4052 	/*
4053 	 * Reset the received-service counter for every parent entity.
4054 	 * Differently from what happens with bfqq->entity.service,
4055 	 * the resetting of this counter never needs to be postponed
4056 	 * for parent entities. In fact, in case bfqq may have a
4057 	 * chance to go on being served using the last, partially
4058 	 * consumed budget, bfqq->entity.service needs to be kept,
4059 	 * because if bfqq then actually goes on being served using
4060 	 * the same budget, the last value of bfqq->entity.service is
4061 	 * needed to properly decrement bfqq->entity.budget by the
4062 	 * portion already consumed. In contrast, it is not necessary
4063 	 * to keep entity->service for parent entities too, because
4064 	 * the bubble up of the new value of bfqq->entity.budget will
4065 	 * make sure that the budgets of parent entities are correct,
4066 	 * even in case bfqq and thus parent entities go on receiving
4067 	 * service with the same budget.
4068 	 */
4069 	entity = entity->parent;
4070 	for_each_entity(entity)
4071 		entity->service = 0;
4072 }
4073 
4074 /*
4075  * Budget timeout is not implemented through a dedicated timer, but
4076  * just checked on request arrivals and completions, as well as on
4077  * idle timer expirations.
4078  */
bfq_bfqq_budget_timeout(struct bfq_queue * bfqq)4079 static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4080 {
4081 	return time_is_before_eq_jiffies(bfqq->budget_timeout);
4082 }
4083 
4084 /*
4085  * If we expire a queue that is actively waiting (i.e., with the
4086  * device idled) for the arrival of a new request, then we may incur
4087  * the timestamp misalignment problem described in the body of the
4088  * function __bfq_activate_entity. Hence we return true only if this
4089  * condition does not hold, or if the queue is slow enough to deserve
4090  * only to be kicked off for preserving a high throughput.
4091  */
bfq_may_expire_for_budg_timeout(struct bfq_queue * bfqq)4092 static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4093 {
4094 	bfq_log_bfqq(bfqq->bfqd, bfqq,
4095 		"may_budget_timeout: wait_request %d left %d timeout %d",
4096 		bfq_bfqq_wait_request(bfqq),
4097 			bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3,
4098 		bfq_bfqq_budget_timeout(bfqq));
4099 
4100 	return (!bfq_bfqq_wait_request(bfqq) ||
4101 		bfq_bfqq_budget_left(bfqq) >=  bfqq->entity.budget / 3)
4102 		&&
4103 		bfq_bfqq_budget_timeout(bfqq);
4104 }
4105 
idling_boosts_thr_without_issues(struct bfq_data * bfqd,struct bfq_queue * bfqq)4106 static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4107 					     struct bfq_queue *bfqq)
4108 {
4109 	bool rot_without_queueing =
4110 		!blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4111 		bfqq_sequential_and_IO_bound,
4112 		idling_boosts_thr;
4113 
4114 	/* No point in idling for bfqq if it won't get requests any longer */
4115 	if (unlikely(!bfqq_process_refs(bfqq)))
4116 		return false;
4117 
4118 	bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4119 		bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4120 
4121 	/*
4122 	 * The next variable takes into account the cases where idling
4123 	 * boosts the throughput.
4124 	 *
4125 	 * The value of the variable is computed considering, first, that
4126 	 * idling is virtually always beneficial for the throughput if:
4127 	 * (a) the device is not NCQ-capable and rotational, or
4128 	 * (b) regardless of the presence of NCQ, the device is rotational and
4129 	 *     the request pattern for bfqq is I/O-bound and sequential, or
4130 	 * (c) regardless of whether it is rotational, the device is
4131 	 *     not NCQ-capable and the request pattern for bfqq is
4132 	 *     I/O-bound and sequential.
4133 	 *
4134 	 * Secondly, and in contrast to the above item (b), idling an
4135 	 * NCQ-capable flash-based device would not boost the
4136 	 * throughput even with sequential I/O; rather it would lower
4137 	 * the throughput in proportion to how fast the device
4138 	 * is. Accordingly, the next variable is true if any of the
4139 	 * above conditions (a), (b) or (c) is true, and, in
4140 	 * particular, happens to be false if bfqd is an NCQ-capable
4141 	 * flash-based device.
4142 	 */
4143 	idling_boosts_thr = rot_without_queueing ||
4144 		((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4145 		 bfqq_sequential_and_IO_bound);
4146 
4147 	/*
4148 	 * The return value of this function is equal to that of
4149 	 * idling_boosts_thr, unless a special case holds. In this
4150 	 * special case, described below, idling may cause problems to
4151 	 * weight-raised queues.
4152 	 *
4153 	 * When the request pool is saturated (e.g., in the presence
4154 	 * of write hogs), if the processes associated with
4155 	 * non-weight-raised queues ask for requests at a lower rate,
4156 	 * then processes associated with weight-raised queues have a
4157 	 * higher probability to get a request from the pool
4158 	 * immediately (or at least soon) when they need one. Thus
4159 	 * they have a higher probability to actually get a fraction
4160 	 * of the device throughput proportional to their high
4161 	 * weight. This is especially true with NCQ-capable drives,
4162 	 * which enqueue several requests in advance, and further
4163 	 * reorder internally-queued requests.
4164 	 *
4165 	 * For this reason, we force to false the return value if
4166 	 * there are weight-raised busy queues. In this case, and if
4167 	 * bfqq is not weight-raised, this guarantees that the device
4168 	 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4169 	 * then idling will be guaranteed by another variable, see
4170 	 * below). Combined with the timestamping rules of BFQ (see
4171 	 * [1] for details), this behavior causes bfqq, and hence any
4172 	 * sync non-weight-raised queue, to get a lower number of
4173 	 * requests served, and thus to ask for a lower number of
4174 	 * requests from the request pool, before the busy
4175 	 * weight-raised queues get served again. This often mitigates
4176 	 * starvation problems in the presence of heavy write
4177 	 * workloads and NCQ, thereby guaranteeing a higher
4178 	 * application and system responsiveness in these hostile
4179 	 * scenarios.
4180 	 */
4181 	return idling_boosts_thr &&
4182 		bfqd->wr_busy_queues == 0;
4183 }
4184 
4185 /*
4186  * For a queue that becomes empty, device idling is allowed only if
4187  * this function returns true for that queue. As a consequence, since
4188  * device idling plays a critical role for both throughput boosting
4189  * and service guarantees, the return value of this function plays a
4190  * critical role as well.
4191  *
4192  * In a nutshell, this function returns true only if idling is
4193  * beneficial for throughput or, even if detrimental for throughput,
4194  * idling is however necessary to preserve service guarantees (low
4195  * latency, desired throughput distribution, ...). In particular, on
4196  * NCQ-capable devices, this function tries to return false, so as to
4197  * help keep the drives' internal queues full, whenever this helps the
4198  * device boost the throughput without causing any service-guarantee
4199  * issue.
4200  *
4201  * Most of the issues taken into account to get the return value of
4202  * this function are not trivial. We discuss these issues in the two
4203  * functions providing the main pieces of information needed by this
4204  * function.
4205  */
bfq_better_to_idle(struct bfq_queue * bfqq)4206 static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4207 {
4208 	struct bfq_data *bfqd = bfqq->bfqd;
4209 	bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4210 
4211 	/* No point in idling for bfqq if it won't get requests any longer */
4212 	if (unlikely(!bfqq_process_refs(bfqq)))
4213 		return false;
4214 
4215 	if (unlikely(bfqd->strict_guarantees))
4216 		return true;
4217 
4218 	/*
4219 	 * Idling is performed only if slice_idle > 0. In addition, we
4220 	 * do not idle if
4221 	 * (a) bfqq is async
4222 	 * (b) bfqq is in the idle io prio class: in this case we do
4223 	 * not idle because we want to minimize the bandwidth that
4224 	 * queues in this class can steal to higher-priority queues
4225 	 */
4226 	if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4227 	   bfq_class_idle(bfqq))
4228 		return false;
4229 
4230 	idling_boosts_thr_with_no_issue =
4231 		idling_boosts_thr_without_issues(bfqd, bfqq);
4232 
4233 	idling_needed_for_service_guar =
4234 		idling_needed_for_service_guarantees(bfqd, bfqq);
4235 
4236 	/*
4237 	 * We have now the two components we need to compute the
4238 	 * return value of the function, which is true only if idling
4239 	 * either boosts the throughput (without issues), or is
4240 	 * necessary to preserve service guarantees.
4241 	 */
4242 	return idling_boosts_thr_with_no_issue ||
4243 		idling_needed_for_service_guar;
4244 }
4245 
4246 /*
4247  * If the in-service queue is empty but the function bfq_better_to_idle
4248  * returns true, then:
4249  * 1) the queue must remain in service and cannot be expired, and
4250  * 2) the device must be idled to wait for the possible arrival of a new
4251  *    request for the queue.
4252  * See the comments on the function bfq_better_to_idle for the reasons
4253  * why performing device idling is the best choice to boost the throughput
4254  * and preserve service guarantees when bfq_better_to_idle itself
4255  * returns true.
4256  */
bfq_bfqq_must_idle(struct bfq_queue * bfqq)4257 static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4258 {
4259 	return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
4260 }
4261 
4262 /*
4263  * This function chooses the queue from which to pick the next extra
4264  * I/O request to inject, if it finds a compatible queue. See the
4265  * comments on bfq_update_inject_limit() for details on the injection
4266  * mechanism, and for the definitions of the quantities mentioned
4267  * below.
4268  */
4269 static struct bfq_queue *
bfq_choose_bfqq_for_injection(struct bfq_data * bfqd)4270 bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
4271 {
4272 	struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4273 	unsigned int limit = in_serv_bfqq->inject_limit;
4274 	/*
4275 	 * If
4276 	 * - bfqq is not weight-raised and therefore does not carry
4277 	 *   time-critical I/O,
4278 	 * or
4279 	 * - regardless of whether bfqq is weight-raised, bfqq has
4280 	 *   however a long think time, during which it can absorb the
4281 	 *   effect of an appropriate number of extra I/O requests
4282 	 *   from other queues (see bfq_update_inject_limit for
4283 	 *   details on the computation of this number);
4284 	 * then injection can be performed without restrictions.
4285 	 */
4286 	bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4287 		!bfq_bfqq_has_short_ttime(in_serv_bfqq);
4288 
4289 	/*
4290 	 * If
4291 	 * - the baseline total service time could not be sampled yet,
4292 	 *   so the inject limit happens to be still 0, and
4293 	 * - a lot of time has elapsed since the plugging of I/O
4294 	 *   dispatching started, so drive speed is being wasted
4295 	 *   significantly;
4296 	 * then temporarily raise inject limit to one request.
4297 	 */
4298 	if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4299 	    bfq_bfqq_wait_request(in_serv_bfqq) &&
4300 	    time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4301 				      bfqd->bfq_slice_idle)
4302 		)
4303 		limit = 1;
4304 
4305 	if (bfqd->rq_in_driver >= limit)
4306 		return NULL;
4307 
4308 	/*
4309 	 * Linear search of the source queue for injection; but, with
4310 	 * a high probability, very few steps are needed to find a
4311 	 * candidate queue, i.e., a queue with enough budget left for
4312 	 * its next request. In fact:
4313 	 * - BFQ dynamically updates the budget of every queue so as
4314 	 *   to accommodate the expected backlog of the queue;
4315 	 * - if a queue gets all its requests dispatched as injected
4316 	 *   service, then the queue is removed from the active list
4317 	 *   (and re-added only if it gets new requests, but then it
4318 	 *   is assigned again enough budget for its new backlog).
4319 	 */
4320 	list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4321 		if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
4322 		    (in_serv_always_inject || bfqq->wr_coeff > 1) &&
4323 		    bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
4324 		    bfq_bfqq_budget_left(bfqq)) {
4325 			/*
4326 			 * Allow for only one large in-flight request
4327 			 * on non-rotational devices, for the
4328 			 * following reason. On non-rotationl drives,
4329 			 * large requests take much longer than
4330 			 * smaller requests to be served. In addition,
4331 			 * the drive prefers to serve large requests
4332 			 * w.r.t. to small ones, if it can choose. So,
4333 			 * having more than one large requests queued
4334 			 * in the drive may easily make the next first
4335 			 * request of the in-service queue wait for so
4336 			 * long to break bfqq's service guarantees. On
4337 			 * the bright side, large requests let the
4338 			 * drive reach a very high throughput, even if
4339 			 * there is only one in-flight large request
4340 			 * at a time.
4341 			 */
4342 			if (blk_queue_nonrot(bfqd->queue) &&
4343 			    blk_rq_sectors(bfqq->next_rq) >=
4344 			    BFQQ_SECT_THR_NONROT)
4345 				limit = min_t(unsigned int, 1, limit);
4346 			else
4347 				limit = in_serv_bfqq->inject_limit;
4348 
4349 			if (bfqd->rq_in_driver < limit) {
4350 				bfqd->rqs_injected = true;
4351 				return bfqq;
4352 			}
4353 		}
4354 
4355 	return NULL;
4356 }
4357 
4358 /*
4359  * Select a queue for service.  If we have a current queue in service,
4360  * check whether to continue servicing it, or retrieve and set a new one.
4361  */
bfq_select_queue(struct bfq_data * bfqd)4362 static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4363 {
4364 	struct bfq_queue *bfqq;
4365 	struct request *next_rq;
4366 	enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4367 
4368 	bfqq = bfqd->in_service_queue;
4369 	if (!bfqq)
4370 		goto new_queue;
4371 
4372 	bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4373 
4374 	/*
4375 	 * Do not expire bfqq for budget timeout if bfqq may be about
4376 	 * to enjoy device idling. The reason why, in this case, we
4377 	 * prevent bfqq from expiring is the same as in the comments
4378 	 * on the case where bfq_bfqq_must_idle() returns true, in
4379 	 * bfq_completed_request().
4380 	 */
4381 	if (bfq_may_expire_for_budg_timeout(bfqq) &&
4382 	    !bfq_bfqq_must_idle(bfqq))
4383 		goto expire;
4384 
4385 check_queue:
4386 	/*
4387 	 * This loop is rarely executed more than once. Even when it
4388 	 * happens, it is much more convenient to re-execute this loop
4389 	 * than to return NULL and trigger a new dispatch to get a
4390 	 * request served.
4391 	 */
4392 	next_rq = bfqq->next_rq;
4393 	/*
4394 	 * If bfqq has requests queued and it has enough budget left to
4395 	 * serve them, keep the queue, otherwise expire it.
4396 	 */
4397 	if (next_rq) {
4398 		if (bfq_serv_to_charge(next_rq, bfqq) >
4399 			bfq_bfqq_budget_left(bfqq)) {
4400 			/*
4401 			 * Expire the queue for budget exhaustion,
4402 			 * which makes sure that the next budget is
4403 			 * enough to serve the next request, even if
4404 			 * it comes from the fifo expired path.
4405 			 */
4406 			reason = BFQQE_BUDGET_EXHAUSTED;
4407 			goto expire;
4408 		} else {
4409 			/*
4410 			 * The idle timer may be pending because we may
4411 			 * not disable disk idling even when a new request
4412 			 * arrives.
4413 			 */
4414 			if (bfq_bfqq_wait_request(bfqq)) {
4415 				/*
4416 				 * If we get here: 1) at least a new request
4417 				 * has arrived but we have not disabled the
4418 				 * timer because the request was too small,
4419 				 * 2) then the block layer has unplugged
4420 				 * the device, causing the dispatch to be
4421 				 * invoked.
4422 				 *
4423 				 * Since the device is unplugged, now the
4424 				 * requests are probably large enough to
4425 				 * provide a reasonable throughput.
4426 				 * So we disable idling.
4427 				 */
4428 				bfq_clear_bfqq_wait_request(bfqq);
4429 				hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4430 			}
4431 			goto keep_queue;
4432 		}
4433 	}
4434 
4435 	/*
4436 	 * No requests pending. However, if the in-service queue is idling
4437 	 * for a new request, or has requests waiting for a completion and
4438 	 * may idle after their completion, then keep it anyway.
4439 	 *
4440 	 * Yet, inject service from other queues if it boosts
4441 	 * throughput and is possible.
4442 	 */
4443 	if (bfq_bfqq_wait_request(bfqq) ||
4444 	    (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
4445 		struct bfq_queue *async_bfqq =
4446 			bfqq->bic && bfqq->bic->bfqq[0] &&
4447 			bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4448 			bfqq->bic->bfqq[0]->next_rq ?
4449 			bfqq->bic->bfqq[0] : NULL;
4450 
4451 		/*
4452 		 * The next three mutually-exclusive ifs decide
4453 		 * whether to try injection, and choose the queue to
4454 		 * pick an I/O request from.
4455 		 *
4456 		 * The first if checks whether the process associated
4457 		 * with bfqq has also async I/O pending. If so, it
4458 		 * injects such I/O unconditionally. Injecting async
4459 		 * I/O from the same process can cause no harm to the
4460 		 * process. On the contrary, it can only increase
4461 		 * bandwidth and reduce latency for the process.
4462 		 *
4463 		 * The second if checks whether there happens to be a
4464 		 * non-empty waker queue for bfqq, i.e., a queue whose
4465 		 * I/O needs to be completed for bfqq to receive new
4466 		 * I/O. This happens, e.g., if bfqq is associated with
4467 		 * a process that does some sync. A sync generates
4468 		 * extra blocking I/O, which must be completed before
4469 		 * the process associated with bfqq can go on with its
4470 		 * I/O. If the I/O of the waker queue is not served,
4471 		 * then bfqq remains empty, and no I/O is dispatched,
4472 		 * until the idle timeout fires for bfqq. This is
4473 		 * likely to result in lower bandwidth and higher
4474 		 * latencies for bfqq, and in a severe loss of total
4475 		 * throughput. The best action to take is therefore to
4476 		 * serve the waker queue as soon as possible. So do it
4477 		 * (without relying on the third alternative below for
4478 		 * eventually serving waker_bfqq's I/O; see the last
4479 		 * paragraph for further details). This systematic
4480 		 * injection of I/O from the waker queue does not
4481 		 * cause any delay to bfqq's I/O. On the contrary,
4482 		 * next bfqq's I/O is brought forward dramatically,
4483 		 * for it is not blocked for milliseconds.
4484 		 *
4485 		 * The third if checks whether bfqq is a queue for
4486 		 * which it is better to avoid injection. It is so if
4487 		 * bfqq delivers more throughput when served without
4488 		 * any further I/O from other queues in the middle, or
4489 		 * if the service times of bfqq's I/O requests both
4490 		 * count more than overall throughput, and may be
4491 		 * easily increased by injection (this happens if bfqq
4492 		 * has a short think time). If none of these
4493 		 * conditions holds, then a candidate queue for
4494 		 * injection is looked for through
4495 		 * bfq_choose_bfqq_for_injection(). Note that the
4496 		 * latter may return NULL (for example if the inject
4497 		 * limit for bfqq is currently 0).
4498 		 *
4499 		 * NOTE: motivation for the second alternative
4500 		 *
4501 		 * Thanks to the way the inject limit is updated in
4502 		 * bfq_update_has_short_ttime(), it is rather likely
4503 		 * that, if I/O is being plugged for bfqq and the
4504 		 * waker queue has pending I/O requests that are
4505 		 * blocking bfqq's I/O, then the third alternative
4506 		 * above lets the waker queue get served before the
4507 		 * I/O-plugging timeout fires. So one may deem the
4508 		 * second alternative superfluous. It is not, because
4509 		 * the third alternative may be way less effective in
4510 		 * case of a synchronization. For two main
4511 		 * reasons. First, throughput may be low because the
4512 		 * inject limit may be too low to guarantee the same
4513 		 * amount of injected I/O, from the waker queue or
4514 		 * other queues, that the second alternative
4515 		 * guarantees (the second alternative unconditionally
4516 		 * injects a pending I/O request of the waker queue
4517 		 * for each bfq_dispatch_request()). Second, with the
4518 		 * third alternative, the duration of the plugging,
4519 		 * i.e., the time before bfqq finally receives new I/O,
4520 		 * may not be minimized, because the waker queue may
4521 		 * happen to be served only after other queues.
4522 		 */
4523 		if (async_bfqq &&
4524 		    icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4525 		    bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4526 		    bfq_bfqq_budget_left(async_bfqq))
4527 			bfqq = bfqq->bic->bfqq[0];
4528 		else if (bfq_bfqq_has_waker(bfqq) &&
4529 			   bfq_bfqq_busy(bfqq->waker_bfqq) &&
4530 			   bfqq->waker_bfqq->next_rq &&
4531 			   bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4532 					      bfqq->waker_bfqq) <=
4533 			   bfq_bfqq_budget_left(bfqq->waker_bfqq)
4534 			)
4535 			bfqq = bfqq->waker_bfqq;
4536 		else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4537 			 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4538 			  !bfq_bfqq_has_short_ttime(bfqq)))
4539 			bfqq = bfq_choose_bfqq_for_injection(bfqd);
4540 		else
4541 			bfqq = NULL;
4542 
4543 		goto keep_queue;
4544 	}
4545 
4546 	reason = BFQQE_NO_MORE_REQUESTS;
4547 expire:
4548 	bfq_bfqq_expire(bfqd, bfqq, false, reason);
4549 new_queue:
4550 	bfqq = bfq_set_in_service_queue(bfqd);
4551 	if (bfqq) {
4552 		bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4553 		goto check_queue;
4554 	}
4555 keep_queue:
4556 	if (bfqq)
4557 		bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4558 	else
4559 		bfq_log(bfqd, "select_queue: no queue returned");
4560 
4561 	return bfqq;
4562 }
4563 
bfq_update_wr_data(struct bfq_data * bfqd,struct bfq_queue * bfqq)4564 static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4565 {
4566 	struct bfq_entity *entity = &bfqq->entity;
4567 
4568 	if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4569 		bfq_log_bfqq(bfqd, bfqq,
4570 			"raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4571 			jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4572 			jiffies_to_msecs(bfqq->wr_cur_max_time),
4573 			bfqq->wr_coeff,
4574 			bfqq->entity.weight, bfqq->entity.orig_weight);
4575 
4576 		if (entity->prio_changed)
4577 			bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4578 
4579 		/*
4580 		 * If the queue was activated in a burst, or too much
4581 		 * time has elapsed from the beginning of this
4582 		 * weight-raising period, then end weight raising.
4583 		 */
4584 		if (bfq_bfqq_in_large_burst(bfqq))
4585 			bfq_bfqq_end_wr(bfqq);
4586 		else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4587 						bfqq->wr_cur_max_time)) {
4588 			if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4589 			time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
4590 					       bfq_wr_duration(bfqd)))
4591 				bfq_bfqq_end_wr(bfqq);
4592 			else {
4593 				switch_back_to_interactive_wr(bfqq, bfqd);
4594 				bfqq->entity.prio_changed = 1;
4595 			}
4596 		}
4597 		if (bfqq->wr_coeff > 1 &&
4598 		    bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4599 		    bfqq->service_from_wr > max_service_from_wr) {
4600 			/* see comments on max_service_from_wr */
4601 			bfq_bfqq_end_wr(bfqq);
4602 		}
4603 	}
4604 	/*
4605 	 * To improve latency (for this or other queues), immediately
4606 	 * update weight both if it must be raised and if it must be
4607 	 * lowered. Since, entity may be on some active tree here, and
4608 	 * might have a pending change of its ioprio class, invoke
4609 	 * next function with the last parameter unset (see the
4610 	 * comments on the function).
4611 	 */
4612 	if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
4613 		__bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4614 						entity, false);
4615 }
4616 
4617 /*
4618  * Dispatch next request from bfqq.
4619  */
bfq_dispatch_rq_from_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4620 static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4621 						 struct bfq_queue *bfqq)
4622 {
4623 	struct request *rq = bfqq->next_rq;
4624 	unsigned long service_to_charge;
4625 
4626 	service_to_charge = bfq_serv_to_charge(rq, bfqq);
4627 
4628 	bfq_bfqq_served(bfqq, service_to_charge);
4629 
4630 	if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4631 		bfqd->wait_dispatch = false;
4632 		bfqd->waited_rq = rq;
4633 	}
4634 
4635 	bfq_dispatch_remove(bfqd->queue, rq);
4636 
4637 	if (bfqq != bfqd->in_service_queue)
4638 		goto return_rq;
4639 
4640 	/*
4641 	 * If weight raising has to terminate for bfqq, then next
4642 	 * function causes an immediate update of bfqq's weight,
4643 	 * without waiting for next activation. As a consequence, on
4644 	 * expiration, bfqq will be timestamped as if has never been
4645 	 * weight-raised during this service slot, even if it has
4646 	 * received part or even most of the service as a
4647 	 * weight-raised queue. This inflates bfqq's timestamps, which
4648 	 * is beneficial, as bfqq is then more willing to leave the
4649 	 * device immediately to possible other weight-raised queues.
4650 	 */
4651 	bfq_update_wr_data(bfqd, bfqq);
4652 
4653 	/*
4654 	 * Expire bfqq, pretending that its budget expired, if bfqq
4655 	 * belongs to CLASS_IDLE and other queues are waiting for
4656 	 * service.
4657 	 */
4658 	if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
4659 		goto return_rq;
4660 
4661 	bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
4662 
4663 return_rq:
4664 	return rq;
4665 }
4666 
bfq_has_work(struct blk_mq_hw_ctx * hctx)4667 static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4668 {
4669 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4670 
4671 	/*
4672 	 * Avoiding lock: a race on bfqd->busy_queues should cause at
4673 	 * most a call to dispatch for nothing
4674 	 */
4675 	return !list_empty_careful(&bfqd->dispatch) ||
4676 		bfq_tot_busy_queues(bfqd) > 0;
4677 }
4678 
__bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4679 static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4680 {
4681 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4682 	struct request *rq = NULL;
4683 	struct bfq_queue *bfqq = NULL;
4684 
4685 	if (!list_empty(&bfqd->dispatch)) {
4686 		rq = list_first_entry(&bfqd->dispatch, struct request,
4687 				      queuelist);
4688 		list_del_init(&rq->queuelist);
4689 
4690 		bfqq = RQ_BFQQ(rq);
4691 
4692 		if (bfqq) {
4693 			/*
4694 			 * Increment counters here, because this
4695 			 * dispatch does not follow the standard
4696 			 * dispatch flow (where counters are
4697 			 * incremented)
4698 			 */
4699 			bfqq->dispatched++;
4700 
4701 			goto inc_in_driver_start_rq;
4702 		}
4703 
4704 		/*
4705 		 * We exploit the bfq_finish_requeue_request hook to
4706 		 * decrement rq_in_driver, but
4707 		 * bfq_finish_requeue_request will not be invoked on
4708 		 * this request. So, to avoid unbalance, just start
4709 		 * this request, without incrementing rq_in_driver. As
4710 		 * a negative consequence, rq_in_driver is deceptively
4711 		 * lower than it should be while this request is in
4712 		 * service. This may cause bfq_schedule_dispatch to be
4713 		 * invoked uselessly.
4714 		 *
4715 		 * As for implementing an exact solution, the
4716 		 * bfq_finish_requeue_request hook, if defined, is
4717 		 * probably invoked also on this request. So, by
4718 		 * exploiting this hook, we could 1) increment
4719 		 * rq_in_driver here, and 2) decrement it in
4720 		 * bfq_finish_requeue_request. Such a solution would
4721 		 * let the value of the counter be always accurate,
4722 		 * but it would entail using an extra interface
4723 		 * function. This cost seems higher than the benefit,
4724 		 * being the frequency of non-elevator-private
4725 		 * requests very low.
4726 		 */
4727 		goto start_rq;
4728 	}
4729 
4730 	bfq_log(bfqd, "dispatch requests: %d busy queues",
4731 		bfq_tot_busy_queues(bfqd));
4732 
4733 	if (bfq_tot_busy_queues(bfqd) == 0)
4734 		goto exit;
4735 
4736 	/*
4737 	 * Force device to serve one request at a time if
4738 	 * strict_guarantees is true. Forcing this service scheme is
4739 	 * currently the ONLY way to guarantee that the request
4740 	 * service order enforced by the scheduler is respected by a
4741 	 * queueing device. Otherwise the device is free even to make
4742 	 * some unlucky request wait for as long as the device
4743 	 * wishes.
4744 	 *
4745 	 * Of course, serving one request at a time may cause loss of
4746 	 * throughput.
4747 	 */
4748 	if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4749 		goto exit;
4750 
4751 	bfqq = bfq_select_queue(bfqd);
4752 	if (!bfqq)
4753 		goto exit;
4754 
4755 	rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4756 
4757 	if (rq) {
4758 inc_in_driver_start_rq:
4759 		bfqd->rq_in_driver++;
4760 start_rq:
4761 		rq->rq_flags |= RQF_STARTED;
4762 	}
4763 exit:
4764 	return rq;
4765 }
4766 
4767 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4768 static void bfq_update_dispatch_stats(struct request_queue *q,
4769 				      struct request *rq,
4770 				      struct bfq_queue *in_serv_queue,
4771 				      bool idle_timer_disabled)
4772 {
4773 	struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
4774 
4775 	if (!idle_timer_disabled && !bfqq)
4776 		return;
4777 
4778 	/*
4779 	 * rq and bfqq are guaranteed to exist until this function
4780 	 * ends, for the following reasons. First, rq can be
4781 	 * dispatched to the device, and then can be completed and
4782 	 * freed, only after this function ends. Second, rq cannot be
4783 	 * merged (and thus freed because of a merge) any longer,
4784 	 * because it has already started. Thus rq cannot be freed
4785 	 * before this function ends, and, since rq has a reference to
4786 	 * bfqq, the same guarantee holds for bfqq too.
4787 	 *
4788 	 * In addition, the following queue lock guarantees that
4789 	 * bfqq_group(bfqq) exists as well.
4790 	 */
4791 	spin_lock_irq(&q->queue_lock);
4792 	if (idle_timer_disabled)
4793 		/*
4794 		 * Since the idle timer has been disabled,
4795 		 * in_serv_queue contained some request when
4796 		 * __bfq_dispatch_request was invoked above, which
4797 		 * implies that rq was picked exactly from
4798 		 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4799 		 * therefore guaranteed to exist because of the above
4800 		 * arguments.
4801 		 */
4802 		bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4803 	if (bfqq) {
4804 		struct bfq_group *bfqg = bfqq_group(bfqq);
4805 
4806 		bfqg_stats_update_avg_queue_size(bfqg);
4807 		bfqg_stats_set_start_empty_time(bfqg);
4808 		bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
4809 	}
4810 	spin_unlock_irq(&q->queue_lock);
4811 }
4812 #else
bfq_update_dispatch_stats(struct request_queue * q,struct request * rq,struct bfq_queue * in_serv_queue,bool idle_timer_disabled)4813 static inline void bfq_update_dispatch_stats(struct request_queue *q,
4814 					     struct request *rq,
4815 					     struct bfq_queue *in_serv_queue,
4816 					     bool idle_timer_disabled) {}
4817 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
4818 
bfq_dispatch_request(struct blk_mq_hw_ctx * hctx)4819 static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4820 {
4821 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4822 	struct request *rq;
4823 	struct bfq_queue *in_serv_queue;
4824 	bool waiting_rq, idle_timer_disabled = false;
4825 
4826 	spin_lock_irq(&bfqd->lock);
4827 
4828 	in_serv_queue = bfqd->in_service_queue;
4829 	waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
4830 
4831 	rq = __bfq_dispatch_request(hctx);
4832 	if (in_serv_queue == bfqd->in_service_queue) {
4833 		idle_timer_disabled =
4834 			waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
4835 	}
4836 
4837 	spin_unlock_irq(&bfqd->lock);
4838 	bfq_update_dispatch_stats(hctx->queue, rq,
4839 			idle_timer_disabled ? in_serv_queue : NULL,
4840 				idle_timer_disabled);
4841 
4842 	return rq;
4843 }
4844 
4845 /*
4846  * Task holds one reference to the queue, dropped when task exits.  Each rq
4847  * in-flight on this queue also holds a reference, dropped when rq is freed.
4848  *
4849  * Scheduler lock must be held here. Recall not to use bfqq after calling
4850  * this function on it.
4851  */
bfq_put_queue(struct bfq_queue * bfqq)4852 void bfq_put_queue(struct bfq_queue *bfqq)
4853 {
4854 	struct bfq_queue *item;
4855 	struct hlist_node *n;
4856 	struct bfq_group *bfqg = bfqq_group(bfqq);
4857 
4858 	if (bfqq->bfqd)
4859 		bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
4860 			     bfqq, bfqq->ref);
4861 
4862 	bfqq->ref--;
4863 	if (bfqq->ref)
4864 		return;
4865 
4866 	if (!hlist_unhashed(&bfqq->burst_list_node)) {
4867 		hlist_del_init(&bfqq->burst_list_node);
4868 		/*
4869 		 * Decrement also burst size after the removal, if the
4870 		 * process associated with bfqq is exiting, and thus
4871 		 * does not contribute to the burst any longer. This
4872 		 * decrement helps filter out false positives of large
4873 		 * bursts, when some short-lived process (often due to
4874 		 * the execution of commands by some service) happens
4875 		 * to start and exit while a complex application is
4876 		 * starting, and thus spawning several processes that
4877 		 * do I/O (and that *must not* be treated as a large
4878 		 * burst, see comments on bfq_handle_burst).
4879 		 *
4880 		 * In particular, the decrement is performed only if:
4881 		 * 1) bfqq is not a merged queue, because, if it is,
4882 		 * then this free of bfqq is not triggered by the exit
4883 		 * of the process bfqq is associated with, but exactly
4884 		 * by the fact that bfqq has just been merged.
4885 		 * 2) burst_size is greater than 0, to handle
4886 		 * unbalanced decrements. Unbalanced decrements may
4887 		 * happen in te following case: bfqq is inserted into
4888 		 * the current burst list--without incrementing
4889 		 * bust_size--because of a split, but the current
4890 		 * burst list is not the burst list bfqq belonged to
4891 		 * (see comments on the case of a split in
4892 		 * bfq_set_request).
4893 		 */
4894 		if (bfqq->bic && bfqq->bfqd->burst_size > 0)
4895 			bfqq->bfqd->burst_size--;
4896 	}
4897 
4898 	/*
4899 	 * bfqq does not exist any longer, so it cannot be woken by
4900 	 * any other queue, and cannot wake any other queue. Then bfqq
4901 	 * must be removed from the woken list of its possible waker
4902 	 * queue, and all queues in the woken list of bfqq must stop
4903 	 * having a waker queue. Strictly speaking, these updates
4904 	 * should be performed when bfqq remains with no I/O source
4905 	 * attached to it, which happens before bfqq gets freed. In
4906 	 * particular, this happens when the last process associated
4907 	 * with bfqq exits or gets associated with a different
4908 	 * queue. However, both events lead to bfqq being freed soon,
4909 	 * and dangling references would come out only after bfqq gets
4910 	 * freed. So these updates are done here, as a simple and safe
4911 	 * way to handle all cases.
4912 	 */
4913 	/* remove bfqq from woken list */
4914 	if (!hlist_unhashed(&bfqq->woken_list_node))
4915 		hlist_del_init(&bfqq->woken_list_node);
4916 
4917 	/* reset waker for all queues in woken list */
4918 	hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
4919 				  woken_list_node) {
4920 		item->waker_bfqq = NULL;
4921 		bfq_clear_bfqq_has_waker(item);
4922 		hlist_del_init(&item->woken_list_node);
4923 	}
4924 
4925 	if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
4926 		bfqq->bfqd->last_completed_rq_bfqq = NULL;
4927 
4928 	kmem_cache_free(bfq_pool, bfqq);
4929 	bfqg_and_blkg_put(bfqg);
4930 }
4931 
bfq_put_cooperator(struct bfq_queue * bfqq)4932 void bfq_put_cooperator(struct bfq_queue *bfqq)
4933 {
4934 	struct bfq_queue *__bfqq, *next;
4935 
4936 	/*
4937 	 * If this queue was scheduled to merge with another queue, be
4938 	 * sure to drop the reference taken on that queue (and others in
4939 	 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
4940 	 */
4941 	__bfqq = bfqq->new_bfqq;
4942 	while (__bfqq) {
4943 		if (__bfqq == bfqq)
4944 			break;
4945 		next = __bfqq->new_bfqq;
4946 		bfq_put_queue(__bfqq);
4947 		__bfqq = next;
4948 	}
4949 }
4950 
bfq_exit_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq)4951 static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4952 {
4953 	if (bfqq == bfqd->in_service_queue) {
4954 		__bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
4955 		bfq_schedule_dispatch(bfqd);
4956 	}
4957 
4958 	bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
4959 
4960 	bfq_put_cooperator(bfqq);
4961 
4962 	bfq_release_process_ref(bfqd, bfqq);
4963 }
4964 
bfq_exit_icq_bfqq(struct bfq_io_cq * bic,bool is_sync)4965 static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
4966 {
4967 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4968 	struct bfq_data *bfqd;
4969 
4970 	if (bfqq)
4971 		bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
4972 
4973 	if (bfqq && bfqd) {
4974 		unsigned long flags;
4975 
4976 		spin_lock_irqsave(&bfqd->lock, flags);
4977 		bfqq->bic = NULL;
4978 		bfq_exit_bfqq(bfqd, bfqq);
4979 		bic_set_bfqq(bic, NULL, is_sync);
4980 		spin_unlock_irqrestore(&bfqd->lock, flags);
4981 	}
4982 }
4983 
bfq_exit_icq(struct io_cq * icq)4984 static void bfq_exit_icq(struct io_cq *icq)
4985 {
4986 	struct bfq_io_cq *bic = icq_to_bic(icq);
4987 
4988 	bfq_exit_icq_bfqq(bic, true);
4989 	bfq_exit_icq_bfqq(bic, false);
4990 }
4991 
4992 /*
4993  * Update the entity prio values; note that the new values will not
4994  * be used until the next (re)activation.
4995  */
4996 static void
bfq_set_next_ioprio_data(struct bfq_queue * bfqq,struct bfq_io_cq * bic)4997 bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4998 {
4999 	struct task_struct *tsk = current;
5000 	int ioprio_class;
5001 	struct bfq_data *bfqd = bfqq->bfqd;
5002 
5003 	if (!bfqd)
5004 		return;
5005 
5006 	ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5007 	switch (ioprio_class) {
5008 	default:
5009 		pr_err("bdi %s: bfq: bad prio class %d\n",
5010 				bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5011 				ioprio_class);
5012 		fallthrough;
5013 	case IOPRIO_CLASS_NONE:
5014 		/*
5015 		 * No prio set, inherit CPU scheduling settings.
5016 		 */
5017 		bfqq->new_ioprio = task_nice_ioprio(tsk);
5018 		bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5019 		break;
5020 	case IOPRIO_CLASS_RT:
5021 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5022 		bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5023 		break;
5024 	case IOPRIO_CLASS_BE:
5025 		bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5026 		bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5027 		break;
5028 	case IOPRIO_CLASS_IDLE:
5029 		bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5030 		bfqq->new_ioprio = 7;
5031 		break;
5032 	}
5033 
5034 	if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5035 		pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5036 			bfqq->new_ioprio);
5037 		bfqq->new_ioprio = IOPRIO_BE_NR - 1;
5038 	}
5039 
5040 	bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
5041 	bfqq->entity.prio_changed = 1;
5042 }
5043 
5044 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5045 				       struct bio *bio, bool is_sync,
5046 				       struct bfq_io_cq *bic);
5047 
bfq_check_ioprio_change(struct bfq_io_cq * bic,struct bio * bio)5048 static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5049 {
5050 	struct bfq_data *bfqd = bic_to_bfqd(bic);
5051 	struct bfq_queue *bfqq;
5052 	int ioprio = bic->icq.ioc->ioprio;
5053 
5054 	/*
5055 	 * This condition may trigger on a newly created bic, be sure to
5056 	 * drop the lock before returning.
5057 	 */
5058 	if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5059 		return;
5060 
5061 	bic->ioprio = ioprio;
5062 
5063 	bfqq = bic_to_bfqq(bic, false);
5064 	if (bfqq) {
5065 		bfq_release_process_ref(bfqd, bfqq);
5066 		bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
5067 		bic_set_bfqq(bic, bfqq, false);
5068 	}
5069 
5070 	bfqq = bic_to_bfqq(bic, true);
5071 	if (bfqq)
5072 		bfq_set_next_ioprio_data(bfqq, bic);
5073 }
5074 
bfq_init_bfqq(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic,pid_t pid,int is_sync)5075 static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5076 			  struct bfq_io_cq *bic, pid_t pid, int is_sync)
5077 {
5078 	RB_CLEAR_NODE(&bfqq->entity.rb_node);
5079 	INIT_LIST_HEAD(&bfqq->fifo);
5080 	INIT_HLIST_NODE(&bfqq->burst_list_node);
5081 	INIT_HLIST_NODE(&bfqq->woken_list_node);
5082 	INIT_HLIST_HEAD(&bfqq->woken_list);
5083 
5084 	bfqq->ref = 0;
5085 	bfqq->bfqd = bfqd;
5086 
5087 	if (bic)
5088 		bfq_set_next_ioprio_data(bfqq, bic);
5089 
5090 	if (is_sync) {
5091 		/*
5092 		 * No need to mark as has_short_ttime if in
5093 		 * idle_class, because no device idling is performed
5094 		 * for queues in idle class
5095 		 */
5096 		if (!bfq_class_idle(bfqq))
5097 			/* tentatively mark as has_short_ttime */
5098 			bfq_mark_bfqq_has_short_ttime(bfqq);
5099 		bfq_mark_bfqq_sync(bfqq);
5100 		bfq_mark_bfqq_just_created(bfqq);
5101 	} else
5102 		bfq_clear_bfqq_sync(bfqq);
5103 
5104 	/* set end request to minus infinity from now */
5105 	bfqq->ttime.last_end_request = ktime_get_ns() + 1;
5106 
5107 	bfq_mark_bfqq_IO_bound(bfqq);
5108 
5109 	bfqq->pid = pid;
5110 
5111 	/* Tentative initial value to trade off between thr and lat */
5112 	bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
5113 	bfqq->budget_timeout = bfq_smallest_from_now();
5114 
5115 	bfqq->wr_coeff = 1;
5116 	bfqq->last_wr_start_finish = jiffies;
5117 	bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
5118 	bfqq->split_time = bfq_smallest_from_now();
5119 
5120 	/*
5121 	 * To not forget the possibly high bandwidth consumed by a
5122 	 * process/queue in the recent past,
5123 	 * bfq_bfqq_softrt_next_start() returns a value at least equal
5124 	 * to the current value of bfqq->soft_rt_next_start (see
5125 	 * comments on bfq_bfqq_softrt_next_start).  Set
5126 	 * soft_rt_next_start to now, to mean that bfqq has consumed
5127 	 * no bandwidth so far.
5128 	 */
5129 	bfqq->soft_rt_next_start = jiffies;
5130 
5131 	/* first request is almost certainly seeky */
5132 	bfqq->seek_history = 1;
5133 }
5134 
bfq_async_queue_prio(struct bfq_data * bfqd,struct bfq_group * bfqg,int ioprio_class,int ioprio)5135 static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
5136 					       struct bfq_group *bfqg,
5137 					       int ioprio_class, int ioprio)
5138 {
5139 	switch (ioprio_class) {
5140 	case IOPRIO_CLASS_RT:
5141 		return &bfqg->async_bfqq[0][ioprio];
5142 	case IOPRIO_CLASS_NONE:
5143 		ioprio = IOPRIO_NORM;
5144 		fallthrough;
5145 	case IOPRIO_CLASS_BE:
5146 		return &bfqg->async_bfqq[1][ioprio];
5147 	case IOPRIO_CLASS_IDLE:
5148 		return &bfqg->async_idle_bfqq;
5149 	default:
5150 		return NULL;
5151 	}
5152 }
5153 
bfq_get_queue(struct bfq_data * bfqd,struct bio * bio,bool is_sync,struct bfq_io_cq * bic)5154 static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5155 				       struct bio *bio, bool is_sync,
5156 				       struct bfq_io_cq *bic)
5157 {
5158 	const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5159 	const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5160 	struct bfq_queue **async_bfqq = NULL;
5161 	struct bfq_queue *bfqq;
5162 	struct bfq_group *bfqg;
5163 
5164 	bfqg = bfq_bio_bfqg(bfqd, bio);
5165 	if (!is_sync) {
5166 		async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
5167 						  ioprio);
5168 		bfqq = *async_bfqq;
5169 		if (bfqq)
5170 			goto out;
5171 	}
5172 
5173 	bfqq = kmem_cache_alloc_node(bfq_pool,
5174 				     GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5175 				     bfqd->queue->node);
5176 
5177 	if (bfqq) {
5178 		bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5179 			      is_sync);
5180 		bfq_init_entity(&bfqq->entity, bfqg);
5181 		bfq_log_bfqq(bfqd, bfqq, "allocated");
5182 	} else {
5183 		bfqq = &bfqd->oom_bfqq;
5184 		bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5185 		goto out;
5186 	}
5187 
5188 	/*
5189 	 * Pin the queue now that it's allocated, scheduler exit will
5190 	 * prune it.
5191 	 */
5192 	if (async_bfqq) {
5193 		bfqq->ref++; /*
5194 			      * Extra group reference, w.r.t. sync
5195 			      * queue. This extra reference is removed
5196 			      * only if bfqq->bfqg disappears, to
5197 			      * guarantee that this queue is not freed
5198 			      * until its group goes away.
5199 			      */
5200 		bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
5201 			     bfqq, bfqq->ref);
5202 		*async_bfqq = bfqq;
5203 	}
5204 
5205 out:
5206 	bfqq->ref++; /* get a process reference to this queue */
5207 	bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
5208 	return bfqq;
5209 }
5210 
bfq_update_io_thinktime(struct bfq_data * bfqd,struct bfq_queue * bfqq)5211 static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5212 				    struct bfq_queue *bfqq)
5213 {
5214 	struct bfq_ttime *ttime = &bfqq->ttime;
5215 	u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
5216 
5217 	elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5218 
5219 	ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
5220 	ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed,  8);
5221 	ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5222 				     ttime->ttime_samples);
5223 }
5224 
5225 static void
bfq_update_io_seektime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5226 bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5227 		       struct request *rq)
5228 {
5229 	bfqq->seek_history <<= 1;
5230 	bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
5231 
5232 	if (bfqq->wr_coeff > 1 &&
5233 	    bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
5234 	    BFQQ_TOTALLY_SEEKY(bfqq))
5235 		bfq_bfqq_end_wr(bfqq);
5236 }
5237 
bfq_update_has_short_ttime(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct bfq_io_cq * bic)5238 static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5239 				       struct bfq_queue *bfqq,
5240 				       struct bfq_io_cq *bic)
5241 {
5242 	bool has_short_ttime = true, state_changed;
5243 
5244 	/*
5245 	 * No need to update has_short_ttime if bfqq is async or in
5246 	 * idle io prio class, or if bfq_slice_idle is zero, because
5247 	 * no device idling is performed for bfqq in this case.
5248 	 */
5249 	if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5250 	    bfqd->bfq_slice_idle == 0)
5251 		return;
5252 
5253 	/* Idle window just restored, statistics are meaningless. */
5254 	if (time_is_after_eq_jiffies(bfqq->split_time +
5255 				     bfqd->bfq_wr_min_idle_time))
5256 		return;
5257 
5258 	/* Think time is infinite if no process is linked to
5259 	 * bfqq. Otherwise check average think time to
5260 	 * decide whether to mark as has_short_ttime
5261 	 */
5262 	if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
5263 	    (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
5264 	     bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
5265 		has_short_ttime = false;
5266 
5267 	state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
5268 
5269 	if (has_short_ttime)
5270 		bfq_mark_bfqq_has_short_ttime(bfqq);
5271 	else
5272 		bfq_clear_bfqq_has_short_ttime(bfqq);
5273 
5274 	/*
5275 	 * Until the base value for the total service time gets
5276 	 * finally computed for bfqq, the inject limit does depend on
5277 	 * the think-time state (short|long). In particular, the limit
5278 	 * is 0 or 1 if the think time is deemed, respectively, as
5279 	 * short or long (details in the comments in
5280 	 * bfq_update_inject_limit()). Accordingly, the next
5281 	 * instructions reset the inject limit if the think-time state
5282 	 * has changed and the above base value is still to be
5283 	 * computed.
5284 	 *
5285 	 * However, the reset is performed only if more than 100 ms
5286 	 * have elapsed since the last update of the inject limit, or
5287 	 * (inclusive) if the change is from short to long think
5288 	 * time. The reason for this waiting is as follows.
5289 	 *
5290 	 * bfqq may have a long think time because of a
5291 	 * synchronization with some other queue, i.e., because the
5292 	 * I/O of some other queue may need to be completed for bfqq
5293 	 * to receive new I/O. Details in the comments on the choice
5294 	 * of the queue for injection in bfq_select_queue().
5295 	 *
5296 	 * As stressed in those comments, if such a synchronization is
5297 	 * actually in place, then, without injection on bfqq, the
5298 	 * blocking I/O cannot happen to served while bfqq is in
5299 	 * service. As a consequence, if bfqq is granted
5300 	 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5301 	 * is dispatched, until the idle timeout fires. This is likely
5302 	 * to result in lower bandwidth and higher latencies for bfqq,
5303 	 * and in a severe loss of total throughput.
5304 	 *
5305 	 * On the opposite end, a non-zero inject limit may allow the
5306 	 * I/O that blocks bfqq to be executed soon, and therefore
5307 	 * bfqq to receive new I/O soon.
5308 	 *
5309 	 * But, if the blocking gets actually eliminated, then the
5310 	 * next think-time sample for bfqq may be very low. This in
5311 	 * turn may cause bfqq's think time to be deemed
5312 	 * short. Without the 100 ms barrier, this new state change
5313 	 * would cause the body of the next if to be executed
5314 	 * immediately. But this would set to 0 the inject
5315 	 * limit. Without injection, the blocking I/O would cause the
5316 	 * think time of bfqq to become long again, and therefore the
5317 	 * inject limit to be raised again, and so on. The only effect
5318 	 * of such a steady oscillation between the two think-time
5319 	 * states would be to prevent effective injection on bfqq.
5320 	 *
5321 	 * In contrast, if the inject limit is not reset during such a
5322 	 * long time interval as 100 ms, then the number of short
5323 	 * think time samples can grow significantly before the reset
5324 	 * is performed. As a consequence, the think time state can
5325 	 * become stable before the reset. Therefore there will be no
5326 	 * state change when the 100 ms elapse, and no reset of the
5327 	 * inject limit. The inject limit remains steadily equal to 1
5328 	 * both during and after the 100 ms. So injection can be
5329 	 * performed at all times, and throughput gets boosted.
5330 	 *
5331 	 * An inject limit equal to 1 is however in conflict, in
5332 	 * general, with the fact that the think time of bfqq is
5333 	 * short, because injection may be likely to delay bfqq's I/O
5334 	 * (as explained in the comments in
5335 	 * bfq_update_inject_limit()). But this does not happen in
5336 	 * this special case, because bfqq's low think time is due to
5337 	 * an effective handling of a synchronization, through
5338 	 * injection. In this special case, bfqq's I/O does not get
5339 	 * delayed by injection; on the contrary, bfqq's I/O is
5340 	 * brought forward, because it is not blocked for
5341 	 * milliseconds.
5342 	 *
5343 	 * In addition, serving the blocking I/O much sooner, and much
5344 	 * more frequently than once per I/O-plugging timeout, makes
5345 	 * it much quicker to detect a waker queue (the concept of
5346 	 * waker queue is defined in the comments in
5347 	 * bfq_add_request()). This makes it possible to start sooner
5348 	 * to boost throughput more effectively, by injecting the I/O
5349 	 * of the waker queue unconditionally on every
5350 	 * bfq_dispatch_request().
5351 	 *
5352 	 * One last, important benefit of not resetting the inject
5353 	 * limit before 100 ms is that, during this time interval, the
5354 	 * base value for the total service time is likely to get
5355 	 * finally computed for bfqq, freeing the inject limit from
5356 	 * its relation with the think time.
5357 	 */
5358 	if (state_changed && bfqq->last_serv_time_ns == 0 &&
5359 	    (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5360 				      msecs_to_jiffies(100)) ||
5361 	     !has_short_ttime))
5362 		bfq_reset_inject_limit(bfqd, bfqq);
5363 }
5364 
5365 /*
5366  * Called when a new fs request (rq) is added to bfqq.  Check if there's
5367  * something we should do about it.
5368  */
bfq_rq_enqueued(struct bfq_data * bfqd,struct bfq_queue * bfqq,struct request * rq)5369 static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5370 			    struct request *rq)
5371 {
5372 	if (rq->cmd_flags & REQ_META)
5373 		bfqq->meta_pending++;
5374 
5375 	bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5376 
5377 	if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5378 		bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5379 				 blk_rq_sectors(rq) < 32;
5380 		bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5381 
5382 		/*
5383 		 * There is just this request queued: if
5384 		 * - the request is small, and
5385 		 * - we are idling to boost throughput, and
5386 		 * - the queue is not to be expired,
5387 		 * then just exit.
5388 		 *
5389 		 * In this way, if the device is being idled to wait
5390 		 * for a new request from the in-service queue, we
5391 		 * avoid unplugging the device and committing the
5392 		 * device to serve just a small request. In contrast
5393 		 * we wait for the block layer to decide when to
5394 		 * unplug the device: hopefully, new requests will be
5395 		 * merged to this one quickly, then the device will be
5396 		 * unplugged and larger requests will be dispatched.
5397 		 */
5398 		if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5399 		    !budget_timeout)
5400 			return;
5401 
5402 		/*
5403 		 * A large enough request arrived, or idling is being
5404 		 * performed to preserve service guarantees, or
5405 		 * finally the queue is to be expired: in all these
5406 		 * cases disk idling is to be stopped, so clear
5407 		 * wait_request flag and reset timer.
5408 		 */
5409 		bfq_clear_bfqq_wait_request(bfqq);
5410 		hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5411 
5412 		/*
5413 		 * The queue is not empty, because a new request just
5414 		 * arrived. Hence we can safely expire the queue, in
5415 		 * case of budget timeout, without risking that the
5416 		 * timestamps of the queue are not updated correctly.
5417 		 * See [1] for more details.
5418 		 */
5419 		if (budget_timeout)
5420 			bfq_bfqq_expire(bfqd, bfqq, false,
5421 					BFQQE_BUDGET_TIMEOUT);
5422 	}
5423 }
5424 
5425 /* returns true if it causes the idle timer to be disabled */
__bfq_insert_request(struct bfq_data * bfqd,struct request * rq)5426 static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
5427 {
5428 	struct bfq_queue *bfqq = RQ_BFQQ(rq),
5429 		*new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
5430 	bool waiting, idle_timer_disabled = false;
5431 
5432 	if (new_bfqq) {
5433 		/*
5434 		 * Release the request's reference to the old bfqq
5435 		 * and make sure one is taken to the shared queue.
5436 		 */
5437 		new_bfqq->allocated++;
5438 		bfqq->allocated--;
5439 		new_bfqq->ref++;
5440 		/*
5441 		 * If the bic associated with the process
5442 		 * issuing this request still points to bfqq
5443 		 * (and thus has not been already redirected
5444 		 * to new_bfqq or even some other bfq_queue),
5445 		 * then complete the merge and redirect it to
5446 		 * new_bfqq.
5447 		 */
5448 		if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5449 			bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5450 					bfqq, new_bfqq);
5451 
5452 		bfq_clear_bfqq_just_created(bfqq);
5453 		/*
5454 		 * rq is about to be enqueued into new_bfqq,
5455 		 * release rq reference on bfqq
5456 		 */
5457 		bfq_put_queue(bfqq);
5458 		rq->elv.priv[1] = new_bfqq;
5459 		bfqq = new_bfqq;
5460 	}
5461 
5462 	bfq_update_io_thinktime(bfqd, bfqq);
5463 	bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5464 	bfq_update_io_seektime(bfqd, bfqq, rq);
5465 
5466 	waiting = bfqq && bfq_bfqq_wait_request(bfqq);
5467 	bfq_add_request(rq);
5468 	idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
5469 
5470 	rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5471 	list_add_tail(&rq->queuelist, &bfqq->fifo);
5472 
5473 	bfq_rq_enqueued(bfqd, bfqq, rq);
5474 
5475 	return idle_timer_disabled;
5476 }
5477 
5478 #ifdef CONFIG_BFQ_CGROUP_DEBUG
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5479 static void bfq_update_insert_stats(struct request_queue *q,
5480 				    struct bfq_queue *bfqq,
5481 				    bool idle_timer_disabled,
5482 				    unsigned int cmd_flags)
5483 {
5484 	if (!bfqq)
5485 		return;
5486 
5487 	/*
5488 	 * bfqq still exists, because it can disappear only after
5489 	 * either it is merged with another queue, or the process it
5490 	 * is associated with exits. But both actions must be taken by
5491 	 * the same process currently executing this flow of
5492 	 * instructions.
5493 	 *
5494 	 * In addition, the following queue lock guarantees that
5495 	 * bfqq_group(bfqq) exists as well.
5496 	 */
5497 	spin_lock_irq(&q->queue_lock);
5498 	bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5499 	if (idle_timer_disabled)
5500 		bfqg_stats_update_idle_time(bfqq_group(bfqq));
5501 	spin_unlock_irq(&q->queue_lock);
5502 }
5503 #else
bfq_update_insert_stats(struct request_queue * q,struct bfq_queue * bfqq,bool idle_timer_disabled,unsigned int cmd_flags)5504 static inline void bfq_update_insert_stats(struct request_queue *q,
5505 					   struct bfq_queue *bfqq,
5506 					   bool idle_timer_disabled,
5507 					   unsigned int cmd_flags) {}
5508 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
5509 
5510 static struct bfq_queue *bfq_init_rq(struct request *rq);
5511 
bfq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)5512 static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5513 			       bool at_head)
5514 {
5515 	struct request_queue *q = hctx->queue;
5516 	struct bfq_data *bfqd = q->elevator->elevator_data;
5517 	struct bfq_queue *bfqq;
5518 	bool idle_timer_disabled = false;
5519 	unsigned int cmd_flags;
5520 
5521 #ifdef CONFIG_BFQ_GROUP_IOSCHED
5522 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5523 		bfqg_stats_update_legacy_io(q, rq);
5524 #endif
5525 	spin_lock_irq(&bfqd->lock);
5526 	bfqq = bfq_init_rq(rq);
5527 	if (blk_mq_sched_try_insert_merge(q, rq)) {
5528 		spin_unlock_irq(&bfqd->lock);
5529 		return;
5530 	}
5531 
5532 	blk_mq_sched_request_inserted(rq);
5533 
5534 	if (!bfqq || at_head || blk_rq_is_passthrough(rq)) {
5535 		if (at_head)
5536 			list_add(&rq->queuelist, &bfqd->dispatch);
5537 		else
5538 			list_add_tail(&rq->queuelist, &bfqd->dispatch);
5539 	} else {
5540 		idle_timer_disabled = __bfq_insert_request(bfqd, rq);
5541 		/*
5542 		 * Update bfqq, because, if a queue merge has occurred
5543 		 * in __bfq_insert_request, then rq has been
5544 		 * redirected into a new queue.
5545 		 */
5546 		bfqq = RQ_BFQQ(rq);
5547 
5548 		if (rq_mergeable(rq)) {
5549 			elv_rqhash_add(q, rq);
5550 			if (!q->last_merge)
5551 				q->last_merge = rq;
5552 		}
5553 	}
5554 
5555 	/*
5556 	 * Cache cmd_flags before releasing scheduler lock, because rq
5557 	 * may disappear afterwards (for example, because of a request
5558 	 * merge).
5559 	 */
5560 	cmd_flags = rq->cmd_flags;
5561 
5562 	spin_unlock_irq(&bfqd->lock);
5563 
5564 	bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
5565 				cmd_flags);
5566 }
5567 
bfq_insert_requests(struct blk_mq_hw_ctx * hctx,struct list_head * list,bool at_head)5568 static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
5569 				struct list_head *list, bool at_head)
5570 {
5571 	while (!list_empty(list)) {
5572 		struct request *rq;
5573 
5574 		rq = list_first_entry(list, struct request, queuelist);
5575 		list_del_init(&rq->queuelist);
5576 		bfq_insert_request(hctx, rq, at_head);
5577 	}
5578 }
5579 
bfq_update_hw_tag(struct bfq_data * bfqd)5580 static void bfq_update_hw_tag(struct bfq_data *bfqd)
5581 {
5582 	struct bfq_queue *bfqq = bfqd->in_service_queue;
5583 
5584 	bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
5585 				       bfqd->rq_in_driver);
5586 
5587 	if (bfqd->hw_tag == 1)
5588 		return;
5589 
5590 	/*
5591 	 * This sample is valid if the number of outstanding requests
5592 	 * is large enough to allow a queueing behavior.  Note that the
5593 	 * sum is not exact, as it's not taking into account deactivated
5594 	 * requests.
5595 	 */
5596 	if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
5597 		return;
5598 
5599 	/*
5600 	 * If active queue hasn't enough requests and can idle, bfq might not
5601 	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
5602 	 * case
5603 	 */
5604 	if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
5605 	    bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
5606 	    BFQ_HW_QUEUE_THRESHOLD &&
5607 	    bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
5608 		return;
5609 
5610 	if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
5611 		return;
5612 
5613 	bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
5614 	bfqd->max_rq_in_driver = 0;
5615 	bfqd->hw_tag_samples = 0;
5616 
5617 	bfqd->nonrot_with_queueing =
5618 		blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
5619 }
5620 
bfq_completed_request(struct bfq_queue * bfqq,struct bfq_data * bfqd)5621 static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
5622 {
5623 	u64 now_ns;
5624 	u32 delta_us;
5625 
5626 	bfq_update_hw_tag(bfqd);
5627 
5628 	bfqd->rq_in_driver--;
5629 	bfqq->dispatched--;
5630 
5631 	if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
5632 		/*
5633 		 * Set budget_timeout (which we overload to store the
5634 		 * time at which the queue remains with no backlog and
5635 		 * no outstanding request; used by the weight-raising
5636 		 * mechanism).
5637 		 */
5638 		bfqq->budget_timeout = jiffies;
5639 
5640 		bfq_weights_tree_remove(bfqd, bfqq);
5641 	}
5642 
5643 	now_ns = ktime_get_ns();
5644 
5645 	bfqq->ttime.last_end_request = now_ns;
5646 
5647 	/*
5648 	 * Using us instead of ns, to get a reasonable precision in
5649 	 * computing rate in next check.
5650 	 */
5651 	delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
5652 
5653 	/*
5654 	 * If the request took rather long to complete, and, according
5655 	 * to the maximum request size recorded, this completion latency
5656 	 * implies that the request was certainly served at a very low
5657 	 * rate (less than 1M sectors/sec), then the whole observation
5658 	 * interval that lasts up to this time instant cannot be a
5659 	 * valid time interval for computing a new peak rate.  Invoke
5660 	 * bfq_update_rate_reset to have the following three steps
5661 	 * taken:
5662 	 * - close the observation interval at the last (previous)
5663 	 *   request dispatch or completion
5664 	 * - compute rate, if possible, for that observation interval
5665 	 * - reset to zero samples, which will trigger a proper
5666 	 *   re-initialization of the observation interval on next
5667 	 *   dispatch
5668 	 */
5669 	if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
5670 	   (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
5671 			1UL<<(BFQ_RATE_SHIFT - 10))
5672 		bfq_update_rate_reset(bfqd, NULL);
5673 	bfqd->last_completion = now_ns;
5674 	bfqd->last_completed_rq_bfqq = bfqq;
5675 
5676 	/*
5677 	 * If we are waiting to discover whether the request pattern
5678 	 * of the task associated with the queue is actually
5679 	 * isochronous, and both requisites for this condition to hold
5680 	 * are now satisfied, then compute soft_rt_next_start (see the
5681 	 * comments on the function bfq_bfqq_softrt_next_start()). We
5682 	 * do not compute soft_rt_next_start if bfqq is in interactive
5683 	 * weight raising (see the comments in bfq_bfqq_expire() for
5684 	 * an explanation). We schedule this delayed update when bfqq
5685 	 * expires, if it still has in-flight requests.
5686 	 */
5687 	if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
5688 	    RB_EMPTY_ROOT(&bfqq->sort_list) &&
5689 	    bfqq->wr_coeff != bfqd->bfq_wr_coeff)
5690 		bfqq->soft_rt_next_start =
5691 			bfq_bfqq_softrt_next_start(bfqd, bfqq);
5692 
5693 	/*
5694 	 * If this is the in-service queue, check if it needs to be expired,
5695 	 * or if we want to idle in case it has no pending requests.
5696 	 */
5697 	if (bfqd->in_service_queue == bfqq) {
5698 		if (bfq_bfqq_must_idle(bfqq)) {
5699 			if (bfqq->dispatched == 0)
5700 				bfq_arm_slice_timer(bfqd);
5701 			/*
5702 			 * If we get here, we do not expire bfqq, even
5703 			 * if bfqq was in budget timeout or had no
5704 			 * more requests (as controlled in the next
5705 			 * conditional instructions). The reason for
5706 			 * not expiring bfqq is as follows.
5707 			 *
5708 			 * Here bfqq->dispatched > 0 holds, but
5709 			 * bfq_bfqq_must_idle() returned true. This
5710 			 * implies that, even if no request arrives
5711 			 * for bfqq before bfqq->dispatched reaches 0,
5712 			 * bfqq will, however, not be expired on the
5713 			 * completion event that causes bfqq->dispatch
5714 			 * to reach zero. In contrast, on this event,
5715 			 * bfqq will start enjoying device idling
5716 			 * (I/O-dispatch plugging).
5717 			 *
5718 			 * But, if we expired bfqq here, bfqq would
5719 			 * not have the chance to enjoy device idling
5720 			 * when bfqq->dispatched finally reaches
5721 			 * zero. This would expose bfqq to violation
5722 			 * of its reserved service guarantees.
5723 			 */
5724 			return;
5725 		} else if (bfq_may_expire_for_budg_timeout(bfqq))
5726 			bfq_bfqq_expire(bfqd, bfqq, false,
5727 					BFQQE_BUDGET_TIMEOUT);
5728 		else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
5729 			 (bfqq->dispatched == 0 ||
5730 			  !bfq_better_to_idle(bfqq)))
5731 			bfq_bfqq_expire(bfqd, bfqq, false,
5732 					BFQQE_NO_MORE_REQUESTS);
5733 	}
5734 
5735 	if (!bfqd->rq_in_driver)
5736 		bfq_schedule_dispatch(bfqd);
5737 }
5738 
bfq_finish_requeue_request_body(struct bfq_queue * bfqq)5739 static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
5740 {
5741 	bfqq->allocated--;
5742 
5743 	bfq_put_queue(bfqq);
5744 }
5745 
5746 /*
5747  * The processes associated with bfqq may happen to generate their
5748  * cumulative I/O at a lower rate than the rate at which the device
5749  * could serve the same I/O. This is rather probable, e.g., if only
5750  * one process is associated with bfqq and the device is an SSD. It
5751  * results in bfqq becoming often empty while in service. In this
5752  * respect, if BFQ is allowed to switch to another queue when bfqq
5753  * remains empty, then the device goes on being fed with I/O requests,
5754  * and the throughput is not affected. In contrast, if BFQ is not
5755  * allowed to switch to another queue---because bfqq is sync and
5756  * I/O-dispatch needs to be plugged while bfqq is temporarily
5757  * empty---then, during the service of bfqq, there will be frequent
5758  * "service holes", i.e., time intervals during which bfqq gets empty
5759  * and the device can only consume the I/O already queued in its
5760  * hardware queues. During service holes, the device may even get to
5761  * remaining idle. In the end, during the service of bfqq, the device
5762  * is driven at a lower speed than the one it can reach with the kind
5763  * of I/O flowing through bfqq.
5764  *
5765  * To counter this loss of throughput, BFQ implements a "request
5766  * injection mechanism", which tries to fill the above service holes
5767  * with I/O requests taken from other queues. The hard part in this
5768  * mechanism is finding the right amount of I/O to inject, so as to
5769  * both boost throughput and not break bfqq's bandwidth and latency
5770  * guarantees. In this respect, the mechanism maintains a per-queue
5771  * inject limit, computed as below. While bfqq is empty, the injection
5772  * mechanism dispatches extra I/O requests only until the total number
5773  * of I/O requests in flight---i.e., already dispatched but not yet
5774  * completed---remains lower than this limit.
5775  *
5776  * A first definition comes in handy to introduce the algorithm by
5777  * which the inject limit is computed.  We define as first request for
5778  * bfqq, an I/O request for bfqq that arrives while bfqq is in
5779  * service, and causes bfqq to switch from empty to non-empty. The
5780  * algorithm updates the limit as a function of the effect of
5781  * injection on the service times of only the first requests of
5782  * bfqq. The reason for this restriction is that these are the
5783  * requests whose service time is affected most, because they are the
5784  * first to arrive after injection possibly occurred.
5785  *
5786  * To evaluate the effect of injection, the algorithm measures the
5787  * "total service time" of first requests. We define as total service
5788  * time of an I/O request, the time that elapses since when the
5789  * request is enqueued into bfqq, to when it is completed. This
5790  * quantity allows the whole effect of injection to be measured. It is
5791  * easy to see why. Suppose that some requests of other queues are
5792  * actually injected while bfqq is empty, and that a new request R
5793  * then arrives for bfqq. If the device does start to serve all or
5794  * part of the injected requests during the service hole, then,
5795  * because of this extra service, it may delay the next invocation of
5796  * the dispatch hook of BFQ. Then, even after R gets eventually
5797  * dispatched, the device may delay the actual service of R if it is
5798  * still busy serving the extra requests, or if it decides to serve,
5799  * before R, some extra request still present in its queues. As a
5800  * conclusion, the cumulative extra delay caused by injection can be
5801  * easily evaluated by just comparing the total service time of first
5802  * requests with and without injection.
5803  *
5804  * The limit-update algorithm works as follows. On the arrival of a
5805  * first request of bfqq, the algorithm measures the total time of the
5806  * request only if one of the three cases below holds, and, for each
5807  * case, it updates the limit as described below:
5808  *
5809  * (1) If there is no in-flight request. This gives a baseline for the
5810  *     total service time of the requests of bfqq. If the baseline has
5811  *     not been computed yet, then, after computing it, the limit is
5812  *     set to 1, to start boosting throughput, and to prepare the
5813  *     ground for the next case. If the baseline has already been
5814  *     computed, then it is updated, in case it results to be lower
5815  *     than the previous value.
5816  *
5817  * (2) If the limit is higher than 0 and there are in-flight
5818  *     requests. By comparing the total service time in this case with
5819  *     the above baseline, it is possible to know at which extent the
5820  *     current value of the limit is inflating the total service
5821  *     time. If the inflation is below a certain threshold, then bfqq
5822  *     is assumed to be suffering from no perceivable loss of its
5823  *     service guarantees, and the limit is even tentatively
5824  *     increased. If the inflation is above the threshold, then the
5825  *     limit is decreased. Due to the lack of any hysteresis, this
5826  *     logic makes the limit oscillate even in steady workload
5827  *     conditions. Yet we opted for it, because it is fast in reaching
5828  *     the best value for the limit, as a function of the current I/O
5829  *     workload. To reduce oscillations, this step is disabled for a
5830  *     short time interval after the limit happens to be decreased.
5831  *
5832  * (3) Periodically, after resetting the limit, to make sure that the
5833  *     limit eventually drops in case the workload changes. This is
5834  *     needed because, after the limit has gone safely up for a
5835  *     certain workload, it is impossible to guess whether the
5836  *     baseline total service time may have changed, without measuring
5837  *     it again without injection. A more effective version of this
5838  *     step might be to just sample the baseline, by interrupting
5839  *     injection only once, and then to reset/lower the limit only if
5840  *     the total service time with the current limit does happen to be
5841  *     too large.
5842  *
5843  * More details on each step are provided in the comments on the
5844  * pieces of code that implement these steps: the branch handling the
5845  * transition from empty to non empty in bfq_add_request(), the branch
5846  * handling injection in bfq_select_queue(), and the function
5847  * bfq_choose_bfqq_for_injection(). These comments also explain some
5848  * exceptions, made by the injection mechanism in some special cases.
5849  */
bfq_update_inject_limit(struct bfq_data * bfqd,struct bfq_queue * bfqq)5850 static void bfq_update_inject_limit(struct bfq_data *bfqd,
5851 				    struct bfq_queue *bfqq)
5852 {
5853 	u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
5854 	unsigned int old_limit = bfqq->inject_limit;
5855 
5856 	if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
5857 		u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
5858 
5859 		if (tot_time_ns >= threshold && old_limit > 0) {
5860 			bfqq->inject_limit--;
5861 			bfqq->decrease_time_jif = jiffies;
5862 		} else if (tot_time_ns < threshold &&
5863 			   old_limit <= bfqd->max_rq_in_driver)
5864 			bfqq->inject_limit++;
5865 	}
5866 
5867 	/*
5868 	 * Either we still have to compute the base value for the
5869 	 * total service time, and there seem to be the right
5870 	 * conditions to do it, or we can lower the last base value
5871 	 * computed.
5872 	 *
5873 	 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
5874 	 * request in flight, because this function is in the code
5875 	 * path that handles the completion of a request of bfqq, and,
5876 	 * in particular, this function is executed before
5877 	 * bfqd->rq_in_driver is decremented in such a code path.
5878 	 */
5879 	if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
5880 	    tot_time_ns < bfqq->last_serv_time_ns) {
5881 		if (bfqq->last_serv_time_ns == 0) {
5882 			/*
5883 			 * Now we certainly have a base value: make sure we
5884 			 * start trying injection.
5885 			 */
5886 			bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
5887 		}
5888 		bfqq->last_serv_time_ns = tot_time_ns;
5889 	} else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
5890 		/*
5891 		 * No I/O injected and no request still in service in
5892 		 * the drive: these are the exact conditions for
5893 		 * computing the base value of the total service time
5894 		 * for bfqq. So let's update this value, because it is
5895 		 * rather variable. For example, it varies if the size
5896 		 * or the spatial locality of the I/O requests in bfqq
5897 		 * change.
5898 		 */
5899 		bfqq->last_serv_time_ns = tot_time_ns;
5900 
5901 
5902 	/* update complete, not waiting for any request completion any longer */
5903 	bfqd->waited_rq = NULL;
5904 	bfqd->rqs_injected = false;
5905 }
5906 
5907 /*
5908  * Handle either a requeue or a finish for rq. The things to do are
5909  * the same in both cases: all references to rq are to be dropped. In
5910  * particular, rq is considered completed from the point of view of
5911  * the scheduler.
5912  */
bfq_finish_requeue_request(struct request * rq)5913 static void bfq_finish_requeue_request(struct request *rq)
5914 {
5915 	struct bfq_queue *bfqq = RQ_BFQQ(rq);
5916 	struct bfq_data *bfqd;
5917 
5918 	/*
5919 	 * rq either is not associated with any icq, or is an already
5920 	 * requeued request that has not (yet) been re-inserted into
5921 	 * a bfq_queue.
5922 	 */
5923 	if (!rq->elv.icq || !bfqq)
5924 		return;
5925 
5926 	bfqd = bfqq->bfqd;
5927 
5928 	if (rq->rq_flags & RQF_STARTED)
5929 		bfqg_stats_update_completion(bfqq_group(bfqq),
5930 					     rq->start_time_ns,
5931 					     rq->io_start_time_ns,
5932 					     rq->cmd_flags);
5933 
5934 	if (likely(rq->rq_flags & RQF_STARTED)) {
5935 		unsigned long flags;
5936 
5937 		spin_lock_irqsave(&bfqd->lock, flags);
5938 
5939 		if (rq == bfqd->waited_rq)
5940 			bfq_update_inject_limit(bfqd, bfqq);
5941 
5942 		bfq_completed_request(bfqq, bfqd);
5943 		bfq_finish_requeue_request_body(bfqq);
5944 
5945 		spin_unlock_irqrestore(&bfqd->lock, flags);
5946 	} else {
5947 		/*
5948 		 * Request rq may be still/already in the scheduler,
5949 		 * in which case we need to remove it (this should
5950 		 * never happen in case of requeue). And we cannot
5951 		 * defer such a check and removal, to avoid
5952 		 * inconsistencies in the time interval from the end
5953 		 * of this function to the start of the deferred work.
5954 		 * This situation seems to occur only in process
5955 		 * context, as a consequence of a merge. In the
5956 		 * current version of the code, this implies that the
5957 		 * lock is held.
5958 		 */
5959 
5960 		if (!RB_EMPTY_NODE(&rq->rb_node)) {
5961 			bfq_remove_request(rq->q, rq);
5962 			bfqg_stats_update_io_remove(bfqq_group(bfqq),
5963 						    rq->cmd_flags);
5964 		}
5965 		bfq_finish_requeue_request_body(bfqq);
5966 	}
5967 
5968 	/*
5969 	 * Reset private fields. In case of a requeue, this allows
5970 	 * this function to correctly do nothing if it is spuriously
5971 	 * invoked again on this same request (see the check at the
5972 	 * beginning of the function). Probably, a better general
5973 	 * design would be to prevent blk-mq from invoking the requeue
5974 	 * or finish hooks of an elevator, for a request that is not
5975 	 * referred by that elevator.
5976 	 *
5977 	 * Resetting the following fields would break the
5978 	 * request-insertion logic if rq is re-inserted into a bfq
5979 	 * internal queue, without a re-preparation. Here we assume
5980 	 * that re-insertions of requeued requests, without
5981 	 * re-preparation, can happen only for pass_through or at_head
5982 	 * requests (which are not re-inserted into bfq internal
5983 	 * queues).
5984 	 */
5985 	rq->elv.priv[0] = NULL;
5986 	rq->elv.priv[1] = NULL;
5987 }
5988 
5989 /*
5990  * Removes the association between the current task and bfqq, assuming
5991  * that bic points to the bfq iocontext of the task.
5992  * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
5993  * was the last process referring to that bfqq.
5994  */
5995 static struct bfq_queue *
bfq_split_bfqq(struct bfq_io_cq * bic,struct bfq_queue * bfqq)5996 bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
5997 {
5998 	bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
5999 
6000 	if (bfqq_process_refs(bfqq) == 1) {
6001 		bfqq->pid = current->pid;
6002 		bfq_clear_bfqq_coop(bfqq);
6003 		bfq_clear_bfqq_split_coop(bfqq);
6004 		return bfqq;
6005 	}
6006 
6007 	bic_set_bfqq(bic, NULL, 1);
6008 
6009 	bfq_put_cooperator(bfqq);
6010 
6011 	bfq_release_process_ref(bfqq->bfqd, bfqq);
6012 	return NULL;
6013 }
6014 
bfq_get_bfqq_handle_split(struct bfq_data * bfqd,struct bfq_io_cq * bic,struct bio * bio,bool split,bool is_sync,bool * new_queue)6015 static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6016 						   struct bfq_io_cq *bic,
6017 						   struct bio *bio,
6018 						   bool split, bool is_sync,
6019 						   bool *new_queue)
6020 {
6021 	struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6022 
6023 	if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6024 		return bfqq;
6025 
6026 	if (new_queue)
6027 		*new_queue = true;
6028 
6029 	if (bfqq)
6030 		bfq_put_queue(bfqq);
6031 	bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
6032 
6033 	bic_set_bfqq(bic, bfqq, is_sync);
6034 	if (split && is_sync) {
6035 		if ((bic->was_in_burst_list && bfqd->large_burst) ||
6036 		    bic->saved_in_large_burst)
6037 			bfq_mark_bfqq_in_large_burst(bfqq);
6038 		else {
6039 			bfq_clear_bfqq_in_large_burst(bfqq);
6040 			if (bic->was_in_burst_list)
6041 				/*
6042 				 * If bfqq was in the current
6043 				 * burst list before being
6044 				 * merged, then we have to add
6045 				 * it back. And we do not need
6046 				 * to increase burst_size, as
6047 				 * we did not decrement
6048 				 * burst_size when we removed
6049 				 * bfqq from the burst list as
6050 				 * a consequence of a merge
6051 				 * (see comments in
6052 				 * bfq_put_queue). In this
6053 				 * respect, it would be rather
6054 				 * costly to know whether the
6055 				 * current burst list is still
6056 				 * the same burst list from
6057 				 * which bfqq was removed on
6058 				 * the merge. To avoid this
6059 				 * cost, if bfqq was in a
6060 				 * burst list, then we add
6061 				 * bfqq to the current burst
6062 				 * list without any further
6063 				 * check. This can cause
6064 				 * inappropriate insertions,
6065 				 * but rarely enough to not
6066 				 * harm the detection of large
6067 				 * bursts significantly.
6068 				 */
6069 				hlist_add_head(&bfqq->burst_list_node,
6070 					       &bfqd->burst_list);
6071 		}
6072 		bfqq->split_time = jiffies;
6073 	}
6074 
6075 	return bfqq;
6076 }
6077 
6078 /*
6079  * Only reset private fields. The actual request preparation will be
6080  * performed by bfq_init_rq, when rq is either inserted or merged. See
6081  * comments on bfq_init_rq for the reason behind this delayed
6082  * preparation.
6083  */
bfq_prepare_request(struct request * rq)6084 static void bfq_prepare_request(struct request *rq)
6085 {
6086 	/*
6087 	 * Regardless of whether we have an icq attached, we have to
6088 	 * clear the scheduler pointers, as they might point to
6089 	 * previously allocated bic/bfqq structs.
6090 	 */
6091 	rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6092 }
6093 
6094 /*
6095  * If needed, init rq, allocate bfq data structures associated with
6096  * rq, and increment reference counters in the destination bfq_queue
6097  * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6098  * not associated with any bfq_queue.
6099  *
6100  * This function is invoked by the functions that perform rq insertion
6101  * or merging. One may have expected the above preparation operations
6102  * to be performed in bfq_prepare_request, and not delayed to when rq
6103  * is inserted or merged. The rationale behind this delayed
6104  * preparation is that, after the prepare_request hook is invoked for
6105  * rq, rq may still be transformed into a request with no icq, i.e., a
6106  * request not associated with any queue. No bfq hook is invoked to
6107  * signal this transformation. As a consequence, should these
6108  * preparation operations be performed when the prepare_request hook
6109  * is invoked, and should rq be transformed one moment later, bfq
6110  * would end up in an inconsistent state, because it would have
6111  * incremented some queue counters for an rq destined to
6112  * transformation, without any chance to correctly lower these
6113  * counters back. In contrast, no transformation can still happen for
6114  * rq after rq has been inserted or merged. So, it is safe to execute
6115  * these preparation operations when rq is finally inserted or merged.
6116  */
bfq_init_rq(struct request * rq)6117 static struct bfq_queue *bfq_init_rq(struct request *rq)
6118 {
6119 	struct request_queue *q = rq->q;
6120 	struct bio *bio = rq->bio;
6121 	struct bfq_data *bfqd = q->elevator->elevator_data;
6122 	struct bfq_io_cq *bic;
6123 	const int is_sync = rq_is_sync(rq);
6124 	struct bfq_queue *bfqq;
6125 	bool new_queue = false;
6126 	bool bfqq_already_existing = false, split = false;
6127 
6128 	if (unlikely(!rq->elv.icq))
6129 		return NULL;
6130 
6131 	/*
6132 	 * Assuming that elv.priv[1] is set only if everything is set
6133 	 * for this rq. This holds true, because this function is
6134 	 * invoked only for insertion or merging, and, after such
6135 	 * events, a request cannot be manipulated any longer before
6136 	 * being removed from bfq.
6137 	 */
6138 	if (rq->elv.priv[1])
6139 		return rq->elv.priv[1];
6140 
6141 	bic = icq_to_bic(rq->elv.icq);
6142 
6143 	bfq_check_ioprio_change(bic, bio);
6144 
6145 	bfq_bic_update_cgroup(bic, bio);
6146 
6147 	bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6148 					 &new_queue);
6149 
6150 	if (likely(!new_queue)) {
6151 		/* If the queue was seeky for too long, break it apart. */
6152 		if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
6153 			bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
6154 
6155 			/* Update bic before losing reference to bfqq */
6156 			if (bfq_bfqq_in_large_burst(bfqq))
6157 				bic->saved_in_large_burst = true;
6158 
6159 			bfqq = bfq_split_bfqq(bic, bfqq);
6160 			split = true;
6161 
6162 			if (!bfqq)
6163 				bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6164 								 true, is_sync,
6165 								 NULL);
6166 			else
6167 				bfqq_already_existing = true;
6168 		}
6169 	}
6170 
6171 	bfqq->allocated++;
6172 	bfqq->ref++;
6173 	bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6174 		     rq, bfqq, bfqq->ref);
6175 
6176 	rq->elv.priv[0] = bic;
6177 	rq->elv.priv[1] = bfqq;
6178 
6179 	/*
6180 	 * If a bfq_queue has only one process reference, it is owned
6181 	 * by only this bic: we can then set bfqq->bic = bic. in
6182 	 * addition, if the queue has also just been split, we have to
6183 	 * resume its state.
6184 	 */
6185 	if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6186 		bfqq->bic = bic;
6187 		if (split) {
6188 			/*
6189 			 * The queue has just been split from a shared
6190 			 * queue: restore the idle window and the
6191 			 * possible weight raising period.
6192 			 */
6193 			bfq_bfqq_resume_state(bfqq, bfqd, bic,
6194 					      bfqq_already_existing);
6195 		}
6196 	}
6197 
6198 	/*
6199 	 * Consider bfqq as possibly belonging to a burst of newly
6200 	 * created queues only if:
6201 	 * 1) A burst is actually happening (bfqd->burst_size > 0)
6202 	 * or
6203 	 * 2) There is no other active queue. In fact, if, in
6204 	 *    contrast, there are active queues not belonging to the
6205 	 *    possible burst bfqq may belong to, then there is no gain
6206 	 *    in considering bfqq as belonging to a burst, and
6207 	 *    therefore in not weight-raising bfqq. See comments on
6208 	 *    bfq_handle_burst().
6209 	 *
6210 	 * This filtering also helps eliminating false positives,
6211 	 * occurring when bfqq does not belong to an actual large
6212 	 * burst, but some background task (e.g., a service) happens
6213 	 * to trigger the creation of new queues very close to when
6214 	 * bfqq and its possible companion queues are created. See
6215 	 * comments on bfq_handle_burst() for further details also on
6216 	 * this issue.
6217 	 */
6218 	if (unlikely(bfq_bfqq_just_created(bfqq) &&
6219 		     (bfqd->burst_size > 0 ||
6220 		      bfq_tot_busy_queues(bfqd) == 0)))
6221 		bfq_handle_burst(bfqd, bfqq);
6222 
6223 	return bfqq;
6224 }
6225 
6226 static void
bfq_idle_slice_timer_body(struct bfq_data * bfqd,struct bfq_queue * bfqq)6227 bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
6228 {
6229 	enum bfqq_expiration reason;
6230 	unsigned long flags;
6231 
6232 	spin_lock_irqsave(&bfqd->lock, flags);
6233 
6234 	/*
6235 	 * Considering that bfqq may be in race, we should firstly check
6236 	 * whether bfqq is in service before doing something on it. If
6237 	 * the bfqq in race is not in service, it has already been expired
6238 	 * through __bfq_bfqq_expire func and its wait_request flags has
6239 	 * been cleared in __bfq_bfqd_reset_in_service func.
6240 	 */
6241 	if (bfqq != bfqd->in_service_queue) {
6242 		spin_unlock_irqrestore(&bfqd->lock, flags);
6243 		return;
6244 	}
6245 
6246 	bfq_clear_bfqq_wait_request(bfqq);
6247 
6248 	if (bfq_bfqq_budget_timeout(bfqq))
6249 		/*
6250 		 * Also here the queue can be safely expired
6251 		 * for budget timeout without wasting
6252 		 * guarantees
6253 		 */
6254 		reason = BFQQE_BUDGET_TIMEOUT;
6255 	else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6256 		/*
6257 		 * The queue may not be empty upon timer expiration,
6258 		 * because we may not disable the timer when the
6259 		 * first request of the in-service queue arrives
6260 		 * during disk idling.
6261 		 */
6262 		reason = BFQQE_TOO_IDLE;
6263 	else
6264 		goto schedule_dispatch;
6265 
6266 	bfq_bfqq_expire(bfqd, bfqq, true, reason);
6267 
6268 schedule_dispatch:
6269 	bfq_schedule_dispatch(bfqd);
6270 	spin_unlock_irqrestore(&bfqd->lock, flags);
6271 }
6272 
6273 /*
6274  * Handler of the expiration of the timer running if the in-service queue
6275  * is idling inside its time slice.
6276  */
bfq_idle_slice_timer(struct hrtimer * timer)6277 static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6278 {
6279 	struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6280 					     idle_slice_timer);
6281 	struct bfq_queue *bfqq = bfqd->in_service_queue;
6282 
6283 	/*
6284 	 * Theoretical race here: the in-service queue can be NULL or
6285 	 * different from the queue that was idling if a new request
6286 	 * arrives for the current queue and there is a full dispatch
6287 	 * cycle that changes the in-service queue.  This can hardly
6288 	 * happen, but in the worst case we just expire a queue too
6289 	 * early.
6290 	 */
6291 	if (bfqq)
6292 		bfq_idle_slice_timer_body(bfqd, bfqq);
6293 
6294 	return HRTIMER_NORESTART;
6295 }
6296 
__bfq_put_async_bfqq(struct bfq_data * bfqd,struct bfq_queue ** bfqq_ptr)6297 static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6298 				 struct bfq_queue **bfqq_ptr)
6299 {
6300 	struct bfq_queue *bfqq = *bfqq_ptr;
6301 
6302 	bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6303 	if (bfqq) {
6304 		bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6305 
6306 		bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6307 			     bfqq, bfqq->ref);
6308 		bfq_put_queue(bfqq);
6309 		*bfqq_ptr = NULL;
6310 	}
6311 }
6312 
6313 /*
6314  * Release all the bfqg references to its async queues.  If we are
6315  * deallocating the group these queues may still contain requests, so
6316  * we reparent them to the root cgroup (i.e., the only one that will
6317  * exist for sure until all the requests on a device are gone).
6318  */
bfq_put_async_queues(struct bfq_data * bfqd,struct bfq_group * bfqg)6319 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
6320 {
6321 	int i, j;
6322 
6323 	for (i = 0; i < 2; i++)
6324 		for (j = 0; j < IOPRIO_BE_NR; j++)
6325 			__bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
6326 
6327 	__bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
6328 }
6329 
6330 /*
6331  * See the comments on bfq_limit_depth for the purpose of
6332  * the depths set in the function. Return minimum shallow depth we'll use.
6333  */
bfq_update_depths(struct bfq_data * bfqd,struct sbitmap_queue * bt)6334 static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6335 				      struct sbitmap_queue *bt)
6336 {
6337 	unsigned int i, j, min_shallow = UINT_MAX;
6338 
6339 	/*
6340 	 * In-word depths if no bfq_queue is being weight-raised:
6341 	 * leaving 25% of tags only for sync reads.
6342 	 *
6343 	 * In next formulas, right-shift the value
6344 	 * (1U<<bt->sb.shift), instead of computing directly
6345 	 * (1U<<(bt->sb.shift - something)), to be robust against
6346 	 * any possible value of bt->sb.shift, without having to
6347 	 * limit 'something'.
6348 	 */
6349 	/* no more than 50% of tags for async I/O */
6350 	bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
6351 	/*
6352 	 * no more than 75% of tags for sync writes (25% extra tags
6353 	 * w.r.t. async I/O, to prevent async I/O from starving sync
6354 	 * writes)
6355 	 */
6356 	bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
6357 
6358 	/*
6359 	 * In-word depths in case some bfq_queue is being weight-
6360 	 * raised: leaving ~63% of tags for sync reads. This is the
6361 	 * highest percentage for which, in our tests, application
6362 	 * start-up times didn't suffer from any regression due to tag
6363 	 * shortage.
6364 	 */
6365 	/* no more than ~18% of tags for async I/O */
6366 	bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
6367 	/* no more than ~37% of tags for sync writes (~20% extra tags) */
6368 	bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
6369 
6370 	for (i = 0; i < 2; i++)
6371 		for (j = 0; j < 2; j++)
6372 			min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6373 
6374 	return min_shallow;
6375 }
6376 
bfq_depth_updated(struct blk_mq_hw_ctx * hctx)6377 static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
6378 {
6379 	struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6380 	struct blk_mq_tags *tags = hctx->sched_tags;
6381 	unsigned int min_shallow;
6382 
6383 	min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6384 	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
6385 }
6386 
bfq_init_hctx(struct blk_mq_hw_ctx * hctx,unsigned int index)6387 static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6388 {
6389 	bfq_depth_updated(hctx);
6390 	return 0;
6391 }
6392 
bfq_exit_queue(struct elevator_queue * e)6393 static void bfq_exit_queue(struct elevator_queue *e)
6394 {
6395 	struct bfq_data *bfqd = e->elevator_data;
6396 	struct bfq_queue *bfqq, *n;
6397 
6398 	hrtimer_cancel(&bfqd->idle_slice_timer);
6399 
6400 	spin_lock_irq(&bfqd->lock);
6401 	list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
6402 		bfq_deactivate_bfqq(bfqd, bfqq, false, false);
6403 	spin_unlock_irq(&bfqd->lock);
6404 
6405 	hrtimer_cancel(&bfqd->idle_slice_timer);
6406 
6407 	/* release oom-queue reference to root group */
6408 	bfqg_and_blkg_put(bfqd->root_group);
6409 
6410 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6411 	blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6412 #else
6413 	spin_lock_irq(&bfqd->lock);
6414 	bfq_put_async_queues(bfqd, bfqd->root_group);
6415 	kfree(bfqd->root_group);
6416 	spin_unlock_irq(&bfqd->lock);
6417 #endif
6418 
6419 	wbt_enable_default(bfqd->queue);
6420 
6421 	kfree(bfqd);
6422 }
6423 
bfq_init_root_group(struct bfq_group * root_group,struct bfq_data * bfqd)6424 static void bfq_init_root_group(struct bfq_group *root_group,
6425 				struct bfq_data *bfqd)
6426 {
6427 	int i;
6428 
6429 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6430 	root_group->entity.parent = NULL;
6431 	root_group->my_entity = NULL;
6432 	root_group->bfqd = bfqd;
6433 #endif
6434 	root_group->rq_pos_tree = RB_ROOT;
6435 	for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6436 		root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6437 	root_group->sched_data.bfq_class_idle_last_service = jiffies;
6438 }
6439 
bfq_init_queue(struct request_queue * q,struct elevator_type * e)6440 static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6441 {
6442 	struct bfq_data *bfqd;
6443 	struct elevator_queue *eq;
6444 
6445 	eq = elevator_alloc(q, e);
6446 	if (!eq)
6447 		return -ENOMEM;
6448 
6449 	bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6450 	if (!bfqd) {
6451 		kobject_put(&eq->kobj);
6452 		return -ENOMEM;
6453 	}
6454 	eq->elevator_data = bfqd;
6455 
6456 	spin_lock_irq(&q->queue_lock);
6457 	q->elevator = eq;
6458 	spin_unlock_irq(&q->queue_lock);
6459 
6460 	/*
6461 	 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6462 	 * Grab a permanent reference to it, so that the normal code flow
6463 	 * will not attempt to free it.
6464 	 */
6465 	bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6466 	bfqd->oom_bfqq.ref++;
6467 	bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6468 	bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6469 	bfqd->oom_bfqq.entity.new_weight =
6470 		bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
6471 
6472 	/* oom_bfqq does not participate to bursts */
6473 	bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6474 
6475 	/*
6476 	 * Trigger weight initialization, according to ioprio, at the
6477 	 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6478 	 * class won't be changed any more.
6479 	 */
6480 	bfqd->oom_bfqq.entity.prio_changed = 1;
6481 
6482 	bfqd->queue = q;
6483 
6484 	INIT_LIST_HEAD(&bfqd->dispatch);
6485 
6486 	hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6487 		     HRTIMER_MODE_REL);
6488 	bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6489 
6490 	bfqd->queue_weights_tree = RB_ROOT_CACHED;
6491 	bfqd->num_groups_with_pending_reqs = 0;
6492 
6493 	INIT_LIST_HEAD(&bfqd->active_list);
6494 	INIT_LIST_HEAD(&bfqd->idle_list);
6495 	INIT_HLIST_HEAD(&bfqd->burst_list);
6496 
6497 	bfqd->hw_tag = -1;
6498 	bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
6499 
6500 	bfqd->bfq_max_budget = bfq_default_max_budget;
6501 
6502 	bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6503 	bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6504 	bfqd->bfq_back_max = bfq_back_max;
6505 	bfqd->bfq_back_penalty = bfq_back_penalty;
6506 	bfqd->bfq_slice_idle = bfq_slice_idle;
6507 	bfqd->bfq_timeout = bfq_timeout;
6508 
6509 	bfqd->bfq_requests_within_timer = 120;
6510 
6511 	bfqd->bfq_large_burst_thresh = 8;
6512 	bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6513 
6514 	bfqd->low_latency = true;
6515 
6516 	/*
6517 	 * Trade-off between responsiveness and fairness.
6518 	 */
6519 	bfqd->bfq_wr_coeff = 30;
6520 	bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
6521 	bfqd->bfq_wr_max_time = 0;
6522 	bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6523 	bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
6524 	bfqd->bfq_wr_max_softrt_rate = 7000; /*
6525 					      * Approximate rate required
6526 					      * to playback or record a
6527 					      * high-definition compressed
6528 					      * video.
6529 					      */
6530 	bfqd->wr_busy_queues = 0;
6531 
6532 	/*
6533 	 * Begin by assuming, optimistically, that the device peak
6534 	 * rate is equal to 2/3 of the highest reference rate.
6535 	 */
6536 	bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
6537 		ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
6538 	bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
6539 
6540 	spin_lock_init(&bfqd->lock);
6541 
6542 	/*
6543 	 * The invocation of the next bfq_create_group_hierarchy
6544 	 * function is the head of a chain of function calls
6545 	 * (bfq_create_group_hierarchy->blkcg_activate_policy->
6546 	 * blk_mq_freeze_queue) that may lead to the invocation of the
6547 	 * has_work hook function. For this reason,
6548 	 * bfq_create_group_hierarchy is invoked only after all
6549 	 * scheduler data has been initialized, apart from the fields
6550 	 * that can be initialized only after invoking
6551 	 * bfq_create_group_hierarchy. This, in particular, enables
6552 	 * has_work to correctly return false. Of course, to avoid
6553 	 * other inconsistencies, the blk-mq stack must then refrain
6554 	 * from invoking further scheduler hooks before this init
6555 	 * function is finished.
6556 	 */
6557 	bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
6558 	if (!bfqd->root_group)
6559 		goto out_free;
6560 	bfq_init_root_group(bfqd->root_group, bfqd);
6561 	bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
6562 
6563 	wbt_disable_default(q);
6564 	return 0;
6565 
6566 out_free:
6567 	kfree(bfqd);
6568 	kobject_put(&eq->kobj);
6569 	return -ENOMEM;
6570 }
6571 
bfq_slab_kill(void)6572 static void bfq_slab_kill(void)
6573 {
6574 	kmem_cache_destroy(bfq_pool);
6575 }
6576 
bfq_slab_setup(void)6577 static int __init bfq_slab_setup(void)
6578 {
6579 	bfq_pool = KMEM_CACHE(bfq_queue, 0);
6580 	if (!bfq_pool)
6581 		return -ENOMEM;
6582 	return 0;
6583 }
6584 
bfq_var_show(unsigned int var,char * page)6585 static ssize_t bfq_var_show(unsigned int var, char *page)
6586 {
6587 	return sprintf(page, "%u\n", var);
6588 }
6589 
bfq_var_store(unsigned long * var,const char * page)6590 static int bfq_var_store(unsigned long *var, const char *page)
6591 {
6592 	unsigned long new_val;
6593 	int ret = kstrtoul(page, 10, &new_val);
6594 
6595 	if (ret)
6596 		return ret;
6597 	*var = new_val;
6598 	return 0;
6599 }
6600 
6601 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
6602 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6603 {									\
6604 	struct bfq_data *bfqd = e->elevator_data;			\
6605 	u64 __data = __VAR;						\
6606 	if (__CONV == 1)						\
6607 		__data = jiffies_to_msecs(__data);			\
6608 	else if (__CONV == 2)						\
6609 		__data = div_u64(__data, NSEC_PER_MSEC);		\
6610 	return bfq_var_show(__data, (page));				\
6611 }
6612 SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
6613 SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
6614 SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
6615 SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
6616 SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
6617 SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
6618 SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
6619 SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
6620 SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
6621 #undef SHOW_FUNCTION
6622 
6623 #define USEC_SHOW_FUNCTION(__FUNC, __VAR)				\
6624 static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
6625 {									\
6626 	struct bfq_data *bfqd = e->elevator_data;			\
6627 	u64 __data = __VAR;						\
6628 	__data = div_u64(__data, NSEC_PER_USEC);			\
6629 	return bfq_var_show(__data, (page));				\
6630 }
6631 USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
6632 #undef USEC_SHOW_FUNCTION
6633 
6634 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
6635 static ssize_t								\
6636 __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
6637 {									\
6638 	struct bfq_data *bfqd = e->elevator_data;			\
6639 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6640 	int ret;							\
6641 									\
6642 	ret = bfq_var_store(&__data, (page));				\
6643 	if (ret)							\
6644 		return ret;						\
6645 	if (__data < __min)						\
6646 		__data = __min;						\
6647 	else if (__data > __max)					\
6648 		__data = __max;						\
6649 	if (__CONV == 1)						\
6650 		*(__PTR) = msecs_to_jiffies(__data);			\
6651 	else if (__CONV == 2)						\
6652 		*(__PTR) = (u64)__data * NSEC_PER_MSEC;			\
6653 	else								\
6654 		*(__PTR) = __data;					\
6655 	return count;							\
6656 }
6657 STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
6658 		INT_MAX, 2);
6659 STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
6660 		INT_MAX, 2);
6661 STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
6662 STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
6663 		INT_MAX, 0);
6664 STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
6665 #undef STORE_FUNCTION
6666 
6667 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX)			\
6668 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
6669 {									\
6670 	struct bfq_data *bfqd = e->elevator_data;			\
6671 	unsigned long __data, __min = (MIN), __max = (MAX);		\
6672 	int ret;							\
6673 									\
6674 	ret = bfq_var_store(&__data, (page));				\
6675 	if (ret)							\
6676 		return ret;						\
6677 	if (__data < __min)						\
6678 		__data = __min;						\
6679 	else if (__data > __max)					\
6680 		__data = __max;						\
6681 	*(__PTR) = (u64)__data * NSEC_PER_USEC;				\
6682 	return count;							\
6683 }
6684 USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
6685 		    UINT_MAX);
6686 #undef USEC_STORE_FUNCTION
6687 
bfq_max_budget_store(struct elevator_queue * e,const char * page,size_t count)6688 static ssize_t bfq_max_budget_store(struct elevator_queue *e,
6689 				    const char *page, size_t count)
6690 {
6691 	struct bfq_data *bfqd = e->elevator_data;
6692 	unsigned long __data;
6693 	int ret;
6694 
6695 	ret = bfq_var_store(&__data, (page));
6696 	if (ret)
6697 		return ret;
6698 
6699 	if (__data == 0)
6700 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6701 	else {
6702 		if (__data > INT_MAX)
6703 			__data = INT_MAX;
6704 		bfqd->bfq_max_budget = __data;
6705 	}
6706 
6707 	bfqd->bfq_user_max_budget = __data;
6708 
6709 	return count;
6710 }
6711 
6712 /*
6713  * Leaving this name to preserve name compatibility with cfq
6714  * parameters, but this timeout is used for both sync and async.
6715  */
bfq_timeout_sync_store(struct elevator_queue * e,const char * page,size_t count)6716 static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
6717 				      const char *page, size_t count)
6718 {
6719 	struct bfq_data *bfqd = e->elevator_data;
6720 	unsigned long __data;
6721 	int ret;
6722 
6723 	ret = bfq_var_store(&__data, (page));
6724 	if (ret)
6725 		return ret;
6726 
6727 	if (__data < 1)
6728 		__data = 1;
6729 	else if (__data > INT_MAX)
6730 		__data = INT_MAX;
6731 
6732 	bfqd->bfq_timeout = msecs_to_jiffies(__data);
6733 	if (bfqd->bfq_user_max_budget == 0)
6734 		bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
6735 
6736 	return count;
6737 }
6738 
bfq_strict_guarantees_store(struct elevator_queue * e,const char * page,size_t count)6739 static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
6740 				     const char *page, size_t count)
6741 {
6742 	struct bfq_data *bfqd = e->elevator_data;
6743 	unsigned long __data;
6744 	int ret;
6745 
6746 	ret = bfq_var_store(&__data, (page));
6747 	if (ret)
6748 		return ret;
6749 
6750 	if (__data > 1)
6751 		__data = 1;
6752 	if (!bfqd->strict_guarantees && __data == 1
6753 	    && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
6754 		bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
6755 
6756 	bfqd->strict_guarantees = __data;
6757 
6758 	return count;
6759 }
6760 
bfq_low_latency_store(struct elevator_queue * e,const char * page,size_t count)6761 static ssize_t bfq_low_latency_store(struct elevator_queue *e,
6762 				     const char *page, size_t count)
6763 {
6764 	struct bfq_data *bfqd = e->elevator_data;
6765 	unsigned long __data;
6766 	int ret;
6767 
6768 	ret = bfq_var_store(&__data, (page));
6769 	if (ret)
6770 		return ret;
6771 
6772 	if (__data > 1)
6773 		__data = 1;
6774 	if (__data == 0 && bfqd->low_latency != 0)
6775 		bfq_end_wr(bfqd);
6776 	bfqd->low_latency = __data;
6777 
6778 	return count;
6779 }
6780 
6781 #define BFQ_ATTR(name) \
6782 	__ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
6783 
6784 static struct elv_fs_entry bfq_attrs[] = {
6785 	BFQ_ATTR(fifo_expire_sync),
6786 	BFQ_ATTR(fifo_expire_async),
6787 	BFQ_ATTR(back_seek_max),
6788 	BFQ_ATTR(back_seek_penalty),
6789 	BFQ_ATTR(slice_idle),
6790 	BFQ_ATTR(slice_idle_us),
6791 	BFQ_ATTR(max_budget),
6792 	BFQ_ATTR(timeout_sync),
6793 	BFQ_ATTR(strict_guarantees),
6794 	BFQ_ATTR(low_latency),
6795 	__ATTR_NULL
6796 };
6797 
6798 static struct elevator_type iosched_bfq_mq = {
6799 	.ops = {
6800 		.limit_depth		= bfq_limit_depth,
6801 		.prepare_request	= bfq_prepare_request,
6802 		.requeue_request        = bfq_finish_requeue_request,
6803 		.finish_request		= bfq_finish_requeue_request,
6804 		.exit_icq		= bfq_exit_icq,
6805 		.insert_requests	= bfq_insert_requests,
6806 		.dispatch_request	= bfq_dispatch_request,
6807 		.next_request		= elv_rb_latter_request,
6808 		.former_request		= elv_rb_former_request,
6809 		.allow_merge		= bfq_allow_bio_merge,
6810 		.bio_merge		= bfq_bio_merge,
6811 		.request_merge		= bfq_request_merge,
6812 		.requests_merged	= bfq_requests_merged,
6813 		.request_merged		= bfq_request_merged,
6814 		.has_work		= bfq_has_work,
6815 		.depth_updated		= bfq_depth_updated,
6816 		.init_hctx		= bfq_init_hctx,
6817 		.init_sched		= bfq_init_queue,
6818 		.exit_sched		= bfq_exit_queue,
6819 	},
6820 
6821 	.icq_size =		sizeof(struct bfq_io_cq),
6822 	.icq_align =		__alignof__(struct bfq_io_cq),
6823 	.elevator_attrs =	bfq_attrs,
6824 	.elevator_name =	"bfq",
6825 	.elevator_owner =	THIS_MODULE,
6826 };
6827 MODULE_ALIAS("bfq-iosched");
6828 
bfq_init(void)6829 static int __init bfq_init(void)
6830 {
6831 	int ret;
6832 
6833 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6834 	ret = blkcg_policy_register(&blkcg_policy_bfq);
6835 	if (ret)
6836 		return ret;
6837 #endif
6838 
6839 	ret = -ENOMEM;
6840 	if (bfq_slab_setup())
6841 		goto err_pol_unreg;
6842 
6843 	/*
6844 	 * Times to load large popular applications for the typical
6845 	 * systems installed on the reference devices (see the
6846 	 * comments before the definition of the next
6847 	 * array). Actually, we use slightly lower values, as the
6848 	 * estimated peak rate tends to be smaller than the actual
6849 	 * peak rate.  The reason for this last fact is that estimates
6850 	 * are computed over much shorter time intervals than the long
6851 	 * intervals typically used for benchmarking. Why? First, to
6852 	 * adapt more quickly to variations. Second, because an I/O
6853 	 * scheduler cannot rely on a peak-rate-evaluation workload to
6854 	 * be run for a long time.
6855 	 */
6856 	ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
6857 	ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
6858 
6859 	ret = elv_register(&iosched_bfq_mq);
6860 	if (ret)
6861 		goto slab_kill;
6862 
6863 	return 0;
6864 
6865 slab_kill:
6866 	bfq_slab_kill();
6867 err_pol_unreg:
6868 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6869 	blkcg_policy_unregister(&blkcg_policy_bfq);
6870 #endif
6871 	return ret;
6872 }
6873 
bfq_exit(void)6874 static void __exit bfq_exit(void)
6875 {
6876 	elv_unregister(&iosched_bfq_mq);
6877 #ifdef CONFIG_BFQ_GROUP_IOSCHED
6878 	blkcg_policy_unregister(&blkcg_policy_bfq);
6879 #endif
6880 	bfq_slab_kill();
6881 }
6882 
6883 module_init(bfq_init);
6884 module_exit(bfq_exit);
6885 
6886 MODULE_AUTHOR("Paolo Valente");
6887 MODULE_LICENSE("GPL");
6888 MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");
6889