xref: /OK3568_Linux_fs/kernel/arch/arm/kernel/process.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/process.c
4  *
5  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
6  *  Original Copyright (C) 1995  Linus Torvalds
7  */
8 #include <stdarg.h>
9 
10 #include <linux/export.h>
11 #include <linux/sched.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/interrupt.h>
21 #include <linux/init.h>
22 #include <linux/elfcore.h>
23 #include <linux/pm.h>
24 #include <linux/tick.h>
25 #include <linux/utsname.h>
26 #include <linux/uaccess.h>
27 #include <linux/random.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/leds.h>
30 
31 #include <asm/processor.h>
32 #include <asm/thread_notify.h>
33 #include <asm/stacktrace.h>
34 #include <asm/system_misc.h>
35 #include <asm/mach/time.h>
36 #include <asm/tls.h>
37 #include <asm/vdso.h>
38 
39 #include "signal.h"
40 
41 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
42 #include <linux/stackprotector.h>
43 unsigned long __stack_chk_guard __read_mostly;
44 EXPORT_SYMBOL(__stack_chk_guard);
45 #endif
46 
47 static const char *processor_modes[] __maybe_unused = {
48   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
49   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
50   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "MON_32" , "ABT_32" ,
51   "UK8_32" , "UK9_32" , "HYP_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
52 };
53 
54 static const char *isa_modes[] __maybe_unused = {
55   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
56 };
57 
58 /*
59  * This is our default idle handler.
60  */
61 
62 void (*arm_pm_idle)(void);
63 
64 /*
65  * Called from the core idle loop.
66  */
67 
arch_cpu_idle(void)68 void arch_cpu_idle(void)
69 {
70 	if (arm_pm_idle)
71 		arm_pm_idle();
72 	else
73 		cpu_do_idle();
74 	raw_local_irq_enable();
75 }
76 
arch_cpu_idle_prepare(void)77 void arch_cpu_idle_prepare(void)
78 {
79 	local_fiq_enable();
80 }
81 
arch_cpu_idle_enter(void)82 void arch_cpu_idle_enter(void)
83 {
84 	idle_notifier_call_chain(IDLE_START);
85 	ledtrig_cpu(CPU_LED_IDLE_START);
86 #ifdef CONFIG_PL310_ERRATA_769419
87 	wmb();
88 #endif
89 }
90 
arch_cpu_idle_exit(void)91 void arch_cpu_idle_exit(void)
92 {
93 	ledtrig_cpu(CPU_LED_IDLE_END);
94 	idle_notifier_call_chain(IDLE_END);
95 }
96 
__show_regs(struct pt_regs * regs)97 void __show_regs(struct pt_regs *regs)
98 {
99 	unsigned long flags;
100 	char buf[64];
101 #ifndef CONFIG_CPU_V7M
102 	unsigned int domain, fs;
103 #ifdef CONFIG_CPU_SW_DOMAIN_PAN
104 	/*
105 	 * Get the domain register for the parent context. In user
106 	 * mode, we don't save the DACR, so lets use what it should
107 	 * be. For other modes, we place it after the pt_regs struct.
108 	 */
109 	if (user_mode(regs)) {
110 		domain = DACR_UACCESS_ENABLE;
111 		fs = get_fs();
112 	} else {
113 		domain = to_svc_pt_regs(regs)->dacr;
114 		fs = to_svc_pt_regs(regs)->addr_limit;
115 	}
116 #else
117 	domain = get_domain();
118 	fs = get_fs();
119 #endif
120 #endif
121 
122 	show_regs_print_info(KERN_DEFAULT);
123 
124 	printk("PC is at %pS\n", (void *)instruction_pointer(regs));
125 	printk("LR is at %pS\n", (void *)regs->ARM_lr);
126 	printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n",
127 	       regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr);
128 	printk("sp : %08lx  ip : %08lx  fp : %08lx\n",
129 	       regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
130 	printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
131 		regs->ARM_r10, regs->ARM_r9,
132 		regs->ARM_r8);
133 	printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
134 		regs->ARM_r7, regs->ARM_r6,
135 		regs->ARM_r5, regs->ARM_r4);
136 	printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
137 		regs->ARM_r3, regs->ARM_r2,
138 		regs->ARM_r1, regs->ARM_r0);
139 
140 	flags = regs->ARM_cpsr;
141 	buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
142 	buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
143 	buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
144 	buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
145 	buf[4] = '\0';
146 
147 #ifndef CONFIG_CPU_V7M
148 	{
149 		const char *segment;
150 
151 		if ((domain & domain_mask(DOMAIN_USER)) ==
152 		    domain_val(DOMAIN_USER, DOMAIN_NOACCESS))
153 			segment = "none";
154 		else if (fs == KERNEL_DS)
155 			segment = "kernel";
156 		else
157 			segment = "user";
158 
159 		printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
160 			buf, interrupts_enabled(regs) ? "n" : "ff",
161 			fast_interrupts_enabled(regs) ? "n" : "ff",
162 			processor_modes[processor_mode(regs)],
163 			isa_modes[isa_mode(regs)], segment);
164 	}
165 #else
166 	printk("xPSR: %08lx\n", regs->ARM_cpsr);
167 #endif
168 
169 #ifdef CONFIG_CPU_CP15
170 	{
171 		unsigned int ctrl;
172 
173 		buf[0] = '\0';
174 #ifdef CONFIG_CPU_CP15_MMU
175 		{
176 			unsigned int transbase;
177 			asm("mrc p15, 0, %0, c2, c0\n\t"
178 			    : "=r" (transbase));
179 			snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
180 				transbase, domain);
181 		}
182 #endif
183 		asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
184 
185 		printk("Control: %08x%s\n", ctrl, buf);
186 	}
187 #endif
188 }
189 
show_regs(struct pt_regs * regs)190 void show_regs(struct pt_regs * regs)
191 {
192 	__show_regs(regs);
193 	dump_stack();
194 }
195 
196 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
197 
198 EXPORT_SYMBOL_GPL(thread_notify_head);
199 
200 /*
201  * Free current thread data structures etc..
202  */
exit_thread(struct task_struct * tsk)203 void exit_thread(struct task_struct *tsk)
204 {
205 	thread_notify(THREAD_NOTIFY_EXIT, task_thread_info(tsk));
206 }
207 
flush_thread(void)208 void flush_thread(void)
209 {
210 	struct thread_info *thread = current_thread_info();
211 	struct task_struct *tsk = current;
212 
213 	flush_ptrace_hw_breakpoint(tsk);
214 
215 	memset(thread->used_cp, 0, sizeof(thread->used_cp));
216 	memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
217 	memset(&thread->fpstate, 0, sizeof(union fp_state));
218 
219 	flush_tls();
220 
221 	thread_notify(THREAD_NOTIFY_FLUSH, thread);
222 }
223 
release_thread(struct task_struct * dead_task)224 void release_thread(struct task_struct *dead_task)
225 {
226 }
227 
228 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
229 
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p,unsigned long tls)230 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
231 		unsigned long stk_sz, struct task_struct *p, unsigned long tls)
232 {
233 	struct thread_info *thread = task_thread_info(p);
234 	struct pt_regs *childregs = task_pt_regs(p);
235 
236 	memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
237 
238 #ifdef CONFIG_CPU_USE_DOMAINS
239 	/*
240 	 * Copy the initial value of the domain access control register
241 	 * from the current thread: thread->addr_limit will have been
242 	 * copied from the current thread via setup_thread_stack() in
243 	 * kernel/fork.c
244 	 */
245 	thread->cpu_domain = get_domain();
246 #endif
247 
248 	if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
249 		*childregs = *current_pt_regs();
250 		childregs->ARM_r0 = 0;
251 		if (stack_start)
252 			childregs->ARM_sp = stack_start;
253 	} else {
254 		memset(childregs, 0, sizeof(struct pt_regs));
255 		thread->cpu_context.r4 = stk_sz;
256 		thread->cpu_context.r5 = stack_start;
257 		childregs->ARM_cpsr = SVC_MODE;
258 	}
259 	thread->cpu_context.pc = (unsigned long)ret_from_fork;
260 	thread->cpu_context.sp = (unsigned long)childregs;
261 
262 	clear_ptrace_hw_breakpoint(p);
263 
264 	if (clone_flags & CLONE_SETTLS)
265 		thread->tp_value[0] = tls;
266 	thread->tp_value[1] = get_tpuser();
267 
268 	thread_notify(THREAD_NOTIFY_COPY, thread);
269 
270 #ifdef CONFIG_STACKPROTECTOR_PER_TASK
271 	thread->stack_canary = p->stack_canary;
272 #endif
273 
274 	return 0;
275 }
276 
277 /*
278  * Fill in the task's elfregs structure for a core dump.
279  */
dump_task_regs(struct task_struct * t,elf_gregset_t * elfregs)280 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
281 {
282 	elf_core_copy_regs(elfregs, task_pt_regs(t));
283 	return 1;
284 }
285 
get_wchan(struct task_struct * p)286 unsigned long get_wchan(struct task_struct *p)
287 {
288 	struct stackframe frame;
289 	unsigned long stack_page;
290 	int count = 0;
291 	if (!p || p == current || p->state == TASK_RUNNING)
292 		return 0;
293 
294 	frame.fp = thread_saved_fp(p);
295 	frame.sp = thread_saved_sp(p);
296 	frame.lr = 0;			/* recovered from the stack */
297 	frame.pc = thread_saved_pc(p);
298 	stack_page = (unsigned long)task_stack_page(p);
299 	do {
300 		if (frame.sp < stack_page ||
301 		    frame.sp >= stack_page + THREAD_SIZE ||
302 		    unwind_frame(&frame) < 0)
303 			return 0;
304 		if (!in_sched_functions(frame.pc))
305 			return frame.pc;
306 	} while (count ++ < 16);
307 	return 0;
308 }
309 
310 #ifdef CONFIG_MMU
311 #ifdef CONFIG_KUSER_HELPERS
312 /*
313  * The vectors page is always readable from user space for the
314  * atomic helpers. Insert it into the gate_vma so that it is visible
315  * through ptrace and /proc/<pid>/mem.
316  */
317 static struct vm_area_struct gate_vma;
318 
gate_vma_init(void)319 static int __init gate_vma_init(void)
320 {
321 	vma_init(&gate_vma, NULL);
322 	gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
323 	gate_vma.vm_start = 0xffff0000;
324 	gate_vma.vm_end	= 0xffff0000 + PAGE_SIZE;
325 	gate_vma.vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC;
326 	return 0;
327 }
328 arch_initcall(gate_vma_init);
329 
get_gate_vma(struct mm_struct * mm)330 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
331 {
332 	return &gate_vma;
333 }
334 
in_gate_area(struct mm_struct * mm,unsigned long addr)335 int in_gate_area(struct mm_struct *mm, unsigned long addr)
336 {
337 	return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
338 }
339 
in_gate_area_no_mm(unsigned long addr)340 int in_gate_area_no_mm(unsigned long addr)
341 {
342 	return in_gate_area(NULL, addr);
343 }
344 #define is_gate_vma(vma)	((vma) == &gate_vma)
345 #else
346 #define is_gate_vma(vma)	0
347 #endif
348 
arch_vma_name(struct vm_area_struct * vma)349 const char *arch_vma_name(struct vm_area_struct *vma)
350 {
351 	return is_gate_vma(vma) ? "[vectors]" : NULL;
352 }
353 
354 /* If possible, provide a placement hint at a random offset from the
355  * stack for the sigpage and vdso pages.
356  */
sigpage_addr(const struct mm_struct * mm,unsigned int npages)357 static unsigned long sigpage_addr(const struct mm_struct *mm,
358 				  unsigned int npages)
359 {
360 	unsigned long offset;
361 	unsigned long first;
362 	unsigned long last;
363 	unsigned long addr;
364 	unsigned int slots;
365 
366 	first = PAGE_ALIGN(mm->start_stack);
367 
368 	last = TASK_SIZE - (npages << PAGE_SHIFT);
369 
370 	/* No room after stack? */
371 	if (first > last)
372 		return 0;
373 
374 	/* Just enough room? */
375 	if (first == last)
376 		return first;
377 
378 	slots = ((last - first) >> PAGE_SHIFT) + 1;
379 
380 	offset = get_random_int() % slots;
381 
382 	addr = first + (offset << PAGE_SHIFT);
383 
384 	return addr;
385 }
386 
387 static struct page *signal_page;
388 extern struct page *get_signal_page(void);
389 
sigpage_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)390 static int sigpage_mremap(const struct vm_special_mapping *sm,
391 		struct vm_area_struct *new_vma)
392 {
393 	current->mm->context.sigpage = new_vma->vm_start;
394 	return 0;
395 }
396 
397 static const struct vm_special_mapping sigpage_mapping = {
398 	.name = "[sigpage]",
399 	.pages = &signal_page,
400 	.mremap = sigpage_mremap,
401 };
402 
arch_setup_additional_pages(struct linux_binprm * bprm,int uses_interp)403 int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
404 {
405 	struct mm_struct *mm = current->mm;
406 	struct vm_area_struct *vma;
407 	unsigned long npages;
408 	unsigned long addr;
409 	unsigned long hint;
410 	int ret = 0;
411 
412 	if (!signal_page)
413 		signal_page = get_signal_page();
414 	if (!signal_page)
415 		return -ENOMEM;
416 
417 	npages = 1; /* for sigpage */
418 	npages += vdso_total_pages;
419 
420 	if (mmap_write_lock_killable(mm))
421 		return -EINTR;
422 	hint = sigpage_addr(mm, npages);
423 	addr = get_unmapped_area(NULL, hint, npages << PAGE_SHIFT, 0, 0);
424 	if (IS_ERR_VALUE(addr)) {
425 		ret = addr;
426 		goto up_fail;
427 	}
428 
429 	vma = _install_special_mapping(mm, addr, PAGE_SIZE,
430 		VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
431 		&sigpage_mapping);
432 
433 	if (IS_ERR(vma)) {
434 		ret = PTR_ERR(vma);
435 		goto up_fail;
436 	}
437 
438 	mm->context.sigpage = addr;
439 
440 	/* Unlike the sigpage, failure to install the vdso is unlikely
441 	 * to be fatal to the process, so no error check needed
442 	 * here.
443 	 */
444 	arm_install_vdso(mm, addr + PAGE_SIZE);
445 
446  up_fail:
447 	mmap_write_unlock(mm);
448 	return ret;
449 }
450 #endif
451