1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 #include <trace/hooks/mm.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include <trace/hooks/mm.h>
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/pagefault.h>
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NEED_MULTIPLE_NODES
99 /* use the per-pgdat data instead for discontigmem - mbligh */
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106
107 /*
108 * A number of key systems in x86 including ioremap() rely on the assumption
109 * that high_memory defines the upper bound on direct map memory, then end
110 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
111 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
112 * and ZONE_HIGHMEM.
113 */
114 void *high_memory;
115 EXPORT_SYMBOL(high_memory);
116
117 /*
118 * Randomize the address space (stacks, mmaps, brk, etc.).
119 *
120 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
121 * as ancient (libc5 based) binaries can segfault. )
122 */
123 int randomize_va_space __read_mostly =
124 #ifdef CONFIG_COMPAT_BRK
125 1;
126 #else
127 2;
128 #endif
129
130 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)131 static inline bool arch_faults_on_old_pte(void)
132 {
133 /*
134 * Those arches which don't have hw access flag feature need to
135 * implement their own helper. By default, "true" means pagefault
136 * will be hit on old pte.
137 */
138 return true;
139 }
140 #endif
141
142 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)143 static inline bool arch_wants_old_prefaulted_pte(void)
144 {
145 /*
146 * Transitioning a PTE from 'old' to 'young' can be expensive on
147 * some architectures, even if it's performed in hardware. By
148 * default, "false" means prefaulted entries will be 'young'.
149 */
150 return false;
151 }
152 #endif
153
disable_randmaps(char * s)154 static int __init disable_randmaps(char *s)
155 {
156 randomize_va_space = 0;
157 return 1;
158 }
159 __setup("norandmaps", disable_randmaps);
160
161 unsigned long zero_pfn __read_mostly;
162 EXPORT_SYMBOL(zero_pfn);
163
164 unsigned long highest_memmap_pfn __read_mostly;
165
166 /*
167 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
168 */
init_zero_pfn(void)169 static int __init init_zero_pfn(void)
170 {
171 zero_pfn = page_to_pfn(ZERO_PAGE(0));
172 return 0;
173 }
174 early_initcall(init_zero_pfn);
175
176 /*
177 * Only trace rss_stat when there is a 512kb cross over.
178 * Smaller changes may be lost unless every small change is
179 * crossing into or returning to a 512kb boundary.
180 */
181 #define TRACE_MM_COUNTER_THRESHOLD 128
182
mm_trace_rss_stat(struct mm_struct * mm,int member,long count,long value)183 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
184 long value)
185 {
186 long thresh_mask = ~(TRACE_MM_COUNTER_THRESHOLD - 1);
187
188 /* Threshold roll-over, trace it */
189 if ((count & thresh_mask) != ((count - value) & thresh_mask))
190 trace_rss_stat(mm, member, count);
191 }
192 EXPORT_SYMBOL_GPL(mm_trace_rss_stat);
193
194 #if defined(SPLIT_RSS_COUNTING)
195
sync_mm_rss(struct mm_struct * mm)196 void sync_mm_rss(struct mm_struct *mm)
197 {
198 int i;
199
200 for (i = 0; i < NR_MM_COUNTERS; i++) {
201 if (current->rss_stat.count[i]) {
202 add_mm_counter(mm, i, current->rss_stat.count[i]);
203 current->rss_stat.count[i] = 0;
204 }
205 }
206 current->rss_stat.events = 0;
207 }
208
add_mm_counter_fast(struct mm_struct * mm,int member,int val)209 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
210 {
211 struct task_struct *task = current;
212
213 if (likely(task->mm == mm))
214 task->rss_stat.count[member] += val;
215 else
216 add_mm_counter(mm, member, val);
217 }
218 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
219 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
220
221 /* sync counter once per 64 page faults */
222 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)223 static void check_sync_rss_stat(struct task_struct *task)
224 {
225 if (unlikely(task != current))
226 return;
227 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
228 sync_mm_rss(task->mm);
229 }
230 #else /* SPLIT_RSS_COUNTING */
231
232 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
233 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
234
check_sync_rss_stat(struct task_struct * task)235 static void check_sync_rss_stat(struct task_struct *task)
236 {
237 }
238
239 #endif /* SPLIT_RSS_COUNTING */
240
241 /*
242 * Note: this doesn't free the actual pages themselves. That
243 * has been handled earlier when unmapping all the memory regions.
244 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)245 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
246 unsigned long addr)
247 {
248 pgtable_t token = pmd_pgtable(*pmd);
249 pmd_clear(pmd);
250 pte_free_tlb(tlb, token, addr);
251 mm_dec_nr_ptes(tlb->mm);
252 }
253
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)254 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
255 unsigned long addr, unsigned long end,
256 unsigned long floor, unsigned long ceiling)
257 {
258 pmd_t *pmd;
259 unsigned long next;
260 unsigned long start;
261
262 start = addr;
263 pmd = pmd_offset(pud, addr);
264 do {
265 next = pmd_addr_end(addr, end);
266 if (pmd_none_or_clear_bad(pmd))
267 continue;
268 free_pte_range(tlb, pmd, addr);
269 } while (pmd++, addr = next, addr != end);
270
271 start &= PUD_MASK;
272 if (start < floor)
273 return;
274 if (ceiling) {
275 ceiling &= PUD_MASK;
276 if (!ceiling)
277 return;
278 }
279 if (end - 1 > ceiling - 1)
280 return;
281
282 pmd = pmd_offset(pud, start);
283 pud_clear(pud);
284 pmd_free_tlb(tlb, pmd, start);
285 mm_dec_nr_pmds(tlb->mm);
286 }
287
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)288 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
289 unsigned long addr, unsigned long end,
290 unsigned long floor, unsigned long ceiling)
291 {
292 pud_t *pud;
293 unsigned long next;
294 unsigned long start;
295
296 start = addr;
297 pud = pud_offset(p4d, addr);
298 do {
299 next = pud_addr_end(addr, end);
300 if (pud_none_or_clear_bad(pud))
301 continue;
302 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
303 } while (pud++, addr = next, addr != end);
304
305 start &= P4D_MASK;
306 if (start < floor)
307 return;
308 if (ceiling) {
309 ceiling &= P4D_MASK;
310 if (!ceiling)
311 return;
312 }
313 if (end - 1 > ceiling - 1)
314 return;
315
316 pud = pud_offset(p4d, start);
317 p4d_clear(p4d);
318 pud_free_tlb(tlb, pud, start);
319 mm_dec_nr_puds(tlb->mm);
320 }
321
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)322 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
323 unsigned long addr, unsigned long end,
324 unsigned long floor, unsigned long ceiling)
325 {
326 p4d_t *p4d;
327 unsigned long next;
328 unsigned long start;
329
330 start = addr;
331 p4d = p4d_offset(pgd, addr);
332 do {
333 next = p4d_addr_end(addr, end);
334 if (p4d_none_or_clear_bad(p4d))
335 continue;
336 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
337 } while (p4d++, addr = next, addr != end);
338
339 start &= PGDIR_MASK;
340 if (start < floor)
341 return;
342 if (ceiling) {
343 ceiling &= PGDIR_MASK;
344 if (!ceiling)
345 return;
346 }
347 if (end - 1 > ceiling - 1)
348 return;
349
350 p4d = p4d_offset(pgd, start);
351 pgd_clear(pgd);
352 p4d_free_tlb(tlb, p4d, start);
353 }
354
355 /*
356 * This function frees user-level page tables of a process.
357 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)358 void free_pgd_range(struct mmu_gather *tlb,
359 unsigned long addr, unsigned long end,
360 unsigned long floor, unsigned long ceiling)
361 {
362 pgd_t *pgd;
363 unsigned long next;
364
365 /*
366 * The next few lines have given us lots of grief...
367 *
368 * Why are we testing PMD* at this top level? Because often
369 * there will be no work to do at all, and we'd prefer not to
370 * go all the way down to the bottom just to discover that.
371 *
372 * Why all these "- 1"s? Because 0 represents both the bottom
373 * of the address space and the top of it (using -1 for the
374 * top wouldn't help much: the masks would do the wrong thing).
375 * The rule is that addr 0 and floor 0 refer to the bottom of
376 * the address space, but end 0 and ceiling 0 refer to the top
377 * Comparisons need to use "end - 1" and "ceiling - 1" (though
378 * that end 0 case should be mythical).
379 *
380 * Wherever addr is brought up or ceiling brought down, we must
381 * be careful to reject "the opposite 0" before it confuses the
382 * subsequent tests. But what about where end is brought down
383 * by PMD_SIZE below? no, end can't go down to 0 there.
384 *
385 * Whereas we round start (addr) and ceiling down, by different
386 * masks at different levels, in order to test whether a table
387 * now has no other vmas using it, so can be freed, we don't
388 * bother to round floor or end up - the tests don't need that.
389 */
390
391 addr &= PMD_MASK;
392 if (addr < floor) {
393 addr += PMD_SIZE;
394 if (!addr)
395 return;
396 }
397 if (ceiling) {
398 ceiling &= PMD_MASK;
399 if (!ceiling)
400 return;
401 }
402 if (end - 1 > ceiling - 1)
403 end -= PMD_SIZE;
404 if (addr > end - 1)
405 return;
406 /*
407 * We add page table cache pages with PAGE_SIZE,
408 * (see pte_free_tlb()), flush the tlb if we need
409 */
410 tlb_change_page_size(tlb, PAGE_SIZE);
411 pgd = pgd_offset(tlb->mm, addr);
412 do {
413 next = pgd_addr_end(addr, end);
414 if (pgd_none_or_clear_bad(pgd))
415 continue;
416 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
417 } while (pgd++, addr = next, addr != end);
418 }
419
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)420 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
421 unsigned long floor, unsigned long ceiling)
422 {
423 while (vma) {
424 struct vm_area_struct *next = vma->vm_next;
425 unsigned long addr = vma->vm_start;
426
427 /*
428 * Hide vma from rmap and truncate_pagecache before freeing
429 * pgtables
430 */
431 vm_write_begin(vma);
432 unlink_anon_vmas(vma);
433 vm_write_end(vma);
434 unlink_file_vma(vma);
435
436 if (is_vm_hugetlb_page(vma)) {
437 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
438 floor, next ? next->vm_start : ceiling);
439 } else {
440 /*
441 * Optimization: gather nearby vmas into one call down
442 */
443 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
444 && !is_vm_hugetlb_page(next)) {
445 vma = next;
446 next = vma->vm_next;
447 vm_write_begin(vma);
448 unlink_anon_vmas(vma);
449 vm_write_end(vma);
450 unlink_file_vma(vma);
451 }
452 free_pgd_range(tlb, addr, vma->vm_end,
453 floor, next ? next->vm_start : ceiling);
454 }
455 vma = next;
456 }
457 }
458
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)459 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
460 {
461 spinlock_t *ptl;
462 pgtable_t new = pte_alloc_one(mm);
463 if (!new)
464 return -ENOMEM;
465
466 /*
467 * Ensure all pte setup (eg. pte page lock and page clearing) are
468 * visible before the pte is made visible to other CPUs by being
469 * put into page tables.
470 *
471 * The other side of the story is the pointer chasing in the page
472 * table walking code (when walking the page table without locking;
473 * ie. most of the time). Fortunately, these data accesses consist
474 * of a chain of data-dependent loads, meaning most CPUs (alpha
475 * being the notable exception) will already guarantee loads are
476 * seen in-order. See the alpha page table accessors for the
477 * smp_rmb() barriers in page table walking code.
478 */
479 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
480
481 ptl = pmd_lock(mm, pmd);
482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
483 mm_inc_nr_ptes(mm);
484 pmd_populate(mm, pmd, new);
485 new = NULL;
486 }
487 spin_unlock(ptl);
488 if (new)
489 pte_free(mm, new);
490 return 0;
491 }
492
__pte_alloc_kernel(pmd_t * pmd)493 int __pte_alloc_kernel(pmd_t *pmd)
494 {
495 pte_t *new = pte_alloc_one_kernel(&init_mm);
496 if (!new)
497 return -ENOMEM;
498
499 smp_wmb(); /* See comment in __pte_alloc */
500
501 spin_lock(&init_mm.page_table_lock);
502 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
503 pmd_populate_kernel(&init_mm, pmd, new);
504 new = NULL;
505 }
506 spin_unlock(&init_mm.page_table_lock);
507 if (new)
508 pte_free_kernel(&init_mm, new);
509 return 0;
510 }
511
init_rss_vec(int * rss)512 static inline void init_rss_vec(int *rss)
513 {
514 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
515 }
516
add_mm_rss_vec(struct mm_struct * mm,int * rss)517 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
518 {
519 int i;
520
521 if (current->mm == mm)
522 sync_mm_rss(mm);
523 for (i = 0; i < NR_MM_COUNTERS; i++)
524 if (rss[i])
525 add_mm_counter(mm, i, rss[i]);
526 }
527
528 /*
529 * This function is called to print an error when a bad pte
530 * is found. For example, we might have a PFN-mapped pte in
531 * a region that doesn't allow it.
532 *
533 * The calling function must still handle the error.
534 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)535 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
536 pte_t pte, struct page *page)
537 {
538 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
539 p4d_t *p4d = p4d_offset(pgd, addr);
540 pud_t *pud = pud_offset(p4d, addr);
541 pmd_t *pmd = pmd_offset(pud, addr);
542 struct address_space *mapping;
543 pgoff_t index;
544 static unsigned long resume;
545 static unsigned long nr_shown;
546 static unsigned long nr_unshown;
547
548 /*
549 * Allow a burst of 60 reports, then keep quiet for that minute;
550 * or allow a steady drip of one report per second.
551 */
552 if (nr_shown == 60) {
553 if (time_before(jiffies, resume)) {
554 nr_unshown++;
555 return;
556 }
557 if (nr_unshown) {
558 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
559 nr_unshown);
560 nr_unshown = 0;
561 }
562 nr_shown = 0;
563 }
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
566
567 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
568 index = linear_page_index(vma, addr);
569
570 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
571 current->comm,
572 (long long)pte_val(pte), (long long)pmd_val(*pmd));
573 if (page)
574 dump_page(page, "bad pte");
575 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
576 (void *)addr, READ_ONCE(vma->vm_flags), vma->anon_vma, mapping, index);
577 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
578 vma->vm_file,
579 vma->vm_ops ? vma->vm_ops->fault : NULL,
580 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
581 mapping ? mapping->a_ops->readpage : NULL);
582 dump_stack();
583 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
584 }
585
586 /*
587 * __vm_normal_page -- This function gets the "struct page" associated with
588 * a pte.
589 *
590 * "Special" mappings do not wish to be associated with a "struct page" (either
591 * it doesn't exist, or it exists but they don't want to touch it). In this
592 * case, NULL is returned here. "Normal" mappings do have a struct page.
593 *
594 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
595 * pte bit, in which case this function is trivial. Secondly, an architecture
596 * may not have a spare pte bit, which requires a more complicated scheme,
597 * described below.
598 *
599 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
600 * special mapping (even if there are underlying and valid "struct pages").
601 * COWed pages of a VM_PFNMAP are always normal.
602 *
603 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
604 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
605 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
606 * mapping will always honor the rule
607 *
608 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
609 *
610 * And for normal mappings this is false.
611 *
612 * This restricts such mappings to be a linear translation from virtual address
613 * to pfn. To get around this restriction, we allow arbitrary mappings so long
614 * as the vma is not a COW mapping; in that case, we know that all ptes are
615 * special (because none can have been COWed).
616 *
617 *
618 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
619 *
620 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
621 * page" backing, however the difference is that _all_ pages with a struct
622 * page (that is, those where pfn_valid is true) are refcounted and considered
623 * normal pages by the VM. The disadvantage is that pages are refcounted
624 * (which can be slower and simply not an option for some PFNMAP users). The
625 * advantage is that we don't have to follow the strict linearity rule of
626 * PFNMAP mappings in order to support COWable mappings.
627 *
628 */
_vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte,unsigned long vma_flags)629 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
630 pte_t pte, unsigned long vma_flags)
631 {
632 unsigned long pfn = pte_pfn(pte);
633
634 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
635 if (likely(!pte_special(pte)))
636 goto check_pfn;
637 if (vma->vm_ops && vma->vm_ops->find_special_page)
638 return vma->vm_ops->find_special_page(vma, addr);
639 if (vma_flags & (VM_PFNMAP | VM_MIXEDMAP))
640 return NULL;
641 if (is_zero_pfn(pfn))
642 return NULL;
643 if (pte_devmap(pte))
644 return NULL;
645
646 print_bad_pte(vma, addr, pte, NULL);
647 return NULL;
648 }
649
650 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
651 /*
652 * This part should never get called when CONFIG_SPECULATIVE_PAGE_FAULT
653 * is set. This is mainly because we can't rely on vm_start.
654 */
655
656 if (unlikely(vma_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
657 if (vma_flags & VM_MIXEDMAP) {
658 if (!pfn_valid(pfn))
659 return NULL;
660 goto out;
661 } else {
662 unsigned long off;
663 off = (addr - vma->vm_start) >> PAGE_SHIFT;
664 if (pfn == vma->vm_pgoff + off)
665 return NULL;
666 if (!is_cow_mapping(vma_flags))
667 return NULL;
668 }
669 }
670
671 if (is_zero_pfn(pfn))
672 return NULL;
673
674 check_pfn:
675 if (unlikely(pfn > highest_memmap_pfn)) {
676 print_bad_pte(vma, addr, pte, NULL);
677 return NULL;
678 }
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684 out:
685 return pfn_to_page(pfn);
686 }
687
688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)689 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
690 pmd_t pmd)
691 {
692 unsigned long pfn = pmd_pfn(pmd);
693
694 /*
695 * There is no pmd_special() but there may be special pmds, e.g.
696 * in a direct-access (dax) mapping, so let's just replicate the
697 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
698 */
699 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
700 if (vma->vm_flags & VM_MIXEDMAP) {
701 if (!pfn_valid(pfn))
702 return NULL;
703 goto out;
704 } else {
705 unsigned long off;
706 off = (addr - vma->vm_start) >> PAGE_SHIFT;
707 if (pfn == vma->vm_pgoff + off)
708 return NULL;
709 if (!is_cow_mapping(vma->vm_flags))
710 return NULL;
711 }
712 }
713
714 if (pmd_devmap(pmd))
715 return NULL;
716 if (is_huge_zero_pmd(pmd))
717 return NULL;
718 if (unlikely(pfn > highest_memmap_pfn))
719 return NULL;
720
721 /*
722 * NOTE! We still have PageReserved() pages in the page tables.
723 * eg. VDSO mappings can cause them to exist.
724 */
725 out:
726 return pfn_to_page(pfn);
727 }
728 #endif
729
730 /*
731 * copy one vm_area from one task to the other. Assumes the page tables
732 * already present in the new task to be cleared in the whole range
733 * covered by this vma.
734 */
735
736 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)737 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
738 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
739 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
740 {
741 unsigned long vm_flags = dst_vma->vm_flags;
742 pte_t pte = *src_pte;
743 struct page *page;
744 swp_entry_t entry = pte_to_swp_entry(pte);
745
746 if (likely(!non_swap_entry(entry))) {
747 if (swap_duplicate(entry) < 0)
748 return entry.val;
749
750 /* make sure dst_mm is on swapoff's mmlist. */
751 if (unlikely(list_empty(&dst_mm->mmlist))) {
752 spin_lock(&mmlist_lock);
753 if (list_empty(&dst_mm->mmlist))
754 list_add(&dst_mm->mmlist,
755 &src_mm->mmlist);
756 spin_unlock(&mmlist_lock);
757 }
758 rss[MM_SWAPENTS]++;
759 } else if (is_migration_entry(entry)) {
760 page = migration_entry_to_page(entry);
761
762 rss[mm_counter(page)]++;
763
764 if (is_write_migration_entry(entry) &&
765 is_cow_mapping(vm_flags)) {
766 /*
767 * COW mappings require pages in both
768 * parent and child to be set to read.
769 */
770 make_migration_entry_read(&entry);
771 pte = swp_entry_to_pte(entry);
772 if (pte_swp_soft_dirty(*src_pte))
773 pte = pte_swp_mksoft_dirty(pte);
774 if (pte_swp_uffd_wp(*src_pte))
775 pte = pte_swp_mkuffd_wp(pte);
776 set_pte_at(src_mm, addr, src_pte, pte);
777 }
778 } else if (is_device_private_entry(entry)) {
779 page = device_private_entry_to_page(entry);
780
781 /*
782 * Update rss count even for unaddressable pages, as
783 * they should treated just like normal pages in this
784 * respect.
785 *
786 * We will likely want to have some new rss counters
787 * for unaddressable pages, at some point. But for now
788 * keep things as they are.
789 */
790 get_page(page);
791 rss[mm_counter(page)]++;
792 page_dup_rmap(page, false);
793
794 /*
795 * We do not preserve soft-dirty information, because so
796 * far, checkpoint/restore is the only feature that
797 * requires that. And checkpoint/restore does not work
798 * when a device driver is involved (you cannot easily
799 * save and restore device driver state).
800 */
801 if (is_write_device_private_entry(entry) &&
802 is_cow_mapping(vm_flags)) {
803 make_device_private_entry_read(&entry);
804 pte = swp_entry_to_pte(entry);
805 if (pte_swp_uffd_wp(*src_pte))
806 pte = pte_swp_mkuffd_wp(pte);
807 set_pte_at(src_mm, addr, src_pte, pte);
808 }
809 }
810 if (!userfaultfd_wp(dst_vma))
811 pte = pte_swp_clear_uffd_wp(pte);
812 set_pte_at(dst_mm, addr, dst_pte, pte);
813 return 0;
814 }
815
816 /*
817 * Copy a present and normal page if necessary.
818 *
819 * NOTE! The usual case is that this doesn't need to do
820 * anything, and can just return a positive value. That
821 * will let the caller know that it can just increase
822 * the page refcount and re-use the pte the traditional
823 * way.
824 *
825 * But _if_ we need to copy it because it needs to be
826 * pinned in the parent (and the child should get its own
827 * copy rather than just a reference to the same page),
828 * we'll do that here and return zero to let the caller
829 * know we're done.
830 *
831 * And if we need a pre-allocated page but don't yet have
832 * one, return a negative error to let the preallocation
833 * code know so that it can do so outside the page table
834 * lock.
835 */
836 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc,pte_t pte,struct page * page)837 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
838 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
839 struct page **prealloc, pte_t pte, struct page *page)
840 {
841 struct mm_struct *src_mm = src_vma->vm_mm;
842 struct page *new_page;
843
844 if (!is_cow_mapping(src_vma->vm_flags))
845 return 1;
846
847 /*
848 * What we want to do is to check whether this page may
849 * have been pinned by the parent process. If so,
850 * instead of wrprotect the pte on both sides, we copy
851 * the page immediately so that we'll always guarantee
852 * the pinned page won't be randomly replaced in the
853 * future.
854 *
855 * The page pinning checks are just "has this mm ever
856 * seen pinning", along with the (inexact) check of
857 * the page count. That might give false positives for
858 * for pinning, but it will work correctly.
859 */
860 if (likely(!atomic_read(&src_mm->has_pinned)))
861 return 1;
862 if (likely(!page_maybe_dma_pinned(page)))
863 return 1;
864
865 /*
866 * The vma->anon_vma of the child process may be NULL
867 * because the entire vma does not contain anonymous pages.
868 * A BUG will occur when the copy_present_page() passes
869 * a copy of a non-anonymous page of that vma to the
870 * page_add_new_anon_rmap() to set up new anonymous rmap.
871 * Return 1 if the page is not an anonymous page.
872 */
873 if (!PageAnon(page))
874 return 1;
875
876 new_page = *prealloc;
877 if (!new_page)
878 return -EAGAIN;
879
880 /*
881 * We have a prealloc page, all good! Take it
882 * over and copy the page & arm it.
883 */
884 *prealloc = NULL;
885 copy_user_highpage(new_page, page, addr, src_vma);
886 __SetPageUptodate(new_page);
887 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
888 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
889 rss[mm_counter(new_page)]++;
890
891 /* All done, just insert the new page copy in the child */
892 pte = mk_pte(new_page, dst_vma->vm_page_prot);
893 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma->vm_flags);
894 if (userfaultfd_pte_wp(dst_vma, *src_pte))
895 /* Uffd-wp needs to be delivered to dest pte as well */
896 pte = pte_wrprotect(pte_mkuffd_wp(pte));
897 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
898 return 0;
899 }
900
901 /*
902 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
903 * is required to copy this pte.
904 */
905 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct page ** prealloc)906 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
907 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
908 struct page **prealloc)
909 {
910 struct mm_struct *src_mm = src_vma->vm_mm;
911 unsigned long vm_flags = src_vma->vm_flags;
912 pte_t pte = *src_pte;
913 struct page *page;
914
915 page = vm_normal_page(src_vma, addr, pte);
916 if (page) {
917 int retval;
918
919 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
920 addr, rss, prealloc, pte, page);
921 if (retval <= 0)
922 return retval;
923
924 get_page(page);
925 page_dup_rmap(page, false);
926 rss[mm_counter(page)]++;
927 }
928
929 /*
930 * If it's a COW mapping, write protect it both
931 * in the parent and the child
932 */
933 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
934 ptep_set_wrprotect(src_mm, addr, src_pte);
935 pte = pte_wrprotect(pte);
936 }
937
938 /*
939 * If it's a shared mapping, mark it clean in
940 * the child
941 */
942 if (vm_flags & VM_SHARED)
943 pte = pte_mkclean(pte);
944 pte = pte_mkold(pte);
945
946 if (!userfaultfd_wp(dst_vma))
947 pte = pte_clear_uffd_wp(pte);
948
949 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
950 return 0;
951 }
952
953 static inline struct page *
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)954 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
955 unsigned long addr)
956 {
957 struct page *new_page;
958
959 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
960 if (!new_page)
961 return NULL;
962
963 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
964 put_page(new_page);
965 return NULL;
966 }
967 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
968
969 return new_page;
970 }
971
972 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)973 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
974 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
975 unsigned long end)
976 {
977 struct mm_struct *dst_mm = dst_vma->vm_mm;
978 struct mm_struct *src_mm = src_vma->vm_mm;
979 pte_t *orig_src_pte, *orig_dst_pte;
980 pte_t *src_pte, *dst_pte;
981 spinlock_t *src_ptl, *dst_ptl;
982 int progress, ret = 0;
983 int rss[NR_MM_COUNTERS];
984 swp_entry_t entry = (swp_entry_t){0};
985 struct page *prealloc = NULL;
986
987 again:
988 progress = 0;
989 init_rss_vec(rss);
990
991 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
992 if (!dst_pte) {
993 ret = -ENOMEM;
994 goto out;
995 }
996 src_pte = pte_offset_map(src_pmd, addr);
997 src_ptl = pte_lockptr(src_mm, src_pmd);
998 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
999 orig_src_pte = src_pte;
1000 orig_dst_pte = dst_pte;
1001 arch_enter_lazy_mmu_mode();
1002
1003 do {
1004 /*
1005 * We are holding two locks at this point - either of them
1006 * could generate latencies in another task on another CPU.
1007 */
1008 if (progress >= 32) {
1009 progress = 0;
1010 if (need_resched() ||
1011 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1012 break;
1013 }
1014 if (pte_none(*src_pte)) {
1015 progress++;
1016 continue;
1017 }
1018 if (unlikely(!pte_present(*src_pte))) {
1019 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
1020 dst_pte, src_pte,
1021 dst_vma, src_vma,
1022 addr, rss);
1023 if (entry.val)
1024 break;
1025 progress += 8;
1026 continue;
1027 }
1028 /* copy_present_pte() will clear `*prealloc' if consumed */
1029 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1030 addr, rss, &prealloc);
1031 /*
1032 * If we need a pre-allocated page for this pte, drop the
1033 * locks, allocate, and try again.
1034 */
1035 if (unlikely(ret == -EAGAIN))
1036 break;
1037 if (unlikely(prealloc)) {
1038 /*
1039 * pre-alloc page cannot be reused by next time so as
1040 * to strictly follow mempolicy (e.g., alloc_page_vma()
1041 * will allocate page according to address). This
1042 * could only happen if one pinned pte changed.
1043 */
1044 put_page(prealloc);
1045 prealloc = NULL;
1046 }
1047 progress += 8;
1048 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1049
1050 arch_leave_lazy_mmu_mode();
1051 spin_unlock(src_ptl);
1052 pte_unmap(orig_src_pte);
1053 add_mm_rss_vec(dst_mm, rss);
1054 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1055 cond_resched();
1056
1057 if (entry.val) {
1058 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1059 ret = -ENOMEM;
1060 goto out;
1061 }
1062 entry.val = 0;
1063 } else if (ret) {
1064 WARN_ON_ONCE(ret != -EAGAIN);
1065 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1066 if (!prealloc)
1067 return -ENOMEM;
1068 /* We've captured and resolved the error. Reset, try again. */
1069 ret = 0;
1070 }
1071 if (addr != end)
1072 goto again;
1073 out:
1074 if (unlikely(prealloc))
1075 put_page(prealloc);
1076 return ret;
1077 }
1078
1079 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1080 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1081 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1082 unsigned long end)
1083 {
1084 struct mm_struct *dst_mm = dst_vma->vm_mm;
1085 struct mm_struct *src_mm = src_vma->vm_mm;
1086 pmd_t *src_pmd, *dst_pmd;
1087 unsigned long next;
1088
1089 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1090 if (!dst_pmd)
1091 return -ENOMEM;
1092 src_pmd = pmd_offset(src_pud, addr);
1093 do {
1094 next = pmd_addr_end(addr, end);
1095 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1096 || pmd_devmap(*src_pmd)) {
1097 int err;
1098 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1099 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1100 addr, dst_vma, src_vma);
1101 if (err == -ENOMEM)
1102 return -ENOMEM;
1103 if (!err)
1104 continue;
1105 /* fall through */
1106 }
1107 if (pmd_none_or_clear_bad(src_pmd))
1108 continue;
1109 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1110 addr, next))
1111 return -ENOMEM;
1112 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1113 return 0;
1114 }
1115
1116 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1117 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1118 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1119 unsigned long end)
1120 {
1121 struct mm_struct *dst_mm = dst_vma->vm_mm;
1122 struct mm_struct *src_mm = src_vma->vm_mm;
1123 pud_t *src_pud, *dst_pud;
1124 unsigned long next;
1125
1126 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1127 if (!dst_pud)
1128 return -ENOMEM;
1129 src_pud = pud_offset(src_p4d, addr);
1130 do {
1131 next = pud_addr_end(addr, end);
1132 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1133 int err;
1134
1135 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1136 err = copy_huge_pud(dst_mm, src_mm,
1137 dst_pud, src_pud, addr, src_vma);
1138 if (err == -ENOMEM)
1139 return -ENOMEM;
1140 if (!err)
1141 continue;
1142 /* fall through */
1143 }
1144 if (pud_none_or_clear_bad(src_pud))
1145 continue;
1146 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1147 addr, next))
1148 return -ENOMEM;
1149 } while (dst_pud++, src_pud++, addr = next, addr != end);
1150 return 0;
1151 }
1152
1153 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1154 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1155 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1156 unsigned long end)
1157 {
1158 struct mm_struct *dst_mm = dst_vma->vm_mm;
1159 p4d_t *src_p4d, *dst_p4d;
1160 unsigned long next;
1161
1162 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1163 if (!dst_p4d)
1164 return -ENOMEM;
1165 src_p4d = p4d_offset(src_pgd, addr);
1166 do {
1167 next = p4d_addr_end(addr, end);
1168 if (p4d_none_or_clear_bad(src_p4d))
1169 continue;
1170 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1171 addr, next))
1172 return -ENOMEM;
1173 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1174 return 0;
1175 }
1176
1177 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1178 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1179 {
1180 pgd_t *src_pgd, *dst_pgd;
1181 unsigned long next;
1182 unsigned long addr = src_vma->vm_start;
1183 unsigned long end = src_vma->vm_end;
1184 struct mm_struct *dst_mm = dst_vma->vm_mm;
1185 struct mm_struct *src_mm = src_vma->vm_mm;
1186 struct mmu_notifier_range range;
1187 bool is_cow;
1188 int ret;
1189
1190 /*
1191 * Don't copy ptes where a page fault will fill them correctly.
1192 * Fork becomes much lighter when there are big shared or private
1193 * readonly mappings. The tradeoff is that copy_page_range is more
1194 * efficient than faulting.
1195 */
1196 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1197 !src_vma->anon_vma)
1198 return 0;
1199
1200 if (is_vm_hugetlb_page(src_vma))
1201 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1202
1203 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1204 /*
1205 * We do not free on error cases below as remove_vma
1206 * gets called on error from higher level routine
1207 */
1208 ret = track_pfn_copy(src_vma);
1209 if (ret)
1210 return ret;
1211 }
1212
1213 /*
1214 * We need to invalidate the secondary MMU mappings only when
1215 * there could be a permission downgrade on the ptes of the
1216 * parent mm. And a permission downgrade will only happen if
1217 * is_cow_mapping() returns true.
1218 */
1219 is_cow = is_cow_mapping(src_vma->vm_flags);
1220
1221 if (is_cow) {
1222 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1223 0, src_vma, src_mm, addr, end);
1224 mmu_notifier_invalidate_range_start(&range);
1225 /*
1226 * Disabling preemption is not needed for the write side, as
1227 * the read side doesn't spin, but goes to the mmap_lock.
1228 *
1229 * Use the raw variant of the seqcount_t write API to avoid
1230 * lockdep complaining about preemptibility.
1231 */
1232 mmap_assert_write_locked(src_mm);
1233 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1234 }
1235
1236 ret = 0;
1237 dst_pgd = pgd_offset(dst_mm, addr);
1238 src_pgd = pgd_offset(src_mm, addr);
1239 do {
1240 next = pgd_addr_end(addr, end);
1241 if (pgd_none_or_clear_bad(src_pgd))
1242 continue;
1243 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1244 addr, next))) {
1245 ret = -ENOMEM;
1246 break;
1247 }
1248 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1249
1250 if (is_cow) {
1251 raw_write_seqcount_end(&src_mm->write_protect_seq);
1252 mmu_notifier_invalidate_range_end(&range);
1253 }
1254 return ret;
1255 }
1256
1257 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1258 static inline bool should_zap_cows(struct zap_details *details)
1259 {
1260 /* By default, zap all pages */
1261 if (!details)
1262 return true;
1263
1264 /* Or, we zap COWed pages only if the caller wants to */
1265 return !details->check_mapping;
1266 }
1267
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1268 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1269 struct vm_area_struct *vma, pmd_t *pmd,
1270 unsigned long addr, unsigned long end,
1271 struct zap_details *details)
1272 {
1273 struct mm_struct *mm = tlb->mm;
1274 int force_flush = 0;
1275 int rss[NR_MM_COUNTERS];
1276 spinlock_t *ptl;
1277 pte_t *start_pte;
1278 pte_t *pte;
1279 swp_entry_t entry;
1280
1281 tlb_change_page_size(tlb, PAGE_SIZE);
1282 again:
1283 init_rss_vec(rss);
1284 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1285 pte = start_pte;
1286 flush_tlb_batched_pending(mm);
1287 arch_enter_lazy_mmu_mode();
1288 do {
1289 pte_t ptent = *pte;
1290 if (pte_none(ptent))
1291 continue;
1292
1293 if (need_resched())
1294 break;
1295
1296 if (pte_present(ptent)) {
1297 struct page *page;
1298
1299 page = vm_normal_page(vma, addr, ptent);
1300 if (unlikely(details) && page) {
1301 /*
1302 * unmap_shared_mapping_pages() wants to
1303 * invalidate cache without truncating:
1304 * unmap shared but keep private pages.
1305 */
1306 if (details->check_mapping &&
1307 details->check_mapping != page_rmapping(page))
1308 continue;
1309 }
1310 ptent = ptep_get_and_clear_full(mm, addr, pte,
1311 tlb->fullmm);
1312 tlb_remove_tlb_entry(tlb, pte, addr);
1313 if (unlikely(!page))
1314 continue;
1315
1316 if (!PageAnon(page)) {
1317 if (pte_dirty(ptent)) {
1318 force_flush = 1;
1319 set_page_dirty(page);
1320 }
1321 if (pte_young(ptent) &&
1322 likely(!(vma->vm_flags & VM_SEQ_READ)))
1323 mark_page_accessed(page);
1324 }
1325 rss[mm_counter(page)]--;
1326 page_remove_rmap(page, false);
1327 if (unlikely(page_mapcount(page) < 0))
1328 print_bad_pte(vma, addr, ptent, page);
1329 if (unlikely(__tlb_remove_page(tlb, page)) ||
1330 lru_cache_disabled()) {
1331 force_flush = 1;
1332 addr += PAGE_SIZE;
1333 break;
1334 }
1335 continue;
1336 }
1337
1338 entry = pte_to_swp_entry(ptent);
1339 if (is_device_private_entry(entry)) {
1340 struct page *page = device_private_entry_to_page(entry);
1341
1342 if (unlikely(details && details->check_mapping)) {
1343 /*
1344 * unmap_shared_mapping_pages() wants to
1345 * invalidate cache without truncating:
1346 * unmap shared but keep private pages.
1347 */
1348 if (details->check_mapping !=
1349 page_rmapping(page))
1350 continue;
1351 }
1352
1353 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1354 rss[mm_counter(page)]--;
1355 page_remove_rmap(page, false);
1356 put_page(page);
1357 continue;
1358 }
1359
1360 if (!non_swap_entry(entry)) {
1361 /* Genuine swap entry, hence a private anon page */
1362 if (!should_zap_cows(details))
1363 continue;
1364 rss[MM_SWAPENTS]--;
1365 } else if (is_migration_entry(entry)) {
1366 struct page *page;
1367
1368 page = migration_entry_to_page(entry);
1369 if (details && details->check_mapping &&
1370 details->check_mapping != page_rmapping(page))
1371 continue;
1372 rss[mm_counter(page)]--;
1373 }
1374 if (unlikely(!free_swap_and_cache(entry)))
1375 print_bad_pte(vma, addr, ptent, NULL);
1376 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1377 } while (pte++, addr += PAGE_SIZE, addr != end);
1378
1379 add_mm_rss_vec(mm, rss);
1380 arch_leave_lazy_mmu_mode();
1381
1382 /* Do the actual TLB flush before dropping ptl */
1383 if (force_flush)
1384 tlb_flush_mmu_tlbonly(tlb);
1385 pte_unmap_unlock(start_pte, ptl);
1386
1387 /*
1388 * If we forced a TLB flush (either due to running out of
1389 * batch buffers or because we needed to flush dirty TLB
1390 * entries before releasing the ptl), free the batched
1391 * memory too. Restart if we didn't do everything.
1392 */
1393 if (force_flush) {
1394 force_flush = 0;
1395 tlb_flush_mmu(tlb);
1396 }
1397
1398 if (addr != end) {
1399 cond_resched();
1400 goto again;
1401 }
1402
1403 return addr;
1404 }
1405
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1406 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1407 struct vm_area_struct *vma, pud_t *pud,
1408 unsigned long addr, unsigned long end,
1409 struct zap_details *details)
1410 {
1411 pmd_t *pmd;
1412 unsigned long next;
1413
1414 pmd = pmd_offset(pud, addr);
1415 do {
1416 next = pmd_addr_end(addr, end);
1417 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1418 if (next - addr != HPAGE_PMD_SIZE)
1419 __split_huge_pmd(vma, pmd, addr, false, NULL);
1420 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1421 goto next;
1422 /* fall through */
1423 } else if (details && details->single_page &&
1424 PageTransCompound(details->single_page) &&
1425 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1426 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1427 /*
1428 * Take and drop THP pmd lock so that we cannot return
1429 * prematurely, while zap_huge_pmd() has cleared *pmd,
1430 * but not yet decremented compound_mapcount().
1431 */
1432 spin_unlock(ptl);
1433 }
1434
1435 /*
1436 * Here there can be other concurrent MADV_DONTNEED or
1437 * trans huge page faults running, and if the pmd is
1438 * none or trans huge it can change under us. This is
1439 * because MADV_DONTNEED holds the mmap_lock in read
1440 * mode.
1441 */
1442 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1443 goto next;
1444 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1445 next:
1446 cond_resched();
1447 } while (pmd++, addr = next, addr != end);
1448
1449 return addr;
1450 }
1451
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1452 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1453 struct vm_area_struct *vma, p4d_t *p4d,
1454 unsigned long addr, unsigned long end,
1455 struct zap_details *details)
1456 {
1457 pud_t *pud;
1458 unsigned long next;
1459
1460 pud = pud_offset(p4d, addr);
1461 do {
1462 next = pud_addr_end(addr, end);
1463 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1464 if (next - addr != HPAGE_PUD_SIZE) {
1465 mmap_assert_locked(tlb->mm);
1466 split_huge_pud(vma, pud, addr);
1467 } else if (zap_huge_pud(tlb, vma, pud, addr))
1468 goto next;
1469 /* fall through */
1470 }
1471 if (pud_none_or_clear_bad(pud))
1472 continue;
1473 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1474 next:
1475 cond_resched();
1476 } while (pud++, addr = next, addr != end);
1477
1478 return addr;
1479 }
1480
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1481 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1482 struct vm_area_struct *vma, pgd_t *pgd,
1483 unsigned long addr, unsigned long end,
1484 struct zap_details *details)
1485 {
1486 p4d_t *p4d;
1487 unsigned long next;
1488
1489 p4d = p4d_offset(pgd, addr);
1490 do {
1491 next = p4d_addr_end(addr, end);
1492 if (p4d_none_or_clear_bad(p4d))
1493 continue;
1494 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1495 } while (p4d++, addr = next, addr != end);
1496
1497 return addr;
1498 }
1499
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1500 void unmap_page_range(struct mmu_gather *tlb,
1501 struct vm_area_struct *vma,
1502 unsigned long addr, unsigned long end,
1503 struct zap_details *details)
1504 {
1505 pgd_t *pgd;
1506 unsigned long next;
1507
1508 BUG_ON(addr >= end);
1509 tlb_start_vma(tlb, vma);
1510 pgd = pgd_offset(vma->vm_mm, addr);
1511 do {
1512 next = pgd_addr_end(addr, end);
1513 if (pgd_none_or_clear_bad(pgd))
1514 continue;
1515 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1516 } while (pgd++, addr = next, addr != end);
1517 tlb_end_vma(tlb, vma);
1518 }
1519
1520
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1521 static void unmap_single_vma(struct mmu_gather *tlb,
1522 struct vm_area_struct *vma, unsigned long start_addr,
1523 unsigned long end_addr,
1524 struct zap_details *details)
1525 {
1526 unsigned long start = max(vma->vm_start, start_addr);
1527 unsigned long end;
1528
1529 if (start >= vma->vm_end)
1530 return;
1531 end = min(vma->vm_end, end_addr);
1532 if (end <= vma->vm_start)
1533 return;
1534
1535 if (vma->vm_file)
1536 uprobe_munmap(vma, start, end);
1537
1538 if (unlikely(vma->vm_flags & VM_PFNMAP))
1539 untrack_pfn(vma, 0, 0);
1540
1541 if (start != end) {
1542 if (unlikely(is_vm_hugetlb_page(vma))) {
1543 /*
1544 * It is undesirable to test vma->vm_file as it
1545 * should be non-null for valid hugetlb area.
1546 * However, vm_file will be NULL in the error
1547 * cleanup path of mmap_region. When
1548 * hugetlbfs ->mmap method fails,
1549 * mmap_region() nullifies vma->vm_file
1550 * before calling this function to clean up.
1551 * Since no pte has actually been setup, it is
1552 * safe to do nothing in this case.
1553 */
1554 if (vma->vm_file) {
1555 i_mmap_lock_write(vma->vm_file->f_mapping);
1556 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1557 i_mmap_unlock_write(vma->vm_file->f_mapping);
1558 }
1559 } else
1560 unmap_page_range(tlb, vma, start, end, details);
1561 }
1562 }
1563
1564 /**
1565 * unmap_vmas - unmap a range of memory covered by a list of vma's
1566 * @tlb: address of the caller's struct mmu_gather
1567 * @vma: the starting vma
1568 * @start_addr: virtual address at which to start unmapping
1569 * @end_addr: virtual address at which to end unmapping
1570 *
1571 * Unmap all pages in the vma list.
1572 *
1573 * Only addresses between `start' and `end' will be unmapped.
1574 *
1575 * The VMA list must be sorted in ascending virtual address order.
1576 *
1577 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1578 * range after unmap_vmas() returns. So the only responsibility here is to
1579 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1580 * drops the lock and schedules.
1581 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1582 void unmap_vmas(struct mmu_gather *tlb,
1583 struct vm_area_struct *vma, unsigned long start_addr,
1584 unsigned long end_addr)
1585 {
1586 struct mmu_notifier_range range;
1587
1588 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1589 start_addr, end_addr);
1590 mmu_notifier_invalidate_range_start(&range);
1591 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1592 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1593 mmu_notifier_invalidate_range_end(&range);
1594 }
1595
1596 /**
1597 * zap_page_range - remove user pages in a given range
1598 * @vma: vm_area_struct holding the applicable pages
1599 * @start: starting address of pages to zap
1600 * @size: number of bytes to zap
1601 *
1602 * Caller must protect the VMA list
1603 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1604 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1605 unsigned long size)
1606 {
1607 struct mmu_notifier_range range;
1608 struct mmu_gather tlb;
1609
1610 lru_add_drain();
1611 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1612 start, start + size);
1613 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1614 update_hiwater_rss(vma->vm_mm);
1615 mmu_notifier_invalidate_range_start(&range);
1616 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1617 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1618 mmu_notifier_invalidate_range_end(&range);
1619 tlb_finish_mmu(&tlb, start, range.end);
1620 }
1621
1622 /**
1623 * zap_page_range_single - remove user pages in a given range
1624 * @vma: vm_area_struct holding the applicable pages
1625 * @address: starting address of pages to zap
1626 * @size: number of bytes to zap
1627 * @details: details of shared cache invalidation
1628 *
1629 * The range must fit into one VMA.
1630 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632 unsigned long size, struct zap_details *details)
1633 {
1634 struct mmu_notifier_range range;
1635 struct mmu_gather tlb;
1636
1637 lru_add_drain();
1638 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1639 address, address + size);
1640 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1641 update_hiwater_rss(vma->vm_mm);
1642 mmu_notifier_invalidate_range_start(&range);
1643 unmap_single_vma(&tlb, vma, address, range.end, details);
1644 mmu_notifier_invalidate_range_end(&range);
1645 tlb_finish_mmu(&tlb, address, range.end);
1646 }
1647
1648 /**
1649 * zap_vma_ptes - remove ptes mapping the vma
1650 * @vma: vm_area_struct holding ptes to be zapped
1651 * @address: starting address of pages to zap
1652 * @size: number of bytes to zap
1653 *
1654 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1655 *
1656 * The entire address range must be fully contained within the vma.
1657 *
1658 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1659 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1660 unsigned long size)
1661 {
1662 if (address < vma->vm_start || address + size > vma->vm_end ||
1663 !(vma->vm_flags & VM_PFNMAP))
1664 return;
1665
1666 zap_page_range_single(vma, address, size, NULL);
1667 }
1668 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1669
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1670 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1671 {
1672 pgd_t *pgd;
1673 p4d_t *p4d;
1674 pud_t *pud;
1675 pmd_t *pmd;
1676
1677 pgd = pgd_offset(mm, addr);
1678 p4d = p4d_alloc(mm, pgd, addr);
1679 if (!p4d)
1680 return NULL;
1681 pud = pud_alloc(mm, p4d, addr);
1682 if (!pud)
1683 return NULL;
1684 pmd = pmd_alloc(mm, pud, addr);
1685 if (!pmd)
1686 return NULL;
1687
1688 VM_BUG_ON(pmd_trans_huge(*pmd));
1689 return pmd;
1690 }
1691
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1692 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1693 spinlock_t **ptl)
1694 {
1695 pmd_t *pmd = walk_to_pmd(mm, addr);
1696
1697 if (!pmd)
1698 return NULL;
1699 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1700 }
1701
validate_page_before_insert(struct page * page)1702 static int validate_page_before_insert(struct page *page)
1703 {
1704 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1705 return -EINVAL;
1706 flush_dcache_page(page);
1707 return 0;
1708 }
1709
insert_page_into_pte_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1710 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1711 unsigned long addr, struct page *page, pgprot_t prot)
1712 {
1713 if (!pte_none(*pte))
1714 return -EBUSY;
1715 /* Ok, finally just insert the thing.. */
1716 get_page(page);
1717 inc_mm_counter_fast(mm, mm_counter_file(page));
1718 page_add_file_rmap(page, false);
1719 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1720 return 0;
1721 }
1722
1723 /*
1724 * This is the old fallback for page remapping.
1725 *
1726 * For historical reasons, it only allows reserved pages. Only
1727 * old drivers should use this, and they needed to mark their
1728 * pages reserved for the old functions anyway.
1729 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1730 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1731 struct page *page, pgprot_t prot)
1732 {
1733 struct mm_struct *mm = vma->vm_mm;
1734 int retval;
1735 pte_t *pte;
1736 spinlock_t *ptl;
1737
1738 retval = validate_page_before_insert(page);
1739 if (retval)
1740 goto out;
1741 retval = -ENOMEM;
1742 pte = get_locked_pte(mm, addr, &ptl);
1743 if (!pte)
1744 goto out;
1745 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1746 pte_unmap_unlock(pte, ptl);
1747 out:
1748 return retval;
1749 }
1750
1751 #ifdef pte_index
insert_page_in_batch_locked(struct mm_struct * mm,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1752 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1753 unsigned long addr, struct page *page, pgprot_t prot)
1754 {
1755 int err;
1756
1757 if (!page_count(page))
1758 return -EINVAL;
1759 err = validate_page_before_insert(page);
1760 if (err)
1761 return err;
1762 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1763 }
1764
1765 /* insert_pages() amortizes the cost of spinlock operations
1766 * when inserting pages in a loop. Arch *must* define pte_index.
1767 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1768 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1769 struct page **pages, unsigned long *num, pgprot_t prot)
1770 {
1771 pmd_t *pmd = NULL;
1772 pte_t *start_pte, *pte;
1773 spinlock_t *pte_lock;
1774 struct mm_struct *const mm = vma->vm_mm;
1775 unsigned long curr_page_idx = 0;
1776 unsigned long remaining_pages_total = *num;
1777 unsigned long pages_to_write_in_pmd;
1778 int ret;
1779 more:
1780 ret = -EFAULT;
1781 pmd = walk_to_pmd(mm, addr);
1782 if (!pmd)
1783 goto out;
1784
1785 pages_to_write_in_pmd = min_t(unsigned long,
1786 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1787
1788 /* Allocate the PTE if necessary; takes PMD lock once only. */
1789 ret = -ENOMEM;
1790 if (pte_alloc(mm, pmd))
1791 goto out;
1792
1793 while (pages_to_write_in_pmd) {
1794 int pte_idx = 0;
1795 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1796
1797 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1798 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1799 int err = insert_page_in_batch_locked(mm, pte,
1800 addr, pages[curr_page_idx], prot);
1801 if (unlikely(err)) {
1802 pte_unmap_unlock(start_pte, pte_lock);
1803 ret = err;
1804 remaining_pages_total -= pte_idx;
1805 goto out;
1806 }
1807 addr += PAGE_SIZE;
1808 ++curr_page_idx;
1809 }
1810 pte_unmap_unlock(start_pte, pte_lock);
1811 pages_to_write_in_pmd -= batch_size;
1812 remaining_pages_total -= batch_size;
1813 }
1814 if (remaining_pages_total)
1815 goto more;
1816 ret = 0;
1817 out:
1818 *num = remaining_pages_total;
1819 return ret;
1820 }
1821 #endif /* ifdef pte_index */
1822
1823 /**
1824 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1825 * @vma: user vma to map to
1826 * @addr: target start user address of these pages
1827 * @pages: source kernel pages
1828 * @num: in: number of pages to map. out: number of pages that were *not*
1829 * mapped. (0 means all pages were successfully mapped).
1830 *
1831 * Preferred over vm_insert_page() when inserting multiple pages.
1832 *
1833 * In case of error, we may have mapped a subset of the provided
1834 * pages. It is the caller's responsibility to account for this case.
1835 *
1836 * The same restrictions apply as in vm_insert_page().
1837 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1838 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1839 struct page **pages, unsigned long *num)
1840 {
1841 #ifdef pte_index
1842 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1843
1844 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1845 return -EFAULT;
1846 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1847 BUG_ON(mmap_read_trylock(vma->vm_mm));
1848 BUG_ON(vma->vm_flags & VM_PFNMAP);
1849 vma->vm_flags |= VM_MIXEDMAP;
1850 }
1851 /* Defer page refcount checking till we're about to map that page. */
1852 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1853 #else
1854 unsigned long idx = 0, pgcount = *num;
1855 int err = -EINVAL;
1856
1857 for (; idx < pgcount; ++idx) {
1858 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1859 if (err)
1860 break;
1861 }
1862 *num = pgcount - idx;
1863 return err;
1864 #endif /* ifdef pte_index */
1865 }
1866 EXPORT_SYMBOL(vm_insert_pages);
1867
1868 /**
1869 * vm_insert_page - insert single page into user vma
1870 * @vma: user vma to map to
1871 * @addr: target user address of this page
1872 * @page: source kernel page
1873 *
1874 * This allows drivers to insert individual pages they've allocated
1875 * into a user vma.
1876 *
1877 * The page has to be a nice clean _individual_ kernel allocation.
1878 * If you allocate a compound page, you need to have marked it as
1879 * such (__GFP_COMP), or manually just split the page up yourself
1880 * (see split_page()).
1881 *
1882 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1883 * took an arbitrary page protection parameter. This doesn't allow
1884 * that. Your vma protection will have to be set up correctly, which
1885 * means that if you want a shared writable mapping, you'd better
1886 * ask for a shared writable mapping!
1887 *
1888 * The page does not need to be reserved.
1889 *
1890 * Usually this function is called from f_op->mmap() handler
1891 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1892 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1893 * function from other places, for example from page-fault handler.
1894 *
1895 * Return: %0 on success, negative error code otherwise.
1896 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1897 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1898 struct page *page)
1899 {
1900 if (addr < vma->vm_start || addr >= vma->vm_end)
1901 return -EFAULT;
1902 if (!page_count(page))
1903 return -EINVAL;
1904 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1905 BUG_ON(mmap_read_trylock(vma->vm_mm));
1906 BUG_ON(vma->vm_flags & VM_PFNMAP);
1907 vma->vm_flags |= VM_MIXEDMAP;
1908 }
1909 return insert_page(vma, addr, page, vma->vm_page_prot);
1910 }
1911 EXPORT_SYMBOL(vm_insert_page);
1912
1913 /*
1914 * __vm_map_pages - maps range of kernel pages into user vma
1915 * @vma: user vma to map to
1916 * @pages: pointer to array of source kernel pages
1917 * @num: number of pages in page array
1918 * @offset: user's requested vm_pgoff
1919 *
1920 * This allows drivers to map range of kernel pages into a user vma.
1921 *
1922 * Return: 0 on success and error code otherwise.
1923 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1924 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1925 unsigned long num, unsigned long offset)
1926 {
1927 unsigned long count = vma_pages(vma);
1928 unsigned long uaddr = vma->vm_start;
1929 int ret, i;
1930
1931 /* Fail if the user requested offset is beyond the end of the object */
1932 if (offset >= num)
1933 return -ENXIO;
1934
1935 /* Fail if the user requested size exceeds available object size */
1936 if (count > num - offset)
1937 return -ENXIO;
1938
1939 for (i = 0; i < count; i++) {
1940 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1941 if (ret < 0)
1942 return ret;
1943 uaddr += PAGE_SIZE;
1944 }
1945
1946 return 0;
1947 }
1948
1949 /**
1950 * vm_map_pages - maps range of kernel pages starts with non zero offset
1951 * @vma: user vma to map to
1952 * @pages: pointer to array of source kernel pages
1953 * @num: number of pages in page array
1954 *
1955 * Maps an object consisting of @num pages, catering for the user's
1956 * requested vm_pgoff
1957 *
1958 * If we fail to insert any page into the vma, the function will return
1959 * immediately leaving any previously inserted pages present. Callers
1960 * from the mmap handler may immediately return the error as their caller
1961 * will destroy the vma, removing any successfully inserted pages. Other
1962 * callers should make their own arrangements for calling unmap_region().
1963 *
1964 * Context: Process context. Called by mmap handlers.
1965 * Return: 0 on success and error code otherwise.
1966 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1967 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1968 unsigned long num)
1969 {
1970 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1971 }
1972 EXPORT_SYMBOL(vm_map_pages);
1973
1974 /**
1975 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1976 * @vma: user vma to map to
1977 * @pages: pointer to array of source kernel pages
1978 * @num: number of pages in page array
1979 *
1980 * Similar to vm_map_pages(), except that it explicitly sets the offset
1981 * to 0. This function is intended for the drivers that did not consider
1982 * vm_pgoff.
1983 *
1984 * Context: Process context. Called by mmap handlers.
1985 * Return: 0 on success and error code otherwise.
1986 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1987 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1988 unsigned long num)
1989 {
1990 return __vm_map_pages(vma, pages, num, 0);
1991 }
1992 EXPORT_SYMBOL(vm_map_pages_zero);
1993
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1994 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1995 pfn_t pfn, pgprot_t prot, bool mkwrite)
1996 {
1997 struct mm_struct *mm = vma->vm_mm;
1998 pte_t *pte, entry;
1999 spinlock_t *ptl;
2000
2001 pte = get_locked_pte(mm, addr, &ptl);
2002 if (!pte)
2003 return VM_FAULT_OOM;
2004 if (!pte_none(*pte)) {
2005 if (mkwrite) {
2006 /*
2007 * For read faults on private mappings the PFN passed
2008 * in may not match the PFN we have mapped if the
2009 * mapped PFN is a writeable COW page. In the mkwrite
2010 * case we are creating a writable PTE for a shared
2011 * mapping and we expect the PFNs to match. If they
2012 * don't match, we are likely racing with block
2013 * allocation and mapping invalidation so just skip the
2014 * update.
2015 */
2016 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2017 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2018 goto out_unlock;
2019 }
2020 entry = pte_mkyoung(*pte);
2021 entry = maybe_mkwrite(pte_mkdirty(entry),
2022 vma->vm_flags);
2023 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2024 update_mmu_cache(vma, addr, pte);
2025 }
2026 goto out_unlock;
2027 }
2028
2029 /* Ok, finally just insert the thing.. */
2030 if (pfn_t_devmap(pfn))
2031 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2032 else
2033 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2034
2035 if (mkwrite) {
2036 entry = pte_mkyoung(entry);
2037 entry = maybe_mkwrite(pte_mkdirty(entry), vma->vm_flags);
2038 }
2039
2040 set_pte_at(mm, addr, pte, entry);
2041 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2042
2043 out_unlock:
2044 pte_unmap_unlock(pte, ptl);
2045 return VM_FAULT_NOPAGE;
2046 }
2047
2048 /**
2049 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2050 * @vma: user vma to map to
2051 * @addr: target user address of this page
2052 * @pfn: source kernel pfn
2053 * @pgprot: pgprot flags for the inserted page
2054 *
2055 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2056 * to override pgprot on a per-page basis.
2057 *
2058 * This only makes sense for IO mappings, and it makes no sense for
2059 * COW mappings. In general, using multiple vmas is preferable;
2060 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2061 * impractical.
2062 *
2063 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2064 * a value of @pgprot different from that of @vma->vm_page_prot.
2065 *
2066 * Context: Process context. May allocate using %GFP_KERNEL.
2067 * Return: vm_fault_t value.
2068 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2069 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2070 unsigned long pfn, pgprot_t pgprot)
2071 {
2072 /*
2073 * Technically, architectures with pte_special can avoid all these
2074 * restrictions (same for remap_pfn_range). However we would like
2075 * consistency in testing and feature parity among all, so we should
2076 * try to keep these invariants in place for everybody.
2077 */
2078 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2079 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2080 (VM_PFNMAP|VM_MIXEDMAP));
2081 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2082 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2083
2084 if (addr < vma->vm_start || addr >= vma->vm_end)
2085 return VM_FAULT_SIGBUS;
2086
2087 if (!pfn_modify_allowed(pfn, pgprot))
2088 return VM_FAULT_SIGBUS;
2089
2090 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2091
2092 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2093 false);
2094 }
2095 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2096
2097 /**
2098 * vmf_insert_pfn - insert single pfn into user vma
2099 * @vma: user vma to map to
2100 * @addr: target user address of this page
2101 * @pfn: source kernel pfn
2102 *
2103 * Similar to vm_insert_page, this allows drivers to insert individual pages
2104 * they've allocated into a user vma. Same comments apply.
2105 *
2106 * This function should only be called from a vm_ops->fault handler, and
2107 * in that case the handler should return the result of this function.
2108 *
2109 * vma cannot be a COW mapping.
2110 *
2111 * As this is called only for pages that do not currently exist, we
2112 * do not need to flush old virtual caches or the TLB.
2113 *
2114 * Context: Process context. May allocate using %GFP_KERNEL.
2115 * Return: vm_fault_t value.
2116 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2117 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 unsigned long pfn)
2119 {
2120 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2121 }
2122 EXPORT_SYMBOL(vmf_insert_pfn);
2123
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2124 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2125 {
2126 /* these checks mirror the abort conditions in vm_normal_page */
2127 if (vma->vm_flags & VM_MIXEDMAP)
2128 return true;
2129 if (pfn_t_devmap(pfn))
2130 return true;
2131 if (pfn_t_special(pfn))
2132 return true;
2133 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2134 return true;
2135 return false;
2136 }
2137
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot,bool mkwrite)2138 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2139 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2140 bool mkwrite)
2141 {
2142 int err;
2143
2144 BUG_ON(!vm_mixed_ok(vma, pfn));
2145
2146 if (addr < vma->vm_start || addr >= vma->vm_end)
2147 return VM_FAULT_SIGBUS;
2148
2149 track_pfn_insert(vma, &pgprot, pfn);
2150
2151 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2152 return VM_FAULT_SIGBUS;
2153
2154 /*
2155 * If we don't have pte special, then we have to use the pfn_valid()
2156 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2157 * refcount the page if pfn_valid is true (hence insert_page rather
2158 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2159 * without pte special, it would there be refcounted as a normal page.
2160 */
2161 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2162 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2163 struct page *page;
2164
2165 /*
2166 * At this point we are committed to insert_page()
2167 * regardless of whether the caller specified flags that
2168 * result in pfn_t_has_page() == false.
2169 */
2170 page = pfn_to_page(pfn_t_to_pfn(pfn));
2171 err = insert_page(vma, addr, page, pgprot);
2172 } else {
2173 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2174 }
2175
2176 if (err == -ENOMEM)
2177 return VM_FAULT_OOM;
2178 if (err < 0 && err != -EBUSY)
2179 return VM_FAULT_SIGBUS;
2180
2181 return VM_FAULT_NOPAGE;
2182 }
2183
2184 /**
2185 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2186 * @vma: user vma to map to
2187 * @addr: target user address of this page
2188 * @pfn: source kernel pfn
2189 * @pgprot: pgprot flags for the inserted page
2190 *
2191 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2192 * to override pgprot on a per-page basis.
2193 *
2194 * Typically this function should be used by drivers to set caching- and
2195 * encryption bits different than those of @vma->vm_page_prot, because
2196 * the caching- or encryption mode may not be known at mmap() time.
2197 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2198 * to set caching and encryption bits for those vmas (except for COW pages).
2199 * This is ensured by core vm only modifying these page table entries using
2200 * functions that don't touch caching- or encryption bits, using pte_modify()
2201 * if needed. (See for example mprotect()).
2202 * Also when new page-table entries are created, this is only done using the
2203 * fault() callback, and never using the value of vma->vm_page_prot,
2204 * except for page-table entries that point to anonymous pages as the result
2205 * of COW.
2206 *
2207 * Context: Process context. May allocate using %GFP_KERNEL.
2208 * Return: vm_fault_t value.
2209 */
vmf_insert_mixed_prot(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t pgprot)2210 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2211 pfn_t pfn, pgprot_t pgprot)
2212 {
2213 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2214 }
2215 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2216
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2217 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2218 pfn_t pfn)
2219 {
2220 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2221 }
2222 EXPORT_SYMBOL(vmf_insert_mixed);
2223
2224 /*
2225 * If the insertion of PTE failed because someone else already added a
2226 * different entry in the mean time, we treat that as success as we assume
2227 * the same entry was actually inserted.
2228 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2229 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2230 unsigned long addr, pfn_t pfn)
2231 {
2232 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2233 }
2234 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2235
2236 /*
2237 * maps a range of physical memory into the requested pages. the old
2238 * mappings are removed. any references to nonexistent pages results
2239 * in null mappings (currently treated as "copy-on-access")
2240 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2241 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2242 unsigned long addr, unsigned long end,
2243 unsigned long pfn, pgprot_t prot)
2244 {
2245 pte_t *pte, *mapped_pte;
2246 spinlock_t *ptl;
2247 int err = 0;
2248
2249 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2250 if (!pte)
2251 return -ENOMEM;
2252 arch_enter_lazy_mmu_mode();
2253 do {
2254 BUG_ON(!pte_none(*pte));
2255 if (!pfn_modify_allowed(pfn, prot)) {
2256 err = -EACCES;
2257 break;
2258 }
2259 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2260 pfn++;
2261 } while (pte++, addr += PAGE_SIZE, addr != end);
2262 arch_leave_lazy_mmu_mode();
2263 pte_unmap_unlock(mapped_pte, ptl);
2264 return err;
2265 }
2266
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2267 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2268 unsigned long addr, unsigned long end,
2269 unsigned long pfn, pgprot_t prot)
2270 {
2271 pmd_t *pmd;
2272 unsigned long next;
2273 int err;
2274
2275 pfn -= addr >> PAGE_SHIFT;
2276 pmd = pmd_alloc(mm, pud, addr);
2277 if (!pmd)
2278 return -ENOMEM;
2279 VM_BUG_ON(pmd_trans_huge(*pmd));
2280 do {
2281 next = pmd_addr_end(addr, end);
2282 err = remap_pte_range(mm, pmd, addr, next,
2283 pfn + (addr >> PAGE_SHIFT), prot);
2284 if (err)
2285 return err;
2286 } while (pmd++, addr = next, addr != end);
2287 return 0;
2288 }
2289
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2290 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2291 unsigned long addr, unsigned long end,
2292 unsigned long pfn, pgprot_t prot)
2293 {
2294 pud_t *pud;
2295 unsigned long next;
2296 int err;
2297
2298 pfn -= addr >> PAGE_SHIFT;
2299 pud = pud_alloc(mm, p4d, addr);
2300 if (!pud)
2301 return -ENOMEM;
2302 do {
2303 next = pud_addr_end(addr, end);
2304 err = remap_pmd_range(mm, pud, addr, next,
2305 pfn + (addr >> PAGE_SHIFT), prot);
2306 if (err)
2307 return err;
2308 } while (pud++, addr = next, addr != end);
2309 return 0;
2310 }
2311
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2312 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2313 unsigned long addr, unsigned long end,
2314 unsigned long pfn, pgprot_t prot)
2315 {
2316 p4d_t *p4d;
2317 unsigned long next;
2318 int err;
2319
2320 pfn -= addr >> PAGE_SHIFT;
2321 p4d = p4d_alloc(mm, pgd, addr);
2322 if (!p4d)
2323 return -ENOMEM;
2324 do {
2325 next = p4d_addr_end(addr, end);
2326 err = remap_pud_range(mm, p4d, addr, next,
2327 pfn + (addr >> PAGE_SHIFT), prot);
2328 if (err)
2329 return err;
2330 } while (p4d++, addr = next, addr != end);
2331 return 0;
2332 }
2333
2334 /**
2335 * remap_pfn_range - remap kernel memory to userspace
2336 * @vma: user vma to map to
2337 * @addr: target page aligned user address to start at
2338 * @pfn: page frame number of kernel physical memory address
2339 * @size: size of mapping area
2340 * @prot: page protection flags for this mapping
2341 *
2342 * Note: this is only safe if the mm semaphore is held when called.
2343 *
2344 * Return: %0 on success, negative error code otherwise.
2345 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2346 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2347 unsigned long pfn, unsigned long size, pgprot_t prot)
2348 {
2349 pgd_t *pgd;
2350 unsigned long next;
2351 unsigned long end = addr + PAGE_ALIGN(size);
2352 struct mm_struct *mm = vma->vm_mm;
2353 unsigned long remap_pfn = pfn;
2354 int err;
2355
2356 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2357 return -EINVAL;
2358
2359 /*
2360 * Physically remapped pages are special. Tell the
2361 * rest of the world about it:
2362 * VM_IO tells people not to look at these pages
2363 * (accesses can have side effects).
2364 * VM_PFNMAP tells the core MM that the base pages are just
2365 * raw PFN mappings, and do not have a "struct page" associated
2366 * with them.
2367 * VM_DONTEXPAND
2368 * Disable vma merging and expanding with mremap().
2369 * VM_DONTDUMP
2370 * Omit vma from core dump, even when VM_IO turned off.
2371 *
2372 * There's a horrible special case to handle copy-on-write
2373 * behaviour that some programs depend on. We mark the "original"
2374 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2375 * See vm_normal_page() for details.
2376 */
2377 if (is_cow_mapping(vma->vm_flags)) {
2378 if (addr != vma->vm_start || end != vma->vm_end)
2379 return -EINVAL;
2380 vma->vm_pgoff = pfn;
2381 }
2382
2383 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2384 if (err)
2385 return -EINVAL;
2386
2387 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2388
2389 BUG_ON(addr >= end);
2390 pfn -= addr >> PAGE_SHIFT;
2391 pgd = pgd_offset(mm, addr);
2392 flush_cache_range(vma, addr, end);
2393 do {
2394 next = pgd_addr_end(addr, end);
2395 err = remap_p4d_range(mm, pgd, addr, next,
2396 pfn + (addr >> PAGE_SHIFT), prot);
2397 if (err)
2398 break;
2399 } while (pgd++, addr = next, addr != end);
2400
2401 if (err)
2402 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2403
2404 return err;
2405 }
2406 EXPORT_SYMBOL(remap_pfn_range);
2407
2408 /**
2409 * vm_iomap_memory - remap memory to userspace
2410 * @vma: user vma to map to
2411 * @start: start of the physical memory to be mapped
2412 * @len: size of area
2413 *
2414 * This is a simplified io_remap_pfn_range() for common driver use. The
2415 * driver just needs to give us the physical memory range to be mapped,
2416 * we'll figure out the rest from the vma information.
2417 *
2418 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2419 * whatever write-combining details or similar.
2420 *
2421 * Return: %0 on success, negative error code otherwise.
2422 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2423 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2424 {
2425 unsigned long vm_len, pfn, pages;
2426
2427 /* Check that the physical memory area passed in looks valid */
2428 if (start + len < start)
2429 return -EINVAL;
2430 /*
2431 * You *really* shouldn't map things that aren't page-aligned,
2432 * but we've historically allowed it because IO memory might
2433 * just have smaller alignment.
2434 */
2435 len += start & ~PAGE_MASK;
2436 pfn = start >> PAGE_SHIFT;
2437 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2438 if (pfn + pages < pfn)
2439 return -EINVAL;
2440
2441 /* We start the mapping 'vm_pgoff' pages into the area */
2442 if (vma->vm_pgoff > pages)
2443 return -EINVAL;
2444 pfn += vma->vm_pgoff;
2445 pages -= vma->vm_pgoff;
2446
2447 /* Can we fit all of the mapping? */
2448 vm_len = vma->vm_end - vma->vm_start;
2449 if (vm_len >> PAGE_SHIFT > pages)
2450 return -EINVAL;
2451
2452 /* Ok, let it rip */
2453 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2454 }
2455 EXPORT_SYMBOL(vm_iomap_memory);
2456
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2457 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2458 unsigned long addr, unsigned long end,
2459 pte_fn_t fn, void *data, bool create,
2460 pgtbl_mod_mask *mask)
2461 {
2462 pte_t *pte;
2463 int err = 0;
2464 spinlock_t *ptl;
2465
2466 if (create) {
2467 pte = (mm == &init_mm) ?
2468 pte_alloc_kernel_track(pmd, addr, mask) :
2469 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2470 if (!pte)
2471 return -ENOMEM;
2472 } else {
2473 pte = (mm == &init_mm) ?
2474 pte_offset_kernel(pmd, addr) :
2475 pte_offset_map_lock(mm, pmd, addr, &ptl);
2476 }
2477
2478 BUG_ON(pmd_huge(*pmd));
2479
2480 arch_enter_lazy_mmu_mode();
2481
2482 if (fn) {
2483 do {
2484 if (create || !pte_none(*pte)) {
2485 err = fn(pte++, addr, data);
2486 if (err)
2487 break;
2488 }
2489 } while (addr += PAGE_SIZE, addr != end);
2490 }
2491 *mask |= PGTBL_PTE_MODIFIED;
2492
2493 arch_leave_lazy_mmu_mode();
2494
2495 if (mm != &init_mm)
2496 pte_unmap_unlock(pte-1, ptl);
2497 return err;
2498 }
2499
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2500 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2501 unsigned long addr, unsigned long end,
2502 pte_fn_t fn, void *data, bool create,
2503 pgtbl_mod_mask *mask)
2504 {
2505 pmd_t *pmd;
2506 unsigned long next;
2507 int err = 0;
2508
2509 BUG_ON(pud_huge(*pud));
2510
2511 if (create) {
2512 pmd = pmd_alloc_track(mm, pud, addr, mask);
2513 if (!pmd)
2514 return -ENOMEM;
2515 } else {
2516 pmd = pmd_offset(pud, addr);
2517 }
2518 do {
2519 next = pmd_addr_end(addr, end);
2520 if (create || !pmd_none_or_clear_bad(pmd)) {
2521 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2522 create, mask);
2523 if (err)
2524 break;
2525 }
2526 } while (pmd++, addr = next, addr != end);
2527 return err;
2528 }
2529
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2530 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2531 unsigned long addr, unsigned long end,
2532 pte_fn_t fn, void *data, bool create,
2533 pgtbl_mod_mask *mask)
2534 {
2535 pud_t *pud;
2536 unsigned long next;
2537 int err = 0;
2538
2539 if (create) {
2540 pud = pud_alloc_track(mm, p4d, addr, mask);
2541 if (!pud)
2542 return -ENOMEM;
2543 } else {
2544 pud = pud_offset(p4d, addr);
2545 }
2546 do {
2547 next = pud_addr_end(addr, end);
2548 if (create || !pud_none_or_clear_bad(pud)) {
2549 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2550 create, mask);
2551 if (err)
2552 break;
2553 }
2554 } while (pud++, addr = next, addr != end);
2555 return err;
2556 }
2557
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2558 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2559 unsigned long addr, unsigned long end,
2560 pte_fn_t fn, void *data, bool create,
2561 pgtbl_mod_mask *mask)
2562 {
2563 p4d_t *p4d;
2564 unsigned long next;
2565 int err = 0;
2566
2567 if (create) {
2568 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2569 if (!p4d)
2570 return -ENOMEM;
2571 } else {
2572 p4d = p4d_offset(pgd, addr);
2573 }
2574 do {
2575 next = p4d_addr_end(addr, end);
2576 if (create || !p4d_none_or_clear_bad(p4d)) {
2577 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2578 create, mask);
2579 if (err)
2580 break;
2581 }
2582 } while (p4d++, addr = next, addr != end);
2583 return err;
2584 }
2585
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2586 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2587 unsigned long size, pte_fn_t fn,
2588 void *data, bool create)
2589 {
2590 pgd_t *pgd;
2591 unsigned long start = addr, next;
2592 unsigned long end = addr + size;
2593 pgtbl_mod_mask mask = 0;
2594 int err = 0;
2595
2596 if (WARN_ON(addr >= end))
2597 return -EINVAL;
2598
2599 pgd = pgd_offset(mm, addr);
2600 do {
2601 next = pgd_addr_end(addr, end);
2602 if (!create && pgd_none_or_clear_bad(pgd))
2603 continue;
2604 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2605 if (err)
2606 break;
2607 } while (pgd++, addr = next, addr != end);
2608
2609 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2610 arch_sync_kernel_mappings(start, start + size);
2611
2612 return err;
2613 }
2614
2615 /*
2616 * Scan a region of virtual memory, filling in page tables as necessary
2617 * and calling a provided function on each leaf page table.
2618 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2619 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2620 unsigned long size, pte_fn_t fn, void *data)
2621 {
2622 return __apply_to_page_range(mm, addr, size, fn, data, true);
2623 }
2624 EXPORT_SYMBOL_GPL(apply_to_page_range);
2625
2626 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
pte_spinlock(struct vm_fault * vmf)2627 static bool pte_spinlock(struct vm_fault *vmf)
2628 {
2629 bool ret = false;
2630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2631 pmd_t pmdval;
2632 #endif
2633
2634 /* Check if vma is still valid */
2635 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2636 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2637 spin_lock(vmf->ptl);
2638 return true;
2639 }
2640
2641 local_irq_disable();
2642 if (vma_has_changed(vmf)) {
2643 trace_spf_vma_changed(_RET_IP_, vmf->vma, vmf->address);
2644 goto out;
2645 }
2646
2647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2648 /*
2649 * We check if the pmd value is still the same to ensure that there
2650 * is not a huge collapse operation in progress in our back.
2651 */
2652 pmdval = READ_ONCE(*vmf->pmd);
2653 if (!pmd_same(pmdval, vmf->orig_pmd)) {
2654 trace_spf_pmd_changed(_RET_IP_, vmf->vma, vmf->address);
2655 goto out;
2656 }
2657 #endif
2658
2659 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2660 if (unlikely(!spin_trylock(vmf->ptl))) {
2661 trace_spf_pte_lock(_RET_IP_, vmf->vma, vmf->address);
2662 goto out;
2663 }
2664
2665 if (vma_has_changed(vmf)) {
2666 spin_unlock(vmf->ptl);
2667 trace_spf_vma_changed(_RET_IP_, vmf->vma, vmf->address);
2668 goto out;
2669 }
2670
2671 ret = true;
2672 out:
2673 local_irq_enable();
2674 return ret;
2675 }
2676
__pte_map_lock_speculative(struct vm_fault * vmf,unsigned long addr)2677 static bool __pte_map_lock_speculative(struct vm_fault *vmf, unsigned long addr)
2678 {
2679 bool ret = false;
2680 pte_t *pte;
2681 spinlock_t *ptl;
2682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2683 pmd_t pmdval;
2684 #endif
2685
2686 /*
2687 * The first vma_has_changed() guarantees the page-tables are still
2688 * valid, having IRQs disabled ensures they stay around, hence the
2689 * second vma_has_changed() to make sure they are still valid once
2690 * we've got the lock. After that a concurrent zap_pte_range() will
2691 * block on the PTL and thus we're safe.
2692 */
2693 local_irq_disable();
2694 if (vma_has_changed(vmf)) {
2695 trace_spf_vma_changed(_RET_IP_, vmf->vma, addr);
2696 goto out;
2697 }
2698
2699 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2700 /*
2701 * We check if the pmd value is still the same to ensure that there
2702 * is not a huge collapse operation in progress in our back.
2703 */
2704 pmdval = READ_ONCE(*vmf->pmd);
2705 if (!pmd_same(pmdval, vmf->orig_pmd)) {
2706 trace_spf_pmd_changed(_RET_IP_, vmf->vma, addr);
2707 goto out;
2708 }
2709 #endif
2710
2711 /*
2712 * Same as pte_offset_map_lock() except that we call
2713 * spin_trylock() in place of spin_lock() to avoid race with
2714 * unmap path which may have the lock and wait for this CPU
2715 * to invalidate TLB but this CPU has irq disabled.
2716 * Since we are in a speculative patch, accept it could fail
2717 */
2718 ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2719 pte = pte_offset_map(vmf->pmd, addr);
2720 if (unlikely(!spin_trylock(ptl))) {
2721 pte_unmap(pte);
2722 trace_spf_pte_lock(_RET_IP_, vmf->vma, addr);
2723 goto out;
2724 }
2725
2726 if (vma_has_changed(vmf)) {
2727 pte_unmap_unlock(pte, ptl);
2728 trace_spf_vma_changed(_RET_IP_, vmf->vma, addr);
2729 goto out;
2730 }
2731
2732 vmf->pte = pte;
2733 vmf->ptl = ptl;
2734 ret = true;
2735 out:
2736 local_irq_enable();
2737 return ret;
2738 }
2739
pte_map_lock(struct vm_fault * vmf)2740 static bool pte_map_lock(struct vm_fault *vmf)
2741 {
2742 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2743 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2744 vmf->address, &vmf->ptl);
2745 return true;
2746 }
2747
2748 return __pte_map_lock_speculative(vmf, vmf->address);
2749 }
2750
pte_map_lock_addr(struct vm_fault * vmf,unsigned long addr)2751 bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr)
2752 {
2753 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE)) {
2754 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2755 addr, &vmf->ptl);
2756 return true;
2757 }
2758
2759 return __pte_map_lock_speculative(vmf, addr);
2760 }
2761
2762 static bool __read_mostly allow_file_spec_access;
allow_file_spec_access_setup(char * str)2763 static int __init allow_file_spec_access_setup(char *str)
2764 {
2765 allow_file_spec_access = true;
2766 return 1;
2767 }
2768 __setup("allow_file_spec_access", allow_file_spec_access_setup);
2769
vmf_allows_speculation(struct vm_fault * vmf)2770 static bool vmf_allows_speculation(struct vm_fault *vmf)
2771 {
2772 if (vma_is_anonymous(vmf->vma)) {
2773 /*
2774 * __anon_vma_prepare() requires the mmap_sem to be held
2775 * because vm_next and vm_prev must be safe. This can't be
2776 * guaranteed in the speculative path.
2777 */
2778 if (!vmf->vma->anon_vma) {
2779 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2780 return false;
2781 }
2782 return true;
2783 }
2784
2785 if (!allow_file_spec_access) {
2786 /*
2787 * Can't call vm_ops service has we don't know what they would
2788 * do with the VMA.
2789 * This include huge page from hugetlbfs.
2790 */
2791 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2792 return false;
2793 }
2794
2795 if (!(vmf->vma->vm_flags & VM_SHARED) &&
2796 (vmf->flags & FAULT_FLAG_WRITE) &&
2797 !vmf->vma->anon_vma) {
2798 /*
2799 * non-anonymous private COW without anon_vma.
2800 * See above.
2801 */
2802 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2803 return false;
2804 }
2805
2806 if (vmf->vma->vm_ops->allow_speculation &&
2807 vmf->vma->vm_ops->allow_speculation()) {
2808 return true;
2809 }
2810
2811 trace_spf_vma_notsup(_RET_IP_, vmf->vma, vmf->address);
2812 return false;
2813 }
2814
2815 #else
pte_spinlock(struct vm_fault * vmf)2816 static inline bool pte_spinlock(struct vm_fault *vmf)
2817 {
2818 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2819 spin_lock(vmf->ptl);
2820 return true;
2821 }
2822
pte_map_lock(struct vm_fault * vmf)2823 static inline bool pte_map_lock(struct vm_fault *vmf)
2824 {
2825 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2826 vmf->address, &vmf->ptl);
2827 return true;
2828 }
2829
pte_map_lock_addr(struct vm_fault * vmf,unsigned long addr)2830 inline bool pte_map_lock_addr(struct vm_fault *vmf, unsigned long addr)
2831 {
2832 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
2833 addr, &vmf->ptl);
2834 return true;
2835 }
2836
vmf_allows_speculation(struct vm_fault * vmf)2837 static inline bool vmf_allows_speculation(struct vm_fault *vmf)
2838 {
2839 return false;
2840 }
2841 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
2842
2843 /*
2844 * Scan a region of virtual memory, calling a provided function on
2845 * each leaf page table where it exists.
2846 *
2847 * Unlike apply_to_page_range, this does _not_ fill in page tables
2848 * where they are absent.
2849 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2850 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2851 unsigned long size, pte_fn_t fn, void *data)
2852 {
2853 return __apply_to_page_range(mm, addr, size, fn, data, false);
2854 }
2855 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2856
2857 /*
2858 * handle_pte_fault chooses page fault handler according to an entry which was
2859 * read non-atomically. Before making any commitment, on those architectures
2860 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2861 * parts, do_swap_page must check under lock before unmapping the pte and
2862 * proceeding (but do_wp_page is only called after already making such a check;
2863 * and do_anonymous_page can safely check later on).
2864 *
2865 * pte_unmap_same() returns:
2866 * 0 if the PTE are the same
2867 * VM_FAULT_PTNOTSAME if the PTE are different
2868 * VM_FAULT_RETRY if the VMA has changed in our back during
2869 * a speculative page fault handling.
2870 */
pte_unmap_same(struct vm_fault * vmf)2871 static inline int pte_unmap_same(struct vm_fault *vmf)
2872 {
2873 int ret = 0;
2874
2875 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2876 if (sizeof(pte_t) > sizeof(unsigned long)) {
2877 if (pte_spinlock(vmf)) {
2878 if (!pte_same(*vmf->pte, vmf->orig_pte))
2879 ret = VM_FAULT_PTNOTSAME;
2880 spin_unlock(vmf->ptl);
2881 } else
2882 ret = VM_FAULT_RETRY;
2883 }
2884 #endif
2885 pte_unmap(vmf->pte);
2886 return ret;
2887 }
2888
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2889 static inline bool cow_user_page(struct page *dst, struct page *src,
2890 struct vm_fault *vmf)
2891 {
2892 bool ret;
2893 void *kaddr;
2894 void __user *uaddr;
2895 bool locked = false;
2896 struct vm_area_struct *vma = vmf->vma;
2897 struct mm_struct *mm = vma->vm_mm;
2898 unsigned long addr = vmf->address;
2899
2900 if (likely(src)) {
2901 copy_user_highpage(dst, src, addr, vma);
2902 return true;
2903 }
2904
2905 /*
2906 * If the source page was a PFN mapping, we don't have
2907 * a "struct page" for it. We do a best-effort copy by
2908 * just copying from the original user address. If that
2909 * fails, we just zero-fill it. Live with it.
2910 */
2911 kaddr = kmap_atomic(dst);
2912 uaddr = (void __user *)(addr & PAGE_MASK);
2913
2914 /*
2915 * On architectures with software "accessed" bits, we would
2916 * take a double page fault, so mark it accessed here.
2917 */
2918 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2919 pte_t entry;
2920
2921 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2922 locked = true;
2923 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2924 /*
2925 * Other thread has already handled the fault
2926 * and update local tlb only
2927 */
2928 update_mmu_tlb(vma, addr, vmf->pte);
2929 ret = false;
2930 goto pte_unlock;
2931 }
2932
2933 entry = pte_mkyoung(vmf->orig_pte);
2934 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2935 update_mmu_cache(vma, addr, vmf->pte);
2936 }
2937
2938 /*
2939 * This really shouldn't fail, because the page is there
2940 * in the page tables. But it might just be unreadable,
2941 * in which case we just give up and fill the result with
2942 * zeroes.
2943 */
2944 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2945 if (locked)
2946 goto warn;
2947
2948 /* Re-validate under PTL if the page is still mapped */
2949 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2950 locked = true;
2951 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2952 /* The PTE changed under us, update local tlb */
2953 update_mmu_tlb(vma, addr, vmf->pte);
2954 ret = false;
2955 goto pte_unlock;
2956 }
2957
2958 /*
2959 * The same page can be mapped back since last copy attempt.
2960 * Try to copy again under PTL.
2961 */
2962 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2963 /*
2964 * Give a warn in case there can be some obscure
2965 * use-case
2966 */
2967 warn:
2968 WARN_ON_ONCE(1);
2969 clear_page(kaddr);
2970 }
2971 }
2972
2973 ret = true;
2974
2975 pte_unlock:
2976 if (locked)
2977 pte_unmap_unlock(vmf->pte, vmf->ptl);
2978 kunmap_atomic(kaddr);
2979 flush_dcache_page(dst);
2980
2981 return ret;
2982 }
2983
__get_fault_gfp_mask(struct vm_area_struct * vma)2984 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2985 {
2986 struct file *vm_file = vma->vm_file;
2987
2988 if (vm_file)
2989 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2990
2991 /*
2992 * Special mappings (e.g. VDSO) do not have any file so fake
2993 * a default GFP_KERNEL for them.
2994 */
2995 return GFP_KERNEL;
2996 }
2997
2998 /*
2999 * Notify the address space that the page is about to become writable so that
3000 * it can prohibit this or wait for the page to get into an appropriate state.
3001 *
3002 * We do this without the lock held, so that it can sleep if it needs to.
3003 */
do_page_mkwrite(struct vm_fault * vmf)3004 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
3005 {
3006 vm_fault_t ret;
3007 struct page *page = vmf->page;
3008 unsigned int old_flags = vmf->flags;
3009
3010 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3011
3012 if (vmf->vma->vm_file &&
3013 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3014 return VM_FAULT_SIGBUS;
3015
3016 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3017 /* Restore original flags so that caller is not surprised */
3018 vmf->flags = old_flags;
3019 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3020 return ret;
3021 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3022 lock_page(page);
3023 if (!page->mapping) {
3024 unlock_page(page);
3025 return 0; /* retry */
3026 }
3027 ret |= VM_FAULT_LOCKED;
3028 } else
3029 VM_BUG_ON_PAGE(!PageLocked(page), page);
3030 return ret;
3031 }
3032
3033 /*
3034 * Handle dirtying of a page in shared file mapping on a write fault.
3035 *
3036 * The function expects the page to be locked and unlocks it.
3037 */
fault_dirty_shared_page(struct vm_fault * vmf)3038 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3039 {
3040 struct vm_area_struct *vma = vmf->vma;
3041 struct address_space *mapping;
3042 struct page *page = vmf->page;
3043 bool dirtied;
3044 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3045
3046 dirtied = set_page_dirty(page);
3047 VM_BUG_ON_PAGE(PageAnon(page), page);
3048 /*
3049 * Take a local copy of the address_space - page.mapping may be zeroed
3050 * by truncate after unlock_page(). The address_space itself remains
3051 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3052 * release semantics to prevent the compiler from undoing this copying.
3053 */
3054 mapping = page_rmapping(page);
3055 unlock_page(page);
3056
3057 if (!page_mkwrite)
3058 file_update_time(vma->vm_file);
3059
3060 /*
3061 * Throttle page dirtying rate down to writeback speed.
3062 *
3063 * mapping may be NULL here because some device drivers do not
3064 * set page.mapping but still dirty their pages
3065 *
3066 * Drop the mmap_lock before waiting on IO, if we can. The file
3067 * is pinning the mapping, as per above.
3068 */
3069 if ((dirtied || page_mkwrite) && mapping) {
3070 struct file *fpin;
3071
3072 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3073 balance_dirty_pages_ratelimited(mapping);
3074 if (fpin) {
3075 fput(fpin);
3076 return VM_FAULT_RETRY;
3077 }
3078 }
3079
3080 return 0;
3081 }
3082
3083 /*
3084 * Handle write page faults for pages that can be reused in the current vma
3085 *
3086 * This can happen either due to the mapping being with the VM_SHARED flag,
3087 * or due to us being the last reference standing to the page. In either
3088 * case, all we need to do here is to mark the page as writable and update
3089 * any related book-keeping.
3090 */
wp_page_reuse(struct vm_fault * vmf)3091 static inline void wp_page_reuse(struct vm_fault *vmf)
3092 __releases(vmf->ptl)
3093 {
3094 struct vm_area_struct *vma = vmf->vma;
3095 struct page *page = vmf->page;
3096 pte_t entry;
3097 /*
3098 * Clear the pages cpupid information as the existing
3099 * information potentially belongs to a now completely
3100 * unrelated process.
3101 */
3102 if (page)
3103 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3104
3105 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3106 entry = pte_mkyoung(vmf->orig_pte);
3107 entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
3108 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3109 update_mmu_cache(vma, vmf->address, vmf->pte);
3110 pte_unmap_unlock(vmf->pte, vmf->ptl);
3111 count_vm_event(PGREUSE);
3112 }
3113
3114 /*
3115 * Handle the case of a page which we actually need to copy to a new page.
3116 *
3117 * Called with mmap_lock locked and the old page referenced, but
3118 * without the ptl held.
3119 *
3120 * High level logic flow:
3121 *
3122 * - Allocate a page, copy the content of the old page to the new one.
3123 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3124 * - Take the PTL. If the pte changed, bail out and release the allocated page
3125 * - If the pte is still the way we remember it, update the page table and all
3126 * relevant references. This includes dropping the reference the page-table
3127 * held to the old page, as well as updating the rmap.
3128 * - In any case, unlock the PTL and drop the reference we took to the old page.
3129 */
wp_page_copy(struct vm_fault * vmf)3130 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3131 {
3132 struct vm_area_struct *vma = vmf->vma;
3133 struct mm_struct *mm = vma->vm_mm;
3134 struct page *old_page = vmf->page;
3135 struct page *new_page = NULL;
3136 pte_t entry;
3137 int page_copied = 0;
3138 struct mmu_notifier_range range;
3139 vm_fault_t ret = VM_FAULT_OOM;
3140
3141 if (unlikely(anon_vma_prepare(vma)))
3142 goto out;
3143
3144 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3145 new_page = alloc_zeroed_user_highpage_movable(vma,
3146 vmf->address);
3147 if (!new_page)
3148 goto out;
3149 } else {
3150 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3151 vmf->address);
3152 if (!new_page)
3153 goto out;
3154
3155 if (!cow_user_page(new_page, old_page, vmf)) {
3156 /*
3157 * COW failed, if the fault was solved by other,
3158 * it's fine. If not, userspace would re-fault on
3159 * the same address and we will handle the fault
3160 * from the second attempt.
3161 */
3162 put_page(new_page);
3163 if (old_page)
3164 put_page(old_page);
3165 return 0;
3166 }
3167 trace_android_vh_cow_user_page(vmf, new_page);
3168 }
3169
3170 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3171 goto out_free_new;
3172 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3173
3174 __SetPageUptodate(new_page);
3175
3176 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3177 vmf->address & PAGE_MASK,
3178 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3179 mmu_notifier_invalidate_range_start(&range);
3180
3181 /*
3182 * Re-check the pte - we dropped the lock
3183 */
3184 if (!pte_map_lock(vmf)) {
3185 ret = VM_FAULT_RETRY;
3186 goto out_invalidate_end;
3187 }
3188 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3189 if (old_page) {
3190 if (!PageAnon(old_page)) {
3191 dec_mm_counter_fast(mm,
3192 mm_counter_file(old_page));
3193 inc_mm_counter_fast(mm, MM_ANONPAGES);
3194 }
3195 } else {
3196 inc_mm_counter_fast(mm, MM_ANONPAGES);
3197 }
3198 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3199 entry = mk_pte(new_page, vmf->vma_page_prot);
3200 entry = pte_sw_mkyoung(entry);
3201 entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
3202 /*
3203 * Clear the pte entry and flush it first, before updating the
3204 * pte with the new entry. This will avoid a race condition
3205 * seen in the presence of one thread doing SMC and another
3206 * thread doing COW.
3207 */
3208 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3209 __page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3210 __lru_cache_add_inactive_or_unevictable(new_page, vmf->vma_flags);
3211 /*
3212 * We call the notify macro here because, when using secondary
3213 * mmu page tables (such as kvm shadow page tables), we want the
3214 * new page to be mapped directly into the secondary page table.
3215 */
3216 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3217 update_mmu_cache(vma, vmf->address, vmf->pte);
3218 if (old_page) {
3219 /*
3220 * Only after switching the pte to the new page may
3221 * we remove the mapcount here. Otherwise another
3222 * process may come and find the rmap count decremented
3223 * before the pte is switched to the new page, and
3224 * "reuse" the old page writing into it while our pte
3225 * here still points into it and can be read by other
3226 * threads.
3227 *
3228 * The critical issue is to order this
3229 * page_remove_rmap with the ptp_clear_flush above.
3230 * Those stores are ordered by (if nothing else,)
3231 * the barrier present in the atomic_add_negative
3232 * in page_remove_rmap.
3233 *
3234 * Then the TLB flush in ptep_clear_flush ensures that
3235 * no process can access the old page before the
3236 * decremented mapcount is visible. And the old page
3237 * cannot be reused until after the decremented
3238 * mapcount is visible. So transitively, TLBs to
3239 * old page will be flushed before it can be reused.
3240 */
3241 page_remove_rmap(old_page, false);
3242 }
3243
3244 /* Free the old page.. */
3245 new_page = old_page;
3246 page_copied = 1;
3247 } else {
3248 update_mmu_tlb(vma, vmf->address, vmf->pte);
3249 }
3250
3251 if (new_page)
3252 put_page(new_page);
3253
3254 pte_unmap_unlock(vmf->pte, vmf->ptl);
3255 /*
3256 * No need to double call mmu_notifier->invalidate_range() callback as
3257 * the above ptep_clear_flush_notify() did already call it.
3258 */
3259 mmu_notifier_invalidate_range_only_end(&range);
3260 if (old_page) {
3261 /*
3262 * Don't let another task, with possibly unlocked vma,
3263 * keep the mlocked page.
3264 */
3265 if (page_copied && (vmf->vma_flags & VM_LOCKED)) {
3266 lock_page(old_page); /* LRU manipulation */
3267 if (PageMlocked(old_page))
3268 munlock_vma_page(old_page);
3269 unlock_page(old_page);
3270 }
3271 put_page(old_page);
3272 }
3273 return page_copied ? VM_FAULT_WRITE : 0;
3274 out_invalidate_end:
3275 mmu_notifier_invalidate_range_only_end(&range);
3276 out_free_new:
3277 put_page(new_page);
3278 out:
3279 if (old_page)
3280 put_page(old_page);
3281 return ret;
3282 }
3283
3284 /**
3285 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3286 * writeable once the page is prepared
3287 *
3288 * @vmf: structure describing the fault
3289 *
3290 * This function handles all that is needed to finish a write page fault in a
3291 * shared mapping due to PTE being read-only once the mapped page is prepared.
3292 * It handles locking of PTE and modifying it.
3293 *
3294 * The function expects the page to be locked or other protection against
3295 * concurrent faults / writeback (such as DAX radix tree locks).
3296 *
3297 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3298 * we acquired PTE lock.
3299 */
finish_mkwrite_fault(struct vm_fault * vmf)3300 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3301 {
3302 WARN_ON_ONCE(!(vmf->vma_flags & VM_SHARED));
3303 if (!pte_map_lock(vmf))
3304 return VM_FAULT_RETRY;
3305 /*
3306 * We might have raced with another page fault while we released the
3307 * pte_offset_map_lock.
3308 */
3309 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3310 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3311 pte_unmap_unlock(vmf->pte, vmf->ptl);
3312 return VM_FAULT_NOPAGE;
3313 }
3314 wp_page_reuse(vmf);
3315 return 0;
3316 }
3317
3318 /*
3319 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3320 * mapping
3321 */
wp_pfn_shared(struct vm_fault * vmf)3322 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3323 {
3324 struct vm_area_struct *vma = vmf->vma;
3325
3326 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3327 vm_fault_t ret;
3328
3329 pte_unmap_unlock(vmf->pte, vmf->ptl);
3330 vmf->flags |= FAULT_FLAG_MKWRITE;
3331 ret = vma->vm_ops->pfn_mkwrite(vmf);
3332 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3333 return ret;
3334 return finish_mkwrite_fault(vmf);
3335 }
3336 wp_page_reuse(vmf);
3337 return VM_FAULT_WRITE;
3338 }
3339
wp_page_shared(struct vm_fault * vmf)3340 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3341 __releases(vmf->ptl)
3342 {
3343 struct vm_area_struct *vma = vmf->vma;
3344 vm_fault_t ret = VM_FAULT_WRITE;
3345
3346 get_page(vmf->page);
3347
3348 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3349 vm_fault_t tmp;
3350
3351 pte_unmap_unlock(vmf->pte, vmf->ptl);
3352 tmp = do_page_mkwrite(vmf);
3353 if (unlikely(!tmp || (tmp &
3354 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3355 put_page(vmf->page);
3356 return tmp;
3357 }
3358 tmp = finish_mkwrite_fault(vmf);
3359 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3360 unlock_page(vmf->page);
3361 put_page(vmf->page);
3362 return tmp;
3363 }
3364 } else {
3365 wp_page_reuse(vmf);
3366 lock_page(vmf->page);
3367 }
3368 ret |= fault_dirty_shared_page(vmf);
3369 put_page(vmf->page);
3370
3371 return ret;
3372 }
3373
3374 /*
3375 * This routine handles present pages, when users try to write
3376 * to a shared page. It is done by copying the page to a new address
3377 * and decrementing the shared-page counter for the old page.
3378 *
3379 * Note that this routine assumes that the protection checks have been
3380 * done by the caller (the low-level page fault routine in most cases).
3381 * Thus we can safely just mark it writable once we've done any necessary
3382 * COW.
3383 *
3384 * We also mark the page dirty at this point even though the page will
3385 * change only once the write actually happens. This avoids a few races,
3386 * and potentially makes it more efficient.
3387 *
3388 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3389 * but allow concurrent faults), with pte both mapped and locked.
3390 * We return with mmap_lock still held, but pte unmapped and unlocked.
3391 */
do_wp_page(struct vm_fault * vmf)3392 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3393 __releases(vmf->ptl)
3394 {
3395 struct vm_area_struct *vma = vmf->vma;
3396
3397 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3398 pte_unmap_unlock(vmf->pte, vmf->ptl);
3399 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3400 return VM_FAULT_RETRY;
3401 return handle_userfault(vmf, VM_UFFD_WP);
3402 }
3403
3404 /*
3405 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3406 * is flushed in this case before copying.
3407 */
3408 if (unlikely(userfaultfd_wp(vmf->vma) &&
3409 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3410 flush_tlb_page(vmf->vma, vmf->address);
3411
3412 vmf->page = _vm_normal_page(vma, vmf->address, vmf->orig_pte,
3413 vmf->vma_flags);
3414 if (!vmf->page) {
3415 /*
3416 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3417 * VM_PFNMAP VMA.
3418 *
3419 * We should not cow pages in a shared writeable mapping.
3420 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3421 */
3422 if ((vmf->vma_flags & (VM_WRITE|VM_SHARED)) ==
3423 (VM_WRITE|VM_SHARED))
3424 return wp_pfn_shared(vmf);
3425
3426 pte_unmap_unlock(vmf->pte, vmf->ptl);
3427 return wp_page_copy(vmf);
3428 }
3429
3430 /*
3431 * Take out anonymous pages first, anonymous shared vmas are
3432 * not dirty accountable.
3433 */
3434 if (PageAnon(vmf->page)) {
3435 struct page *page = vmf->page;
3436
3437 /* PageKsm() doesn't necessarily raise the page refcount */
3438 if (PageKsm(page) || page_count(page) != 1)
3439 goto copy;
3440 if (!trylock_page(page))
3441 goto copy;
3442 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3443 unlock_page(page);
3444 goto copy;
3445 }
3446 /*
3447 * Ok, we've got the only map reference, and the only
3448 * page count reference, and the page is locked,
3449 * it's dark out, and we're wearing sunglasses. Hit it.
3450 */
3451 unlock_page(page);
3452 wp_page_reuse(vmf);
3453 return VM_FAULT_WRITE;
3454 } else if (unlikely((vmf->vma_flags & (VM_WRITE|VM_SHARED)) ==
3455 (VM_WRITE|VM_SHARED))) {
3456 return wp_page_shared(vmf);
3457 }
3458 copy:
3459 /*
3460 * Ok, we need to copy. Oh, well..
3461 */
3462 get_page(vmf->page);
3463
3464 pte_unmap_unlock(vmf->pte, vmf->ptl);
3465 return wp_page_copy(vmf);
3466 }
3467
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3468 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3469 unsigned long start_addr, unsigned long end_addr,
3470 struct zap_details *details)
3471 {
3472 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3473 }
3474
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)3475 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3476 struct zap_details *details)
3477 {
3478 struct vm_area_struct *vma;
3479 pgoff_t vba, vea, zba, zea;
3480
3481 vma_interval_tree_foreach(vma, root,
3482 details->first_index, details->last_index) {
3483
3484 vba = vma->vm_pgoff;
3485 vea = vba + vma_pages(vma) - 1;
3486 zba = details->first_index;
3487 if (zba < vba)
3488 zba = vba;
3489 zea = details->last_index;
3490 if (zea > vea)
3491 zea = vea;
3492
3493 unmap_mapping_range_vma(vma,
3494 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3495 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3496 details);
3497 }
3498 }
3499
3500 /**
3501 * unmap_mapping_page() - Unmap single page from processes.
3502 * @page: The locked page to be unmapped.
3503 *
3504 * Unmap this page from any userspace process which still has it mmaped.
3505 * Typically, for efficiency, the range of nearby pages has already been
3506 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3507 * truncation or invalidation holds the lock on a page, it may find that
3508 * the page has been remapped again: and then uses unmap_mapping_page()
3509 * to unmap it finally.
3510 */
unmap_mapping_page(struct page * page)3511 void unmap_mapping_page(struct page *page)
3512 {
3513 struct address_space *mapping = page->mapping;
3514 struct zap_details details = { };
3515
3516 VM_BUG_ON(!PageLocked(page));
3517 VM_BUG_ON(PageTail(page));
3518
3519 details.check_mapping = mapping;
3520 details.first_index = page->index;
3521 details.last_index = page->index + thp_nr_pages(page) - 1;
3522 details.single_page = page;
3523
3524 i_mmap_lock_write(mapping);
3525 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3526 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3527 i_mmap_unlock_write(mapping);
3528 }
3529
3530 /**
3531 * unmap_mapping_pages() - Unmap pages from processes.
3532 * @mapping: The address space containing pages to be unmapped.
3533 * @start: Index of first page to be unmapped.
3534 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3535 * @even_cows: Whether to unmap even private COWed pages.
3536 *
3537 * Unmap the pages in this address space from any userspace process which
3538 * has them mmaped. Generally, you want to remove COWed pages as well when
3539 * a file is being truncated, but not when invalidating pages from the page
3540 * cache.
3541 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3542 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3543 pgoff_t nr, bool even_cows)
3544 {
3545 struct zap_details details = { };
3546
3547 details.check_mapping = even_cows ? NULL : mapping;
3548 details.first_index = start;
3549 details.last_index = start + nr - 1;
3550 if (details.last_index < details.first_index)
3551 details.last_index = ULONG_MAX;
3552
3553 i_mmap_lock_write(mapping);
3554 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3555 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3556 i_mmap_unlock_write(mapping);
3557 }
3558
3559 /**
3560 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3561 * address_space corresponding to the specified byte range in the underlying
3562 * file.
3563 *
3564 * @mapping: the address space containing mmaps to be unmapped.
3565 * @holebegin: byte in first page to unmap, relative to the start of
3566 * the underlying file. This will be rounded down to a PAGE_SIZE
3567 * boundary. Note that this is different from truncate_pagecache(), which
3568 * must keep the partial page. In contrast, we must get rid of
3569 * partial pages.
3570 * @holelen: size of prospective hole in bytes. This will be rounded
3571 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3572 * end of the file.
3573 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3574 * but 0 when invalidating pagecache, don't throw away private data.
3575 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3576 void unmap_mapping_range(struct address_space *mapping,
3577 loff_t const holebegin, loff_t const holelen, int even_cows)
3578 {
3579 pgoff_t hba = holebegin >> PAGE_SHIFT;
3580 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3581
3582 /* Check for overflow. */
3583 if (sizeof(holelen) > sizeof(hlen)) {
3584 long long holeend =
3585 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 if (holeend & ~(long long)ULONG_MAX)
3587 hlen = ULONG_MAX - hba + 1;
3588 }
3589
3590 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3591 }
3592 EXPORT_SYMBOL(unmap_mapping_range);
3593
3594 /*
3595 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3596 * but allow concurrent faults), and pte mapped but not yet locked.
3597 * We return with pte unmapped and unlocked.
3598 *
3599 * We return with the mmap_lock locked or unlocked in the same cases
3600 * as does filemap_fault().
3601 */
do_swap_page(struct vm_fault * vmf)3602 vm_fault_t do_swap_page(struct vm_fault *vmf)
3603 {
3604 struct vm_area_struct *vma = vmf->vma;
3605 struct page *page = NULL, *swapcache;
3606 swp_entry_t entry;
3607 pte_t pte;
3608 int locked;
3609 int exclusive = 0;
3610 vm_fault_t ret;
3611 void *shadow = NULL;
3612
3613 if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3614 pte_unmap(vmf->pte);
3615 return VM_FAULT_RETRY;
3616 }
3617
3618 ret = pte_unmap_same(vmf);
3619 if (ret) {
3620 /*
3621 * If pte != orig_pte, this means another thread did the
3622 * swap operation in our back.
3623 * So nothing else to do.
3624 */
3625 if (ret == VM_FAULT_PTNOTSAME)
3626 ret = 0;
3627 goto out;
3628 }
3629
3630 entry = pte_to_swp_entry(vmf->orig_pte);
3631 if (unlikely(non_swap_entry(entry))) {
3632 if (is_migration_entry(entry)) {
3633 migration_entry_wait(vma->vm_mm, vmf->pmd,
3634 vmf->address);
3635 } else if (is_device_private_entry(entry)) {
3636 vmf->page = device_private_entry_to_page(entry);
3637 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3638 } else if (is_hwpoison_entry(entry)) {
3639 ret = VM_FAULT_HWPOISON;
3640 } else {
3641 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3642 ret = VM_FAULT_SIGBUS;
3643 }
3644 goto out;
3645 }
3646
3647
3648 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3649 page = lookup_swap_cache(entry, vma, vmf->address);
3650 swapcache = page;
3651
3652 if (!page) {
3653 struct swap_info_struct *si = swp_swap_info(entry);
3654
3655 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3656 __swap_count(entry) == 1) {
3657 /* skip swapcache */
3658 gfp_t flags = GFP_HIGHUSER_MOVABLE;
3659
3660 trace_android_rvh_set_skip_swapcache_flags(&flags);
3661 page = alloc_page_vma(flags, vma, vmf->address);
3662 if (page) {
3663 int err;
3664
3665 __SetPageLocked(page);
3666 __SetPageSwapBacked(page);
3667 set_page_private(page, entry.val);
3668
3669 /* Tell memcg to use swap ownership records */
3670 SetPageSwapCache(page);
3671 err = mem_cgroup_charge(page, vma->vm_mm,
3672 GFP_KERNEL);
3673 ClearPageSwapCache(page);
3674 if (err) {
3675 ret = VM_FAULT_OOM;
3676 goto out_page;
3677 }
3678
3679 shadow = get_shadow_from_swap_cache(entry);
3680 if (shadow)
3681 workingset_refault(page, shadow);
3682
3683 lru_cache_add(page);
3684 swap_readpage(page, true);
3685 }
3686 } else if (vmf->flags & FAULT_FLAG_SPECULATIVE) {
3687 /*
3688 * Don't try readahead during a speculative page fault
3689 * as the VMA's boundaries may change in our back.
3690 * If the page is not in the swap cache and synchronous
3691 * read is disabled, fall back to the regular page fault
3692 * mechanism.
3693 */
3694 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3695 ret = VM_FAULT_RETRY;
3696 goto out;
3697 } else {
3698 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3699 vmf);
3700 swapcache = page;
3701 }
3702
3703 if (!page) {
3704 /*
3705 * Back out if the VMA has changed in our back during
3706 * a speculative page fault or if somebody else
3707 * faulted in this pte while we released the pte lock.
3708 */
3709 if (!pte_map_lock(vmf)) {
3710 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3711 ret = VM_FAULT_RETRY;
3712 goto out;
3713 }
3714
3715 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3716 ret = VM_FAULT_OOM;
3717 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3718 goto unlock;
3719 }
3720
3721 /* Had to read the page from swap area: Major fault */
3722 ret = VM_FAULT_MAJOR;
3723 count_vm_event(PGMAJFAULT);
3724 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3725 } else if (PageHWPoison(page)) {
3726 /*
3727 * hwpoisoned dirty swapcache pages are kept for killing
3728 * owner processes (which may be unknown at hwpoison time)
3729 */
3730 ret = VM_FAULT_HWPOISON;
3731 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3732 goto out_release;
3733 }
3734
3735 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3736
3737 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3738 if (!locked) {
3739 ret |= VM_FAULT_RETRY;
3740 goto out_release;
3741 }
3742
3743 /*
3744 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3745 * release the swapcache from under us. The page pin, and pte_same
3746 * test below, are not enough to exclude that. Even if it is still
3747 * swapcache, we need to check that the page's swap has not changed.
3748 */
3749 if (unlikely((!PageSwapCache(page) ||
3750 page_private(page) != entry.val)) && swapcache)
3751 goto out_page;
3752
3753 page = ksm_might_need_to_copy(page, vma, vmf->address);
3754 if (unlikely(!page)) {
3755 ret = VM_FAULT_OOM;
3756 page = swapcache;
3757 goto out_page;
3758 }
3759
3760 cgroup_throttle_swaprate(page, GFP_KERNEL);
3761
3762 /*
3763 * Back out if the VMA has changed in our back during a speculative
3764 * page fault or if somebody else already faulted in this pte.
3765 */
3766 if (!pte_map_lock(vmf)) {
3767 ret = VM_FAULT_RETRY;
3768 goto out_page;
3769 }
3770 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3771 goto out_nomap;
3772
3773 if (unlikely(!PageUptodate(page))) {
3774 ret = VM_FAULT_SIGBUS;
3775 goto out_nomap;
3776 }
3777
3778 /*
3779 * The page isn't present yet, go ahead with the fault.
3780 *
3781 * Be careful about the sequence of operations here.
3782 * To get its accounting right, reuse_swap_page() must be called
3783 * while the page is counted on swap but not yet in mapcount i.e.
3784 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3785 * must be called after the swap_free(), or it will never succeed.
3786 */
3787
3788 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3789 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3790 pte = mk_pte(page, vmf->vma_page_prot);
3791 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3792 pte = maybe_mkwrite(pte_mkdirty(pte), vmf->vma_flags);
3793 vmf->flags &= ~FAULT_FLAG_WRITE;
3794 ret |= VM_FAULT_WRITE;
3795 exclusive = RMAP_EXCLUSIVE;
3796 }
3797 flush_icache_page(vma, page);
3798 if (pte_swp_soft_dirty(vmf->orig_pte))
3799 pte = pte_mksoft_dirty(pte);
3800 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3801 pte = pte_mkuffd_wp(pte);
3802 pte = pte_wrprotect(pte);
3803 }
3804 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3805 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3806 vmf->orig_pte = pte;
3807
3808 /* ksm created a completely new copy */
3809 if (unlikely(page != swapcache && swapcache)) {
3810 __page_add_new_anon_rmap(page, vma, vmf->address, false);
3811 __lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
3812 } else {
3813 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3814 }
3815
3816 trace_android_vh_swapin_add_anon_rmap(vmf, page);
3817 swap_free(entry);
3818 if (mem_cgroup_swap_full(page) ||
3819 (vmf->vma_flags & VM_LOCKED) || PageMlocked(page))
3820 try_to_free_swap(page);
3821 unlock_page(page);
3822 if (page != swapcache && swapcache) {
3823 /*
3824 * Hold the lock to avoid the swap entry to be reused
3825 * until we take the PT lock for the pte_same() check
3826 * (to avoid false positives from pte_same). For
3827 * further safety release the lock after the swap_free
3828 * so that the swap count won't change under a
3829 * parallel locked swapcache.
3830 */
3831 unlock_page(swapcache);
3832 put_page(swapcache);
3833 }
3834
3835 if (vmf->flags & FAULT_FLAG_WRITE) {
3836 ret |= do_wp_page(vmf);
3837 if (ret & VM_FAULT_ERROR)
3838 ret &= VM_FAULT_ERROR;
3839 goto out;
3840 }
3841
3842 /* No need to invalidate - it was non-present before */
3843 update_mmu_cache(vma, vmf->address, vmf->pte);
3844 unlock:
3845 pte_unmap_unlock(vmf->pte, vmf->ptl);
3846 out:
3847 return ret;
3848 out_nomap:
3849 pte_unmap_unlock(vmf->pte, vmf->ptl);
3850 out_page:
3851 unlock_page(page);
3852 out_release:
3853 put_page(page);
3854 if (page != swapcache && swapcache) {
3855 unlock_page(swapcache);
3856 put_page(swapcache);
3857 }
3858 return ret;
3859 }
3860
3861 /*
3862 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3863 * but allow concurrent faults), and pte mapped but not yet locked.
3864 * We return with mmap_lock still held, but pte unmapped and unlocked.
3865 */
do_anonymous_page(struct vm_fault * vmf)3866 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3867 {
3868 struct vm_area_struct *vma = vmf->vma;
3869 struct page *page;
3870 vm_fault_t ret = 0;
3871 pte_t entry;
3872
3873 /* File mapping without ->vm_ops ? */
3874 if (vmf->vma_flags & VM_SHARED)
3875 return VM_FAULT_SIGBUS;
3876
3877 /* Do not check unstable pmd, if it's changed will retry later */
3878 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3879 goto skip_pmd_checks;
3880
3881 /*
3882 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3883 * pte_offset_map() on pmds where a huge pmd might be created
3884 * from a different thread.
3885 *
3886 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3887 * parallel threads are excluded by other means.
3888 *
3889 * Here we only have mmap_read_lock(mm).
3890 */
3891 if (pte_alloc(vma->vm_mm, vmf->pmd))
3892 return VM_FAULT_OOM;
3893
3894 /* See comment in handle_pte_fault() */
3895 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3896 return 0;
3897
3898 skip_pmd_checks:
3899 /* Use the zero-page for reads */
3900 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3901 !mm_forbids_zeropage(vma->vm_mm)) {
3902 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3903 vmf->vma_page_prot));
3904 if (!pte_map_lock(vmf))
3905 return VM_FAULT_RETRY;
3906 if (!pte_none(*vmf->pte)) {
3907 update_mmu_tlb(vma, vmf->address, vmf->pte);
3908 goto unlock;
3909 }
3910 ret = check_stable_address_space(vma->vm_mm);
3911 if (ret)
3912 goto unlock;
3913 /*
3914 * Don't call the userfaultfd during the speculative path.
3915 * We already checked for the VMA to not be managed through
3916 * userfaultfd, but it may be set in our back once we have lock
3917 * the pte. In such a case we can ignore it this time.
3918 */
3919 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
3920 goto setpte;
3921 /* Deliver the page fault to userland, check inside PT lock */
3922 if (userfaultfd_missing(vma)) {
3923 pte_unmap_unlock(vmf->pte, vmf->ptl);
3924 return handle_userfault(vmf, VM_UFFD_MISSING);
3925 }
3926 goto setpte;
3927 }
3928
3929 /* Allocate our own private page. */
3930 if (unlikely(anon_vma_prepare(vma)))
3931 goto oom;
3932 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3933 if (!page)
3934 goto oom;
3935
3936 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3937 goto oom_free_page;
3938 cgroup_throttle_swaprate(page, GFP_KERNEL);
3939
3940 /*
3941 * The memory barrier inside __SetPageUptodate makes sure that
3942 * preceding stores to the page contents become visible before
3943 * the set_pte_at() write.
3944 */
3945 __SetPageUptodate(page);
3946
3947 entry = mk_pte(page, vmf->vma_page_prot);
3948 entry = pte_sw_mkyoung(entry);
3949 if (vmf->vma_flags & VM_WRITE)
3950 entry = pte_mkwrite(pte_mkdirty(entry));
3951
3952 if (!pte_map_lock(vmf)) {
3953 ret = VM_FAULT_RETRY;
3954 goto release;
3955 }
3956
3957 if (!pte_none(*vmf->pte)) {
3958 update_mmu_cache(vma, vmf->address, vmf->pte);
3959 goto unlock_and_release;
3960 }
3961
3962 ret = check_stable_address_space(vma->vm_mm);
3963 if (ret)
3964 goto unlock_and_release;
3965
3966 /* Deliver the page fault to userland, check inside PT lock */
3967 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
3968 userfaultfd_missing(vma)) {
3969 pte_unmap_unlock(vmf->pte, vmf->ptl);
3970 put_page(page);
3971 return handle_userfault(vmf, VM_UFFD_MISSING);
3972 }
3973
3974 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3975 __page_add_new_anon_rmap(page, vma, vmf->address, false);
3976 __lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
3977 setpte:
3978 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3979
3980 /* No need to invalidate - it was non-present before */
3981 update_mmu_cache(vma, vmf->address, vmf->pte);
3982 unlock:
3983 pte_unmap_unlock(vmf->pte, vmf->ptl);
3984 return ret;
3985 unlock_and_release:
3986 pte_unmap_unlock(vmf->pte, vmf->ptl);
3987 release:
3988 put_page(page);
3989 return ret;
3990 oom_free_page:
3991 put_page(page);
3992 oom:
3993 return VM_FAULT_OOM;
3994 }
3995
3996 /*
3997 * The mmap_lock must have been held on entry, and may have been
3998 * released depending on flags and vma->vm_ops->fault() return value.
3999 * See filemap_fault() and __lock_page_retry().
4000 */
__do_fault(struct vm_fault * vmf)4001 static vm_fault_t __do_fault(struct vm_fault *vmf)
4002 {
4003 struct vm_area_struct *vma = vmf->vma;
4004 vm_fault_t ret;
4005
4006 /* Do not check unstable pmd, if it's changed will retry later */
4007 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4008 goto skip_pmd_checks;
4009
4010 /*
4011 * Preallocate pte before we take page_lock because this might lead to
4012 * deadlocks for memcg reclaim which waits for pages under writeback:
4013 * lock_page(A)
4014 * SetPageWriteback(A)
4015 * unlock_page(A)
4016 * lock_page(B)
4017 * lock_page(B)
4018 * pte_alloc_one
4019 * shrink_page_list
4020 * wait_on_page_writeback(A)
4021 * SetPageWriteback(B)
4022 * unlock_page(B)
4023 * # flush A, B to clear the writeback
4024 */
4025 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4026 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4027 if (!vmf->prealloc_pte)
4028 return VM_FAULT_OOM;
4029 smp_wmb(); /* See comment in __pte_alloc() */
4030 }
4031
4032 skip_pmd_checks:
4033 ret = vma->vm_ops->fault(vmf);
4034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4035 VM_FAULT_DONE_COW)))
4036 return ret;
4037
4038 if (unlikely(PageHWPoison(vmf->page))) {
4039 struct page *page = vmf->page;
4040 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4041 if (ret & VM_FAULT_LOCKED) {
4042 if (page_mapped(page))
4043 unmap_mapping_pages(page_mapping(page),
4044 page->index, 1, false);
4045 /* Retry if a clean page was removed from the cache. */
4046 if (invalidate_inode_page(page))
4047 poisonret = VM_FAULT_NOPAGE;
4048 unlock_page(page);
4049 }
4050 put_page(page);
4051 vmf->page = NULL;
4052 return poisonret;
4053 }
4054
4055 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4056 lock_page(vmf->page);
4057 else
4058 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4059
4060 return ret;
4061 }
4062
4063 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4064 static void deposit_prealloc_pte(struct vm_fault *vmf)
4065 {
4066 struct vm_area_struct *vma = vmf->vma;
4067
4068 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4069 /*
4070 * We are going to consume the prealloc table,
4071 * count that as nr_ptes.
4072 */
4073 mm_inc_nr_ptes(vma->vm_mm);
4074 vmf->prealloc_pte = NULL;
4075 }
4076
do_set_pmd(struct vm_fault * vmf,struct page * page)4077 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4078 {
4079 struct vm_area_struct *vma = vmf->vma;
4080 bool write = vmf->flags & FAULT_FLAG_WRITE;
4081 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4082 pmd_t entry;
4083 int i;
4084 vm_fault_t ret = VM_FAULT_FALLBACK;
4085
4086 if (!transhuge_vma_suitable(vma, haddr))
4087 return ret;
4088
4089 page = compound_head(page);
4090 if (compound_order(page) != HPAGE_PMD_ORDER)
4091 return ret;
4092
4093 /*
4094 * Archs like ppc64 need additonal space to store information
4095 * related to pte entry. Use the preallocated table for that.
4096 */
4097 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4098 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4099 if (!vmf->prealloc_pte)
4100 return VM_FAULT_OOM;
4101 smp_wmb(); /* See comment in __pte_alloc() */
4102 }
4103
4104 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4105 if (unlikely(!pmd_none(*vmf->pmd)))
4106 goto out;
4107
4108 for (i = 0; i < HPAGE_PMD_NR; i++)
4109 flush_icache_page(vma, page + i);
4110
4111 entry = mk_huge_pmd(page, vmf->vma_page_prot);
4112 if (write)
4113 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4114
4115 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4116 page_add_file_rmap(page, true);
4117 /*
4118 * deposit and withdraw with pmd lock held
4119 */
4120 if (arch_needs_pgtable_deposit())
4121 deposit_prealloc_pte(vmf);
4122
4123 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4124
4125 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4126
4127 /* fault is handled */
4128 ret = 0;
4129 count_vm_event(THP_FILE_MAPPED);
4130 out:
4131 spin_unlock(vmf->ptl);
4132 return ret;
4133 }
4134 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4135 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4136 {
4137 return VM_FAULT_FALLBACK;
4138 }
4139 #endif
4140
do_set_pte(struct vm_fault * vmf,struct page * page,unsigned long addr)4141 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4142 {
4143 struct vm_area_struct *vma = vmf->vma;
4144 bool write = vmf->flags & FAULT_FLAG_WRITE;
4145 bool prefault = vmf->address != addr;
4146 pte_t entry;
4147
4148 flush_icache_page(vma, page);
4149 entry = mk_pte(page, vmf->vma_page_prot);
4150
4151 if (prefault && arch_wants_old_prefaulted_pte())
4152 entry = pte_mkold(entry);
4153 else
4154 entry = pte_sw_mkyoung(entry);
4155
4156 if (write)
4157 entry = maybe_mkwrite(pte_mkdirty(entry), vmf->vma_flags);
4158 /* copy-on-write page */
4159 if (write && !(vmf->vma_flags & VM_SHARED)) {
4160 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4161 __page_add_new_anon_rmap(page, vma, addr, false);
4162 __lru_cache_add_inactive_or_unevictable(page, vmf->vma_flags);
4163 } else {
4164 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4165 page_add_file_rmap(page, false);
4166 }
4167 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4168 }
4169
4170 /**
4171 * finish_fault - finish page fault once we have prepared the page to fault
4172 *
4173 * @vmf: structure describing the fault
4174 *
4175 * This function handles all that is needed to finish a page fault once the
4176 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4177 * given page, adds reverse page mapping, handles memcg charges and LRU
4178 * addition.
4179 *
4180 * The function expects the page to be locked and on success it consumes a
4181 * reference of a page being mapped (for the PTE which maps it).
4182 *
4183 * Return: %0 on success, %VM_FAULT_ code in case of error.
4184 */
finish_fault(struct vm_fault * vmf)4185 vm_fault_t finish_fault(struct vm_fault *vmf)
4186 {
4187 struct vm_area_struct *vma = vmf->vma;
4188 struct page *page;
4189 vm_fault_t ret;
4190
4191 /* Did we COW the page? */
4192 if ((vmf->flags & FAULT_FLAG_WRITE) &&
4193 !(vmf->vma_flags & VM_SHARED))
4194 page = vmf->cow_page;
4195 else
4196 page = vmf->page;
4197
4198 /*
4199 * check even for read faults because we might have lost our CoWed
4200 * page
4201 */
4202 if (!(vma->vm_flags & VM_SHARED)) {
4203 ret = check_stable_address_space(vma->vm_mm);
4204 if (ret)
4205 return ret;
4206 }
4207
4208 /* Do not check unstable pmd, if it's changed will retry later */
4209 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4210 goto skip_pmd_checks;
4211
4212 if (pmd_none(*vmf->pmd)) {
4213 if (PageTransCompound(page)) {
4214 ret = do_set_pmd(vmf, page);
4215 if (ret != VM_FAULT_FALLBACK)
4216 return ret;
4217 }
4218
4219 if (vmf->prealloc_pte) {
4220 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4221 if (likely(pmd_none(*vmf->pmd))) {
4222 mm_inc_nr_ptes(vma->vm_mm);
4223 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4224 vmf->prealloc_pte = NULL;
4225 }
4226 spin_unlock(vmf->ptl);
4227 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4228 return VM_FAULT_OOM;
4229 }
4230 }
4231
4232 /*
4233 * See comment in handle_pte_fault() for how this scenario happens, we
4234 * need to return NOPAGE so that we drop this page.
4235 */
4236 if (pmd_devmap_trans_unstable(vmf->pmd))
4237 return VM_FAULT_NOPAGE;
4238
4239 skip_pmd_checks:
4240 if (!pte_map_lock(vmf))
4241 return VM_FAULT_RETRY;
4242
4243 ret = 0;
4244 /* Re-check under ptl */
4245 if (likely(pte_none(*vmf->pte)))
4246 do_set_pte(vmf, page, vmf->address);
4247 else
4248 ret = VM_FAULT_NOPAGE;
4249
4250 update_mmu_tlb(vma, vmf->address, vmf->pte);
4251 pte_unmap_unlock(vmf->pte, vmf->ptl);
4252 return ret;
4253 }
4254
4255 static unsigned long fault_around_bytes __read_mostly =
4256 rounddown_pow_of_two(65536);
4257
4258 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4259 static int fault_around_bytes_get(void *data, u64 *val)
4260 {
4261 *val = fault_around_bytes;
4262 return 0;
4263 }
4264
4265 /*
4266 * fault_around_bytes must be rounded down to the nearest page order as it's
4267 * what do_fault_around() expects to see.
4268 */
fault_around_bytes_set(void * data,u64 val)4269 static int fault_around_bytes_set(void *data, u64 val)
4270 {
4271 if (val / PAGE_SIZE > PTRS_PER_PTE)
4272 return -EINVAL;
4273 if (val > PAGE_SIZE)
4274 fault_around_bytes = rounddown_pow_of_two(val);
4275 else
4276 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4277 return 0;
4278 }
4279 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4280 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4281
fault_around_debugfs(void)4282 static int __init fault_around_debugfs(void)
4283 {
4284 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4285 &fault_around_bytes_fops);
4286 return 0;
4287 }
4288 late_initcall(fault_around_debugfs);
4289 #endif
4290
4291 /*
4292 * do_fault_around() tries to map few pages around the fault address. The hope
4293 * is that the pages will be needed soon and this will lower the number of
4294 * faults to handle.
4295 *
4296 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4297 * not ready to be mapped: not up-to-date, locked, etc.
4298 *
4299 * This function is called with the page table lock taken. In the split ptlock
4300 * case the page table lock only protects only those entries which belong to
4301 * the page table corresponding to the fault address.
4302 *
4303 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4304 * only once.
4305 *
4306 * fault_around_bytes defines how many bytes we'll try to map.
4307 * do_fault_around() expects it to be set to a power of two less than or equal
4308 * to PTRS_PER_PTE.
4309 *
4310 * The virtual address of the area that we map is naturally aligned to
4311 * fault_around_bytes rounded down to the machine page size
4312 * (and therefore to page order). This way it's easier to guarantee
4313 * that we don't cross page table boundaries.
4314 */
do_fault_around(struct vm_fault * vmf)4315 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4316 {
4317 unsigned long address = vmf->address, nr_pages, mask;
4318 pgoff_t start_pgoff = vmf->pgoff;
4319 pgoff_t end_pgoff;
4320 int off;
4321
4322 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4323 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4324
4325 address = max(address & mask, vmf->vma->vm_start);
4326 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4327 start_pgoff -= off;
4328
4329 /*
4330 * end_pgoff is either the end of the page table, the end of
4331 * the vma or nr_pages from start_pgoff, depending what is nearest.
4332 */
4333 end_pgoff = start_pgoff -
4334 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4335 PTRS_PER_PTE - 1;
4336 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4337 start_pgoff + nr_pages - 1);
4338
4339 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE) &&
4340 pmd_none(*vmf->pmd)) {
4341 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4342 if (!vmf->prealloc_pte)
4343 return VM_FAULT_OOM;
4344 smp_wmb(); /* See comment in __pte_alloc() */
4345 }
4346
4347 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4348 }
4349
do_read_fault(struct vm_fault * vmf)4350 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4351 {
4352 struct vm_area_struct *vma = vmf->vma;
4353 vm_fault_t ret = 0;
4354
4355 /*
4356 * Let's call ->map_pages() first and use ->fault() as fallback
4357 * if page by the offset is not ready to be mapped (cold cache or
4358 * something).
4359 */
4360 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4361 if (likely(!userfaultfd_minor(vmf->vma))) {
4362 ret = do_fault_around(vmf);
4363 if (ret)
4364 return ret;
4365 }
4366 }
4367
4368 ret = __do_fault(vmf);
4369 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4370 return ret;
4371
4372 ret |= finish_fault(vmf);
4373 unlock_page(vmf->page);
4374 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4375 put_page(vmf->page);
4376 return ret;
4377 }
4378
do_cow_fault(struct vm_fault * vmf)4379 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4380 {
4381 struct vm_area_struct *vma = vmf->vma;
4382 vm_fault_t ret;
4383
4384 if (unlikely(anon_vma_prepare(vma)))
4385 return VM_FAULT_OOM;
4386
4387 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4388 if (!vmf->cow_page)
4389 return VM_FAULT_OOM;
4390
4391 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4392 put_page(vmf->cow_page);
4393 return VM_FAULT_OOM;
4394 }
4395 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4396
4397 ret = __do_fault(vmf);
4398 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4399 goto uncharge_out;
4400 if (ret & VM_FAULT_DONE_COW)
4401 return ret;
4402
4403 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4404 __SetPageUptodate(vmf->cow_page);
4405
4406 ret |= finish_fault(vmf);
4407 unlock_page(vmf->page);
4408 put_page(vmf->page);
4409 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4410 goto uncharge_out;
4411 return ret;
4412 uncharge_out:
4413 put_page(vmf->cow_page);
4414 return ret;
4415 }
4416
do_shared_fault(struct vm_fault * vmf)4417 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4418 {
4419 struct vm_area_struct *vma = vmf->vma;
4420 vm_fault_t ret, tmp;
4421
4422 ret = __do_fault(vmf);
4423 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4424 return ret;
4425
4426 /*
4427 * Check if the backing address space wants to know that the page is
4428 * about to become writable
4429 */
4430 if (vma->vm_ops->page_mkwrite) {
4431 unlock_page(vmf->page);
4432 tmp = do_page_mkwrite(vmf);
4433 if (unlikely(!tmp ||
4434 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4435 put_page(vmf->page);
4436 return tmp;
4437 }
4438 }
4439
4440 ret |= finish_fault(vmf);
4441 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4442 VM_FAULT_RETRY))) {
4443 unlock_page(vmf->page);
4444 put_page(vmf->page);
4445 return ret;
4446 }
4447
4448 ret |= fault_dirty_shared_page(vmf);
4449 return ret;
4450 }
4451
4452 /*
4453 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4454 * but allow concurrent faults).
4455 * The mmap_lock may have been released depending on flags and our
4456 * return value. See filemap_fault() and __lock_page_or_retry().
4457 * If mmap_lock is released, vma may become invalid (for example
4458 * by other thread calling munmap()).
4459 */
do_fault(struct vm_fault * vmf)4460 static vm_fault_t do_fault(struct vm_fault *vmf)
4461 {
4462 struct vm_area_struct *vma = vmf->vma;
4463 struct mm_struct *vm_mm = vma->vm_mm;
4464 vm_fault_t ret;
4465
4466 /*
4467 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4468 */
4469 if (!vma->vm_ops->fault) {
4470 /*
4471 * If we find a migration pmd entry or a none pmd entry, which
4472 * should never happen, return SIGBUS
4473 */
4474 if (unlikely(!pmd_present(*vmf->pmd)))
4475 ret = VM_FAULT_SIGBUS;
4476 else {
4477 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4478 vmf->pmd,
4479 vmf->address,
4480 &vmf->ptl);
4481 /*
4482 * Make sure this is not a temporary clearing of pte
4483 * by holding ptl and checking again. A R/M/W update
4484 * of pte involves: take ptl, clearing the pte so that
4485 * we don't have concurrent modification by hardware
4486 * followed by an update.
4487 */
4488 if (unlikely(pte_none(*vmf->pte)))
4489 ret = VM_FAULT_SIGBUS;
4490 else
4491 ret = VM_FAULT_NOPAGE;
4492
4493 pte_unmap_unlock(vmf->pte, vmf->ptl);
4494 }
4495 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4496 ret = do_read_fault(vmf);
4497 else if (!(vmf->vma_flags & VM_SHARED))
4498 ret = do_cow_fault(vmf);
4499 else
4500 ret = do_shared_fault(vmf);
4501
4502 /* preallocated pagetable is unused: free it */
4503 if (vmf->prealloc_pte) {
4504 pte_free(vm_mm, vmf->prealloc_pte);
4505 vmf->prealloc_pte = NULL;
4506 }
4507 return ret;
4508 }
4509
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4510 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4511 unsigned long addr, int page_nid,
4512 int *flags)
4513 {
4514 get_page(page);
4515
4516 count_vm_numa_event(NUMA_HINT_FAULTS);
4517 if (page_nid == numa_node_id()) {
4518 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4519 *flags |= TNF_FAULT_LOCAL;
4520 }
4521
4522 return mpol_misplaced(page, vma, addr);
4523 }
4524
do_numa_page(struct vm_fault * vmf)4525 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4526 {
4527 struct vm_area_struct *vma = vmf->vma;
4528 struct page *page = NULL;
4529 int page_nid = NUMA_NO_NODE;
4530 int last_cpupid;
4531 int target_nid;
4532 bool migrated = false;
4533 pte_t pte, old_pte;
4534 bool was_writable = pte_savedwrite(vmf->orig_pte);
4535 int flags = 0;
4536
4537 /*
4538 * The "pte" at this point cannot be used safely without
4539 * validation through pte_unmap_same(). It's of NUMA type but
4540 * the pfn may be screwed if the read is non atomic.
4541 */
4542 if (!pte_spinlock(vmf))
4543 return VM_FAULT_RETRY;
4544 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4545 pte_unmap_unlock(vmf->pte, vmf->ptl);
4546 goto out;
4547 }
4548
4549 /*
4550 * Make it present again, Depending on how arch implementes non
4551 * accessible ptes, some can allow access by kernel mode.
4552 */
4553 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4554 pte = pte_modify(old_pte, vmf->vma_page_prot);
4555 pte = pte_mkyoung(pte);
4556 if (was_writable)
4557 pte = pte_mkwrite(pte);
4558 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4559 update_mmu_cache(vma, vmf->address, vmf->pte);
4560
4561 page = _vm_normal_page(vma, vmf->address, pte, vmf->vma_flags);
4562 if (!page) {
4563 pte_unmap_unlock(vmf->pte, vmf->ptl);
4564 return 0;
4565 }
4566
4567 /* TODO: handle PTE-mapped THP */
4568 if (PageCompound(page)) {
4569 pte_unmap_unlock(vmf->pte, vmf->ptl);
4570 return 0;
4571 }
4572
4573 /*
4574 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4575 * much anyway since they can be in shared cache state. This misses
4576 * the case where a mapping is writable but the process never writes
4577 * to it but pte_write gets cleared during protection updates and
4578 * pte_dirty has unpredictable behaviour between PTE scan updates,
4579 * background writeback, dirty balancing and application behaviour.
4580 */
4581 if (!pte_write(pte))
4582 flags |= TNF_NO_GROUP;
4583
4584 /*
4585 * Flag if the page is shared between multiple address spaces. This
4586 * is later used when determining whether to group tasks together
4587 */
4588 if (page_mapcount(page) > 1 && (vmf->vma_flags & VM_SHARED))
4589 flags |= TNF_SHARED;
4590
4591 last_cpupid = page_cpupid_last(page);
4592 page_nid = page_to_nid(page);
4593 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4594 &flags);
4595 pte_unmap_unlock(vmf->pte, vmf->ptl);
4596 if (target_nid == NUMA_NO_NODE) {
4597 put_page(page);
4598 goto out;
4599 }
4600
4601 /* Migrate to the requested node */
4602 migrated = migrate_misplaced_page(page, vmf, target_nid);
4603 if (migrated) {
4604 page_nid = target_nid;
4605 flags |= TNF_MIGRATED;
4606 } else
4607 flags |= TNF_MIGRATE_FAIL;
4608
4609 out:
4610 if (page_nid != NUMA_NO_NODE)
4611 task_numa_fault(last_cpupid, page_nid, 1, flags);
4612 return 0;
4613 }
4614
create_huge_pmd(struct vm_fault * vmf)4615 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4616 {
4617 if (vma_is_anonymous(vmf->vma))
4618 return do_huge_pmd_anonymous_page(vmf);
4619 if (vmf->vma->vm_ops->huge_fault)
4620 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4621 return VM_FAULT_FALLBACK;
4622 }
4623
4624 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)4625 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4626 {
4627 if (vma_is_anonymous(vmf->vma)) {
4628 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4629 return handle_userfault(vmf, VM_UFFD_WP);
4630 return do_huge_pmd_wp_page(vmf, orig_pmd);
4631 }
4632 if (vmf->vma->vm_ops->huge_fault) {
4633 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4634
4635 if (!(ret & VM_FAULT_FALLBACK))
4636 return ret;
4637 }
4638
4639 /* COW or write-notify handled on pte level: split pmd. */
4640 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4641
4642 return VM_FAULT_FALLBACK;
4643 }
4644
create_huge_pud(struct vm_fault * vmf)4645 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4646 {
4647 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4648 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4649 /* No support for anonymous transparent PUD pages yet */
4650 if (vma_is_anonymous(vmf->vma))
4651 return VM_FAULT_FALLBACK;
4652 if (vmf->vma->vm_ops->huge_fault)
4653 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4654 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4655 return VM_FAULT_FALLBACK;
4656 }
4657
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4658 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4659 {
4660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4661 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4662 /* No support for anonymous transparent PUD pages yet */
4663 if (vma_is_anonymous(vmf->vma))
4664 goto split;
4665 if (vmf->vma->vm_ops->huge_fault) {
4666 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4667
4668 if (!(ret & VM_FAULT_FALLBACK))
4669 return ret;
4670 }
4671 split:
4672 /* COW or write-notify not handled on PUD level: split pud.*/
4673 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4674 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4675 return VM_FAULT_FALLBACK;
4676 }
4677
4678 /*
4679 * These routines also need to handle stuff like marking pages dirty
4680 * and/or accessed for architectures that don't do it in hardware (most
4681 * RISC architectures). The early dirtying is also good on the i386.
4682 *
4683 * There is also a hook called "update_mmu_cache()" that architectures
4684 * with external mmu caches can use to update those (ie the Sparc or
4685 * PowerPC hashed page tables that act as extended TLBs).
4686 *
4687 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4688 * concurrent faults).
4689 *
4690 * The mmap_lock may have been released depending on flags and our return value.
4691 * See filemap_fault() and __lock_page_or_retry().
4692 */
handle_pte_fault(struct vm_fault * vmf)4693 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4694 {
4695 pte_t entry;
4696 vm_fault_t ret = 0;
4697
4698 /* Do not check unstable pmd, if it's changed will retry later */
4699 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4700 goto skip_pmd_checks;
4701
4702 if (unlikely(pmd_none(*vmf->pmd))) {
4703 /*
4704 * Leave __pte_alloc() until later: because vm_ops->fault may
4705 * want to allocate huge page, and if we expose page table
4706 * for an instant, it will be difficult to retract from
4707 * concurrent faults and from rmap lookups.
4708 */
4709 vmf->pte = NULL;
4710 } else {
4711 /*
4712 * If a huge pmd materialized under us just retry later. Use
4713 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4714 * of pmd_trans_huge() to ensure the pmd didn't become
4715 * pmd_trans_huge under us and then back to pmd_none, as a
4716 * result of MADV_DONTNEED running immediately after a huge pmd
4717 * fault in a different thread of this mm, in turn leading to a
4718 * misleading pmd_trans_huge() retval. All we have to ensure is
4719 * that it is a regular pmd that we can walk with
4720 * pte_offset_map() and we can do that through an atomic read
4721 * in C, which is what pmd_trans_unstable() provides.
4722 */
4723 if (pmd_devmap_trans_unstable(vmf->pmd))
4724 return 0;
4725 /*
4726 * A regular pmd is established and it can't morph into a huge
4727 * pmd from under us anymore at this point because we hold the
4728 * mmap_lock read mode and khugepaged takes it in write mode.
4729 * So now it's safe to run pte_offset_map().
4730 * This is not applicable to the speculative page fault handler
4731 * but in that case, the pte is fetched earlier in
4732 * handle_speculative_fault().
4733 */
4734 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4735 vmf->orig_pte = *vmf->pte;
4736
4737 /*
4738 * some architectures can have larger ptes than wordsize,
4739 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4740 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4741 * accesses. The code below just needs a consistent view
4742 * for the ifs and we later double check anyway with the
4743 * ptl lock held. So here a barrier will do.
4744 */
4745 barrier();
4746 if (pte_none(vmf->orig_pte)) {
4747 pte_unmap(vmf->pte);
4748 vmf->pte = NULL;
4749 }
4750 }
4751
4752 skip_pmd_checks:
4753 if (!vmf->pte) {
4754 if (vma_is_anonymous(vmf->vma))
4755 return do_anonymous_page(vmf);
4756 else if ((vmf->flags & FAULT_FLAG_SPECULATIVE) &&
4757 !vmf_allows_speculation(vmf))
4758 return VM_FAULT_RETRY;
4759 else
4760 return do_fault(vmf);
4761 }
4762
4763 if (!pte_present(vmf->orig_pte))
4764 return do_swap_page(vmf);
4765
4766 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4767 return do_numa_page(vmf);
4768
4769 if (!pte_spinlock(vmf))
4770 return VM_FAULT_RETRY;
4771 entry = vmf->orig_pte;
4772 if (unlikely(!pte_same(*vmf->pte, entry))) {
4773 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4774 goto unlock;
4775 }
4776 if (vmf->flags & FAULT_FLAG_WRITE) {
4777 if (!pte_write(entry)) {
4778 if (!(vmf->flags & FAULT_FLAG_SPECULATIVE))
4779 return do_wp_page(vmf);
4780
4781 if (!mmu_notifier_trylock(vmf->vma->vm_mm)) {
4782 ret = VM_FAULT_RETRY;
4783 goto unlock;
4784 }
4785
4786 ret = do_wp_page(vmf);
4787 mmu_notifier_unlock(vmf->vma->vm_mm);
4788 return ret;
4789 }
4790 entry = pte_mkdirty(entry);
4791 }
4792 entry = pte_mkyoung(entry);
4793 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4794 vmf->flags & FAULT_FLAG_WRITE)) {
4795 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4796 } else {
4797 /* Skip spurious TLB flush for retried page fault */
4798 if (vmf->flags & FAULT_FLAG_TRIED)
4799 goto unlock;
4800 if (vmf->flags & FAULT_FLAG_SPECULATIVE)
4801 ret = VM_FAULT_RETRY;
4802 /*
4803 * This is needed only for protection faults but the arch code
4804 * is not yet telling us if this is a protection fault or not.
4805 * This still avoids useless tlb flushes for .text page faults
4806 * with threads.
4807 */
4808 if (vmf->flags & FAULT_FLAG_WRITE)
4809 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4810 }
4811 trace_android_rvh_handle_pte_fault_end(vmf, highest_memmap_pfn);
4812 trace_android_vh_handle_pte_fault_end(vmf, highest_memmap_pfn);
4813 unlock:
4814 pte_unmap_unlock(vmf->pte, vmf->ptl);
4815 return ret;
4816 }
4817
4818 /*
4819 * By the time we get here, we already hold the mm semaphore
4820 *
4821 * The mmap_lock may have been released depending on flags and our
4822 * return value. See filemap_fault() and __lock_page_or_retry().
4823 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4824 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4825 unsigned long address, unsigned int flags)
4826 {
4827 struct vm_fault vmf = {
4828 .vma = vma,
4829 .address = address & PAGE_MASK,
4830 .flags = flags,
4831 .pgoff = linear_page_index(vma, address),
4832 .gfp_mask = __get_fault_gfp_mask(vma),
4833 .vma_flags = vma->vm_flags,
4834 .vma_page_prot = vma->vm_page_prot,
4835 };
4836 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4837 struct mm_struct *mm = vma->vm_mm;
4838 pgd_t *pgd;
4839 p4d_t *p4d;
4840 vm_fault_t ret;
4841
4842 pgd = pgd_offset(mm, address);
4843 p4d = p4d_alloc(mm, pgd, address);
4844 if (!p4d)
4845 return VM_FAULT_OOM;
4846
4847 vmf.pud = pud_alloc(mm, p4d, address);
4848 if (!vmf.pud)
4849 return VM_FAULT_OOM;
4850 retry_pud:
4851 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4852 ret = create_huge_pud(&vmf);
4853 if (!(ret & VM_FAULT_FALLBACK))
4854 return ret;
4855 } else {
4856 pud_t orig_pud = *vmf.pud;
4857
4858 barrier();
4859 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4860
4861 /* NUMA case for anonymous PUDs would go here */
4862
4863 if (dirty && !pud_write(orig_pud)) {
4864 ret = wp_huge_pud(&vmf, orig_pud);
4865 if (!(ret & VM_FAULT_FALLBACK))
4866 return ret;
4867 } else {
4868 huge_pud_set_accessed(&vmf, orig_pud);
4869 return 0;
4870 }
4871 }
4872 }
4873
4874 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4875 if (!vmf.pmd)
4876 return VM_FAULT_OOM;
4877
4878 /* Huge pud page fault raced with pmd_alloc? */
4879 if (pud_trans_unstable(vmf.pud))
4880 goto retry_pud;
4881
4882 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
4883 vmf.sequence = raw_read_seqcount(&vma->vm_sequence);
4884 #endif
4885 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4886 ret = create_huge_pmd(&vmf);
4887 if (!(ret & VM_FAULT_FALLBACK))
4888 return ret;
4889 } else {
4890 pmd_t orig_pmd = *vmf.pmd;
4891
4892 barrier();
4893 if (unlikely(is_swap_pmd(orig_pmd))) {
4894 VM_BUG_ON(thp_migration_supported() &&
4895 !is_pmd_migration_entry(orig_pmd));
4896 if (is_pmd_migration_entry(orig_pmd))
4897 pmd_migration_entry_wait(mm, vmf.pmd);
4898 return 0;
4899 }
4900 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4901 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4902 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4903
4904 if (dirty && !pmd_write(orig_pmd)) {
4905 ret = wp_huge_pmd(&vmf, orig_pmd);
4906 if (!(ret & VM_FAULT_FALLBACK))
4907 return ret;
4908 } else {
4909 huge_pmd_set_accessed(&vmf, orig_pmd);
4910 return 0;
4911 }
4912 }
4913 }
4914
4915 return handle_pte_fault(&vmf);
4916 }
4917
4918 /**
4919 * mm_account_fault - Do page fault accountings
4920 *
4921 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4922 * of perf event counters, but we'll still do the per-task accounting to
4923 * the task who triggered this page fault.
4924 * @address: the faulted address.
4925 * @flags: the fault flags.
4926 * @ret: the fault retcode.
4927 *
4928 * This will take care of most of the page fault accountings. Meanwhile, it
4929 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4930 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4931 * still be in per-arch page fault handlers at the entry of page fault.
4932 */
mm_account_fault(struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)4933 static inline void mm_account_fault(struct pt_regs *regs,
4934 unsigned long address, unsigned int flags,
4935 vm_fault_t ret)
4936 {
4937 bool major;
4938
4939 /*
4940 * We don't do accounting for some specific faults:
4941 *
4942 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4943 * includes arch_vma_access_permitted() failing before reaching here.
4944 * So this is not a "this many hardware page faults" counter. We
4945 * should use the hw profiling for that.
4946 *
4947 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4948 * once they're completed.
4949 */
4950 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4951 return;
4952
4953 /*
4954 * We define the fault as a major fault when the final successful fault
4955 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4956 * handle it immediately previously).
4957 */
4958 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4959
4960 if (major)
4961 current->maj_flt++;
4962 else
4963 current->min_flt++;
4964
4965 /*
4966 * If the fault is done for GUP, regs will be NULL. We only do the
4967 * accounting for the per thread fault counters who triggered the
4968 * fault, and we skip the perf event updates.
4969 */
4970 if (!regs)
4971 return;
4972
4973 if (major)
4974 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4975 else
4976 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4977 }
4978 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
4979
4980 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
4981 /* This is required by vm_normal_page() */
4982 #error "Speculative page fault handler requires CONFIG_ARCH_HAS_PTE_SPECIAL"
4983 #endif
4984 /*
4985 * vm_normal_page() adds some processing which should be done while
4986 * hodling the mmap_sem.
4987 */
4988
4989 /*
4990 * Tries to handle the page fault in a speculative way, without grabbing the
4991 * mmap_sem.
4992 * When VM_FAULT_RETRY is returned, the vma pointer is valid and this vma must
4993 * be checked later when the mmap_sem has been grabbed by calling
4994 * can_reuse_spf_vma().
4995 * This is needed as the returned vma is kept in memory until the call to
4996 * can_reuse_spf_vma() is made.
4997 */
___handle_speculative_fault(struct mm_struct * mm,unsigned long address,unsigned int flags,struct vm_area_struct * vma)4998 static vm_fault_t ___handle_speculative_fault(struct mm_struct *mm,
4999 unsigned long address, unsigned int flags,
5000 struct vm_area_struct *vma)
5001 {
5002 struct vm_fault vmf = {
5003 .address = address,
5004 .pgoff = linear_page_index(vma, address),
5005 .vma = vma,
5006 .gfp_mask = __get_fault_gfp_mask(vma),
5007 .flags = flags,
5008 };
5009 #ifdef CONFIG_NUMA
5010 struct mempolicy *pol;
5011 #endif
5012 pgd_t *pgd, pgdval;
5013 p4d_t *p4d, p4dval;
5014 pud_t pudval;
5015 int seq;
5016 vm_fault_t ret;
5017
5018 /* Clear flags that may lead to release the mmap_sem to retry */
5019 flags &= ~(FAULT_FLAG_ALLOW_RETRY|FAULT_FLAG_KILLABLE);
5020 flags |= FAULT_FLAG_SPECULATIVE;
5021
5022 /* rmb <-> seqlock,vma_rb_erase() */
5023 seq = raw_read_seqcount(&vmf.vma->vm_sequence);
5024 if (seq & 1) {
5025 trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
5026 return VM_FAULT_RETRY;
5027 }
5028
5029 if (!vmf_allows_speculation(&vmf))
5030 return VM_FAULT_RETRY;
5031
5032 vmf.vma_flags = READ_ONCE(vmf.vma->vm_flags);
5033 vmf.vma_page_prot = READ_ONCE(vmf.vma->vm_page_prot);
5034
5035 #ifdef CONFIG_USERFAULTFD
5036 /* Can't call userland page fault handler in the speculative path */
5037 if (unlikely(vmf.vma_flags & __VM_UFFD_FLAGS)) {
5038 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5039 return VM_FAULT_RETRY;
5040 }
5041 #endif
5042
5043 if (vmf.vma_flags & VM_GROWSDOWN || vmf.vma_flags & VM_GROWSUP) {
5044 /*
5045 * This could be detected by the check address against VMA's
5046 * boundaries but we want to trace it as not supported instead
5047 * of changed.
5048 */
5049 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5050 return VM_FAULT_RETRY;
5051 }
5052
5053 if (address < READ_ONCE(vmf.vma->vm_start)
5054 || READ_ONCE(vmf.vma->vm_end) <= address) {
5055 trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
5056 return VM_FAULT_RETRY;
5057 }
5058
5059 if (!arch_vma_access_permitted(vmf.vma, flags & FAULT_FLAG_WRITE,
5060 flags & FAULT_FLAG_INSTRUCTION,
5061 flags & FAULT_FLAG_REMOTE))
5062 goto out_segv;
5063
5064 /* This is one is required to check that the VMA has write access set */
5065 if (flags & FAULT_FLAG_WRITE) {
5066 if (unlikely(!(vmf.vma_flags & VM_WRITE)))
5067 goto out_segv;
5068 } else if (unlikely(!(vmf.vma_flags & (VM_READ|VM_EXEC|VM_WRITE))))
5069 goto out_segv;
5070
5071 #ifdef CONFIG_NUMA
5072 /*
5073 * MPOL_INTERLEAVE implies additional checks in
5074 * mpol_misplaced() which are not compatible with the
5075 *speculative page fault processing.
5076 */
5077 pol = __get_vma_policy(vmf.vma, address);
5078 if (!pol)
5079 pol = get_task_policy(current);
5080 if (pol && pol->mode == MPOL_INTERLEAVE) {
5081 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5082 return VM_FAULT_RETRY;
5083 }
5084 #endif
5085
5086 /*
5087 * Do a speculative lookup of the PTE entry.
5088 */
5089 local_irq_disable();
5090 pgd = pgd_offset(mm, address);
5091 pgdval = READ_ONCE(*pgd);
5092 if (pgd_none(pgdval) || unlikely(pgd_bad(pgdval)))
5093 goto out_walk;
5094
5095 p4d = p4d_offset(pgd, address);
5096 if (pgd_val(READ_ONCE(*pgd)) != pgd_val(pgdval))
5097 goto out_walk;
5098 p4dval = READ_ONCE(*p4d);
5099 if (p4d_none(p4dval) || unlikely(p4d_bad(p4dval)))
5100 goto out_walk;
5101
5102 vmf.pud = pud_offset(p4d, address);
5103 if (p4d_val(READ_ONCE(*p4d)) != p4d_val(p4dval))
5104 goto out_walk;
5105 pudval = READ_ONCE(*vmf.pud);
5106 if (pud_none(pudval) || unlikely(pud_bad(pudval)))
5107 goto out_walk;
5108
5109 /* Huge pages at PUD level are not supported. */
5110 if (unlikely(pud_trans_huge(pudval)))
5111 goto out_walk;
5112
5113 vmf.pmd = pmd_offset(vmf.pud, address);
5114 if (pud_val(READ_ONCE(*vmf.pud)) != pud_val(pudval))
5115 goto out_walk;
5116 vmf.orig_pmd = READ_ONCE(*vmf.pmd);
5117 /*
5118 * pmd_none could mean that a hugepage collapse is in progress
5119 * in our back as collapse_huge_page() mark it before
5120 * invalidating the pte (which is done once the IPI is catched
5121 * by all CPU and we have interrupt disabled).
5122 * For this reason we cannot handle THP in a speculative way since we
5123 * can't safely indentify an in progress collapse operation done in our
5124 * back on that PMD.
5125 * Regarding the order of the following checks, see comment in
5126 * pmd_devmap_trans_unstable()
5127 */
5128 if (unlikely(pmd_devmap(vmf.orig_pmd) ||
5129 pmd_none(vmf.orig_pmd) || pmd_trans_huge(vmf.orig_pmd) ||
5130 is_swap_pmd(vmf.orig_pmd)))
5131 goto out_walk;
5132
5133 /*
5134 * The above does not allocate/instantiate page-tables because doing so
5135 * would lead to the possibility of instantiating page-tables after
5136 * free_pgtables() -- and consequently leaking them.
5137 *
5138 * The result is that we take at least one !speculative fault per PMD
5139 * in order to instantiate it.
5140 */
5141
5142 vmf.pte = pte_offset_map(vmf.pmd, address);
5143 if (pmd_val(READ_ONCE(*vmf.pmd)) != pmd_val(vmf.orig_pmd)) {
5144 pte_unmap(vmf.pte);
5145 vmf.pte = NULL;
5146 goto out_walk;
5147 }
5148 vmf.orig_pte = READ_ONCE(*vmf.pte);
5149 barrier(); /* See comment in handle_pte_fault() */
5150 if (pte_none(vmf.orig_pte)) {
5151 pte_unmap(vmf.pte);
5152 vmf.pte = NULL;
5153 }
5154
5155 vmf.sequence = seq;
5156 vmf.flags = flags;
5157
5158 local_irq_enable();
5159
5160 /*
5161 * We need to re-validate the VMA after checking the bounds, otherwise
5162 * we might have a false positive on the bounds.
5163 */
5164 if (read_seqcount_retry(&vmf.vma->vm_sequence, seq)) {
5165 trace_spf_vma_changed(_RET_IP_, vmf.vma, address);
5166 return VM_FAULT_RETRY;
5167 }
5168
5169 mem_cgroup_enter_user_fault();
5170 ret = handle_pte_fault(&vmf);
5171 mem_cgroup_exit_user_fault();
5172
5173 if (ret != VM_FAULT_RETRY) {
5174 if (vma_is_anonymous(vmf.vma))
5175 count_vm_event(SPECULATIVE_PGFAULT_ANON);
5176 else
5177 count_vm_event(SPECULATIVE_PGFAULT_FILE);
5178 }
5179
5180 /*
5181 * The task may have entered a memcg OOM situation but
5182 * if the allocation error was handled gracefully (no
5183 * VM_FAULT_OOM), there is no need to kill anything.
5184 * Just clean up the OOM state peacefully.
5185 */
5186 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5187 mem_cgroup_oom_synchronize(false);
5188 return ret;
5189
5190 out_walk:
5191 trace_spf_vma_notsup(_RET_IP_, vmf.vma, address);
5192 local_irq_enable();
5193 return VM_FAULT_RETRY;
5194
5195 out_segv:
5196 trace_spf_vma_access(_RET_IP_, vmf.vma, address);
5197 return VM_FAULT_SIGSEGV;
5198 }
5199
__handle_speculative_fault(struct mm_struct * mm,unsigned long address,unsigned int flags,struct vm_area_struct ** vma,struct pt_regs * regs)5200 vm_fault_t __handle_speculative_fault(struct mm_struct *mm,
5201 unsigned long address, unsigned int flags,
5202 struct vm_area_struct **vma,
5203 struct pt_regs *regs)
5204 {
5205 vm_fault_t ret;
5206
5207 check_sync_rss_stat(current);
5208
5209 *vma = get_vma(mm, address);
5210 if (!*vma)
5211 return VM_FAULT_RETRY;
5212
5213 ret = ___handle_speculative_fault(mm, address, flags, *vma);
5214
5215 /*
5216 * If there is no need to retry, don't return the vma to the caller.
5217 */
5218 if (ret != VM_FAULT_RETRY) {
5219 put_vma(*vma);
5220 *vma = NULL;
5221 mm_account_fault(regs, address, flags, ret);
5222 }
5223
5224 return ret;
5225 }
5226
5227 /*
5228 * This is used to know if the vma fetch in the speculative page fault handler
5229 * is still valid when trying the regular fault path while holding the
5230 * mmap_sem.
5231 * The call to put_vma(vma) must be made after checking the vma's fields, as
5232 * the vma may be freed by put_vma(). In such a case it is expected that false
5233 * is returned.
5234 */
can_reuse_spf_vma(struct vm_area_struct * vma,unsigned long address)5235 bool can_reuse_spf_vma(struct vm_area_struct *vma, unsigned long address)
5236 {
5237 bool ret;
5238
5239 ret = !RB_EMPTY_NODE(&vma->vm_rb) &&
5240 vma->vm_start <= address && address < vma->vm_end;
5241 put_vma(vma);
5242 return ret;
5243 }
5244 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
5245
5246 /*
5247 * By the time we get here, we already hold the mm semaphore
5248 *
5249 * The mmap_lock may have been released depending on flags and our
5250 * return value. See filemap_fault() and __lock_page_or_retry().
5251 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5252 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5253 unsigned int flags, struct pt_regs *regs)
5254 {
5255 vm_fault_t ret;
5256
5257 __set_current_state(TASK_RUNNING);
5258
5259 count_vm_event(PGFAULT);
5260 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5261
5262 /* do counter updates before entering really critical section. */
5263 check_sync_rss_stat(current);
5264
5265 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5266 flags & FAULT_FLAG_INSTRUCTION,
5267 flags & FAULT_FLAG_REMOTE))
5268 return VM_FAULT_SIGSEGV;
5269
5270 /*
5271 * Enable the memcg OOM handling for faults triggered in user
5272 * space. Kernel faults are handled more gracefully.
5273 */
5274 if (flags & FAULT_FLAG_USER)
5275 mem_cgroup_enter_user_fault();
5276
5277 if (unlikely(is_vm_hugetlb_page(vma)))
5278 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5279 else
5280 ret = __handle_mm_fault(vma, address, flags);
5281
5282 if (flags & FAULT_FLAG_USER) {
5283 mem_cgroup_exit_user_fault();
5284 /*
5285 * The task may have entered a memcg OOM situation but
5286 * if the allocation error was handled gracefully (no
5287 * VM_FAULT_OOM), there is no need to kill anything.
5288 * Just clean up the OOM state peacefully.
5289 */
5290 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5291 mem_cgroup_oom_synchronize(false);
5292 }
5293
5294 mm_account_fault(regs, address, flags, ret);
5295
5296 return ret;
5297 }
5298 EXPORT_SYMBOL_GPL(handle_mm_fault);
5299
5300 #ifndef __PAGETABLE_P4D_FOLDED
5301 /*
5302 * Allocate p4d page table.
5303 * We've already handled the fast-path in-line.
5304 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5305 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5306 {
5307 p4d_t *new = p4d_alloc_one(mm, address);
5308 if (!new)
5309 return -ENOMEM;
5310
5311 smp_wmb(); /* See comment in __pte_alloc */
5312
5313 spin_lock(&mm->page_table_lock);
5314 if (pgd_present(*pgd)) /* Another has populated it */
5315 p4d_free(mm, new);
5316 else
5317 pgd_populate(mm, pgd, new);
5318 spin_unlock(&mm->page_table_lock);
5319 return 0;
5320 }
5321 #endif /* __PAGETABLE_P4D_FOLDED */
5322
5323 #ifndef __PAGETABLE_PUD_FOLDED
5324 /*
5325 * Allocate page upper directory.
5326 * We've already handled the fast-path in-line.
5327 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5328 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5329 {
5330 pud_t *new = pud_alloc_one(mm, address);
5331 if (!new)
5332 return -ENOMEM;
5333
5334 smp_wmb(); /* See comment in __pte_alloc */
5335
5336 spin_lock(&mm->page_table_lock);
5337 if (!p4d_present(*p4d)) {
5338 mm_inc_nr_puds(mm);
5339 p4d_populate(mm, p4d, new);
5340 } else /* Another has populated it */
5341 pud_free(mm, new);
5342 spin_unlock(&mm->page_table_lock);
5343 return 0;
5344 }
5345 #endif /* __PAGETABLE_PUD_FOLDED */
5346
5347 #ifndef __PAGETABLE_PMD_FOLDED
5348 /*
5349 * Allocate page middle directory.
5350 * We've already handled the fast-path in-line.
5351 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5352 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5353 {
5354 spinlock_t *ptl;
5355 pmd_t *new = pmd_alloc_one(mm, address);
5356 if (!new)
5357 return -ENOMEM;
5358
5359 smp_wmb(); /* See comment in __pte_alloc */
5360
5361 ptl = pud_lock(mm, pud);
5362 if (!pud_present(*pud)) {
5363 mm_inc_nr_pmds(mm);
5364 pud_populate(mm, pud, new);
5365 } else /* Another has populated it */
5366 pmd_free(mm, new);
5367 spin_unlock(ptl);
5368 return 0;
5369 }
5370 #endif /* __PAGETABLE_PMD_FOLDED */
5371
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)5372 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
5373 struct mmu_notifier_range *range, pte_t **ptepp,
5374 pmd_t **pmdpp, spinlock_t **ptlp)
5375 {
5376 pgd_t *pgd;
5377 p4d_t *p4d;
5378 pud_t *pud;
5379 pmd_t *pmd;
5380 pte_t *ptep;
5381
5382 pgd = pgd_offset(mm, address);
5383 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5384 goto out;
5385
5386 p4d = p4d_offset(pgd, address);
5387 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5388 goto out;
5389
5390 pud = pud_offset(p4d, address);
5391 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5392 goto out;
5393
5394 pmd = pmd_offset(pud, address);
5395 VM_BUG_ON(pmd_trans_huge(*pmd));
5396
5397 if (pmd_huge(*pmd)) {
5398 if (!pmdpp)
5399 goto out;
5400
5401 if (range) {
5402 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
5403 NULL, mm, address & PMD_MASK,
5404 (address & PMD_MASK) + PMD_SIZE);
5405 mmu_notifier_invalidate_range_start(range);
5406 }
5407 *ptlp = pmd_lock(mm, pmd);
5408 if (pmd_huge(*pmd)) {
5409 *pmdpp = pmd;
5410 return 0;
5411 }
5412 spin_unlock(*ptlp);
5413 if (range)
5414 mmu_notifier_invalidate_range_end(range);
5415 }
5416
5417 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5418 goto out;
5419
5420 if (range) {
5421 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
5422 address & PAGE_MASK,
5423 (address & PAGE_MASK) + PAGE_SIZE);
5424 mmu_notifier_invalidate_range_start(range);
5425 }
5426 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5427 if (!pte_present(*ptep))
5428 goto unlock;
5429 *ptepp = ptep;
5430 return 0;
5431 unlock:
5432 pte_unmap_unlock(ptep, *ptlp);
5433 if (range)
5434 mmu_notifier_invalidate_range_end(range);
5435 out:
5436 return -EINVAL;
5437 }
5438
5439 /**
5440 * follow_pte - look up PTE at a user virtual address
5441 * @mm: the mm_struct of the target address space
5442 * @address: user virtual address
5443 * @ptepp: location to store found PTE
5444 * @ptlp: location to store the lock for the PTE
5445 *
5446 * On a successful return, the pointer to the PTE is stored in @ptepp;
5447 * the corresponding lock is taken and its location is stored in @ptlp.
5448 * The contents of the PTE are only stable until @ptlp is released;
5449 * any further use, if any, must be protected against invalidation
5450 * with MMU notifiers.
5451 *
5452 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5453 * should be taken for read.
5454 *
5455 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5456 * it is not a good general-purpose API.
5457 *
5458 * Return: zero on success, -ve otherwise.
5459 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5460 int follow_pte(struct mm_struct *mm, unsigned long address,
5461 pte_t **ptepp, spinlock_t **ptlp)
5462 {
5463 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
5464 }
5465 EXPORT_SYMBOL_GPL(follow_pte);
5466
5467 /**
5468 * follow_pfn - look up PFN at a user virtual address
5469 * @vma: memory mapping
5470 * @address: user virtual address
5471 * @pfn: location to store found PFN
5472 *
5473 * Only IO mappings and raw PFN mappings are allowed.
5474 *
5475 * This function does not allow the caller to read the permissions
5476 * of the PTE. Do not use it.
5477 *
5478 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5479 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5480 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5481 unsigned long *pfn)
5482 {
5483 int ret = -EINVAL;
5484 spinlock_t *ptl;
5485 pte_t *ptep;
5486
5487 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5488 return ret;
5489
5490 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5491 if (ret)
5492 return ret;
5493 *pfn = pte_pfn(*ptep);
5494 pte_unmap_unlock(ptep, ptl);
5495 return 0;
5496 }
5497 EXPORT_SYMBOL(follow_pfn);
5498
5499 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5500 int follow_phys(struct vm_area_struct *vma,
5501 unsigned long address, unsigned int flags,
5502 unsigned long *prot, resource_size_t *phys)
5503 {
5504 int ret = -EINVAL;
5505 pte_t *ptep, pte;
5506 spinlock_t *ptl;
5507
5508 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5509 goto out;
5510
5511 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5512 goto out;
5513 pte = *ptep;
5514
5515 if ((flags & FOLL_WRITE) && !pte_write(pte))
5516 goto unlock;
5517
5518 *prot = pgprot_val(pte_pgprot(pte));
5519 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5520
5521 ret = 0;
5522 unlock:
5523 pte_unmap_unlock(ptep, ptl);
5524 out:
5525 return ret;
5526 }
5527
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5528 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5529 void *buf, int len, int write)
5530 {
5531 resource_size_t phys_addr;
5532 unsigned long prot = 0;
5533 void __iomem *maddr;
5534 int offset = addr & (PAGE_SIZE-1);
5535
5536 if (follow_phys(vma, addr, write, &prot, &phys_addr))
5537 return -EINVAL;
5538
5539 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5540 if (!maddr)
5541 return -ENOMEM;
5542
5543 if (write)
5544 memcpy_toio(maddr + offset, buf, len);
5545 else
5546 memcpy_fromio(buf, maddr + offset, len);
5547 iounmap(maddr);
5548
5549 return len;
5550 }
5551 EXPORT_SYMBOL_GPL(generic_access_phys);
5552 #endif
5553
5554 /*
5555 * Access another process' address space as given in mm. If non-NULL, use the
5556 * given task for page fault accounting.
5557 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5558 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
5559 unsigned long addr, void *buf, int len, unsigned int gup_flags)
5560 {
5561 struct vm_area_struct *vma;
5562 void *old_buf = buf;
5563 int write = gup_flags & FOLL_WRITE;
5564
5565 if (mmap_read_lock_killable(mm))
5566 return 0;
5567
5568 /* ignore errors, just check how much was successfully transferred */
5569 while (len) {
5570 int bytes, ret, offset;
5571 void *maddr;
5572 struct page *page = NULL;
5573
5574 ret = get_user_pages_remote(mm, addr, 1,
5575 gup_flags, &page, &vma, NULL);
5576 if (ret <= 0) {
5577 #ifndef CONFIG_HAVE_IOREMAP_PROT
5578 break;
5579 #else
5580 /*
5581 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5582 * we can access using slightly different code.
5583 */
5584 vma = find_vma(mm, addr);
5585 if (!vma || vma->vm_start > addr)
5586 break;
5587 if (vma->vm_ops && vma->vm_ops->access)
5588 ret = vma->vm_ops->access(vma, addr, buf,
5589 len, write);
5590 if (ret <= 0)
5591 break;
5592 bytes = ret;
5593 #endif
5594 } else {
5595 bytes = len;
5596 offset = addr & (PAGE_SIZE-1);
5597 if (bytes > PAGE_SIZE-offset)
5598 bytes = PAGE_SIZE-offset;
5599
5600 maddr = kmap(page);
5601 if (write) {
5602 copy_to_user_page(vma, page, addr,
5603 maddr + offset, buf, bytes);
5604 set_page_dirty_lock(page);
5605 } else {
5606 copy_from_user_page(vma, page, addr,
5607 buf, maddr + offset, bytes);
5608 }
5609 kunmap(page);
5610 put_user_page(page);
5611 }
5612 len -= bytes;
5613 buf += bytes;
5614 addr += bytes;
5615 }
5616 mmap_read_unlock(mm);
5617
5618 return buf - old_buf;
5619 }
5620
5621 /**
5622 * access_remote_vm - access another process' address space
5623 * @mm: the mm_struct of the target address space
5624 * @addr: start address to access
5625 * @buf: source or destination buffer
5626 * @len: number of bytes to transfer
5627 * @gup_flags: flags modifying lookup behaviour
5628 *
5629 * The caller must hold a reference on @mm.
5630 *
5631 * Return: number of bytes copied from source to destination.
5632 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5633 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5634 void *buf, int len, unsigned int gup_flags)
5635 {
5636 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5637 }
5638
5639 /*
5640 * Access another process' address space.
5641 * Source/target buffer must be kernel space,
5642 * Do not walk the page table directly, use get_user_pages
5643 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5644 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5645 void *buf, int len, unsigned int gup_flags)
5646 {
5647 struct mm_struct *mm;
5648 int ret;
5649
5650 mm = get_task_mm(tsk);
5651 if (!mm)
5652 return 0;
5653
5654 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
5655
5656 mmput(mm);
5657
5658 return ret;
5659 }
5660 EXPORT_SYMBOL_GPL(access_process_vm);
5661
5662 /*
5663 * Print the name of a VMA.
5664 */
print_vma_addr(char * prefix,unsigned long ip)5665 void print_vma_addr(char *prefix, unsigned long ip)
5666 {
5667 struct mm_struct *mm = current->mm;
5668 struct vm_area_struct *vma;
5669
5670 /*
5671 * we might be running from an atomic context so we cannot sleep
5672 */
5673 if (!mmap_read_trylock(mm))
5674 return;
5675
5676 vma = find_vma(mm, ip);
5677 if (vma && vma->vm_file) {
5678 struct file *f = vma->vm_file;
5679 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5680 if (buf) {
5681 char *p;
5682
5683 p = file_path(f, buf, PAGE_SIZE);
5684 if (IS_ERR(p))
5685 p = "?";
5686 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5687 vma->vm_start,
5688 vma->vm_end - vma->vm_start);
5689 free_page((unsigned long)buf);
5690 }
5691 }
5692 mmap_read_unlock(mm);
5693 }
5694
5695 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5696 void __might_fault(const char *file, int line)
5697 {
5698 /*
5699 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5700 * holding the mmap_lock, this is safe because kernel memory doesn't
5701 * get paged out, therefore we'll never actually fault, and the
5702 * below annotations will generate false positives.
5703 */
5704 if (uaccess_kernel())
5705 return;
5706 if (pagefault_disabled())
5707 return;
5708 __might_sleep(file, line, 0);
5709 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5710 if (current->mm)
5711 might_lock_read(¤t->mm->mmap_lock);
5712 #endif
5713 }
5714 EXPORT_SYMBOL(__might_fault);
5715 #endif
5716
5717 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5718 /*
5719 * Process all subpages of the specified huge page with the specified
5720 * operation. The target subpage will be processed last to keep its
5721 * cache lines hot.
5722 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5723 static inline void process_huge_page(
5724 unsigned long addr_hint, unsigned int pages_per_huge_page,
5725 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5726 void *arg)
5727 {
5728 int i, n, base, l;
5729 unsigned long addr = addr_hint &
5730 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5731
5732 /* Process target subpage last to keep its cache lines hot */
5733 might_sleep();
5734 n = (addr_hint - addr) / PAGE_SIZE;
5735 if (2 * n <= pages_per_huge_page) {
5736 /* If target subpage in first half of huge page */
5737 base = 0;
5738 l = n;
5739 /* Process subpages at the end of huge page */
5740 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5741 cond_resched();
5742 process_subpage(addr + i * PAGE_SIZE, i, arg);
5743 }
5744 } else {
5745 /* If target subpage in second half of huge page */
5746 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5747 l = pages_per_huge_page - n;
5748 /* Process subpages at the begin of huge page */
5749 for (i = 0; i < base; i++) {
5750 cond_resched();
5751 process_subpage(addr + i * PAGE_SIZE, i, arg);
5752 }
5753 }
5754 /*
5755 * Process remaining subpages in left-right-left-right pattern
5756 * towards the target subpage
5757 */
5758 for (i = 0; i < l; i++) {
5759 int left_idx = base + i;
5760 int right_idx = base + 2 * l - 1 - i;
5761
5762 cond_resched();
5763 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5764 cond_resched();
5765 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5766 }
5767 }
5768
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)5769 static void clear_gigantic_page(struct page *page,
5770 unsigned long addr,
5771 unsigned int pages_per_huge_page)
5772 {
5773 int i;
5774 struct page *p = page;
5775
5776 might_sleep();
5777 for (i = 0; i < pages_per_huge_page;
5778 i++, p = mem_map_next(p, page, i)) {
5779 cond_resched();
5780 clear_user_highpage(p, addr + i * PAGE_SIZE);
5781 }
5782 }
5783
clear_subpage(unsigned long addr,int idx,void * arg)5784 static void clear_subpage(unsigned long addr, int idx, void *arg)
5785 {
5786 struct page *page = arg;
5787
5788 clear_user_highpage(page + idx, addr);
5789 }
5790
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)5791 void clear_huge_page(struct page *page,
5792 unsigned long addr_hint, unsigned int pages_per_huge_page)
5793 {
5794 unsigned long addr = addr_hint &
5795 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5796
5797 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5798 clear_gigantic_page(page, addr, pages_per_huge_page);
5799 return;
5800 }
5801
5802 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5803 }
5804
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5805 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5806 unsigned long addr,
5807 struct vm_area_struct *vma,
5808 unsigned int pages_per_huge_page)
5809 {
5810 int i;
5811 struct page *dst_base = dst;
5812 struct page *src_base = src;
5813
5814 for (i = 0; i < pages_per_huge_page; ) {
5815 cond_resched();
5816 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5817
5818 i++;
5819 dst = mem_map_next(dst, dst_base, i);
5820 src = mem_map_next(src, src_base, i);
5821 }
5822 }
5823
5824 struct copy_subpage_arg {
5825 struct page *dst;
5826 struct page *src;
5827 struct vm_area_struct *vma;
5828 };
5829
copy_subpage(unsigned long addr,int idx,void * arg)5830 static void copy_subpage(unsigned long addr, int idx, void *arg)
5831 {
5832 struct copy_subpage_arg *copy_arg = arg;
5833
5834 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5835 addr, copy_arg->vma);
5836 }
5837
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)5838 void copy_user_huge_page(struct page *dst, struct page *src,
5839 unsigned long addr_hint, struct vm_area_struct *vma,
5840 unsigned int pages_per_huge_page)
5841 {
5842 unsigned long addr = addr_hint &
5843 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5844 struct copy_subpage_arg arg = {
5845 .dst = dst,
5846 .src = src,
5847 .vma = vma,
5848 };
5849
5850 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5851 copy_user_gigantic_page(dst, src, addr, vma,
5852 pages_per_huge_page);
5853 return;
5854 }
5855
5856 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5857 }
5858
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)5859 long copy_huge_page_from_user(struct page *dst_page,
5860 const void __user *usr_src,
5861 unsigned int pages_per_huge_page,
5862 bool allow_pagefault)
5863 {
5864 void *src = (void *)usr_src;
5865 void *page_kaddr;
5866 unsigned long i, rc = 0;
5867 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5868 struct page *subpage = dst_page;
5869
5870 for (i = 0; i < pages_per_huge_page;
5871 i++, subpage = mem_map_next(subpage, dst_page, i)) {
5872 if (allow_pagefault)
5873 page_kaddr = kmap(subpage);
5874 else
5875 page_kaddr = kmap_atomic(subpage);
5876 rc = copy_from_user(page_kaddr,
5877 (const void __user *)(src + i * PAGE_SIZE),
5878 PAGE_SIZE);
5879 if (allow_pagefault)
5880 kunmap(subpage);
5881 else
5882 kunmap_atomic(page_kaddr);
5883
5884 ret_val -= (PAGE_SIZE - rc);
5885 if (rc)
5886 break;
5887
5888 flush_dcache_page(subpage);
5889
5890 cond_resched();
5891 }
5892 return ret_val;
5893 }
5894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5895
5896 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5897
5898 static struct kmem_cache *page_ptl_cachep;
5899
ptlock_cache_init(void)5900 void __init ptlock_cache_init(void)
5901 {
5902 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5903 SLAB_PANIC, NULL);
5904 }
5905
ptlock_alloc(struct page * page)5906 bool ptlock_alloc(struct page *page)
5907 {
5908 spinlock_t *ptl;
5909
5910 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5911 if (!ptl)
5912 return false;
5913 page->ptl = ptl;
5914 return true;
5915 }
5916
ptlock_free(struct page * page)5917 void ptlock_free(struct page *page)
5918 {
5919 kmem_cache_free(page_ptl_cachep, page->ptl);
5920 }
5921 #endif
5922