xref: /OK3568_Linux_fs/kernel/arch/arm64/kernel/smp.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SMP initialisation and IPI support
4  * Based on arch/arm/kernel/smp.c
5  *
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kernel_stat.h>
34 #include <linux/kexec.h>
35 #include <linux/kvm_host.h>
36 
37 #include <asm/alternative.h>
38 #include <asm/atomic.h>
39 #include <asm/cacheflush.h>
40 #include <asm/cpu.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/daifflags.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/numa.h>
47 #include <asm/processor.h>
48 #include <asm/smp_plat.h>
49 #include <asm/sections.h>
50 #include <asm/tlbflush.h>
51 #include <asm/ptrace.h>
52 #include <asm/virt.h>
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ipi.h>
56 #undef CREATE_TRACE_POINTS
57 #include <trace/hooks/debug.h>
58 
59 #if IS_ENABLED(CONFIG_ROCKCHIP_MINIDUMP)
60 #include <soc/rockchip/rk_minidump.h>
61 #endif
62 
63 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
64 EXPORT_PER_CPU_SYMBOL(cpu_number);
65 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise);
66 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry);
67 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit);
68 
69 /*
70  * as from 2.5, kernels no longer have an init_tasks structure
71  * so we need some other way of telling a new secondary core
72  * where to place its SVC stack
73  */
74 struct secondary_data secondary_data;
75 /* Number of CPUs which aren't online, but looping in kernel text. */
76 static int cpus_stuck_in_kernel;
77 
78 enum ipi_msg_type {
79 	IPI_RESCHEDULE,
80 	IPI_CALL_FUNC,
81 	IPI_CPU_STOP,
82 	IPI_CPU_CRASH_STOP,
83 	IPI_TIMER,
84 	IPI_IRQ_WORK,
85 	IPI_WAKEUP,
86 	NR_IPI
87 };
88 
89 static int ipi_irq_base __read_mostly;
90 static int nr_ipi __read_mostly = NR_IPI;
91 static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
92 
93 static void ipi_setup(int cpu);
94 
95 #ifdef CONFIG_HOTPLUG_CPU
96 static void ipi_teardown(int cpu);
97 static int op_cpu_kill(unsigned int cpu);
98 #else
op_cpu_kill(unsigned int cpu)99 static inline int op_cpu_kill(unsigned int cpu)
100 {
101 	return -ENOSYS;
102 }
103 #endif
104 
105 
106 /*
107  * Boot a secondary CPU, and assign it the specified idle task.
108  * This also gives us the initial stack to use for this CPU.
109  */
boot_secondary(unsigned int cpu,struct task_struct * idle)110 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
111 {
112 	const struct cpu_operations *ops = get_cpu_ops(cpu);
113 
114 	if (ops->cpu_boot)
115 		return ops->cpu_boot(cpu);
116 
117 	return -EOPNOTSUPP;
118 }
119 
120 static DECLARE_COMPLETION(cpu_running);
121 
__cpu_up(unsigned int cpu,struct task_struct * idle)122 int __cpu_up(unsigned int cpu, struct task_struct *idle)
123 {
124 	int ret;
125 	long status;
126 
127 	/*
128 	 * We need to tell the secondary core where to find its stack and the
129 	 * page tables.
130 	 */
131 	secondary_data.task = idle;
132 	secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
133 	update_cpu_boot_status(CPU_MMU_OFF);
134 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
135 
136 	/* Now bring the CPU into our world */
137 	ret = boot_secondary(cpu, idle);
138 	if (ret) {
139 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
140 		return ret;
141 	}
142 
143 	/*
144 	 * CPU was successfully started, wait for it to come online or
145 	 * time out.
146 	 */
147 	wait_for_completion_timeout(&cpu_running,
148 				    msecs_to_jiffies(5000));
149 	if (cpu_online(cpu))
150 		return 0;
151 
152 	pr_crit("CPU%u: failed to come online\n", cpu);
153 	secondary_data.task = NULL;
154 	secondary_data.stack = NULL;
155 	__flush_dcache_area(&secondary_data, sizeof(secondary_data));
156 	status = READ_ONCE(secondary_data.status);
157 	if (status == CPU_MMU_OFF)
158 		status = READ_ONCE(__early_cpu_boot_status);
159 
160 	switch (status & CPU_BOOT_STATUS_MASK) {
161 	default:
162 		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
163 		       cpu, status);
164 		cpus_stuck_in_kernel++;
165 		break;
166 	case CPU_KILL_ME:
167 		if (!op_cpu_kill(cpu)) {
168 			pr_crit("CPU%u: died during early boot\n", cpu);
169 			break;
170 		}
171 		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
172 		fallthrough;
173 	case CPU_STUCK_IN_KERNEL:
174 		pr_crit("CPU%u: is stuck in kernel\n", cpu);
175 		if (status & CPU_STUCK_REASON_52_BIT_VA)
176 			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
177 		if (status & CPU_STUCK_REASON_NO_GRAN) {
178 			pr_crit("CPU%u: does not support %luK granule\n",
179 				cpu, PAGE_SIZE / SZ_1K);
180 		}
181 		cpus_stuck_in_kernel++;
182 		break;
183 	case CPU_PANIC_KERNEL:
184 		panic("CPU%u detected unsupported configuration\n", cpu);
185 	}
186 
187 	return -EIO;
188 }
189 
init_gic_priority_masking(void)190 static void init_gic_priority_masking(void)
191 {
192 	u32 cpuflags;
193 
194 	if (WARN_ON(!gic_enable_sre()))
195 		return;
196 
197 	cpuflags = read_sysreg(daif);
198 
199 	WARN_ON(!(cpuflags & PSR_I_BIT));
200 
201 	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
202 }
203 
204 /*
205  * This is the secondary CPU boot entry.  We're using this CPUs
206  * idle thread stack, but a set of temporary page tables.
207  */
secondary_start_kernel(void)208 asmlinkage notrace void secondary_start_kernel(void)
209 {
210 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
211 	struct mm_struct *mm = &init_mm;
212 	const struct cpu_operations *ops;
213 	unsigned int cpu;
214 
215 	cpu = task_cpu(current);
216 	set_my_cpu_offset(per_cpu_offset(cpu));
217 
218 	/*
219 	 * All kernel threads share the same mm context; grab a
220 	 * reference and switch to it.
221 	 */
222 	mmgrab(mm);
223 	current->active_mm = mm;
224 
225 	/*
226 	 * TTBR0 is only used for the identity mapping at this stage. Make it
227 	 * point to zero page to avoid speculatively fetching new entries.
228 	 */
229 	cpu_uninstall_idmap();
230 
231 	if (system_uses_irq_prio_masking())
232 		init_gic_priority_masking();
233 
234 	rcu_cpu_starting(cpu);
235 	trace_hardirqs_off();
236 
237 	/*
238 	 * If the system has established the capabilities, make sure
239 	 * this CPU ticks all of those. If it doesn't, the CPU will
240 	 * fail to come online.
241 	 */
242 	check_local_cpu_capabilities();
243 
244 	ops = get_cpu_ops(cpu);
245 	if (ops->cpu_postboot)
246 		ops->cpu_postboot();
247 
248 	/*
249 	 * Log the CPU info before it is marked online and might get read.
250 	 */
251 	cpuinfo_store_cpu();
252 
253 	/*
254 	 * Enable GIC and timers.
255 	 */
256 	notify_cpu_starting(cpu);
257 
258 	ipi_setup(cpu);
259 
260 	store_cpu_topology(cpu);
261 	numa_add_cpu(cpu);
262 
263 	/*
264 	 * OK, now it's safe to let the boot CPU continue.  Wait for
265 	 * the CPU migration code to notice that the CPU is online
266 	 * before we continue.
267 	 */
268 	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
269 					 cpu, (unsigned long)mpidr,
270 					 read_cpuid_id());
271 	update_cpu_boot_status(CPU_BOOT_SUCCESS);
272 	set_cpu_online(cpu, true);
273 	complete(&cpu_running);
274 
275 	local_daif_restore(DAIF_PROCCTX);
276 
277 	/*
278 	 * OK, it's off to the idle thread for us
279 	 */
280 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
281 }
282 
283 #ifdef CONFIG_HOTPLUG_CPU
op_cpu_disable(unsigned int cpu)284 static int op_cpu_disable(unsigned int cpu)
285 {
286 	const struct cpu_operations *ops = get_cpu_ops(cpu);
287 
288 	/*
289 	 * If we don't have a cpu_die method, abort before we reach the point
290 	 * of no return. CPU0 may not have an cpu_ops, so test for it.
291 	 */
292 	if (!ops || !ops->cpu_die)
293 		return -EOPNOTSUPP;
294 
295 	/*
296 	 * We may need to abort a hot unplug for some other mechanism-specific
297 	 * reason.
298 	 */
299 	if (ops->cpu_disable)
300 		return ops->cpu_disable(cpu);
301 
302 	return 0;
303 }
304 
305 /*
306  * __cpu_disable runs on the processor to be shutdown.
307  */
__cpu_disable(void)308 int __cpu_disable(void)
309 {
310 	unsigned int cpu = smp_processor_id();
311 	int ret;
312 
313 	ret = op_cpu_disable(cpu);
314 	if (ret)
315 		return ret;
316 
317 	remove_cpu_topology(cpu);
318 	numa_remove_cpu(cpu);
319 
320 	/*
321 	 * Take this CPU offline.  Once we clear this, we can't return,
322 	 * and we must not schedule until we're ready to give up the cpu.
323 	 */
324 	set_cpu_online(cpu, false);
325 	ipi_teardown(cpu);
326 
327 	/*
328 	 * OK - migrate IRQs away from this CPU
329 	 */
330 	irq_migrate_all_off_this_cpu();
331 
332 	return 0;
333 }
334 
op_cpu_kill(unsigned int cpu)335 static int op_cpu_kill(unsigned int cpu)
336 {
337 	const struct cpu_operations *ops = get_cpu_ops(cpu);
338 
339 	/*
340 	 * If we have no means of synchronising with the dying CPU, then assume
341 	 * that it is really dead. We can only wait for an arbitrary length of
342 	 * time and hope that it's dead, so let's skip the wait and just hope.
343 	 */
344 	if (!ops->cpu_kill)
345 		return 0;
346 
347 	return ops->cpu_kill(cpu);
348 }
349 
350 /*
351  * called on the thread which is asking for a CPU to be shutdown -
352  * waits until shutdown has completed, or it is timed out.
353  */
__cpu_die(unsigned int cpu)354 void __cpu_die(unsigned int cpu)
355 {
356 	int err;
357 
358 	if (!cpu_wait_death(cpu, 5)) {
359 		pr_crit("CPU%u: cpu didn't die\n", cpu);
360 		return;
361 	}
362 	pr_debug("CPU%u: shutdown\n", cpu);
363 
364 	/*
365 	 * Now that the dying CPU is beyond the point of no return w.r.t.
366 	 * in-kernel synchronisation, try to get the firwmare to help us to
367 	 * verify that it has really left the kernel before we consider
368 	 * clobbering anything it might still be using.
369 	 */
370 	err = op_cpu_kill(cpu);
371 	if (err)
372 		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
373 }
374 
375 /*
376  * Called from the idle thread for the CPU which has been shutdown.
377  *
378  */
cpu_die(void)379 void cpu_die(void)
380 {
381 	unsigned int cpu = smp_processor_id();
382 	const struct cpu_operations *ops = get_cpu_ops(cpu);
383 
384 	idle_task_exit();
385 
386 	local_daif_mask();
387 
388 	/* Tell __cpu_die() that this CPU is now safe to dispose of */
389 	(void)cpu_report_death();
390 
391 	/*
392 	 * Actually shutdown the CPU. This must never fail. The specific hotplug
393 	 * mechanism must perform all required cache maintenance to ensure that
394 	 * no dirty lines are lost in the process of shutting down the CPU.
395 	 */
396 	ops->cpu_die(cpu);
397 
398 	BUG();
399 }
400 #endif
401 
__cpu_try_die(int cpu)402 static void __cpu_try_die(int cpu)
403 {
404 #ifdef CONFIG_HOTPLUG_CPU
405 	const struct cpu_operations *ops = get_cpu_ops(cpu);
406 
407 	if (ops && ops->cpu_die)
408 		ops->cpu_die(cpu);
409 #endif
410 }
411 
412 /*
413  * Kill the calling secondary CPU, early in bringup before it is turned
414  * online.
415  */
cpu_die_early(void)416 void cpu_die_early(void)
417 {
418 	int cpu = smp_processor_id();
419 
420 	pr_crit("CPU%d: will not boot\n", cpu);
421 
422 	/* Mark this CPU absent */
423 	set_cpu_present(cpu, 0);
424 	rcu_report_dead(cpu);
425 
426 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
427 		update_cpu_boot_status(CPU_KILL_ME);
428 		__cpu_try_die(cpu);
429 	}
430 
431 	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
432 
433 	cpu_park_loop();
434 }
435 
hyp_mode_check(void)436 static void __init hyp_mode_check(void)
437 {
438 	if (is_hyp_mode_available())
439 		pr_info("CPU: All CPU(s) started at EL2\n");
440 	else if (is_hyp_mode_mismatched())
441 		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
442 			   "CPU: CPUs started in inconsistent modes");
443 	else
444 		pr_info("CPU: All CPU(s) started at EL1\n");
445 	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
446 		kvm_compute_layout();
447 		kvm_apply_hyp_relocations();
448 	}
449 }
450 
smp_cpus_done(unsigned int max_cpus)451 void __init smp_cpus_done(unsigned int max_cpus)
452 {
453 	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
454 	setup_cpu_features();
455 	hyp_mode_check();
456 	apply_alternatives_all();
457 	mark_linear_text_alias_ro();
458 }
459 
smp_prepare_boot_cpu(void)460 void __init smp_prepare_boot_cpu(void)
461 {
462 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
463 	cpuinfo_store_boot_cpu();
464 
465 	/*
466 	 * We now know enough about the boot CPU to apply the
467 	 * alternatives that cannot wait until interrupt handling
468 	 * and/or scheduling is enabled.
469 	 */
470 	apply_boot_alternatives();
471 
472 	/* Conditionally switch to GIC PMR for interrupt masking */
473 	if (system_uses_irq_prio_masking())
474 		init_gic_priority_masking();
475 
476 	kasan_init_hw_tags();
477 }
478 
of_get_cpu_mpidr(struct device_node * dn)479 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
480 {
481 	const __be32 *cell;
482 	u64 hwid;
483 
484 	/*
485 	 * A cpu node with missing "reg" property is
486 	 * considered invalid to build a cpu_logical_map
487 	 * entry.
488 	 */
489 	cell = of_get_property(dn, "reg", NULL);
490 	if (!cell) {
491 		pr_err("%pOF: missing reg property\n", dn);
492 		return INVALID_HWID;
493 	}
494 
495 	hwid = of_read_number(cell, of_n_addr_cells(dn));
496 	/*
497 	 * Non affinity bits must be set to 0 in the DT
498 	 */
499 	if (hwid & ~MPIDR_HWID_BITMASK) {
500 		pr_err("%pOF: invalid reg property\n", dn);
501 		return INVALID_HWID;
502 	}
503 	return hwid;
504 }
505 
506 /*
507  * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
508  * entries and check for duplicates. If any is found just ignore the
509  * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
510  * matching valid MPIDR values.
511  */
is_mpidr_duplicate(unsigned int cpu,u64 hwid)512 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
513 {
514 	unsigned int i;
515 
516 	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
517 		if (cpu_logical_map(i) == hwid)
518 			return true;
519 	return false;
520 }
521 
522 /*
523  * Initialize cpu operations for a logical cpu and
524  * set it in the possible mask on success
525  */
smp_cpu_setup(int cpu)526 static int __init smp_cpu_setup(int cpu)
527 {
528 	const struct cpu_operations *ops;
529 
530 	if (init_cpu_ops(cpu))
531 		return -ENODEV;
532 
533 	ops = get_cpu_ops(cpu);
534 	if (ops->cpu_init(cpu))
535 		return -ENODEV;
536 
537 	set_cpu_possible(cpu, true);
538 
539 	return 0;
540 }
541 
542 static bool bootcpu_valid __initdata;
543 static unsigned int cpu_count = 1;
544 
545 #ifdef CONFIG_ACPI
546 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
547 
acpi_cpu_get_madt_gicc(int cpu)548 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
549 {
550 	return &cpu_madt_gicc[cpu];
551 }
552 
553 /*
554  * acpi_map_gic_cpu_interface - parse processor MADT entry
555  *
556  * Carry out sanity checks on MADT processor entry and initialize
557  * cpu_logical_map on success
558  */
559 static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt * processor)560 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
561 {
562 	u64 hwid = processor->arm_mpidr;
563 
564 	if (!(processor->flags & ACPI_MADT_ENABLED)) {
565 		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
566 		return;
567 	}
568 
569 	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
570 		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
571 		return;
572 	}
573 
574 	if (is_mpidr_duplicate(cpu_count, hwid)) {
575 		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
576 		return;
577 	}
578 
579 	/* Check if GICC structure of boot CPU is available in the MADT */
580 	if (cpu_logical_map(0) == hwid) {
581 		if (bootcpu_valid) {
582 			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
583 			       hwid);
584 			return;
585 		}
586 		bootcpu_valid = true;
587 		cpu_madt_gicc[0] = *processor;
588 		return;
589 	}
590 
591 	if (cpu_count >= NR_CPUS)
592 		return;
593 
594 	/* map the logical cpu id to cpu MPIDR */
595 	set_cpu_logical_map(cpu_count, hwid);
596 
597 	cpu_madt_gicc[cpu_count] = *processor;
598 
599 	/*
600 	 * Set-up the ACPI parking protocol cpu entries
601 	 * while initializing the cpu_logical_map to
602 	 * avoid parsing MADT entries multiple times for
603 	 * nothing (ie a valid cpu_logical_map entry should
604 	 * contain a valid parking protocol data set to
605 	 * initialize the cpu if the parking protocol is
606 	 * the only available enable method).
607 	 */
608 	acpi_set_mailbox_entry(cpu_count, processor);
609 
610 	cpu_count++;
611 }
612 
613 static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers * header,const unsigned long end)614 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
615 			     const unsigned long end)
616 {
617 	struct acpi_madt_generic_interrupt *processor;
618 
619 	processor = (struct acpi_madt_generic_interrupt *)header;
620 	if (BAD_MADT_GICC_ENTRY(processor, end))
621 		return -EINVAL;
622 
623 	acpi_table_print_madt_entry(&header->common);
624 
625 	acpi_map_gic_cpu_interface(processor);
626 
627 	return 0;
628 }
629 
acpi_parse_and_init_cpus(void)630 static void __init acpi_parse_and_init_cpus(void)
631 {
632 	int i;
633 
634 	/*
635 	 * do a walk of MADT to determine how many CPUs
636 	 * we have including disabled CPUs, and get information
637 	 * we need for SMP init.
638 	 */
639 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
640 				      acpi_parse_gic_cpu_interface, 0);
641 
642 	/*
643 	 * In ACPI, SMP and CPU NUMA information is provided in separate
644 	 * static tables, namely the MADT and the SRAT.
645 	 *
646 	 * Thus, it is simpler to first create the cpu logical map through
647 	 * an MADT walk and then map the logical cpus to their node ids
648 	 * as separate steps.
649 	 */
650 	acpi_map_cpus_to_nodes();
651 
652 	for (i = 0; i < nr_cpu_ids; i++)
653 		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
654 }
655 #else
656 #define acpi_parse_and_init_cpus(...)	do { } while (0)
657 #endif
658 
659 /*
660  * Enumerate the possible CPU set from the device tree and build the
661  * cpu logical map array containing MPIDR values related to logical
662  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
663  */
of_parse_and_init_cpus(void)664 static void __init of_parse_and_init_cpus(void)
665 {
666 	struct device_node *dn;
667 
668 	for_each_of_cpu_node(dn) {
669 		u64 hwid = of_get_cpu_mpidr(dn);
670 
671 		if (hwid == INVALID_HWID)
672 			goto next;
673 
674 		if (is_mpidr_duplicate(cpu_count, hwid)) {
675 			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
676 				dn);
677 			goto next;
678 		}
679 
680 		/*
681 		 * The numbering scheme requires that the boot CPU
682 		 * must be assigned logical id 0. Record it so that
683 		 * the logical map built from DT is validated and can
684 		 * be used.
685 		 */
686 		if (hwid == cpu_logical_map(0)) {
687 			if (bootcpu_valid) {
688 				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
689 					dn);
690 				goto next;
691 			}
692 
693 			bootcpu_valid = true;
694 			early_map_cpu_to_node(0, of_node_to_nid(dn));
695 
696 			/*
697 			 * cpu_logical_map has already been
698 			 * initialized and the boot cpu doesn't need
699 			 * the enable-method so continue without
700 			 * incrementing cpu.
701 			 */
702 			continue;
703 		}
704 
705 		if (cpu_count >= NR_CPUS)
706 			goto next;
707 
708 		pr_debug("cpu logical map 0x%llx\n", hwid);
709 		set_cpu_logical_map(cpu_count, hwid);
710 
711 		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
712 next:
713 		cpu_count++;
714 	}
715 }
716 
717 /*
718  * Enumerate the possible CPU set from the device tree or ACPI and build the
719  * cpu logical map array containing MPIDR values related to logical
720  * cpus. Assumes that cpu_logical_map(0) has already been initialized.
721  */
smp_init_cpus(void)722 void __init smp_init_cpus(void)
723 {
724 	int i;
725 
726 	if (acpi_disabled)
727 		of_parse_and_init_cpus();
728 	else
729 		acpi_parse_and_init_cpus();
730 
731 	if (cpu_count > nr_cpu_ids)
732 		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
733 			cpu_count, nr_cpu_ids);
734 
735 	if (!bootcpu_valid) {
736 		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
737 		return;
738 	}
739 
740 	/*
741 	 * We need to set the cpu_logical_map entries before enabling
742 	 * the cpus so that cpu processor description entries (DT cpu nodes
743 	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
744 	 * with entries in cpu_logical_map while initializing the cpus.
745 	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
746 	 */
747 	for (i = 1; i < nr_cpu_ids; i++) {
748 		if (cpu_logical_map(i) != INVALID_HWID) {
749 			if (smp_cpu_setup(i))
750 				set_cpu_logical_map(i, INVALID_HWID);
751 		}
752 	}
753 }
754 
smp_prepare_cpus(unsigned int max_cpus)755 void __init smp_prepare_cpus(unsigned int max_cpus)
756 {
757 	const struct cpu_operations *ops;
758 	int err;
759 	unsigned int cpu;
760 	unsigned int this_cpu;
761 
762 	init_cpu_topology();
763 
764 	this_cpu = smp_processor_id();
765 	store_cpu_topology(this_cpu);
766 	numa_store_cpu_info(this_cpu);
767 	numa_add_cpu(this_cpu);
768 
769 	/*
770 	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
771 	 * secondary CPUs present.
772 	 */
773 	if (max_cpus == 0)
774 		return;
775 
776 	/*
777 	 * Initialise the present map (which describes the set of CPUs
778 	 * actually populated at the present time) and release the
779 	 * secondaries from the bootloader.
780 	 */
781 	for_each_possible_cpu(cpu) {
782 
783 		per_cpu(cpu_number, cpu) = cpu;
784 
785 		if (cpu == smp_processor_id())
786 			continue;
787 
788 		ops = get_cpu_ops(cpu);
789 		if (!ops)
790 			continue;
791 
792 		err = ops->cpu_prepare(cpu);
793 		if (err)
794 			continue;
795 
796 		set_cpu_present(cpu, true);
797 		numa_store_cpu_info(cpu);
798 	}
799 }
800 
801 static const char *ipi_types[NR_IPI] __tracepoint_string = {
802 #define S(x,s)	[x] = s
803 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
804 	S(IPI_CALL_FUNC, "Function call interrupts"),
805 	S(IPI_CPU_STOP, "CPU stop interrupts"),
806 	S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
807 	S(IPI_TIMER, "Timer broadcast interrupts"),
808 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
809 	S(IPI_WAKEUP, "CPU wake-up interrupts"),
810 };
811 
812 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
813 
814 unsigned long irq_err_count;
815 
arch_show_interrupts(struct seq_file * p,int prec)816 int arch_show_interrupts(struct seq_file *p, int prec)
817 {
818 	unsigned int cpu, i;
819 
820 	for (i = 0; i < NR_IPI; i++) {
821 		unsigned int irq = irq_desc_get_irq(ipi_desc[i]);
822 		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
823 			   prec >= 4 ? " " : "");
824 		for_each_online_cpu(cpu)
825 			seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu));
826 		seq_printf(p, "      %s\n", ipi_types[i]);
827 	}
828 
829 	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
830 	return 0;
831 }
832 
arch_send_call_function_ipi_mask(const struct cpumask * mask)833 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
834 {
835 	smp_cross_call(mask, IPI_CALL_FUNC);
836 }
837 
arch_send_call_function_single_ipi(int cpu)838 void arch_send_call_function_single_ipi(int cpu)
839 {
840 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
841 }
842 
843 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
arch_send_wakeup_ipi_mask(const struct cpumask * mask)844 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
845 {
846 	smp_cross_call(mask, IPI_WAKEUP);
847 }
848 #endif
849 
850 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)851 void arch_irq_work_raise(void)
852 {
853 	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
854 }
855 #endif
856 
local_cpu_stop(void)857 static void local_cpu_stop(void)
858 {
859 	if (system_state <= SYSTEM_RUNNING) {
860 		pr_crit("CPU%u: stopping\n", smp_processor_id());
861 		dump_stack();
862 	}
863 	set_cpu_online(smp_processor_id(), false);
864 
865 	local_daif_mask();
866 	sdei_mask_local_cpu();
867 	cpu_park_loop();
868 }
869 
870 /*
871  * We need to implement panic_smp_self_stop() for parallel panic() calls, so
872  * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
873  * CPUs that have already stopped themselves.
874  */
panic_smp_self_stop(void)875 void panic_smp_self_stop(void)
876 {
877 	local_cpu_stop();
878 }
879 
880 #ifdef CONFIG_KEXEC_CORE
881 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
882 #endif
883 
ipi_cpu_crash_stop(unsigned int cpu,struct pt_regs * regs)884 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
885 {
886 #ifdef CONFIG_KEXEC_CORE
887 	crash_save_cpu(regs, cpu);
888 
889 	atomic_dec(&waiting_for_crash_ipi);
890 
891 	local_irq_disable();
892 	sdei_mask_local_cpu();
893 
894 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
895 		__cpu_try_die(cpu);
896 
897 	/* just in case */
898 	cpu_park_loop();
899 #endif
900 }
901 
902 /*
903  * Main handler for inter-processor interrupts
904  */
do_handle_IPI(int ipinr)905 static void do_handle_IPI(int ipinr)
906 {
907 	unsigned int cpu = smp_processor_id();
908 
909 	if ((unsigned)ipinr < NR_IPI)
910 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
911 
912 	switch (ipinr) {
913 	case IPI_RESCHEDULE:
914 		scheduler_ipi();
915 		break;
916 
917 	case IPI_CALL_FUNC:
918 		generic_smp_call_function_interrupt();
919 		break;
920 
921 	case IPI_CPU_STOP:
922 		trace_android_vh_ipi_stop_rcuidle(get_irq_regs());
923 #if IS_ENABLED(CONFIG_ROCKCHIP_MINIDUMP)
924 		rk_minidump_update_cpu_regs(get_irq_regs());
925 #endif
926 		local_cpu_stop();
927 		break;
928 
929 	case IPI_CPU_CRASH_STOP:
930 		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
931 			ipi_cpu_crash_stop(cpu, get_irq_regs());
932 
933 			unreachable();
934 		}
935 		break;
936 
937 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
938 	case IPI_TIMER:
939 		tick_receive_broadcast();
940 		break;
941 #endif
942 
943 #ifdef CONFIG_IRQ_WORK
944 	case IPI_IRQ_WORK:
945 		irq_work_run();
946 		break;
947 #endif
948 
949 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
950 	case IPI_WAKEUP:
951 		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
952 			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
953 			  cpu);
954 		break;
955 #endif
956 
957 	default:
958 		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
959 		break;
960 	}
961 
962 	if ((unsigned)ipinr < NR_IPI)
963 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
964 }
965 
ipi_handler(int irq,void * data)966 static irqreturn_t ipi_handler(int irq, void *data)
967 {
968 	do_handle_IPI(irq - ipi_irq_base);
969 	return IRQ_HANDLED;
970 }
971 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)972 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
973 {
974 	trace_ipi_raise(target, ipi_types[ipinr]);
975 	__ipi_send_mask(ipi_desc[ipinr], target);
976 }
977 
ipi_setup(int cpu)978 static void ipi_setup(int cpu)
979 {
980 	int i;
981 
982 	if (WARN_ON_ONCE(!ipi_irq_base))
983 		return;
984 
985 	for (i = 0; i < nr_ipi; i++)
986 		enable_percpu_irq(ipi_irq_base + i, 0);
987 }
988 
989 #ifdef CONFIG_HOTPLUG_CPU
ipi_teardown(int cpu)990 static void ipi_teardown(int cpu)
991 {
992 	int i;
993 
994 	if (WARN_ON_ONCE(!ipi_irq_base))
995 		return;
996 
997 	for (i = 0; i < nr_ipi; i++)
998 		disable_percpu_irq(ipi_irq_base + i);
999 }
1000 #endif
1001 
set_smp_ipi_range(int ipi_base,int n)1002 void __init set_smp_ipi_range(int ipi_base, int n)
1003 {
1004 	int i;
1005 
1006 	WARN_ON(n < NR_IPI);
1007 	nr_ipi = min(n, NR_IPI);
1008 
1009 	for (i = 0; i < nr_ipi; i++) {
1010 		int err;
1011 
1012 		err = request_percpu_irq(ipi_base + i, ipi_handler,
1013 					 "IPI", &cpu_number);
1014 		WARN_ON(err);
1015 
1016 		ipi_desc[i] = irq_to_desc(ipi_base + i);
1017 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
1018 
1019 		/* The recheduling IPI is special... */
1020 		if (i == IPI_RESCHEDULE)
1021 			__irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0);
1022 	}
1023 
1024 	ipi_irq_base = ipi_base;
1025 
1026 	/* Setup the boot CPU immediately */
1027 	ipi_setup(smp_processor_id());
1028 }
1029 
smp_send_reschedule(int cpu)1030 void smp_send_reschedule(int cpu)
1031 {
1032 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
1033 }
1034 
1035 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)1036 void tick_broadcast(const struct cpumask *mask)
1037 {
1038 	smp_cross_call(mask, IPI_TIMER);
1039 }
1040 #endif
1041 
1042 /*
1043  * The number of CPUs online, not counting this CPU (which may not be
1044  * fully online and so not counted in num_online_cpus()).
1045  */
num_other_online_cpus(void)1046 static inline unsigned int num_other_online_cpus(void)
1047 {
1048 	unsigned int this_cpu_online = cpu_online(smp_processor_id());
1049 
1050 	return num_online_cpus() - this_cpu_online;
1051 }
1052 
smp_send_stop(void)1053 void smp_send_stop(void)
1054 {
1055 	unsigned long timeout;
1056 
1057 	if (num_other_online_cpus()) {
1058 		cpumask_t mask;
1059 
1060 		cpumask_copy(&mask, cpu_online_mask);
1061 		cpumask_clear_cpu(smp_processor_id(), &mask);
1062 
1063 		if (system_state <= SYSTEM_RUNNING)
1064 			pr_crit("SMP: stopping secondary CPUs\n");
1065 		smp_cross_call(&mask, IPI_CPU_STOP);
1066 	}
1067 
1068 	/* Wait up to one second for other CPUs to stop */
1069 	timeout = USEC_PER_SEC;
1070 	while (num_other_online_cpus() && timeout--)
1071 		udelay(1);
1072 
1073 	if (num_other_online_cpus())
1074 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1075 			cpumask_pr_args(cpu_online_mask));
1076 
1077 	sdei_mask_local_cpu();
1078 }
1079 
1080 #ifdef CONFIG_KEXEC_CORE
crash_smp_send_stop(void)1081 void crash_smp_send_stop(void)
1082 {
1083 	static int cpus_stopped;
1084 	cpumask_t mask;
1085 	unsigned long timeout;
1086 
1087 	/*
1088 	 * This function can be called twice in panic path, but obviously
1089 	 * we execute this only once.
1090 	 */
1091 	if (cpus_stopped)
1092 		return;
1093 
1094 	cpus_stopped = 1;
1095 
1096 	/*
1097 	 * If this cpu is the only one alive at this point in time, online or
1098 	 * not, there are no stop messages to be sent around, so just back out.
1099 	 */
1100 	if (num_other_online_cpus() == 0) {
1101 		sdei_mask_local_cpu();
1102 		return;
1103 	}
1104 
1105 	cpumask_copy(&mask, cpu_online_mask);
1106 	cpumask_clear_cpu(smp_processor_id(), &mask);
1107 
1108 	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
1109 
1110 	pr_crit("SMP: stopping secondary CPUs\n");
1111 	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1112 
1113 	/* Wait up to one second for other CPUs to stop */
1114 	timeout = USEC_PER_SEC;
1115 	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1116 		udelay(1);
1117 
1118 	if (atomic_read(&waiting_for_crash_ipi) > 0)
1119 		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
1120 			cpumask_pr_args(&mask));
1121 
1122 	sdei_mask_local_cpu();
1123 }
1124 
smp_crash_stop_failed(void)1125 bool smp_crash_stop_failed(void)
1126 {
1127 	return (atomic_read(&waiting_for_crash_ipi) > 0);
1128 }
1129 #endif
1130 
1131 /*
1132  * not supported here
1133  */
setup_profiling_timer(unsigned int multiplier)1134 int setup_profiling_timer(unsigned int multiplier)
1135 {
1136 	return -EINVAL;
1137 }
1138 
have_cpu_die(void)1139 static bool have_cpu_die(void)
1140 {
1141 #ifdef CONFIG_HOTPLUG_CPU
1142 	int any_cpu = raw_smp_processor_id();
1143 	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
1144 
1145 	if (ops && ops->cpu_die)
1146 		return true;
1147 #endif
1148 	return false;
1149 }
1150 
cpus_are_stuck_in_kernel(void)1151 bool cpus_are_stuck_in_kernel(void)
1152 {
1153 	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1154 
1155 	return !!cpus_stuck_in_kernel || smp_spin_tables;
1156 }
1157 
nr_ipi_get(void)1158 int nr_ipi_get(void)
1159 {
1160 	return nr_ipi;
1161 }
1162 EXPORT_SYMBOL_GPL(nr_ipi_get);
1163 
ipi_desc_get(void)1164 struct irq_desc **ipi_desc_get(void)
1165 {
1166 	return ipi_desc;
1167 }
1168 EXPORT_SYMBOL_GPL(ipi_desc_get);
1169