xref: /rk3399_rockchip-uboot/drivers/usb/host/xhci.c (revision 1422d140fb12f38f941f6f1712fb738a0261c4d3)
1 /*
2  * USB HOST XHCI Controller stack
3  *
4  * Based on xHCI host controller driver in linux-kernel
5  * by Sarah Sharp.
6  *
7  * Copyright (C) 2008 Intel Corp.
8  * Author: Sarah Sharp
9  *
10  * Copyright (C) 2013 Samsung Electronics Co.Ltd
11  * Authors: Vivek Gautam <gautam.vivek@samsung.com>
12  *	    Vikas Sajjan <vikas.sajjan@samsung.com>
13  *
14  * SPDX-License-Identifier:	GPL-2.0+
15  */
16 
17 /**
18  * This file gives the xhci stack for usb3.0 looking into
19  * xhci specification Rev1.0 (5/21/10).
20  * The quirk devices support hasn't been given yet.
21  */
22 
23 #include <common.h>
24 #include <dm.h>
25 #include <asm/byteorder.h>
26 #include <usb.h>
27 #include <malloc.h>
28 #include <watchdog.h>
29 #include <asm/cache.h>
30 #include <asm/unaligned.h>
31 #include <linux/errno.h>
32 #include <usb/xhci.h>
33 
34 #ifndef CONFIG_USB_MAX_CONTROLLER_COUNT
35 #define CONFIG_USB_MAX_CONTROLLER_COUNT 1
36 #endif
37 
38 static struct descriptor {
39 	struct usb_hub_descriptor hub;
40 	struct usb_device_descriptor device;
41 	struct usb_config_descriptor config;
42 	struct usb_interface_descriptor interface;
43 	struct usb_endpoint_descriptor endpoint;
44 	struct usb_ss_ep_comp_descriptor ep_companion;
45 } __attribute__ ((packed)) descriptor = {
46 	{
47 		0xc,		/* bDescLength */
48 		0x2a,		/* bDescriptorType: hub descriptor */
49 		2,		/* bNrPorts -- runtime modified */
50 		cpu_to_le16(0x8), /* wHubCharacteristics */
51 		10,		/* bPwrOn2PwrGood */
52 		0,		/* bHubCntrCurrent */
53 		{		/* Device removable */
54 		}		/* at most 7 ports! XXX */
55 	},
56 	{
57 		0x12,		/* bLength */
58 		1,		/* bDescriptorType: UDESC_DEVICE */
59 		cpu_to_le16(0x0300), /* bcdUSB: v3.0 */
60 		9,		/* bDeviceClass: UDCLASS_HUB */
61 		0,		/* bDeviceSubClass: UDSUBCLASS_HUB */
62 		3,		/* bDeviceProtocol: UDPROTO_SSHUBSTT */
63 		9,		/* bMaxPacketSize: 512 bytes  2^9 */
64 		0x0000,		/* idVendor */
65 		0x0000,		/* idProduct */
66 		cpu_to_le16(0x0100), /* bcdDevice */
67 		1,		/* iManufacturer */
68 		2,		/* iProduct */
69 		0,		/* iSerialNumber */
70 		1		/* bNumConfigurations: 1 */
71 	},
72 	{
73 		0x9,
74 		2,		/* bDescriptorType: UDESC_CONFIG */
75 		cpu_to_le16(0x1f), /* includes SS endpoint descriptor */
76 		1,		/* bNumInterface */
77 		1,		/* bConfigurationValue */
78 		0,		/* iConfiguration */
79 		0x40,		/* bmAttributes: UC_SELF_POWER */
80 		0		/* bMaxPower */
81 	},
82 	{
83 		0x9,		/* bLength */
84 		4,		/* bDescriptorType: UDESC_INTERFACE */
85 		0,		/* bInterfaceNumber */
86 		0,		/* bAlternateSetting */
87 		1,		/* bNumEndpoints */
88 		9,		/* bInterfaceClass: UICLASS_HUB */
89 		0,		/* bInterfaceSubClass: UISUBCLASS_HUB */
90 		0,		/* bInterfaceProtocol: UIPROTO_HSHUBSTT */
91 		0		/* iInterface */
92 	},
93 	{
94 		0x7,		/* bLength */
95 		5,		/* bDescriptorType: UDESC_ENDPOINT */
96 		0x81,		/* bEndpointAddress: IN endpoint 1 */
97 		3,		/* bmAttributes: UE_INTERRUPT */
98 		8,		/* wMaxPacketSize */
99 		255		/* bInterval */
100 	},
101 	{
102 		0x06,		/* ss_bLength */
103 		0x30,		/* ss_bDescriptorType: SS EP Companion */
104 		0x00,		/* ss_bMaxBurst: allows 1 TX between ACKs */
105 		/* ss_bmAttributes: 1 packet per service interval */
106 		0x00,
107 		/* ss_wBytesPerInterval: 15 bits for max 15 ports */
108 		cpu_to_le16(0x02),
109 	},
110 };
111 
112 #if !CONFIG_IS_ENABLED(DM_USB)
113 static struct xhci_ctrl xhcic[CONFIG_USB_MAX_CONTROLLER_COUNT];
114 #endif
115 
xhci_get_ctrl(struct usb_device * udev)116 struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev)
117 {
118 #if CONFIG_IS_ENABLED(DM_USB)
119 	struct udevice *dev;
120 
121 	/* Find the USB controller */
122 	for (dev = udev->dev;
123 	     device_get_uclass_id(dev) != UCLASS_USB;
124 	     dev = dev->parent)
125 		;
126 	return dev_get_priv(dev);
127 #else
128 	return udev->controller;
129 #endif
130 }
131 
132 /**
133  * Waits for as per specified amount of time
134  * for the "result" to match with "done"
135  *
136  * @param ptr	pointer to the register to be read
137  * @param mask	mask for the value read
138  * @param done	value to be campared with result
139  * @param usec	time to wait till
140  * @return 0 if handshake is success else < 0 on failure
141  */
handshake(uint32_t volatile * ptr,uint32_t mask,uint32_t done,int usec)142 static int handshake(uint32_t volatile *ptr, uint32_t mask,
143 					uint32_t done, int usec)
144 {
145 	uint32_t result;
146 
147 	do {
148 		result = xhci_readl(ptr);
149 		if (result == ~(uint32_t)0)
150 			return -ENODEV;
151 		result &= mask;
152 		if (result == done)
153 			return 0;
154 		usec--;
155 		udelay(1);
156 	} while (usec > 0);
157 
158 	return -ETIMEDOUT;
159 }
160 
161 /**
162  * Set the run bit and wait for the host to be running.
163  *
164  * @param hcor	pointer to host controller operation registers
165  * @return status of the Handshake
166  */
xhci_start(struct xhci_hcor * hcor)167 static int xhci_start(struct xhci_hcor *hcor)
168 {
169 	u32 temp;
170 	int ret;
171 
172 	puts("Starting the controller\n");
173 	temp = xhci_readl(&hcor->or_usbcmd);
174 	temp |= (CMD_RUN);
175 	xhci_writel(&hcor->or_usbcmd, temp);
176 
177 	/*
178 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
179 	 * running.
180 	 */
181 	ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC);
182 	if (ret)
183 		debug("Host took too long to start, "
184 				"waited %u microseconds.\n",
185 				XHCI_MAX_HALT_USEC);
186 	return ret;
187 }
188 
189 /**
190  * Resets the XHCI Controller
191  *
192  * @param hcor	pointer to host controller operation registers
193  * @return -EBUSY if XHCI Controller is not halted else status of handshake
194  */
xhci_reset(struct xhci_hcor * hcor)195 static int xhci_reset(struct xhci_hcor *hcor)
196 {
197 	u32 cmd;
198 	u32 state;
199 	int ret;
200 
201 	/* Halting the Host first */
202 	debug("// Halt the HC: %p\n", hcor);
203 	state = xhci_readl(&hcor->or_usbsts) & STS_HALT;
204 	if (!state) {
205 		cmd = xhci_readl(&hcor->or_usbcmd);
206 		cmd &= ~CMD_RUN;
207 		xhci_writel(&hcor->or_usbcmd, cmd);
208 	}
209 
210 	ret = handshake(&hcor->or_usbsts,
211 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
212 	if (ret) {
213 		printf("Host not halted after %u microseconds.\n",
214 				XHCI_MAX_HALT_USEC);
215 		return -EBUSY;
216 	}
217 
218 	debug("// Reset the HC\n");
219 	cmd = xhci_readl(&hcor->or_usbcmd);
220 	cmd |= CMD_RESET;
221 	xhci_writel(&hcor->or_usbcmd, cmd);
222 
223 	ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC);
224 	if (ret)
225 		return ret;
226 
227 	/*
228 	 * xHCI cannot write to any doorbells or operational registers other
229 	 * than status until the "Controller Not Ready" flag is cleared.
230 	 */
231 	return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC);
232 }
233 
234 /**
235  * Used for passing endpoint bitmasks between the core and HCDs.
236  * Find the index for an endpoint given its descriptor.
237  * Use the return value to right shift 1 for the bitmask.
238  *
239  * Index  = (epnum * 2) + direction - 1,
240  * where direction = 0 for OUT, 1 for IN.
241  * For control endpoints, the IN index is used (OUT index is unused), so
242  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
243  *
244  * @param desc	USB enpdoint Descriptor
245  * @return index of the Endpoint
246  */
xhci_get_ep_index(struct usb_endpoint_descriptor * desc)247 static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc)
248 {
249 	unsigned int index;
250 
251 	if (usb_endpoint_xfer_control(desc))
252 		index = (unsigned int)(usb_endpoint_num(desc) * 2);
253 	else
254 		index = (unsigned int)((usb_endpoint_num(desc) * 2) -
255 				(usb_endpoint_dir_in(desc) ? 0 : 1));
256 
257 	return index;
258 }
259 
260 /*
261  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
262  * microframes, rounded down to nearest power of 2.
263  */
xhci_microframes_to_exponent(unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)264 static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval,
265 						 unsigned int min_exponent,
266 						 unsigned int max_exponent)
267 {
268 	unsigned int interval;
269 
270 	interval = fls(desc_interval) - 1;
271 	interval = clamp_val(interval, min_exponent, max_exponent);
272 	if ((1 << interval) != desc_interval)
273 		debug("rounding interval to %d microframes, "\
274 		      "ep desc says %d microframes\n",
275 		      1 << interval, desc_interval);
276 
277 	return interval;
278 }
279 
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc)280 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
281 	struct usb_endpoint_descriptor *endpt_desc)
282 {
283 	if (endpt_desc->bInterval == 0)
284 		return 0;
285 
286 	return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15);
287 }
288 
xhci_parse_frame_interval(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc)289 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
290 	struct usb_endpoint_descriptor *endpt_desc)
291 {
292 	return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10);
293 }
294 
295 /*
296  * Convert interval expressed as 2^(bInterval - 1) == interval into
297  * straight exponent value 2^n == interval.
298  */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc)299 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
300 	struct usb_endpoint_descriptor *endpt_desc)
301 {
302 	unsigned int interval;
303 
304 	interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1;
305 	if (interval != endpt_desc->bInterval - 1)
306 		debug("ep %#x - rounding interval to %d %sframes\n",
307 		      endpt_desc->bEndpointAddress, 1 << interval,
308 		      udev->speed == USB_SPEED_FULL ? "" : "micro");
309 
310 	if (udev->speed == USB_SPEED_FULL) {
311 		/*
312 		 * Full speed isoc endpoints specify interval in frames,
313 		 * not microframes. We are using microframes everywhere,
314 		 * so adjust accordingly.
315 		 */
316 		interval += 3;	/* 1 frame = 2^3 uframes */
317 	}
318 
319 	return interval;
320 }
321 
322 /*
323  * Return the polling or NAK interval.
324  *
325  * The polling interval is expressed in "microframes". If xHCI's Interval field
326  * is set to N, it will service the endpoint every 2^(Interval)*125us.
327  *
328  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
329  * is set to 0.
330  */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc)331 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
332 	struct usb_endpoint_descriptor *endpt_desc)
333 {
334 	unsigned int interval = 0;
335 
336 	switch (udev->speed) {
337 	case USB_SPEED_HIGH:
338 		/* Max NAK rate */
339 		if (usb_endpoint_xfer_control(endpt_desc) ||
340 		    usb_endpoint_xfer_bulk(endpt_desc)) {
341 			interval = xhci_parse_microframe_interval(udev,
342 								  endpt_desc);
343 			break;
344 		}
345 		/* Fall through - SS and HS isoc/int have same decoding */
346 
347 	case USB_SPEED_SUPER:
348 		if (usb_endpoint_xfer_int(endpt_desc) ||
349 		    usb_endpoint_xfer_isoc(endpt_desc)) {
350 			interval = xhci_parse_exponent_interval(udev,
351 								endpt_desc);
352 		}
353 		break;
354 
355 	case USB_SPEED_FULL:
356 		if (usb_endpoint_xfer_isoc(endpt_desc)) {
357 			interval = xhci_parse_exponent_interval(udev,
358 								endpt_desc);
359 			break;
360 		}
361 		/*
362 		 * Fall through for interrupt endpoint interval decoding
363 		 * since it uses the same rules as low speed interrupt
364 		 * endpoints.
365 		 */
366 
367 	case USB_SPEED_LOW:
368 		if (usb_endpoint_xfer_int(endpt_desc) ||
369 		    usb_endpoint_xfer_isoc(endpt_desc)) {
370 			interval = xhci_parse_frame_interval(udev, endpt_desc);
371 		}
372 		break;
373 
374 	default:
375 		BUG();
376 	}
377 
378 	return interval;
379 }
380 
381 /*
382  * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
383  * High speed endpoint descriptors can define "the number of additional
384  * transaction opportunities per microframe", but that goes in the Max Burst
385  * endpoint context field.
386  */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc,struct usb_ss_ep_comp_descriptor * ss_ep_comp_desc)387 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
388 	struct usb_endpoint_descriptor *endpt_desc,
389 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
390 {
391 	if (udev->speed < USB_SPEED_SUPER ||
392 	    !usb_endpoint_xfer_isoc(endpt_desc))
393 		return 0;
394 
395 	return ss_ep_comp_desc->bmAttributes;
396 }
397 
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc,struct usb_ss_ep_comp_descriptor * ss_ep_comp_desc)398 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
399 	struct usb_endpoint_descriptor *endpt_desc,
400 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
401 {
402 	/* Super speed and Plus have max burst in ep companion desc */
403 	if (udev->speed >= USB_SPEED_SUPER)
404 		return ss_ep_comp_desc->bMaxBurst;
405 
406 	if (udev->speed == USB_SPEED_HIGH &&
407 	    (usb_endpoint_xfer_isoc(endpt_desc) ||
408 	     usb_endpoint_xfer_int(endpt_desc)))
409 		return usb_endpoint_maxp_mult(endpt_desc) - 1;
410 
411 	return 0;
412 }
413 
414 /*
415  * Return the maximum endpoint service interval time (ESIT) payload.
416  * Basically, this is the maxpacket size, multiplied by the burst size
417  * and mult size.
418  */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_endpoint_descriptor * endpt_desc,struct usb_ss_ep_comp_descriptor * ss_ep_comp_desc)419 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
420 	struct usb_endpoint_descriptor *endpt_desc,
421 	struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
422 {
423 	int max_burst;
424 	int max_packet;
425 
426 	/* Only applies for interrupt or isochronous endpoints */
427 	if (usb_endpoint_xfer_control(endpt_desc) ||
428 	    usb_endpoint_xfer_bulk(endpt_desc))
429 		return 0;
430 
431 	/* SuperSpeed Isoc ep with less than 48k per esit */
432 	if (udev->speed >= USB_SPEED_SUPER)
433 		return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval);
434 
435 	max_packet = usb_endpoint_maxp(endpt_desc);
436 	max_burst = usb_endpoint_maxp_mult(endpt_desc);
437 
438 	/* A 0 in max burst means 1 transfer per ESIT */
439 	return max_packet * max_burst;
440 }
441 
442 /**
443  * Issue a configure endpoint command or evaluate context command
444  * and wait for it to finish.
445  *
446  * @param udev	pointer to the Device Data Structure
447  * @param ctx_change	flag to indicate the Context has changed or NOT
448  * @return 0 on success, -1 on failure
449  */
xhci_configure_endpoints(struct usb_device * udev,bool ctx_change)450 static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change)
451 {
452 	struct xhci_container_ctx *in_ctx;
453 	struct xhci_virt_device *virt_dev;
454 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
455 	union xhci_trb *event;
456 
457 	virt_dev = ctrl->devs[udev->slot_id];
458 	in_ctx = virt_dev->in_ctx;
459 
460 	xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size);
461 	xhci_queue_command(ctrl, in_ctx->bytes, udev->slot_id, 0,
462 			   ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP);
463 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
464 	if (!event)
465 		return -ETIMEDOUT;
466 
467 	BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags))
468 		!= udev->slot_id);
469 
470 	switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
471 	case COMP_SUCCESS:
472 		debug("Successful %s command\n",
473 			ctx_change ? "Evaluate Context" : "Configure Endpoint");
474 		break;
475 	default:
476 		printf("ERROR: %s command returned completion code %d.\n",
477 			ctx_change ? "Evaluate Context" : "Configure Endpoint",
478 			GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
479 		return -EINVAL;
480 	}
481 
482 	xhci_acknowledge_event(ctrl);
483 
484 	return 0;
485 }
486 
487 /**
488  * Configure the endpoint, programming the device contexts.
489  *
490  * @param udev	pointer to the USB device structure
491  * @return returns the status of the xhci_configure_endpoints
492  */
xhci_set_configuration(struct usb_device * udev)493 static int xhci_set_configuration(struct usb_device *udev)
494 {
495 	struct xhci_container_ctx *in_ctx;
496 	struct xhci_container_ctx *out_ctx;
497 	struct xhci_input_control_ctx *ctrl_ctx;
498 	struct xhci_slot_ctx *slot_ctx;
499 	struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM];
500 	int cur_ep;
501 	int max_ep_flag = 0;
502 	int ep_index;
503 	unsigned int dir;
504 	unsigned int ep_type;
505 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
506 	int num_of_ep;
507 	int ep_flag = 0;
508 	u64 trb_64 = 0;
509 	int slot_id = udev->slot_id;
510 	struct xhci_virt_device *virt_dev = ctrl->devs[slot_id];
511 	struct usb_interface *ifdesc;
512 	u32 max_esit_payload;
513 	unsigned int interval;
514 	unsigned int mult;
515 	unsigned int max_burst;
516 	unsigned int avg_trb_len;
517 	unsigned int err_count = 0;
518 
519 	out_ctx = virt_dev->out_ctx;
520 	in_ctx = virt_dev->in_ctx;
521 
522 	num_of_ep = udev->config.if_desc[0].no_of_ep;
523 	ifdesc = &udev->config.if_desc[0];
524 
525 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
526 	/* Initialize the input context control */
527 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
528 	ctrl_ctx->drop_flags = 0;
529 
530 	/* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */
531 	for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
532 		ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]);
533 		ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1));
534 		if (max_ep_flag < ep_flag)
535 			max_ep_flag = ep_flag;
536 	}
537 
538 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
539 
540 	/* slot context */
541 	xhci_slot_copy(ctrl, in_ctx, out_ctx);
542 	slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
543 	slot_ctx->dev_info &= ~(cpu_to_le32(LAST_CTX_MASK));
544 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0);
545 
546 	xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0);
547 
548 	/* filling up ep contexts */
549 	for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
550 		struct usb_endpoint_descriptor *endpt_desc = NULL;
551 		struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL;
552 
553 		endpt_desc = &ifdesc->ep_desc[cur_ep];
554 		ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep];
555 		trb_64 = 0;
556 
557 		/*
558 		 * Get values to fill the endpoint context, mostly from ep
559 		 * descriptor. The average TRB buffer lengt for bulk endpoints
560 		 * is unclear as we have no clue on scatter gather list entry
561 		 * size. For Isoc and Int, set it to max available.
562 		 * See xHCI 1.1 spec 4.14.1.1 for details.
563 		 */
564 		max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc,
565 							     ss_ep_comp_desc);
566 		interval = xhci_get_endpoint_interval(udev, endpt_desc);
567 		mult = xhci_get_endpoint_mult(udev, endpt_desc,
568 					      ss_ep_comp_desc);
569 		max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc,
570 							ss_ep_comp_desc);
571 		avg_trb_len = max_esit_payload;
572 
573 		ep_index = xhci_get_ep_index(endpt_desc);
574 		ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
575 
576 		/* Allocate the ep rings */
577 		virt_dev->eps[ep_index].ring = xhci_ring_alloc(1, true);
578 		if (!virt_dev->eps[ep_index].ring)
579 			return -ENOMEM;
580 
581 		/*NOTE: ep_desc[0] actually represents EP1 and so on */
582 		dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7);
583 		ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2));
584 
585 		ep_ctx[ep_index]->ep_info =
586 			cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
587 			EP_INTERVAL(interval) | EP_MULT(mult));
588 
589 		ep_ctx[ep_index]->ep_info2 =
590 			cpu_to_le32(ep_type << EP_TYPE_SHIFT);
591 		ep_ctx[ep_index]->ep_info2 |=
592 			cpu_to_le32(MAX_PACKET
593 			(get_unaligned(&endpt_desc->wMaxPacketSize)));
594 
595 		/* Allow 3 retries for everything but isoc, set CErr = 3 */
596 		if (!usb_endpoint_xfer_isoc(endpt_desc))
597 			err_count = 3;
598 		ep_ctx[ep_index]->ep_info2 |=
599 			cpu_to_le32(MAX_BURST(max_burst) |
600 			ERROR_COUNT(err_count));
601 
602 		trb_64 = (uintptr_t)
603 				virt_dev->eps[ep_index].ring->enqueue;
604 		ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 |
605 				virt_dev->eps[ep_index].ring->cycle_state);
606 
607 		/*
608 		 * xHCI spec 6.2.3:
609 		 * 'Average TRB Length' should be 8 for control endpoints.
610 		 */
611 		if (usb_endpoint_xfer_control(endpt_desc))
612 			avg_trb_len = 8;
613 		ep_ctx[ep_index]->tx_info =
614 			cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
615 			EP_AVG_TRB_LENGTH(avg_trb_len));
616 	}
617 
618 	return xhci_configure_endpoints(udev, false);
619 }
620 
621 /**
622  * Issue an Address Device command (which will issue a SetAddress request to
623  * the device).
624  *
625  * @param udev pointer to the Device Data Structure
626  * @return 0 if successful else error code on failure
627  */
xhci_address_device(struct usb_device * udev,int root_portnr)628 static int xhci_address_device(struct usb_device *udev, int root_portnr)
629 {
630 	int ret = 0;
631 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
632 	struct xhci_slot_ctx *slot_ctx;
633 	struct xhci_input_control_ctx *ctrl_ctx;
634 	struct xhci_virt_device *virt_dev;
635 	int slot_id = udev->slot_id;
636 	union xhci_trb *event;
637 
638 	virt_dev = ctrl->devs[slot_id];
639 
640 	/*
641 	 * This is the first Set Address since device plug-in
642 	 * so setting up the slot context.
643 	 */
644 	debug("Setting up addressable devices %p\n", ctrl->dcbaa);
645 	xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr);
646 
647 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
648 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
649 	ctrl_ctx->drop_flags = 0;
650 
651 	xhci_queue_command(ctrl, (void *)ctrl_ctx, slot_id, 0, TRB_ADDR_DEV);
652 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
653 	if (!event)
654 		return -ETIMEDOUT;
655 
656 	BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id);
657 
658 	switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
659 	case COMP_CTX_STATE:
660 	case COMP_EBADSLT:
661 		printf("Setup ERROR: address device command for slot %d.\n",
662 								slot_id);
663 		ret = -EINVAL;
664 		break;
665 	case COMP_TX_ERR:
666 		puts("Device not responding to set address.\n");
667 		ret = -EPROTO;
668 		break;
669 	case COMP_DEV_ERR:
670 		puts("ERROR: Incompatible device"
671 					"for address device command.\n");
672 		ret = -ENODEV;
673 		break;
674 	case COMP_SUCCESS:
675 		debug("Successful Address Device command\n");
676 		udev->status = 0;
677 		break;
678 	default:
679 		printf("ERROR: unexpected command completion code 0x%x.\n",
680 			GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
681 		ret = -EINVAL;
682 		break;
683 	}
684 
685 	xhci_acknowledge_event(ctrl);
686 
687 	if (ret < 0)
688 		/*
689 		 * TODO: Unsuccessful Address Device command shall leave the
690 		 * slot in default state. So, issue Disable Slot command now.
691 		 */
692 		return ret;
693 
694 	xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes,
695 			 virt_dev->out_ctx->size);
696 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx);
697 
698 	debug("xHC internal address is: %d\n",
699 		le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
700 
701 	return 0;
702 }
703 
704 /**
705  * Issue Enable slot command to the controller to allocate
706  * device slot and assign the slot id. It fails if the xHC
707  * ran out of device slots, the Enable Slot command timed out,
708  * or allocating memory failed.
709  *
710  * @param udev	pointer to the Device Data Structure
711  * @return Returns 0 on succes else return error code on failure
712  */
_xhci_alloc_device(struct usb_device * udev)713 static int _xhci_alloc_device(struct usb_device *udev)
714 {
715 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
716 	union xhci_trb *event;
717 	int ret;
718 
719 	/*
720 	 * Root hub will be first device to be initailized.
721 	 * If this device is root-hub, don't do any xHC related
722 	 * stuff.
723 	 */
724 	if (ctrl->rootdev == 0) {
725 		udev->speed = USB_SPEED_SUPER;
726 		return 0;
727 	}
728 
729 	xhci_queue_command(ctrl, NULL, 0, 0, TRB_ENABLE_SLOT);
730 	event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
731 	if (!event)
732 		return -ETIMEDOUT;
733 
734 	BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))
735 		!= COMP_SUCCESS);
736 
737 	udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags));
738 
739 	xhci_acknowledge_event(ctrl);
740 
741 	ret = xhci_alloc_virt_device(ctrl, udev->slot_id);
742 	if (ret < 0) {
743 		/*
744 		 * TODO: Unsuccessful Address Device command shall leave
745 		 * the slot in default. So, issue Disable Slot command now.
746 		 */
747 		puts("Could not allocate xHCI USB device data structures\n");
748 		return ret;
749 	}
750 
751 	return 0;
752 }
753 
754 #if !CONFIG_IS_ENABLED(DM_USB)
usb_alloc_device(struct usb_device * udev)755 int usb_alloc_device(struct usb_device *udev)
756 {
757 	return _xhci_alloc_device(udev);
758 }
759 #endif
760 
761 /*
762  * Full speed devices may have a max packet size greater than 8 bytes, but the
763  * USB core doesn't know that until it reads the first 8 bytes of the
764  * descriptor.  If the usb_device's max packet size changes after that point,
765  * we need to issue an evaluate context command and wait on it.
766  *
767  * @param udev	pointer to the Device Data Structure
768  * @return returns the status of the xhci_configure_endpoints
769  */
xhci_check_maxpacket(struct usb_device * udev)770 int xhci_check_maxpacket(struct usb_device *udev)
771 {
772 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
773 	unsigned int slot_id = udev->slot_id;
774 	int ep_index = 0;	/* control endpoint */
775 	struct xhci_container_ctx *in_ctx;
776 	struct xhci_container_ctx *out_ctx;
777 	struct xhci_input_control_ctx *ctrl_ctx;
778 	struct xhci_ep_ctx *ep_ctx;
779 	int max_packet_size;
780 	int hw_max_packet_size;
781 	int ret = 0;
782 
783 	out_ctx = ctrl->devs[slot_id]->out_ctx;
784 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
785 
786 	ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
787 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
788 	max_packet_size = udev->epmaxpacketin[0];
789 	if (hw_max_packet_size != max_packet_size) {
790 		debug("Max Packet Size for ep 0 changed.\n");
791 		debug("Max packet size in usb_device = %d\n", max_packet_size);
792 		debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size);
793 		debug("Issuing evaluate context command.\n");
794 
795 		/* Set up the modified control endpoint 0 */
796 		xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx,
797 				ctrl->devs[slot_id]->out_ctx, ep_index);
798 		in_ctx = ctrl->devs[slot_id]->in_ctx;
799 		ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
800 		ep_ctx->ep_info2 &= cpu_to_le32(~((0xffff & MAX_PACKET_MASK)
801 						<< MAX_PACKET_SHIFT));
802 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
803 
804 		/*
805 		 * Set up the input context flags for the command
806 		 * FIXME: This won't work if a non-default control endpoint
807 		 * changes max packet sizes.
808 		 */
809 		ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
810 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
811 		ctrl_ctx->drop_flags = 0;
812 
813 		ret = xhci_configure_endpoints(udev, true);
814 	}
815 	return ret;
816 }
817 
818 /**
819  * Clears the Change bits of the Port Status Register
820  *
821  * @param wValue	request value
822  * @param wIndex	request index
823  * @param addr		address of posrt status register
824  * @param port_status	state of port status register
825  * @return none
826  */
xhci_clear_port_change_bit(u16 wValue,u16 wIndex,volatile uint32_t * addr,u32 port_status)827 static void xhci_clear_port_change_bit(u16 wValue,
828 		u16 wIndex, volatile uint32_t *addr, u32 port_status)
829 {
830 	char *port_change_bit;
831 	u32 status;
832 
833 	switch (wValue) {
834 	case USB_PORT_FEAT_C_RESET:
835 		status = PORT_RC;
836 		port_change_bit = "reset";
837 		break;
838 	case USB_PORT_FEAT_C_CONNECTION:
839 		status = PORT_CSC;
840 		port_change_bit = "connect";
841 		break;
842 	case USB_PORT_FEAT_C_OVER_CURRENT:
843 		status = PORT_OCC;
844 		port_change_bit = "over-current";
845 		break;
846 	case USB_PORT_FEAT_C_ENABLE:
847 		status = PORT_PEC;
848 		port_change_bit = "enable/disable";
849 		break;
850 	case USB_PORT_FEAT_C_SUSPEND:
851 		status = PORT_PLC;
852 		port_change_bit = "suspend/resume";
853 		break;
854 	default:
855 		/* Should never happen */
856 		return;
857 	}
858 
859 	/* Change bits are all write 1 to clear */
860 	xhci_writel(addr, port_status | status);
861 
862 	port_status = xhci_readl(addr);
863 	debug("clear port %s change, actual port %d status  = 0x%x\n",
864 			port_change_bit, wIndex, port_status);
865 }
866 
867 /**
868  * Save Read Only (RO) bits and save read/write bits where
869  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
870  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
871  *
872  * @param state	state of the Port Status and Control Regsiter
873  * @return a value that would result in the port being in the
874  *	   same state, if the value was written to the port
875  *	   status control register.
876  */
xhci_port_state_to_neutral(u32 state)877 static u32 xhci_port_state_to_neutral(u32 state)
878 {
879 	/* Save read-only status and port state */
880 	return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS);
881 }
882 
883 /**
884  * Submits the Requests to the XHCI Host Controller
885  *
886  * @param udev pointer to the USB device structure
887  * @param pipe contains the DIR_IN or OUT , devnum
888  * @param buffer buffer to be read/written based on the request
889  * @return returns 0 if successful else -1 on failure
890  */
xhci_submit_root(struct usb_device * udev,unsigned long pipe,void * buffer,struct devrequest * req)891 static int xhci_submit_root(struct usb_device *udev, unsigned long pipe,
892 			void *buffer, struct devrequest *req)
893 {
894 	uint8_t tmpbuf[4];
895 	u16 typeReq;
896 	void *srcptr = NULL;
897 	int len, srclen;
898 	uint32_t reg;
899 	volatile uint32_t *status_reg;
900 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
901 	struct xhci_hccr *hccr = ctrl->hccr;
902 	struct xhci_hcor *hcor = ctrl->hcor;
903 	int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1));
904 
905 	if ((req->requesttype & USB_RT_PORT) &&
906 	    le16_to_cpu(req->index) > max_ports) {
907 		printf("The request port(%d) exceeds maximum port number\n",
908 		       le16_to_cpu(req->index) - 1);
909 		return -EINVAL;
910 	}
911 
912 	status_reg = (volatile uint32_t *)
913 		     (&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc);
914 	srclen = 0;
915 
916 	typeReq = req->request | req->requesttype << 8;
917 
918 	switch (typeReq) {
919 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
920 		switch (le16_to_cpu(req->value) >> 8) {
921 		case USB_DT_DEVICE:
922 			debug("USB_DT_DEVICE request\n");
923 			srcptr = &descriptor.device;
924 			srclen = 0x12;
925 			break;
926 		case USB_DT_CONFIG:
927 			debug("USB_DT_CONFIG config\n");
928 			srcptr = &descriptor.config;
929 			srclen = 0x19;
930 			break;
931 		case USB_DT_STRING:
932 			debug("USB_DT_STRING config\n");
933 			switch (le16_to_cpu(req->value) & 0xff) {
934 			case 0:	/* Language */
935 				srcptr = "\4\3\11\4";
936 				srclen = 4;
937 				break;
938 			case 1:	/* Vendor String  */
939 				srcptr = "\16\3U\0-\0B\0o\0o\0t\0";
940 				srclen = 14;
941 				break;
942 			case 2:	/* Product Name */
943 				srcptr = "\52\3X\0H\0C\0I\0 "
944 					 "\0H\0o\0s\0t\0 "
945 					 "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
946 				srclen = 42;
947 				break;
948 			default:
949 				printf("unknown value DT_STRING %x\n",
950 					le16_to_cpu(req->value));
951 				goto unknown;
952 			}
953 			break;
954 		default:
955 			printf("unknown value %x\n", le16_to_cpu(req->value));
956 			goto unknown;
957 		}
958 		break;
959 	case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
960 		switch (le16_to_cpu(req->value) >> 8) {
961 		case USB_DT_HUB:
962 		case USB_DT_SS_HUB:
963 			debug("USB_DT_HUB config\n");
964 			srcptr = &ctrl->hub;
965 			srclen = 0x8;
966 			break;
967 		default:
968 			printf("unknown value %x\n", le16_to_cpu(req->value));
969 			goto unknown;
970 		}
971 		break;
972 	case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
973 		debug("USB_REQ_SET_ADDRESS\n");
974 		ctrl->rootdev = le16_to_cpu(req->value);
975 		break;
976 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
977 		/* Do nothing */
978 		break;
979 	case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
980 		tmpbuf[0] = 1;	/* USB_STATUS_SELFPOWERED */
981 		tmpbuf[1] = 0;
982 		srcptr = tmpbuf;
983 		srclen = 2;
984 		break;
985 	case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
986 		memset(tmpbuf, 0, 4);
987 		reg = xhci_readl(status_reg);
988 		if (reg & PORT_CONNECT) {
989 			tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
990 			switch (reg & DEV_SPEED_MASK) {
991 			case XDEV_FS:
992 				debug("SPEED = FULLSPEED\n");
993 				break;
994 			case XDEV_LS:
995 				debug("SPEED = LOWSPEED\n");
996 				tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
997 				break;
998 			case XDEV_HS:
999 				debug("SPEED = HIGHSPEED\n");
1000 				tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
1001 				break;
1002 			case XDEV_SS:
1003 				debug("SPEED = SUPERSPEED\n");
1004 				tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8;
1005 				break;
1006 			}
1007 		}
1008 		if (reg & PORT_PE)
1009 			tmpbuf[0] |= USB_PORT_STAT_ENABLE;
1010 		if ((reg & PORT_PLS_MASK) == XDEV_U3)
1011 			tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
1012 		if (reg & PORT_OC)
1013 			tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
1014 		if (reg & PORT_RESET)
1015 			tmpbuf[0] |= USB_PORT_STAT_RESET;
1016 		if (reg & PORT_POWER)
1017 			/*
1018 			 * XXX: This Port power bit (for USB 3.0 hub)
1019 			 * we are faking in USB 2.0 hub port status;
1020 			 * since there's a change in bit positions in
1021 			 * two:
1022 			 * USB 2.0 port status PP is at position[8]
1023 			 * USB 3.0 port status PP is at position[9]
1024 			 * So, we are still keeping it at position [8]
1025 			 */
1026 			tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
1027 		if (reg & PORT_CSC)
1028 			tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
1029 		if (reg & PORT_PEC)
1030 			tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
1031 		if (reg & PORT_OCC)
1032 			tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
1033 		if (reg & PORT_RC)
1034 			tmpbuf[2] |= USB_PORT_STAT_C_RESET;
1035 
1036 		srcptr = tmpbuf;
1037 		srclen = 4;
1038 		break;
1039 	case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
1040 		reg = xhci_readl(status_reg);
1041 		reg = xhci_port_state_to_neutral(reg);
1042 		switch (le16_to_cpu(req->value)) {
1043 		case USB_PORT_FEAT_ENABLE:
1044 			reg |= PORT_PE;
1045 			xhci_writel(status_reg, reg);
1046 			break;
1047 		case USB_PORT_FEAT_POWER:
1048 			reg |= PORT_POWER;
1049 			xhci_writel(status_reg, reg);
1050 			break;
1051 		case USB_PORT_FEAT_RESET:
1052 			reg |= PORT_RESET;
1053 			xhci_writel(status_reg, reg);
1054 			break;
1055 		default:
1056 			printf("unknown feature %x\n", le16_to_cpu(req->value));
1057 			goto unknown;
1058 		}
1059 		break;
1060 	case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
1061 		reg = xhci_readl(status_reg);
1062 		reg = xhci_port_state_to_neutral(reg);
1063 		switch (le16_to_cpu(req->value)) {
1064 		case USB_PORT_FEAT_ENABLE:
1065 			reg &= ~PORT_PE;
1066 			break;
1067 		case USB_PORT_FEAT_POWER:
1068 			reg &= ~PORT_POWER;
1069 			break;
1070 		case USB_PORT_FEAT_C_RESET:
1071 		case USB_PORT_FEAT_C_CONNECTION:
1072 		case USB_PORT_FEAT_C_OVER_CURRENT:
1073 		case USB_PORT_FEAT_C_ENABLE:
1074 			xhci_clear_port_change_bit((le16_to_cpu(req->value)),
1075 							le16_to_cpu(req->index),
1076 							status_reg, reg);
1077 			break;
1078 		default:
1079 			printf("unknown feature %x\n", le16_to_cpu(req->value));
1080 			goto unknown;
1081 		}
1082 		xhci_writel(status_reg, reg);
1083 		break;
1084 	default:
1085 		puts("Unknown request\n");
1086 		goto unknown;
1087 	}
1088 
1089 	debug("scrlen = %d\n req->length = %d\n",
1090 		srclen, le16_to_cpu(req->length));
1091 
1092 	len = min(srclen, (int)le16_to_cpu(req->length));
1093 
1094 	if (srcptr != NULL && len > 0)
1095 		memcpy(buffer, srcptr, len);
1096 	else
1097 		debug("Len is 0\n");
1098 
1099 	udev->act_len = len;
1100 	udev->status = 0;
1101 
1102 	return 0;
1103 
1104 unknown:
1105 	udev->act_len = 0;
1106 	udev->status = USB_ST_STALLED;
1107 
1108 	return -ENODEV;
1109 }
1110 
1111 /**
1112  * Submits the INT request to XHCI Host cotroller
1113  *
1114  * @param udev	pointer to the USB device
1115  * @param pipe		contains the DIR_IN or OUT , devnum
1116  * @param buffer	buffer to be read/written based on the request
1117  * @param length	length of the buffer
1118  * @param interval	interval of the interrupt
1119  * @return 0
1120  */
_xhci_submit_int_msg(struct usb_device * udev,unsigned long pipe,void * buffer,int length,int interval,bool nonblock)1121 static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe,
1122 				void *buffer, int length, int interval,
1123 				bool nonblock)
1124 {
1125 	if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
1126 		printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
1127 		return -EINVAL;
1128 	}
1129 
1130 	/*
1131 	 * xHCI uses normal TRBs for both bulk and interrupt. When the
1132 	 * interrupt endpoint is to be serviced, the xHC will consume
1133 	 * (at most) one TD. A TD (comprised of sg list entries) can
1134 	 * take several service intervals to transmit.
1135 	 */
1136 	return xhci_bulk_tx(udev, pipe, length, buffer);
1137 }
1138 
1139 /**
1140  * submit the BULK type of request to the USB Device
1141  *
1142  * @param udev	pointer to the USB device
1143  * @param pipe		contains the DIR_IN or OUT , devnum
1144  * @param buffer	buffer to be read/written based on the request
1145  * @param length	length of the buffer
1146  * @return returns 0 if successful else -1 on failure
1147  */
_xhci_submit_bulk_msg(struct usb_device * udev,unsigned long pipe,void * buffer,int length)1148 static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe,
1149 				 void *buffer, int length)
1150 {
1151 	if (usb_pipetype(pipe) != PIPE_BULK) {
1152 		printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
1153 		return -EINVAL;
1154 	}
1155 
1156 	return xhci_bulk_tx(udev, pipe, length, buffer);
1157 }
1158 
1159 /**
1160  * submit the control type of request to the Root hub/Device based on the devnum
1161  *
1162  * @param udev	pointer to the USB device
1163  * @param pipe		contains the DIR_IN or OUT , devnum
1164  * @param buffer	buffer to be read/written based on the request
1165  * @param length	length of the buffer
1166  * @param setup		Request type
1167  * @param root_portnr	Root port number that this device is on
1168  * @return returns 0 if successful else -1 on failure
1169  */
_xhci_submit_control_msg(struct usb_device * udev,unsigned long pipe,void * buffer,int length,struct devrequest * setup,int root_portnr)1170 static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe,
1171 				    void *buffer, int length,
1172 				    struct devrequest *setup, int root_portnr)
1173 {
1174 	struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
1175 	int ret = 0;
1176 
1177 	if (usb_pipetype(pipe) != PIPE_CONTROL) {
1178 		printf("non-control pipe (type=%lu)", usb_pipetype(pipe));
1179 		return -EINVAL;
1180 	}
1181 
1182 	if (usb_pipedevice(pipe) == ctrl->rootdev)
1183 		return xhci_submit_root(udev, pipe, buffer, setup);
1184 
1185 	if (setup->request == USB_REQ_SET_ADDRESS &&
1186 	   (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD)
1187 		return xhci_address_device(udev, root_portnr);
1188 
1189 	if (setup->request == USB_REQ_SET_CONFIGURATION &&
1190 	   (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1191 		ret = xhci_set_configuration(udev);
1192 		if (ret) {
1193 			puts("Failed to configure xHCI endpoint\n");
1194 			return ret;
1195 		}
1196 	}
1197 
1198 	return xhci_ctrl_tx(udev, pipe, setup, length, buffer);
1199 }
1200 
xhci_lowlevel_init(struct xhci_ctrl * ctrl)1201 static int xhci_lowlevel_init(struct xhci_ctrl *ctrl)
1202 {
1203 	struct xhci_hccr *hccr;
1204 	struct xhci_hcor *hcor;
1205 	uint32_t val;
1206 	uint32_t val2;
1207 	uint32_t reg;
1208 
1209 	hccr = ctrl->hccr;
1210 	hcor = ctrl->hcor;
1211 	/*
1212 	 * Program the Number of Device Slots Enabled field in the CONFIG
1213 	 * register with the max value of slots the HC can handle.
1214 	 */
1215 	val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK);
1216 	val2 = xhci_readl(&hcor->or_config);
1217 	val |= (val2 & ~HCS_SLOTS_MASK);
1218 	xhci_writel(&hcor->or_config, val);
1219 
1220 	/* initializing xhci data structures */
1221 	if (xhci_mem_init(ctrl, hccr, hcor) < 0)
1222 		return -ENOMEM;
1223 
1224 	reg = xhci_readl(&hccr->cr_hcsparams1);
1225 	descriptor.hub.bNbrPorts = ((reg & HCS_MAX_PORTS_MASK) >>
1226 						HCS_MAX_PORTS_SHIFT);
1227 	printf("Register %x NbrPorts %d\n", reg, descriptor.hub.bNbrPorts);
1228 
1229 	/* Port Indicators */
1230 	reg = xhci_readl(&hccr->cr_hccparams);
1231 	if (HCS_INDICATOR(reg))
1232 		put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
1233 				| 0x80, &descriptor.hub.wHubCharacteristics);
1234 
1235 	/* Port Power Control */
1236 	if (HCC_PPC(reg))
1237 		put_unaligned(get_unaligned(&descriptor.hub.wHubCharacteristics)
1238 				| 0x01, &descriptor.hub.wHubCharacteristics);
1239 
1240 	memcpy(&ctrl->hub, &descriptor, sizeof(struct usb_hub_descriptor));
1241 
1242 	if (xhci_start(hcor)) {
1243 		xhci_reset(hcor);
1244 		return -ENODEV;
1245 	}
1246 
1247 	/* Zero'ing IRQ control register and IRQ pending register */
1248 	xhci_writel(&ctrl->ir_set->irq_control, 0x0);
1249 	xhci_writel(&ctrl->ir_set->irq_pending, 0x0);
1250 
1251 	reg = HC_VERSION(xhci_readl(&hccr->cr_capbase));
1252 	printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff);
1253 
1254 	return 0;
1255 }
1256 
xhci_lowlevel_stop(struct xhci_ctrl * ctrl)1257 static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl)
1258 {
1259 	u32 temp;
1260 
1261 	xhci_reset(ctrl->hcor);
1262 
1263 	debug("// Disabling event ring interrupts\n");
1264 	temp = xhci_readl(&ctrl->hcor->or_usbsts);
1265 	xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT);
1266 	temp = xhci_readl(&ctrl->ir_set->irq_pending);
1267 	xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp));
1268 
1269 	return 0;
1270 }
1271 
1272 #if !CONFIG_IS_ENABLED(DM_USB)
submit_control_msg(struct usb_device * udev,unsigned long pipe,void * buffer,int length,struct devrequest * setup)1273 int submit_control_msg(struct usb_device *udev, unsigned long pipe,
1274 		       void *buffer, int length, struct devrequest *setup)
1275 {
1276 	struct usb_device *hop = udev;
1277 
1278 	if (hop->parent)
1279 		while (hop->parent->parent)
1280 			hop = hop->parent;
1281 
1282 	return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
1283 					hop->portnr);
1284 }
1285 
submit_bulk_msg(struct usb_device * udev,unsigned long pipe,void * buffer,int length)1286 int submit_bulk_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
1287 		    int length)
1288 {
1289 	return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
1290 }
1291 
submit_int_msg(struct usb_device * udev,unsigned long pipe,void * buffer,int length,int interval,bool nonblock)1292 int submit_int_msg(struct usb_device *udev, unsigned long pipe, void *buffer,
1293 		   int length, int interval, bool nonblock)
1294 {
1295 	return _xhci_submit_int_msg(udev, pipe, buffer, length, interval,
1296 				    nonblock);
1297 }
1298 
1299 /**
1300  * Intialises the XHCI host controller
1301  * and allocates the necessary data structures
1302  *
1303  * @param index	index to the host controller data structure
1304  * @return pointer to the intialised controller
1305  */
usb_lowlevel_init(int index,enum usb_init_type init,void ** controller)1306 int usb_lowlevel_init(int index, enum usb_init_type init, void **controller)
1307 {
1308 	struct xhci_hccr *hccr;
1309 	struct xhci_hcor *hcor;
1310 	struct xhci_ctrl *ctrl;
1311 	int ret;
1312 
1313 	*controller = NULL;
1314 
1315 	if (xhci_hcd_init(index, &hccr, (struct xhci_hcor **)&hcor) != 0)
1316 		return -ENODEV;
1317 
1318 	if (xhci_reset(hcor) != 0)
1319 		return -ENODEV;
1320 
1321 	ctrl = &xhcic[index];
1322 
1323 	ctrl->hccr = hccr;
1324 	ctrl->hcor = hcor;
1325 
1326 	ret = xhci_lowlevel_init(ctrl);
1327 
1328 	if (ret) {
1329 		ctrl->hccr = NULL;
1330 		ctrl->hcor = NULL;
1331 	} else {
1332 		*controller = &xhcic[index];
1333 	}
1334 
1335 	return ret;
1336 }
1337 
1338 /**
1339  * Stops the XHCI host controller
1340  * and cleans up all the related data structures
1341  *
1342  * @param index	index to the host controller data structure
1343  * @return none
1344  */
usb_lowlevel_stop(int index)1345 int usb_lowlevel_stop(int index)
1346 {
1347 	struct xhci_ctrl *ctrl = (xhcic + index);
1348 
1349 	if (ctrl->hcor) {
1350 		xhci_lowlevel_stop(ctrl);
1351 		xhci_hcd_stop(index);
1352 		xhci_cleanup(ctrl);
1353 	}
1354 
1355 	return 0;
1356 }
1357 #endif /* CONFIG_IS_ENABLED(DM_USB) */
1358 
1359 #if CONFIG_IS_ENABLED(DM_USB)
1360 
xhci_submit_control_msg(struct udevice * dev,struct usb_device * udev,unsigned long pipe,void * buffer,int length,struct devrequest * setup)1361 static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev,
1362 				   unsigned long pipe, void *buffer, int length,
1363 				   struct devrequest *setup)
1364 {
1365 	struct usb_device *uhop;
1366 	struct udevice *hub;
1367 	int root_portnr = 0;
1368 
1369 	debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__,
1370 	      dev->name, udev, udev->dev->name, udev->portnr);
1371 	hub = udev->dev;
1372 	if (device_get_uclass_id(hub) == UCLASS_USB_HUB) {
1373 		/* Figure out our port number on the root hub */
1374 		if (usb_hub_is_root_hub(hub)) {
1375 			root_portnr = udev->portnr;
1376 		} else {
1377 			while (!usb_hub_is_root_hub(hub->parent))
1378 				hub = hub->parent;
1379 			uhop = dev_get_parent_priv(hub);
1380 			root_portnr = uhop->portnr;
1381 		}
1382 	}
1383 /*
1384 	struct usb_device *hop = udev;
1385 
1386 	if (hop->parent)
1387 		while (hop->parent->parent)
1388 			hop = hop->parent;
1389 */
1390 	return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
1391 					root_portnr);
1392 }
1393 
xhci_submit_bulk_msg(struct udevice * dev,struct usb_device * udev,unsigned long pipe,void * buffer,int length)1394 static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev,
1395 				unsigned long pipe, void *buffer, int length)
1396 {
1397 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1398 	return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
1399 }
1400 
xhci_submit_int_msg(struct udevice * dev,struct usb_device * udev,unsigned long pipe,void * buffer,int length,int interval,bool nonblock)1401 static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev,
1402 			       unsigned long pipe, void *buffer, int length,
1403 			       int interval, bool nonblock)
1404 {
1405 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1406 	return _xhci_submit_int_msg(udev, pipe, buffer, length, interval,
1407 				    nonblock);
1408 }
1409 
xhci_alloc_device(struct udevice * dev,struct usb_device * udev)1410 static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev)
1411 {
1412 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1413 	return _xhci_alloc_device(udev);
1414 }
1415 
xhci_update_hub_device(struct udevice * dev,struct usb_device * udev)1416 static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev)
1417 {
1418 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
1419 	struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev);
1420 	struct xhci_virt_device *virt_dev;
1421 	struct xhci_input_control_ctx *ctrl_ctx;
1422 	struct xhci_container_ctx *out_ctx;
1423 	struct xhci_container_ctx *in_ctx;
1424 	struct xhci_slot_ctx *slot_ctx;
1425 	int slot_id = udev->slot_id;
1426 	unsigned think_time;
1427 
1428 	debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1429 
1430 	/* Ignore root hubs */
1431 	if (usb_hub_is_root_hub(udev->dev))
1432 		return 0;
1433 
1434 	virt_dev = ctrl->devs[slot_id];
1435 	BUG_ON(!virt_dev);
1436 
1437 	out_ctx = virt_dev->out_ctx;
1438 	in_ctx = virt_dev->in_ctx;
1439 
1440 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1441 	/* Initialize the input context control */
1442 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1443 	ctrl_ctx->drop_flags = 0;
1444 
1445 	xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
1446 
1447 	/* slot context */
1448 	xhci_slot_copy(ctrl, in_ctx, out_ctx);
1449 	slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
1450 
1451 	/* Update hub related fields */
1452 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
1453 	/*
1454 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
1455 	 * but it may be already set to 1 when setup an xHCI virtual
1456 	 * device, so clear it anyway.
1457 	 */
1458 	if (hub->tt.multi)
1459 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1460 	else if (udev->speed == USB_SPEED_FULL)
1461 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
1462 	slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild));
1463 	/*
1464 	 * Set TT think time - convert from ns to FS bit times.
1465 	 * Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns
1466 	 *
1467 	 * 0 =  8 FS bit times, 1 = 16 FS bit times,
1468 	 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1469 	 *
1470 	 * This field shall be 0 if the device is not a high-spped hub.
1471 	 */
1472 	think_time = hub->tt.think_time;
1473 	if (think_time != 0)
1474 		think_time = (think_time / 666) - 1;
1475 	if (udev->speed == USB_SPEED_HIGH)
1476 		slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
1477 	slot_ctx->dev_state = 0;
1478 
1479 	return xhci_configure_endpoints(udev, false);
1480 }
1481 
xhci_get_max_xfer_size(struct udevice * dev,size_t * size)1482 static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size)
1483 {
1484 	/*
1485 	 * xHCD allocates one segment which includes 64 TRBs for each endpoint
1486 	 * and the last TRB in this segment is configured as a link TRB to form
1487 	 * a TRB ring. Each TRB can transfer up to 64K bytes, however data
1488 	 * buffers referenced by transfer TRBs shall not span 64KB boundaries.
1489 	 * Hence the maximum number of TRBs we can use in one transfer is 62.
1490 	 */
1491 	*size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE;
1492 
1493 	return 0;
1494 }
1495 
xhci_register(struct udevice * dev,struct xhci_hccr * hccr,struct xhci_hcor * hcor)1496 int xhci_register(struct udevice *dev, struct xhci_hccr *hccr,
1497 		  struct xhci_hcor *hcor)
1498 {
1499 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
1500 	struct usb_bus_priv *priv = dev_get_uclass_priv(dev);
1501 	int ret;
1502 
1503 	debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name,
1504 	      ctrl, hccr, hcor);
1505 
1506 	ctrl->dev = dev;
1507 
1508 	/*
1509 	 * XHCI needs to issue a Address device command to setup
1510 	 * proper device context structures, before it can interact
1511 	 * with the device. So a get_descriptor will fail before any
1512 	 * of that is done for XHCI unlike EHCI.
1513 	 */
1514 	priv->desc_before_addr = false;
1515 
1516 	ret = xhci_reset(hcor);
1517 	if (ret)
1518 		goto err;
1519 
1520 	ctrl->hccr = hccr;
1521 	ctrl->hcor = hcor;
1522 	ret = xhci_lowlevel_init(ctrl);
1523 	if (ret)
1524 		goto err;
1525 
1526 	return 0;
1527 err:
1528 	free(ctrl);
1529 	debug("%s: failed, ret=%d\n", __func__, ret);
1530 	return ret;
1531 }
1532 
xhci_deregister(struct udevice * dev)1533 int xhci_deregister(struct udevice *dev)
1534 {
1535 	struct xhci_ctrl *ctrl = dev_get_priv(dev);
1536 
1537 	xhci_lowlevel_stop(ctrl);
1538 	xhci_cleanup(ctrl);
1539 
1540 	return 0;
1541 }
1542 
1543 struct dm_usb_ops xhci_usb_ops = {
1544 	.control = xhci_submit_control_msg,
1545 	.bulk = xhci_submit_bulk_msg,
1546 	.interrupt = xhci_submit_int_msg,
1547 	.alloc_device = xhci_alloc_device,
1548 	.update_hub_device = xhci_update_hub_device,
1549 	.get_max_xfer_size  = xhci_get_max_xfer_size,
1550 };
1551 
1552 #endif
1553