1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/cpufreq_times.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 #undef CREATE_TRACE_POINTS
113 #include <trace/hooks/sched.h>
114 /*
115 * Minimum number of threads to boot the kernel
116 */
117 #define MIN_THREADS 20
118
119 /*
120 * Maximum number of threads
121 */
122 #define MAX_THREADS FUTEX_TID_MASK
123
124 EXPORT_TRACEPOINT_SYMBOL_GPL(task_newtask);
125
126 /*
127 * Protected counters by write_lock_irq(&tasklist_lock)
128 */
129 unsigned long total_forks; /* Handle normal Linux uptimes. */
130 int nr_threads; /* The idle threads do not count.. */
131
132 static int max_threads; /* tunable limit on nr_threads */
133
134 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
135
136 static const char * const resident_page_types[] = {
137 NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 };
142
143 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144
145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
146 EXPORT_SYMBOL_GPL(tasklist_lock);
147
148 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)149 int lockdep_tasklist_lock_is_held(void)
150 {
151 return lockdep_is_held(&tasklist_lock);
152 }
153 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154 #endif /* #ifdef CONFIG_PROVE_RCU */
155
nr_processes(void)156 int nr_processes(void)
157 {
158 int cpu;
159 int total = 0;
160
161 for_each_possible_cpu(cpu)
162 total += per_cpu(process_counts, cpu);
163
164 return total;
165 }
166
arch_release_task_struct(struct task_struct * tsk)167 void __weak arch_release_task_struct(struct task_struct *tsk)
168 {
169 }
170
171 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
172 static struct kmem_cache *task_struct_cachep;
173
alloc_task_struct_node(int node)174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178
free_task_struct(struct task_struct * tsk)179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 kmem_cache_free(task_struct_cachep, tsk);
182 }
183 #endif
184
185 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
186
187 /*
188 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189 * kmemcache based allocator.
190 */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192
193 #ifdef CONFIG_VMAP_STACK
194 /*
195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196 * flush. Try to minimize the number of calls by caching stacks.
197 */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200
free_vm_stack_cache(unsigned int cpu)201 static int free_vm_stack_cache(unsigned int cpu)
202 {
203 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 struct vm_struct *vm_stack = cached_vm_stacks[i];
208
209 if (!vm_stack)
210 continue;
211
212 vfree(vm_stack->addr);
213 cached_vm_stacks[i] = NULL;
214 }
215
216 return 0;
217 }
218 #endif
219
alloc_thread_stack_node(struct task_struct * tsk,int node)220 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
221 {
222 #ifdef CONFIG_VMAP_STACK
223 void *stack;
224 int i;
225
226 for (i = 0; i < NR_CACHED_STACKS; i++) {
227 struct vm_struct *s;
228
229 s = this_cpu_xchg(cached_stacks[i], NULL);
230
231 if (!s)
232 continue;
233
234 /* Mark stack accessible for KASAN. */
235 kasan_unpoison_range(s->addr, THREAD_SIZE);
236
237 /* Clear stale pointers from reused stack. */
238 memset(s->addr, 0, THREAD_SIZE);
239
240 tsk->stack_vm_area = s;
241 tsk->stack = s->addr;
242 return s->addr;
243 }
244
245 /*
246 * Allocated stacks are cached and later reused by new threads,
247 * so memcg accounting is performed manually on assigning/releasing
248 * stacks to tasks. Drop __GFP_ACCOUNT.
249 */
250 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
251 VMALLOC_START, VMALLOC_END,
252 THREADINFO_GFP & ~__GFP_ACCOUNT,
253 PAGE_KERNEL,
254 0, node, __builtin_return_address(0));
255
256 /*
257 * We can't call find_vm_area() in interrupt context, and
258 * free_thread_stack() can be called in interrupt context,
259 * so cache the vm_struct.
260 */
261 if (stack) {
262 tsk->stack_vm_area = find_vm_area(stack);
263 tsk->stack = stack;
264 }
265 return stack;
266 #else
267 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 THREAD_SIZE_ORDER);
269
270 if (likely(page)) {
271 tsk->stack = kasan_reset_tag(page_address(page));
272 return tsk->stack;
273 }
274 return NULL;
275 #endif
276 }
277
free_thread_stack(struct task_struct * tsk)278 static inline void free_thread_stack(struct task_struct *tsk)
279 {
280 #ifdef CONFIG_VMAP_STACK
281 struct vm_struct *vm = task_stack_vm_area(tsk);
282
283 if (vm) {
284 int i;
285
286 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
287 memcg_kmem_uncharge_page(vm->pages[i], 0);
288
289 for (i = 0; i < NR_CACHED_STACKS; i++) {
290 if (this_cpu_cmpxchg(cached_stacks[i],
291 NULL, tsk->stack_vm_area) != NULL)
292 continue;
293
294 return;
295 }
296
297 vfree_atomic(tsk->stack);
298 return;
299 }
300 #endif
301
302 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306
alloc_thread_stack_node(struct task_struct * tsk,int node)307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 int node)
309 {
310 unsigned long *stack;
311 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 stack = kasan_reset_tag(stack);
313 tsk->stack = stack;
314 return stack;
315 }
316
free_thread_stack(struct task_struct * tsk)317 static void free_thread_stack(struct task_struct *tsk)
318 {
319 kmem_cache_free(thread_stack_cache, tsk->stack);
320 }
321
thread_stack_cache_init(void)322 void thread_stack_cache_init(void)
323 {
324 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 THREAD_SIZE, THREAD_SIZE, 0, 0,
326 THREAD_SIZE, NULL);
327 BUG_ON(thread_stack_cache == NULL);
328 }
329 # endif
330 #endif
331
332 /* SLAB cache for signal_struct structures (tsk->signal) */
333 static struct kmem_cache *signal_cachep;
334
335 /* SLAB cache for sighand_struct structures (tsk->sighand) */
336 struct kmem_cache *sighand_cachep;
337
338 /* SLAB cache for files_struct structures (tsk->files) */
339 struct kmem_cache *files_cachep;
340
341 /* SLAB cache for fs_struct structures (tsk->fs) */
342 struct kmem_cache *fs_cachep;
343
344 /* SLAB cache for vm_area_struct structures */
345 static struct kmem_cache *vm_area_cachep;
346
347 /* SLAB cache for mm_struct structures (tsk->mm) */
348 static struct kmem_cache *mm_cachep;
349
vm_area_alloc(struct mm_struct * mm)350 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
351 {
352 struct vm_area_struct *vma;
353
354 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 if (vma)
356 vma_init(vma, mm);
357 return vma;
358 }
359
vm_area_dup(struct vm_area_struct * orig)360 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361 {
362 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363
364 if (new) {
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 /*
368 * orig->shared.rb may be modified concurrently, but the clone
369 * will be reinitialized.
370 */
371 *new = data_race(*orig);
372 INIT_VMA(new);
373 new->vm_next = new->vm_prev = NULL;
374 }
375 return new;
376 }
377
vm_area_free(struct vm_area_struct * vma)378 void vm_area_free(struct vm_area_struct *vma)
379 {
380 kmem_cache_free(vm_area_cachep, vma);
381 }
382
account_kernel_stack(struct task_struct * tsk,int account)383 static void account_kernel_stack(struct task_struct *tsk, int account)
384 {
385 void *stack = task_stack_page(tsk);
386 struct vm_struct *vm = task_stack_vm_area(tsk);
387
388
389 /* All stack pages are in the same node. */
390 if (vm)
391 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
392 account * (THREAD_SIZE / 1024));
393 else
394 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
395 account * (THREAD_SIZE / 1024));
396 }
397
memcg_charge_kernel_stack(struct task_struct * tsk)398 static int memcg_charge_kernel_stack(struct task_struct *tsk)
399 {
400 #ifdef CONFIG_VMAP_STACK
401 struct vm_struct *vm = task_stack_vm_area(tsk);
402 int ret;
403
404 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
405
406 if (vm) {
407 int i;
408
409 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
410
411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 /*
413 * If memcg_kmem_charge_page() fails, page->mem_cgroup
414 * pointer is NULL, and memcg_kmem_uncharge_page() in
415 * free_thread_stack() will ignore this page.
416 */
417 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
418 0);
419 if (ret)
420 return ret;
421 }
422 }
423 #endif
424 return 0;
425 }
426
release_task_stack(struct task_struct * tsk)427 static void release_task_stack(struct task_struct *tsk)
428 {
429 if (WARN_ON(tsk->state != TASK_DEAD))
430 return; /* Better to leak the stack than to free prematurely */
431
432 account_kernel_stack(tsk, -1);
433 free_thread_stack(tsk);
434 tsk->stack = NULL;
435 #ifdef CONFIG_VMAP_STACK
436 tsk->stack_vm_area = NULL;
437 #endif
438 }
439
440 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)441 void put_task_stack(struct task_struct *tsk)
442 {
443 if (refcount_dec_and_test(&tsk->stack_refcount))
444 release_task_stack(tsk);
445 }
446 EXPORT_SYMBOL_GPL(put_task_stack);
447 #endif
448
free_task(struct task_struct * tsk)449 void free_task(struct task_struct *tsk)
450 {
451 cpufreq_task_times_exit(tsk);
452 scs_release(tsk);
453
454 trace_android_vh_free_task(tsk);
455 #ifndef CONFIG_THREAD_INFO_IN_TASK
456 /*
457 * The task is finally done with both the stack and thread_info,
458 * so free both.
459 */
460 release_task_stack(tsk);
461 #else
462 /*
463 * If the task had a separate stack allocation, it should be gone
464 * by now.
465 */
466 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
467 #endif
468 rt_mutex_debug_task_free(tsk);
469 ftrace_graph_exit_task(tsk);
470 arch_release_task_struct(tsk);
471 if (tsk->flags & PF_KTHREAD)
472 free_kthread_struct(tsk);
473 free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476
477 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 struct mm_struct *oldmm)
480 {
481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev, *last = NULL;
482 struct rb_node **rb_link, *rb_parent;
483 int retval;
484 unsigned long charge;
485 LIST_HEAD(uf);
486
487 uprobe_start_dup_mmap();
488 if (mmap_write_lock_killable(oldmm)) {
489 retval = -EINTR;
490 goto fail_uprobe_end;
491 }
492 flush_cache_dup_mm(oldmm);
493 uprobe_dup_mmap(oldmm, mm);
494 /*
495 * Not linked in yet - no deadlock potential:
496 */
497 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
498
499 /* No ordering required: file already has been exposed. */
500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501
502 mm->total_vm = oldmm->total_vm;
503 mm->data_vm = oldmm->data_vm;
504 mm->exec_vm = oldmm->exec_vm;
505 mm->stack_vm = oldmm->stack_vm;
506
507 rb_link = &mm->mm_rb.rb_node;
508 rb_parent = NULL;
509 pprev = &mm->mmap;
510 retval = ksm_fork(mm, oldmm);
511 if (retval)
512 goto out;
513 retval = khugepaged_fork(mm, oldmm);
514 if (retval)
515 goto out;
516
517 prev = NULL;
518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 struct file *file;
520
521 if (mpnt->vm_flags & VM_DONTCOPY) {
522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 continue;
524 }
525 charge = 0;
526 /*
527 * Don't duplicate many vmas if we've been oom-killed (for
528 * example)
529 */
530 if (fatal_signal_pending(current)) {
531 retval = -EINTR;
532 goto out;
533 }
534 if (mpnt->vm_flags & VM_ACCOUNT) {
535 unsigned long len = vma_pages(mpnt);
536
537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 goto fail_nomem;
539 charge = len;
540 }
541 tmp = vm_area_dup(mpnt);
542 if (!tmp)
543 goto fail_nomem;
544 retval = vma_dup_policy(mpnt, tmp);
545 if (retval)
546 goto fail_nomem_policy;
547 tmp->vm_mm = mm;
548 retval = dup_userfaultfd(tmp, &uf);
549 if (retval)
550 goto fail_nomem_anon_vma_fork;
551 if (tmp->vm_flags & VM_WIPEONFORK) {
552 /*
553 * VM_WIPEONFORK gets a clean slate in the child.
554 * Don't prepare anon_vma until fault since we don't
555 * copy page for current vma.
556 */
557 tmp->anon_vma = NULL;
558 } else if (anon_vma_fork(tmp, mpnt))
559 goto fail_nomem_anon_vma_fork;
560 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
561 file = tmp->vm_file;
562 if (file) {
563 struct inode *inode = file_inode(file);
564 struct address_space *mapping = file->f_mapping;
565
566 get_file(file);
567 if (tmp->vm_flags & VM_DENYWRITE)
568 put_write_access(inode);
569 i_mmap_lock_write(mapping);
570 if (tmp->vm_flags & VM_SHARED)
571 mapping_allow_writable(mapping);
572 flush_dcache_mmap_lock(mapping);
573 /* insert tmp into the share list, just after mpnt */
574 vma_interval_tree_insert_after(tmp, mpnt,
575 &mapping->i_mmap);
576 flush_dcache_mmap_unlock(mapping);
577 i_mmap_unlock_write(mapping);
578 }
579
580 /*
581 * Clear hugetlb-related page reserves for children. This only
582 * affects MAP_PRIVATE mappings. Faults generated by the child
583 * are not guaranteed to succeed, even if read-only
584 */
585 if (is_vm_hugetlb_page(tmp))
586 reset_vma_resv_huge_pages(tmp);
587
588 /*
589 * Link in the new vma and copy the page table entries.
590 */
591 *pprev = tmp;
592 pprev = &tmp->vm_next;
593 tmp->vm_prev = prev;
594 prev = tmp;
595
596 __vma_link_rb(mm, tmp, rb_link, rb_parent);
597 rb_link = &tmp->vm_rb.rb_right;
598 rb_parent = &tmp->vm_rb;
599
600 mm->map_count++;
601 if (!(tmp->vm_flags & VM_WIPEONFORK)) {
602 if (IS_ENABLED(CONFIG_SPECULATIVE_PAGE_FAULT)) {
603 /*
604 * Mark this VMA as changing to prevent the
605 * speculative page fault hanlder to process
606 * it until the TLB are flushed below.
607 */
608 last = mpnt;
609 vm_write_begin(mpnt);
610 }
611 retval = copy_page_range(tmp, mpnt);
612 }
613
614 if (tmp->vm_ops && tmp->vm_ops->open)
615 tmp->vm_ops->open(tmp);
616
617 if (retval)
618 goto out;
619 }
620 /* a new mm has just been created */
621 retval = arch_dup_mmap(oldmm, mm);
622 out:
623 mmap_write_unlock(mm);
624 flush_tlb_mm(oldmm);
625
626 if (IS_ENABLED(CONFIG_SPECULATIVE_PAGE_FAULT)) {
627 /*
628 * Since the TLB has been flush, we can safely unmark the
629 * copied VMAs and allows the speculative page fault handler to
630 * process them again.
631 * Walk back the VMA list from the last marked VMA.
632 */
633 for (; last; last = last->vm_prev) {
634 if (last->vm_flags & VM_DONTCOPY)
635 continue;
636 if (!(last->vm_flags & VM_WIPEONFORK))
637 vm_write_end(last);
638 }
639 }
640
641 mmap_write_unlock(oldmm);
642 dup_userfaultfd_complete(&uf);
643 fail_uprobe_end:
644 uprobe_end_dup_mmap();
645 return retval;
646 fail_nomem_anon_vma_fork:
647 mpol_put(vma_policy(tmp));
648 fail_nomem_policy:
649 vm_area_free(tmp);
650 fail_nomem:
651 retval = -ENOMEM;
652 vm_unacct_memory(charge);
653 goto out;
654 }
655
mm_alloc_pgd(struct mm_struct * mm)656 static inline int mm_alloc_pgd(struct mm_struct *mm)
657 {
658 mm->pgd = pgd_alloc(mm);
659 if (unlikely(!mm->pgd))
660 return -ENOMEM;
661 return 0;
662 }
663
mm_free_pgd(struct mm_struct * mm)664 static inline void mm_free_pgd(struct mm_struct *mm)
665 {
666 pgd_free(mm, mm->pgd);
667 }
668 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)669 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
670 {
671 mmap_write_lock(oldmm);
672 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
673 mmap_write_unlock(oldmm);
674 return 0;
675 }
676 #define mm_alloc_pgd(mm) (0)
677 #define mm_free_pgd(mm)
678 #endif /* CONFIG_MMU */
679
check_mm(struct mm_struct * mm)680 static void check_mm(struct mm_struct *mm)
681 {
682 int i;
683
684 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
685 "Please make sure 'struct resident_page_types[]' is updated as well");
686
687 for (i = 0; i < NR_MM_COUNTERS; i++) {
688 long x = atomic_long_read(&mm->rss_stat.count[i]);
689
690 if (unlikely(x))
691 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
692 mm, resident_page_types[i], x);
693 }
694
695 if (mm_pgtables_bytes(mm))
696 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
697 mm_pgtables_bytes(mm));
698
699 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
700 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
701 #endif
702 }
703
704 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
705 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
706
707 /*
708 * Called when the last reference to the mm
709 * is dropped: either by a lazy thread or by
710 * mmput. Free the page directory and the mm.
711 */
__mmdrop(struct mm_struct * mm)712 void __mmdrop(struct mm_struct *mm)
713 {
714 BUG_ON(mm == &init_mm);
715 WARN_ON_ONCE(mm == current->mm);
716 WARN_ON_ONCE(mm == current->active_mm);
717 mm_free_pgd(mm);
718 destroy_context(mm);
719 mmu_notifier_subscriptions_destroy(mm);
720 check_mm(mm);
721 put_user_ns(mm->user_ns);
722 free_mm(mm);
723 }
724 EXPORT_SYMBOL_GPL(__mmdrop);
725
mmdrop_async_fn(struct work_struct * work)726 static void mmdrop_async_fn(struct work_struct *work)
727 {
728 struct mm_struct *mm;
729
730 mm = container_of(work, struct mm_struct, async_put_work);
731 __mmdrop(mm);
732 }
733
mmdrop_async(struct mm_struct * mm)734 static void mmdrop_async(struct mm_struct *mm)
735 {
736 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
737 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
738 schedule_work(&mm->async_put_work);
739 }
740 }
741
free_signal_struct(struct signal_struct * sig)742 static inline void free_signal_struct(struct signal_struct *sig)
743 {
744 taskstats_tgid_free(sig);
745 sched_autogroup_exit(sig);
746 /*
747 * __mmdrop is not safe to call from softirq context on x86 due to
748 * pgd_dtor so postpone it to the async context
749 */
750 if (sig->oom_mm)
751 mmdrop_async(sig->oom_mm);
752 kmem_cache_free(signal_cachep, sig);
753 }
754
put_signal_struct(struct signal_struct * sig)755 static inline void put_signal_struct(struct signal_struct *sig)
756 {
757 if (refcount_dec_and_test(&sig->sigcnt))
758 free_signal_struct(sig);
759 }
760
__put_task_struct(struct task_struct * tsk)761 void __put_task_struct(struct task_struct *tsk)
762 {
763 WARN_ON(!tsk->exit_state);
764 WARN_ON(refcount_read(&tsk->usage));
765 WARN_ON(tsk == current);
766
767 io_uring_free(tsk);
768 cgroup_free(tsk);
769 task_numa_free(tsk, true);
770 security_task_free(tsk);
771 exit_creds(tsk);
772 delayacct_tsk_free(tsk);
773 put_signal_struct(tsk->signal);
774
775 if (!profile_handoff_task(tsk))
776 free_task(tsk);
777 }
778 EXPORT_SYMBOL_GPL(__put_task_struct);
779
arch_task_cache_init(void)780 void __init __weak arch_task_cache_init(void) { }
781
782 /*
783 * set_max_threads
784 */
set_max_threads(unsigned int max_threads_suggested)785 static void set_max_threads(unsigned int max_threads_suggested)
786 {
787 u64 threads;
788 unsigned long nr_pages = totalram_pages();
789
790 /*
791 * The number of threads shall be limited such that the thread
792 * structures may only consume a small part of the available memory.
793 */
794 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
795 threads = MAX_THREADS;
796 else
797 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
798 (u64) THREAD_SIZE * 8UL);
799
800 if (threads > max_threads_suggested)
801 threads = max_threads_suggested;
802
803 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
804 }
805
806 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
807 /* Initialized by the architecture: */
808 int arch_task_struct_size __read_mostly;
809 #endif
810
811 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)812 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
813 {
814 /* Fetch thread_struct whitelist for the architecture. */
815 arch_thread_struct_whitelist(offset, size);
816
817 /*
818 * Handle zero-sized whitelist or empty thread_struct, otherwise
819 * adjust offset to position of thread_struct in task_struct.
820 */
821 if (unlikely(*size == 0))
822 *offset = 0;
823 else
824 *offset += offsetof(struct task_struct, thread);
825 }
826 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
827
fork_init(void)828 void __init fork_init(void)
829 {
830 int i;
831 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
832 #ifndef ARCH_MIN_TASKALIGN
833 #define ARCH_MIN_TASKALIGN 0
834 #endif
835 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
836 unsigned long useroffset, usersize;
837
838 /* create a slab on which task_structs can be allocated */
839 task_struct_whitelist(&useroffset, &usersize);
840 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
841 arch_task_struct_size, align,
842 SLAB_PANIC|SLAB_ACCOUNT,
843 useroffset, usersize, NULL);
844 #endif
845
846 /* do the arch specific task caches init */
847 arch_task_cache_init();
848
849 set_max_threads(MAX_THREADS);
850
851 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
852 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
853 init_task.signal->rlim[RLIMIT_SIGPENDING] =
854 init_task.signal->rlim[RLIMIT_NPROC];
855
856 for (i = 0; i < UCOUNT_COUNTS; i++) {
857 init_user_ns.ucount_max[i] = max_threads/2;
858 }
859
860 #ifdef CONFIG_VMAP_STACK
861 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
862 NULL, free_vm_stack_cache);
863 #endif
864
865 scs_init();
866
867 lockdep_init_task(&init_task);
868 uprobes_init();
869 }
870
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)871 int __weak arch_dup_task_struct(struct task_struct *dst,
872 struct task_struct *src)
873 {
874 *dst = *src;
875 return 0;
876 }
877
set_task_stack_end_magic(struct task_struct * tsk)878 void set_task_stack_end_magic(struct task_struct *tsk)
879 {
880 unsigned long *stackend;
881
882 stackend = end_of_stack(tsk);
883 *stackend = STACK_END_MAGIC; /* for overflow detection */
884 }
885
dup_task_struct(struct task_struct * orig,int node)886 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
887 {
888 struct task_struct *tsk;
889 unsigned long *stack;
890 struct vm_struct *stack_vm_area __maybe_unused;
891 int err;
892
893 if (node == NUMA_NO_NODE)
894 node = tsk_fork_get_node(orig);
895 tsk = alloc_task_struct_node(node);
896 if (!tsk)
897 return NULL;
898
899 stack = alloc_thread_stack_node(tsk, node);
900 if (!stack)
901 goto free_tsk;
902
903 if (memcg_charge_kernel_stack(tsk))
904 goto free_stack;
905
906 stack_vm_area = task_stack_vm_area(tsk);
907
908 err = arch_dup_task_struct(tsk, orig);
909
910 /*
911 * arch_dup_task_struct() clobbers the stack-related fields. Make
912 * sure they're properly initialized before using any stack-related
913 * functions again.
914 */
915 tsk->stack = stack;
916 #ifdef CONFIG_VMAP_STACK
917 tsk->stack_vm_area = stack_vm_area;
918 #endif
919 #ifdef CONFIG_THREAD_INFO_IN_TASK
920 refcount_set(&tsk->stack_refcount, 1);
921 #endif
922
923 if (err)
924 goto free_stack;
925
926 err = scs_prepare(tsk, node);
927 if (err)
928 goto free_stack;
929
930 #ifdef CONFIG_SECCOMP
931 /*
932 * We must handle setting up seccomp filters once we're under
933 * the sighand lock in case orig has changed between now and
934 * then. Until then, filter must be NULL to avoid messing up
935 * the usage counts on the error path calling free_task.
936 */
937 tsk->seccomp.filter = NULL;
938 #endif
939
940 setup_thread_stack(tsk, orig);
941 clear_user_return_notifier(tsk);
942 clear_tsk_need_resched(tsk);
943 set_task_stack_end_magic(tsk);
944
945 #ifdef CONFIG_STACKPROTECTOR
946 tsk->stack_canary = get_random_canary();
947 #endif
948 if (orig->cpus_ptr == &orig->cpus_mask)
949 tsk->cpus_ptr = &tsk->cpus_mask;
950
951 /*
952 * One for the user space visible state that goes away when reaped.
953 * One for the scheduler.
954 */
955 refcount_set(&tsk->rcu_users, 2);
956 /* One for the rcu users */
957 refcount_set(&tsk->usage, 1);
958 #ifdef CONFIG_BLK_DEV_IO_TRACE
959 tsk->btrace_seq = 0;
960 #endif
961 tsk->splice_pipe = NULL;
962 tsk->task_frag.page = NULL;
963 tsk->wake_q.next = NULL;
964 tsk->pf_io_worker = NULL;
965
966 account_kernel_stack(tsk, 1);
967
968 kcov_task_init(tsk);
969
970 #ifdef CONFIG_FAULT_INJECTION
971 tsk->fail_nth = 0;
972 #endif
973
974 #ifdef CONFIG_BLK_CGROUP
975 tsk->throttle_queue = NULL;
976 tsk->use_memdelay = 0;
977 #endif
978
979 #ifdef CONFIG_MEMCG
980 tsk->active_memcg = NULL;
981 #endif
982
983 android_init_vendor_data(tsk, 1);
984 android_init_oem_data(tsk, 1);
985
986 trace_android_vh_dup_task_struct(tsk, orig);
987 return tsk;
988
989 free_stack:
990 free_thread_stack(tsk);
991 free_tsk:
992 free_task_struct(tsk);
993 return NULL;
994 }
995
996 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
997
998 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
999
coredump_filter_setup(char * s)1000 static int __init coredump_filter_setup(char *s)
1001 {
1002 default_dump_filter =
1003 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1004 MMF_DUMP_FILTER_MASK;
1005 return 1;
1006 }
1007
1008 __setup("coredump_filter=", coredump_filter_setup);
1009
1010 #include <linux/init_task.h>
1011
mm_init_aio(struct mm_struct * mm)1012 static void mm_init_aio(struct mm_struct *mm)
1013 {
1014 #ifdef CONFIG_AIO
1015 spin_lock_init(&mm->ioctx_lock);
1016 mm->ioctx_table = NULL;
1017 #endif
1018 }
1019
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1020 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1021 struct task_struct *p)
1022 {
1023 #ifdef CONFIG_MEMCG
1024 if (mm->owner == p)
1025 WRITE_ONCE(mm->owner, NULL);
1026 #endif
1027 }
1028
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1029 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1030 {
1031 #ifdef CONFIG_MEMCG
1032 mm->owner = p;
1033 #endif
1034 }
1035
mm_init_pasid(struct mm_struct * mm)1036 static void mm_init_pasid(struct mm_struct *mm)
1037 {
1038 #ifdef CONFIG_IOMMU_SUPPORT
1039 mm->pasid = INIT_PASID;
1040 #endif
1041 }
1042
mm_init_uprobes_state(struct mm_struct * mm)1043 static void mm_init_uprobes_state(struct mm_struct *mm)
1044 {
1045 #ifdef CONFIG_UPROBES
1046 mm->uprobes_state.xol_area = NULL;
1047 #endif
1048 }
1049
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1050 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1051 struct user_namespace *user_ns)
1052 {
1053 mm->mmap = NULL;
1054 mm->mm_rb = RB_ROOT;
1055 mm->vmacache_seqnum = 0;
1056 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
1057 rwlock_init(&mm->mm_rb_lock);
1058 #endif
1059 atomic_set(&mm->mm_users, 1);
1060 atomic_set(&mm->mm_count, 1);
1061 seqcount_init(&mm->write_protect_seq);
1062 mmap_init_lock(mm);
1063 INIT_LIST_HEAD(&mm->mmlist);
1064 mm->core_state = NULL;
1065 mm_pgtables_bytes_init(mm);
1066 mm->map_count = 0;
1067 mm->locked_vm = 0;
1068 atomic_set(&mm->has_pinned, 0);
1069 atomic64_set(&mm->pinned_vm, 0);
1070 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1071 spin_lock_init(&mm->page_table_lock);
1072 spin_lock_init(&mm->arg_lock);
1073 mm_init_cpumask(mm);
1074 mm_init_aio(mm);
1075 mm_init_owner(mm, p);
1076 mm_init_pasid(mm);
1077 RCU_INIT_POINTER(mm->exe_file, NULL);
1078 if (!mmu_notifier_subscriptions_init(mm))
1079 goto fail_nopgd;
1080 init_tlb_flush_pending(mm);
1081 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1082 mm->pmd_huge_pte = NULL;
1083 #endif
1084 mm_init_uprobes_state(mm);
1085 hugetlb_count_init(mm);
1086
1087 if (current->mm) {
1088 mm->flags = current->mm->flags & MMF_INIT_MASK;
1089 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1090 } else {
1091 mm->flags = default_dump_filter;
1092 mm->def_flags = 0;
1093 }
1094
1095 if (mm_alloc_pgd(mm))
1096 goto fail_nopgd;
1097
1098 if (init_new_context(p, mm))
1099 goto fail_nocontext;
1100
1101 mm->user_ns = get_user_ns(user_ns);
1102 return mm;
1103
1104 fail_nocontext:
1105 mm_free_pgd(mm);
1106 fail_nopgd:
1107 free_mm(mm);
1108 return NULL;
1109 }
1110
1111 /*
1112 * Allocate and initialize an mm_struct.
1113 */
mm_alloc(void)1114 struct mm_struct *mm_alloc(void)
1115 {
1116 struct mm_struct *mm;
1117
1118 mm = allocate_mm();
1119 if (!mm)
1120 return NULL;
1121
1122 memset(mm, 0, sizeof(*mm));
1123 return mm_init(mm, current, current_user_ns());
1124 }
1125
__mmput(struct mm_struct * mm)1126 static inline void __mmput(struct mm_struct *mm)
1127 {
1128 VM_BUG_ON(atomic_read(&mm->mm_users));
1129
1130 uprobe_clear_state(mm);
1131 exit_aio(mm);
1132 ksm_exit(mm);
1133 khugepaged_exit(mm); /* must run before exit_mmap */
1134 exit_mmap(mm);
1135 mm_put_huge_zero_page(mm);
1136 set_mm_exe_file(mm, NULL);
1137 if (!list_empty(&mm->mmlist)) {
1138 spin_lock(&mmlist_lock);
1139 list_del(&mm->mmlist);
1140 spin_unlock(&mmlist_lock);
1141 }
1142 if (mm->binfmt)
1143 module_put(mm->binfmt->module);
1144 mmdrop(mm);
1145 }
1146
1147 /*
1148 * Decrement the use count and release all resources for an mm.
1149 */
mmput(struct mm_struct * mm)1150 void mmput(struct mm_struct *mm)
1151 {
1152 might_sleep();
1153
1154 if (atomic_dec_and_test(&mm->mm_users)) {
1155 trace_android_vh_mmput(NULL);
1156 __mmput(mm);
1157 }
1158 }
1159 EXPORT_SYMBOL_GPL(mmput);
1160
1161 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1162 static void mmput_async_fn(struct work_struct *work)
1163 {
1164 struct mm_struct *mm = container_of(work, struct mm_struct,
1165 async_put_work);
1166
1167 __mmput(mm);
1168 }
1169
mmput_async(struct mm_struct * mm)1170 void mmput_async(struct mm_struct *mm)
1171 {
1172 if (atomic_dec_and_test(&mm->mm_users)) {
1173 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1174 schedule_work(&mm->async_put_work);
1175 }
1176 }
1177 EXPORT_SYMBOL_GPL(mmput_async);
1178 #endif
1179
1180 /**
1181 * set_mm_exe_file - change a reference to the mm's executable file
1182 *
1183 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1184 *
1185 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1186 * invocations: in mmput() nobody alive left, in execve task is single
1187 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1188 * mm->exe_file, but does so without using set_mm_exe_file() in order
1189 * to do avoid the need for any locks.
1190 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1191 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1192 {
1193 struct file *old_exe_file;
1194
1195 /*
1196 * It is safe to dereference the exe_file without RCU as
1197 * this function is only called if nobody else can access
1198 * this mm -- see comment above for justification.
1199 */
1200 old_exe_file = rcu_dereference_raw(mm->exe_file);
1201
1202 if (new_exe_file)
1203 get_file(new_exe_file);
1204 rcu_assign_pointer(mm->exe_file, new_exe_file);
1205 if (old_exe_file)
1206 fput(old_exe_file);
1207 }
1208
1209 /**
1210 * get_mm_exe_file - acquire a reference to the mm's executable file
1211 *
1212 * Returns %NULL if mm has no associated executable file.
1213 * User must release file via fput().
1214 */
get_mm_exe_file(struct mm_struct * mm)1215 struct file *get_mm_exe_file(struct mm_struct *mm)
1216 {
1217 struct file *exe_file;
1218
1219 rcu_read_lock();
1220 exe_file = rcu_dereference(mm->exe_file);
1221 if (exe_file && !get_file_rcu(exe_file))
1222 exe_file = NULL;
1223 rcu_read_unlock();
1224 return exe_file;
1225 }
1226 EXPORT_SYMBOL(get_mm_exe_file);
1227
1228 /**
1229 * get_task_exe_file - acquire a reference to the task's executable file
1230 *
1231 * Returns %NULL if task's mm (if any) has no associated executable file or
1232 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1233 * User must release file via fput().
1234 */
get_task_exe_file(struct task_struct * task)1235 struct file *get_task_exe_file(struct task_struct *task)
1236 {
1237 struct file *exe_file = NULL;
1238 struct mm_struct *mm;
1239
1240 task_lock(task);
1241 mm = task->mm;
1242 if (mm) {
1243 if (!(task->flags & PF_KTHREAD))
1244 exe_file = get_mm_exe_file(mm);
1245 }
1246 task_unlock(task);
1247 return exe_file;
1248 }
1249 EXPORT_SYMBOL(get_task_exe_file);
1250
1251 /**
1252 * get_task_mm - acquire a reference to the task's mm
1253 *
1254 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1255 * this kernel workthread has transiently adopted a user mm with use_mm,
1256 * to do its AIO) is not set and if so returns a reference to it, after
1257 * bumping up the use count. User must release the mm via mmput()
1258 * after use. Typically used by /proc and ptrace.
1259 */
get_task_mm(struct task_struct * task)1260 struct mm_struct *get_task_mm(struct task_struct *task)
1261 {
1262 struct mm_struct *mm;
1263
1264 task_lock(task);
1265 mm = task->mm;
1266 if (mm) {
1267 if (task->flags & PF_KTHREAD)
1268 mm = NULL;
1269 else
1270 mmget(mm);
1271 }
1272 task_unlock(task);
1273 return mm;
1274 }
1275 EXPORT_SYMBOL_GPL(get_task_mm);
1276
mm_access(struct task_struct * task,unsigned int mode)1277 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1278 {
1279 struct mm_struct *mm;
1280 int err;
1281
1282 err = down_read_killable(&task->signal->exec_update_lock);
1283 if (err)
1284 return ERR_PTR(err);
1285
1286 mm = get_task_mm(task);
1287 if (mm && mm != current->mm &&
1288 !ptrace_may_access(task, mode)) {
1289 mmput(mm);
1290 mm = ERR_PTR(-EACCES);
1291 }
1292 up_read(&task->signal->exec_update_lock);
1293
1294 return mm;
1295 }
1296
complete_vfork_done(struct task_struct * tsk)1297 static void complete_vfork_done(struct task_struct *tsk)
1298 {
1299 struct completion *vfork;
1300
1301 task_lock(tsk);
1302 vfork = tsk->vfork_done;
1303 if (likely(vfork)) {
1304 tsk->vfork_done = NULL;
1305 complete(vfork);
1306 }
1307 task_unlock(tsk);
1308 }
1309
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1310 static int wait_for_vfork_done(struct task_struct *child,
1311 struct completion *vfork)
1312 {
1313 int killed;
1314
1315 freezer_do_not_count();
1316 cgroup_enter_frozen();
1317 killed = wait_for_completion_killable(vfork);
1318 cgroup_leave_frozen(false);
1319 freezer_count();
1320
1321 if (killed) {
1322 task_lock(child);
1323 child->vfork_done = NULL;
1324 task_unlock(child);
1325 }
1326
1327 put_task_struct(child);
1328 return killed;
1329 }
1330
1331 /* Please note the differences between mmput and mm_release.
1332 * mmput is called whenever we stop holding onto a mm_struct,
1333 * error success whatever.
1334 *
1335 * mm_release is called after a mm_struct has been removed
1336 * from the current process.
1337 *
1338 * This difference is important for error handling, when we
1339 * only half set up a mm_struct for a new process and need to restore
1340 * the old one. Because we mmput the new mm_struct before
1341 * restoring the old one. . .
1342 * Eric Biederman 10 January 1998
1343 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1344 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1345 {
1346 uprobe_free_utask(tsk);
1347
1348 /* Get rid of any cached register state */
1349 deactivate_mm(tsk, mm);
1350
1351 /*
1352 * Signal userspace if we're not exiting with a core dump
1353 * because we want to leave the value intact for debugging
1354 * purposes.
1355 */
1356 if (tsk->clear_child_tid) {
1357 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1358 atomic_read(&mm->mm_users) > 1) {
1359 /*
1360 * We don't check the error code - if userspace has
1361 * not set up a proper pointer then tough luck.
1362 */
1363 put_user(0, tsk->clear_child_tid);
1364 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1365 1, NULL, NULL, 0, 0);
1366 }
1367 tsk->clear_child_tid = NULL;
1368 }
1369
1370 /*
1371 * All done, finally we can wake up parent and return this mm to him.
1372 * Also kthread_stop() uses this completion for synchronization.
1373 */
1374 if (tsk->vfork_done)
1375 complete_vfork_done(tsk);
1376 }
1377
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1378 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1379 {
1380 futex_exit_release(tsk);
1381 mm_release(tsk, mm);
1382 }
1383
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1384 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1385 {
1386 futex_exec_release(tsk);
1387 mm_release(tsk, mm);
1388 }
1389
1390 /**
1391 * dup_mm() - duplicates an existing mm structure
1392 * @tsk: the task_struct with which the new mm will be associated.
1393 * @oldmm: the mm to duplicate.
1394 *
1395 * Allocates a new mm structure and duplicates the provided @oldmm structure
1396 * content into it.
1397 *
1398 * Return: the duplicated mm or NULL on failure.
1399 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1400 static struct mm_struct *dup_mm(struct task_struct *tsk,
1401 struct mm_struct *oldmm)
1402 {
1403 struct mm_struct *mm;
1404 int err;
1405
1406 mm = allocate_mm();
1407 if (!mm)
1408 goto fail_nomem;
1409
1410 memcpy(mm, oldmm, sizeof(*mm));
1411
1412 if (!mm_init(mm, tsk, mm->user_ns))
1413 goto fail_nomem;
1414
1415 err = dup_mmap(mm, oldmm);
1416 if (err)
1417 goto free_pt;
1418
1419 mm->hiwater_rss = get_mm_rss(mm);
1420 mm->hiwater_vm = mm->total_vm;
1421
1422 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1423 goto free_pt;
1424
1425 return mm;
1426
1427 free_pt:
1428 /* don't put binfmt in mmput, we haven't got module yet */
1429 mm->binfmt = NULL;
1430 mm_init_owner(mm, NULL);
1431 mmput(mm);
1432
1433 fail_nomem:
1434 return NULL;
1435 }
1436
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1437 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 struct mm_struct *mm, *oldmm;
1440 int retval;
1441
1442 tsk->min_flt = tsk->maj_flt = 0;
1443 tsk->nvcsw = tsk->nivcsw = 0;
1444 #ifdef CONFIG_DETECT_HUNG_TASK
1445 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1446 tsk->last_switch_time = 0;
1447 #endif
1448
1449 tsk->mm = NULL;
1450 tsk->active_mm = NULL;
1451
1452 /*
1453 * Are we cloning a kernel thread?
1454 *
1455 * We need to steal a active VM for that..
1456 */
1457 oldmm = current->mm;
1458 if (!oldmm)
1459 return 0;
1460
1461 /* initialize the new vmacache entries */
1462 vmacache_flush(tsk);
1463
1464 if (clone_flags & CLONE_VM) {
1465 mmget(oldmm);
1466 mm = oldmm;
1467 goto good_mm;
1468 }
1469
1470 retval = -ENOMEM;
1471 mm = dup_mm(tsk, current->mm);
1472 if (!mm)
1473 goto fail_nomem;
1474
1475 good_mm:
1476 tsk->mm = mm;
1477 tsk->active_mm = mm;
1478 return 0;
1479
1480 fail_nomem:
1481 return retval;
1482 }
1483
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1484 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1485 {
1486 struct fs_struct *fs = current->fs;
1487 if (clone_flags & CLONE_FS) {
1488 /* tsk->fs is already what we want */
1489 spin_lock(&fs->lock);
1490 if (fs->in_exec) {
1491 spin_unlock(&fs->lock);
1492 return -EAGAIN;
1493 }
1494 fs->users++;
1495 spin_unlock(&fs->lock);
1496 return 0;
1497 }
1498 tsk->fs = copy_fs_struct(fs);
1499 if (!tsk->fs)
1500 return -ENOMEM;
1501 return 0;
1502 }
1503
copy_files(unsigned long clone_flags,struct task_struct * tsk)1504 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1505 {
1506 struct files_struct *oldf, *newf;
1507 int error = 0;
1508
1509 /*
1510 * A background process may not have any files ...
1511 */
1512 oldf = current->files;
1513 if (!oldf)
1514 goto out;
1515
1516 if (clone_flags & CLONE_FILES) {
1517 atomic_inc(&oldf->count);
1518 goto out;
1519 }
1520
1521 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1522 if (!newf)
1523 goto out;
1524
1525 tsk->files = newf;
1526 error = 0;
1527 out:
1528 return error;
1529 }
1530
copy_io(unsigned long clone_flags,struct task_struct * tsk)1531 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1532 {
1533 #ifdef CONFIG_BLOCK
1534 struct io_context *ioc = current->io_context;
1535 struct io_context *new_ioc;
1536
1537 if (!ioc)
1538 return 0;
1539 /*
1540 * Share io context with parent, if CLONE_IO is set
1541 */
1542 if (clone_flags & CLONE_IO) {
1543 ioc_task_link(ioc);
1544 tsk->io_context = ioc;
1545 } else if (ioprio_valid(ioc->ioprio)) {
1546 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1547 if (unlikely(!new_ioc))
1548 return -ENOMEM;
1549
1550 new_ioc->ioprio = ioc->ioprio;
1551 put_io_context(new_ioc);
1552 }
1553 #endif
1554 return 0;
1555 }
1556
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1557 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1558 {
1559 struct sighand_struct *sig;
1560
1561 if (clone_flags & CLONE_SIGHAND) {
1562 refcount_inc(¤t->sighand->count);
1563 return 0;
1564 }
1565 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1566 RCU_INIT_POINTER(tsk->sighand, sig);
1567 if (!sig)
1568 return -ENOMEM;
1569
1570 refcount_set(&sig->count, 1);
1571 spin_lock_irq(¤t->sighand->siglock);
1572 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1573 spin_unlock_irq(¤t->sighand->siglock);
1574
1575 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1576 if (clone_flags & CLONE_CLEAR_SIGHAND)
1577 flush_signal_handlers(tsk, 0);
1578
1579 return 0;
1580 }
1581
__cleanup_sighand(struct sighand_struct * sighand)1582 void __cleanup_sighand(struct sighand_struct *sighand)
1583 {
1584 if (refcount_dec_and_test(&sighand->count)) {
1585 signalfd_cleanup(sighand);
1586 /*
1587 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1588 * without an RCU grace period, see __lock_task_sighand().
1589 */
1590 kmem_cache_free(sighand_cachep, sighand);
1591 }
1592 }
1593
1594 /*
1595 * Initialize POSIX timer handling for a thread group.
1596 */
posix_cpu_timers_init_group(struct signal_struct * sig)1597 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1598 {
1599 struct posix_cputimers *pct = &sig->posix_cputimers;
1600 unsigned long cpu_limit;
1601
1602 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1603 posix_cputimers_group_init(pct, cpu_limit);
1604 }
1605
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1606 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1607 {
1608 struct signal_struct *sig;
1609
1610 if (clone_flags & CLONE_THREAD)
1611 return 0;
1612
1613 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1614 tsk->signal = sig;
1615 if (!sig)
1616 return -ENOMEM;
1617
1618 sig->nr_threads = 1;
1619 atomic_set(&sig->live, 1);
1620 refcount_set(&sig->sigcnt, 1);
1621
1622 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1623 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1624 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1625
1626 init_waitqueue_head(&sig->wait_chldexit);
1627 sig->curr_target = tsk;
1628 init_sigpending(&sig->shared_pending);
1629 INIT_HLIST_HEAD(&sig->multiprocess);
1630 seqlock_init(&sig->stats_lock);
1631 prev_cputime_init(&sig->prev_cputime);
1632
1633 #ifdef CONFIG_POSIX_TIMERS
1634 INIT_LIST_HEAD(&sig->posix_timers);
1635 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1636 sig->real_timer.function = it_real_fn;
1637 #endif
1638
1639 task_lock(current->group_leader);
1640 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1641 task_unlock(current->group_leader);
1642
1643 posix_cpu_timers_init_group(sig);
1644
1645 tty_audit_fork(sig);
1646 sched_autogroup_fork(sig);
1647
1648 sig->oom_score_adj = current->signal->oom_score_adj;
1649 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1650
1651 mutex_init(&sig->cred_guard_mutex);
1652 init_rwsem(&sig->exec_update_lock);
1653
1654 return 0;
1655 }
1656
copy_seccomp(struct task_struct * p)1657 static void copy_seccomp(struct task_struct *p)
1658 {
1659 #ifdef CONFIG_SECCOMP
1660 /*
1661 * Must be called with sighand->lock held, which is common to
1662 * all threads in the group. Holding cred_guard_mutex is not
1663 * needed because this new task is not yet running and cannot
1664 * be racing exec.
1665 */
1666 assert_spin_locked(¤t->sighand->siglock);
1667
1668 /* Ref-count the new filter user, and assign it. */
1669 get_seccomp_filter(current);
1670 p->seccomp = current->seccomp;
1671
1672 /*
1673 * Explicitly enable no_new_privs here in case it got set
1674 * between the task_struct being duplicated and holding the
1675 * sighand lock. The seccomp state and nnp must be in sync.
1676 */
1677 if (task_no_new_privs(current))
1678 task_set_no_new_privs(p);
1679
1680 /*
1681 * If the parent gained a seccomp mode after copying thread
1682 * flags and between before we held the sighand lock, we have
1683 * to manually enable the seccomp thread flag here.
1684 */
1685 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1686 set_tsk_thread_flag(p, TIF_SECCOMP);
1687 #endif
1688 }
1689
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1690 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1691 {
1692 current->clear_child_tid = tidptr;
1693
1694 return task_pid_vnr(current);
1695 }
1696
rt_mutex_init_task(struct task_struct * p)1697 static void rt_mutex_init_task(struct task_struct *p)
1698 {
1699 raw_spin_lock_init(&p->pi_lock);
1700 #ifdef CONFIG_RT_MUTEXES
1701 p->pi_waiters = RB_ROOT_CACHED;
1702 p->pi_top_task = NULL;
1703 p->pi_blocked_on = NULL;
1704 #endif
1705 }
1706
init_task_pid_links(struct task_struct * task)1707 static inline void init_task_pid_links(struct task_struct *task)
1708 {
1709 enum pid_type type;
1710
1711 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1712 INIT_HLIST_NODE(&task->pid_links[type]);
1713 }
1714 }
1715
1716 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1717 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1718 {
1719 if (type == PIDTYPE_PID)
1720 task->thread_pid = pid;
1721 else
1722 task->signal->pids[type] = pid;
1723 }
1724
rcu_copy_process(struct task_struct * p)1725 static inline void rcu_copy_process(struct task_struct *p)
1726 {
1727 #ifdef CONFIG_PREEMPT_RCU
1728 p->rcu_read_lock_nesting = 0;
1729 p->rcu_read_unlock_special.s = 0;
1730 p->rcu_blocked_node = NULL;
1731 INIT_LIST_HEAD(&p->rcu_node_entry);
1732 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1733 #ifdef CONFIG_TASKS_RCU
1734 p->rcu_tasks_holdout = false;
1735 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1736 p->rcu_tasks_idle_cpu = -1;
1737 #endif /* #ifdef CONFIG_TASKS_RCU */
1738 #ifdef CONFIG_TASKS_TRACE_RCU
1739 p->trc_reader_nesting = 0;
1740 p->trc_reader_special.s = 0;
1741 INIT_LIST_HEAD(&p->trc_holdout_list);
1742 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1743 }
1744
pidfd_pid(const struct file * file)1745 struct pid *pidfd_pid(const struct file *file)
1746 {
1747 if (file->f_op == &pidfd_fops)
1748 return file->private_data;
1749
1750 return ERR_PTR(-EBADF);
1751 }
1752
pidfd_release(struct inode * inode,struct file * file)1753 static int pidfd_release(struct inode *inode, struct file *file)
1754 {
1755 struct pid *pid = file->private_data;
1756
1757 file->private_data = NULL;
1758 put_pid(pid);
1759 return 0;
1760 }
1761
1762 #ifdef CONFIG_PROC_FS
1763 /**
1764 * pidfd_show_fdinfo - print information about a pidfd
1765 * @m: proc fdinfo file
1766 * @f: file referencing a pidfd
1767 *
1768 * Pid:
1769 * This function will print the pid that a given pidfd refers to in the
1770 * pid namespace of the procfs instance.
1771 * If the pid namespace of the process is not a descendant of the pid
1772 * namespace of the procfs instance 0 will be shown as its pid. This is
1773 * similar to calling getppid() on a process whose parent is outside of
1774 * its pid namespace.
1775 *
1776 * NSpid:
1777 * If pid namespaces are supported then this function will also print
1778 * the pid of a given pidfd refers to for all descendant pid namespaces
1779 * starting from the current pid namespace of the instance, i.e. the
1780 * Pid field and the first entry in the NSpid field will be identical.
1781 * If the pid namespace of the process is not a descendant of the pid
1782 * namespace of the procfs instance 0 will be shown as its first NSpid
1783 * entry and no others will be shown.
1784 * Note that this differs from the Pid and NSpid fields in
1785 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1786 * the pid namespace of the procfs instance. The difference becomes
1787 * obvious when sending around a pidfd between pid namespaces from a
1788 * different branch of the tree, i.e. where no ancestoral relation is
1789 * present between the pid namespaces:
1790 * - create two new pid namespaces ns1 and ns2 in the initial pid
1791 * namespace (also take care to create new mount namespaces in the
1792 * new pid namespace and mount procfs)
1793 * - create a process with a pidfd in ns1
1794 * - send pidfd from ns1 to ns2
1795 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1796 * have exactly one entry, which is 0
1797 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1798 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1799 {
1800 struct pid *pid = f->private_data;
1801 struct pid_namespace *ns;
1802 pid_t nr = -1;
1803
1804 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1805 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1806 nr = pid_nr_ns(pid, ns);
1807 }
1808
1809 seq_put_decimal_ll(m, "Pid:\t", nr);
1810
1811 #ifdef CONFIG_PID_NS
1812 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1813 if (nr > 0) {
1814 int i;
1815
1816 /* If nr is non-zero it means that 'pid' is valid and that
1817 * ns, i.e. the pid namespace associated with the procfs
1818 * instance, is in the pid namespace hierarchy of pid.
1819 * Start at one below the already printed level.
1820 */
1821 for (i = ns->level + 1; i <= pid->level; i++)
1822 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1823 }
1824 #endif
1825 seq_putc(m, '\n');
1826 }
1827 #endif
1828
1829 /*
1830 * Poll support for process exit notification.
1831 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1832 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1833 {
1834 struct pid *pid = file->private_data;
1835 __poll_t poll_flags = 0;
1836
1837 poll_wait(file, &pid->wait_pidfd, pts);
1838
1839 /*
1840 * Inform pollers only when the whole thread group exits.
1841 * If the thread group leader exits before all other threads in the
1842 * group, then poll(2) should block, similar to the wait(2) family.
1843 */
1844 if (thread_group_exited(pid))
1845 poll_flags = EPOLLIN | EPOLLRDNORM;
1846
1847 return poll_flags;
1848 }
1849
1850 const struct file_operations pidfd_fops = {
1851 .release = pidfd_release,
1852 .poll = pidfd_poll,
1853 #ifdef CONFIG_PROC_FS
1854 .show_fdinfo = pidfd_show_fdinfo,
1855 #endif
1856 };
1857
__delayed_free_task(struct rcu_head * rhp)1858 static void __delayed_free_task(struct rcu_head *rhp)
1859 {
1860 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1861
1862 free_task(tsk);
1863 }
1864
delayed_free_task(struct task_struct * tsk)1865 static __always_inline void delayed_free_task(struct task_struct *tsk)
1866 {
1867 if (IS_ENABLED(CONFIG_MEMCG))
1868 call_rcu(&tsk->rcu, __delayed_free_task);
1869 else
1870 free_task(tsk);
1871 }
1872
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1873 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1874 {
1875 /* Skip if kernel thread */
1876 if (!tsk->mm)
1877 return;
1878
1879 /* Skip if spawning a thread or using vfork */
1880 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1881 return;
1882
1883 /* We need to synchronize with __set_oom_adj */
1884 mutex_lock(&oom_adj_mutex);
1885 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1886 /* Update the values in case they were changed after copy_signal */
1887 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1888 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1889 mutex_unlock(&oom_adj_mutex);
1890 }
1891
1892 /*
1893 * This creates a new process as a copy of the old one,
1894 * but does not actually start it yet.
1895 *
1896 * It copies the registers, and all the appropriate
1897 * parts of the process environment (as per the clone
1898 * flags). The actual kick-off is left to the caller.
1899 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1900 static __latent_entropy struct task_struct *copy_process(
1901 struct pid *pid,
1902 int trace,
1903 int node,
1904 struct kernel_clone_args *args)
1905 {
1906 int pidfd = -1, retval;
1907 struct task_struct *p;
1908 struct multiprocess_signals delayed;
1909 struct file *pidfile = NULL;
1910 u64 clone_flags = args->flags;
1911 struct nsproxy *nsp = current->nsproxy;
1912
1913 /*
1914 * Don't allow sharing the root directory with processes in a different
1915 * namespace
1916 */
1917 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1918 return ERR_PTR(-EINVAL);
1919
1920 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1921 return ERR_PTR(-EINVAL);
1922
1923 /*
1924 * Thread groups must share signals as well, and detached threads
1925 * can only be started up within the thread group.
1926 */
1927 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1928 return ERR_PTR(-EINVAL);
1929
1930 /*
1931 * Shared signal handlers imply shared VM. By way of the above,
1932 * thread groups also imply shared VM. Blocking this case allows
1933 * for various simplifications in other code.
1934 */
1935 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1936 return ERR_PTR(-EINVAL);
1937
1938 /*
1939 * Siblings of global init remain as zombies on exit since they are
1940 * not reaped by their parent (swapper). To solve this and to avoid
1941 * multi-rooted process trees, prevent global and container-inits
1942 * from creating siblings.
1943 */
1944 if ((clone_flags & CLONE_PARENT) &&
1945 current->signal->flags & SIGNAL_UNKILLABLE)
1946 return ERR_PTR(-EINVAL);
1947
1948 /*
1949 * If the new process will be in a different pid or user namespace
1950 * do not allow it to share a thread group with the forking task.
1951 */
1952 if (clone_flags & CLONE_THREAD) {
1953 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1954 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1955 return ERR_PTR(-EINVAL);
1956 }
1957
1958 /*
1959 * If the new process will be in a different time namespace
1960 * do not allow it to share VM or a thread group with the forking task.
1961 */
1962 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1963 if (nsp->time_ns != nsp->time_ns_for_children)
1964 return ERR_PTR(-EINVAL);
1965 }
1966
1967 if (clone_flags & CLONE_PIDFD) {
1968 /*
1969 * - CLONE_DETACHED is blocked so that we can potentially
1970 * reuse it later for CLONE_PIDFD.
1971 * - CLONE_THREAD is blocked until someone really needs it.
1972 */
1973 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1974 return ERR_PTR(-EINVAL);
1975 }
1976
1977 /*
1978 * Force any signals received before this point to be delivered
1979 * before the fork happens. Collect up signals sent to multiple
1980 * processes that happen during the fork and delay them so that
1981 * they appear to happen after the fork.
1982 */
1983 sigemptyset(&delayed.signal);
1984 INIT_HLIST_NODE(&delayed.node);
1985
1986 spin_lock_irq(¤t->sighand->siglock);
1987 if (!(clone_flags & CLONE_THREAD))
1988 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1989 recalc_sigpending();
1990 spin_unlock_irq(¤t->sighand->siglock);
1991 retval = -ERESTARTNOINTR;
1992 if (task_sigpending(current))
1993 goto fork_out;
1994
1995 retval = -ENOMEM;
1996 p = dup_task_struct(current, node);
1997 if (!p)
1998 goto fork_out;
1999 if (args->io_thread) {
2000 /*
2001 * Mark us an IO worker, and block any signal that isn't
2002 * fatal or STOP
2003 */
2004 p->flags |= PF_IO_WORKER;
2005 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2006 }
2007
2008 cpufreq_task_times_init(p);
2009
2010 /*
2011 * This _must_ happen before we call free_task(), i.e. before we jump
2012 * to any of the bad_fork_* labels. This is to avoid freeing
2013 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2014 * kernel threads (PF_KTHREAD).
2015 */
2016 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2017 /*
2018 * Clear TID on mm_release()?
2019 */
2020 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2021
2022 ftrace_graph_init_task(p);
2023
2024 rt_mutex_init_task(p);
2025
2026 lockdep_assert_irqs_enabled();
2027 #ifdef CONFIG_PROVE_LOCKING
2028 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2029 #endif
2030 retval = -EAGAIN;
2031 if (atomic_read(&p->real_cred->user->processes) >=
2032 task_rlimit(p, RLIMIT_NPROC)) {
2033 if (p->real_cred->user != INIT_USER &&
2034 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2035 goto bad_fork_free;
2036 }
2037 current->flags &= ~PF_NPROC_EXCEEDED;
2038
2039 retval = copy_creds(p, clone_flags);
2040 if (retval < 0)
2041 goto bad_fork_free;
2042
2043 /*
2044 * If multiple threads are within copy_process(), then this check
2045 * triggers too late. This doesn't hurt, the check is only there
2046 * to stop root fork bombs.
2047 */
2048 retval = -EAGAIN;
2049 if (data_race(nr_threads >= max_threads))
2050 goto bad_fork_cleanup_count;
2051
2052 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2053 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2054 p->flags |= PF_FORKNOEXEC;
2055 INIT_LIST_HEAD(&p->children);
2056 INIT_LIST_HEAD(&p->sibling);
2057 rcu_copy_process(p);
2058 p->vfork_done = NULL;
2059 spin_lock_init(&p->alloc_lock);
2060
2061 init_sigpending(&p->pending);
2062
2063 p->utime = p->stime = p->gtime = 0;
2064 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2065 p->utimescaled = p->stimescaled = 0;
2066 #endif
2067 prev_cputime_init(&p->prev_cputime);
2068
2069 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2070 seqcount_init(&p->vtime.seqcount);
2071 p->vtime.starttime = 0;
2072 p->vtime.state = VTIME_INACTIVE;
2073 #endif
2074
2075 #ifdef CONFIG_IO_URING
2076 p->io_uring = NULL;
2077 #endif
2078
2079 #if defined(SPLIT_RSS_COUNTING)
2080 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2081 #endif
2082
2083 p->default_timer_slack_ns = current->timer_slack_ns;
2084
2085 #ifdef CONFIG_PSI
2086 p->psi_flags = 0;
2087 #endif
2088
2089 task_io_accounting_init(&p->ioac);
2090 acct_clear_integrals(p);
2091
2092 posix_cputimers_init(&p->posix_cputimers);
2093
2094 p->io_context = NULL;
2095 audit_set_context(p, NULL);
2096 cgroup_fork(p);
2097 #ifdef CONFIG_NUMA
2098 p->mempolicy = mpol_dup(p->mempolicy);
2099 if (IS_ERR(p->mempolicy)) {
2100 retval = PTR_ERR(p->mempolicy);
2101 p->mempolicy = NULL;
2102 goto bad_fork_cleanup_threadgroup_lock;
2103 }
2104 #endif
2105 #ifdef CONFIG_CPUSETS
2106 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2107 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2108 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2109 #endif
2110 #ifdef CONFIG_TRACE_IRQFLAGS
2111 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2112 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2113 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2114 p->softirqs_enabled = 1;
2115 p->softirq_context = 0;
2116 #endif
2117
2118 p->pagefault_disabled = 0;
2119
2120 #ifdef CONFIG_LOCKDEP
2121 lockdep_init_task(p);
2122 #endif
2123
2124 #ifdef CONFIG_DEBUG_MUTEXES
2125 p->blocked_on = NULL; /* not blocked yet */
2126 #endif
2127 #ifdef CONFIG_BCACHE
2128 p->sequential_io = 0;
2129 p->sequential_io_avg = 0;
2130 #endif
2131
2132 /* Perform scheduler related setup. Assign this task to a CPU. */
2133 retval = sched_fork(clone_flags, p);
2134 if (retval)
2135 goto bad_fork_cleanup_policy;
2136
2137 retval = perf_event_init_task(p);
2138 if (retval)
2139 goto bad_fork_cleanup_policy;
2140 retval = audit_alloc(p);
2141 if (retval)
2142 goto bad_fork_cleanup_perf;
2143 /* copy all the process information */
2144 shm_init_task(p);
2145 retval = security_task_alloc(p, clone_flags);
2146 if (retval)
2147 goto bad_fork_cleanup_audit;
2148 retval = copy_semundo(clone_flags, p);
2149 if (retval)
2150 goto bad_fork_cleanup_security;
2151 retval = copy_files(clone_flags, p);
2152 if (retval)
2153 goto bad_fork_cleanup_semundo;
2154 retval = copy_fs(clone_flags, p);
2155 if (retval)
2156 goto bad_fork_cleanup_files;
2157 retval = copy_sighand(clone_flags, p);
2158 if (retval)
2159 goto bad_fork_cleanup_fs;
2160 retval = copy_signal(clone_flags, p);
2161 if (retval)
2162 goto bad_fork_cleanup_sighand;
2163 retval = copy_mm(clone_flags, p);
2164 if (retval)
2165 goto bad_fork_cleanup_signal;
2166 retval = copy_namespaces(clone_flags, p);
2167 if (retval)
2168 goto bad_fork_cleanup_mm;
2169 retval = copy_io(clone_flags, p);
2170 if (retval)
2171 goto bad_fork_cleanup_namespaces;
2172 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2173 if (retval)
2174 goto bad_fork_cleanup_io;
2175
2176 stackleak_task_init(p);
2177
2178 if (pid != &init_struct_pid) {
2179 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2180 args->set_tid_size);
2181 if (IS_ERR(pid)) {
2182 retval = PTR_ERR(pid);
2183 goto bad_fork_cleanup_thread;
2184 }
2185 }
2186
2187 /*
2188 * This has to happen after we've potentially unshared the file
2189 * descriptor table (so that the pidfd doesn't leak into the child
2190 * if the fd table isn't shared).
2191 */
2192 if (clone_flags & CLONE_PIDFD) {
2193 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2194 if (retval < 0)
2195 goto bad_fork_free_pid;
2196
2197 pidfd = retval;
2198
2199 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2200 O_RDWR | O_CLOEXEC);
2201 if (IS_ERR(pidfile)) {
2202 put_unused_fd(pidfd);
2203 retval = PTR_ERR(pidfile);
2204 goto bad_fork_free_pid;
2205 }
2206 get_pid(pid); /* held by pidfile now */
2207
2208 retval = put_user(pidfd, args->pidfd);
2209 if (retval)
2210 goto bad_fork_put_pidfd;
2211 }
2212
2213 #ifdef CONFIG_BLOCK
2214 p->plug = NULL;
2215 #endif
2216 futex_init_task(p);
2217
2218 /*
2219 * sigaltstack should be cleared when sharing the same VM
2220 */
2221 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2222 sas_ss_reset(p);
2223
2224 /*
2225 * Syscall tracing and stepping should be turned off in the
2226 * child regardless of CLONE_PTRACE.
2227 */
2228 user_disable_single_step(p);
2229 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2230 #ifdef TIF_SYSCALL_EMU
2231 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2232 #endif
2233 clear_tsk_latency_tracing(p);
2234
2235 /* ok, now we should be set up.. */
2236 p->pid = pid_nr(pid);
2237 if (clone_flags & CLONE_THREAD) {
2238 p->group_leader = current->group_leader;
2239 p->tgid = current->tgid;
2240 } else {
2241 p->group_leader = p;
2242 p->tgid = p->pid;
2243 }
2244
2245 p->nr_dirtied = 0;
2246 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2247 p->dirty_paused_when = 0;
2248
2249 p->pdeath_signal = 0;
2250 INIT_LIST_HEAD(&p->thread_group);
2251 p->task_works = NULL;
2252 clear_posix_cputimers_work(p);
2253
2254 /*
2255 * Ensure that the cgroup subsystem policies allow the new process to be
2256 * forked. It should be noted that the new process's css_set can be changed
2257 * between here and cgroup_post_fork() if an organisation operation is in
2258 * progress.
2259 */
2260 retval = cgroup_can_fork(p, args);
2261 if (retval)
2262 goto bad_fork_put_pidfd;
2263
2264 /*
2265 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2266 * the new task on the correct runqueue. All this *before* the task
2267 * becomes visible.
2268 *
2269 * This isn't part of ->can_fork() because while the re-cloning is
2270 * cgroup specific, it unconditionally needs to place the task on a
2271 * runqueue.
2272 */
2273 sched_cgroup_fork(p, args);
2274
2275 /*
2276 * From this point on we must avoid any synchronous user-space
2277 * communication until we take the tasklist-lock. In particular, we do
2278 * not want user-space to be able to predict the process start-time by
2279 * stalling fork(2) after we recorded the start_time but before it is
2280 * visible to the system.
2281 */
2282
2283 p->start_time = ktime_get_ns();
2284 p->start_boottime = ktime_get_boottime_ns();
2285
2286 /*
2287 * Make it visible to the rest of the system, but dont wake it up yet.
2288 * Need tasklist lock for parent etc handling!
2289 */
2290 write_lock_irq(&tasklist_lock);
2291
2292 /* CLONE_PARENT re-uses the old parent */
2293 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2294 p->real_parent = current->real_parent;
2295 p->parent_exec_id = current->parent_exec_id;
2296 if (clone_flags & CLONE_THREAD)
2297 p->exit_signal = -1;
2298 else
2299 p->exit_signal = current->group_leader->exit_signal;
2300 } else {
2301 p->real_parent = current;
2302 p->parent_exec_id = current->self_exec_id;
2303 p->exit_signal = args->exit_signal;
2304 }
2305
2306 klp_copy_process(p);
2307
2308 spin_lock(¤t->sighand->siglock);
2309
2310 /*
2311 * Copy seccomp details explicitly here, in case they were changed
2312 * before holding sighand lock.
2313 */
2314 copy_seccomp(p);
2315
2316 rseq_fork(p, clone_flags);
2317
2318 /* Don't start children in a dying pid namespace */
2319 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2320 retval = -ENOMEM;
2321 goto bad_fork_cancel_cgroup;
2322 }
2323
2324 /* Let kill terminate clone/fork in the middle */
2325 if (fatal_signal_pending(current)) {
2326 retval = -EINTR;
2327 goto bad_fork_cancel_cgroup;
2328 }
2329
2330 init_task_pid_links(p);
2331 if (likely(p->pid)) {
2332 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2333
2334 init_task_pid(p, PIDTYPE_PID, pid);
2335 if (thread_group_leader(p)) {
2336 init_task_pid(p, PIDTYPE_TGID, pid);
2337 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2338 init_task_pid(p, PIDTYPE_SID, task_session(current));
2339
2340 if (is_child_reaper(pid)) {
2341 ns_of_pid(pid)->child_reaper = p;
2342 p->signal->flags |= SIGNAL_UNKILLABLE;
2343 }
2344 p->signal->shared_pending.signal = delayed.signal;
2345 p->signal->tty = tty_kref_get(current->signal->tty);
2346 /*
2347 * Inherit has_child_subreaper flag under the same
2348 * tasklist_lock with adding child to the process tree
2349 * for propagate_has_child_subreaper optimization.
2350 */
2351 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2352 p->real_parent->signal->is_child_subreaper;
2353 list_add_tail(&p->sibling, &p->real_parent->children);
2354 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2355 attach_pid(p, PIDTYPE_TGID);
2356 attach_pid(p, PIDTYPE_PGID);
2357 attach_pid(p, PIDTYPE_SID);
2358 __this_cpu_inc(process_counts);
2359 } else {
2360 current->signal->nr_threads++;
2361 atomic_inc(¤t->signal->live);
2362 refcount_inc(¤t->signal->sigcnt);
2363 task_join_group_stop(p);
2364 list_add_tail_rcu(&p->thread_group,
2365 &p->group_leader->thread_group);
2366 list_add_tail_rcu(&p->thread_node,
2367 &p->signal->thread_head);
2368 }
2369 attach_pid(p, PIDTYPE_PID);
2370 nr_threads++;
2371 }
2372 total_forks++;
2373 hlist_del_init(&delayed.node);
2374 spin_unlock(¤t->sighand->siglock);
2375 syscall_tracepoint_update(p);
2376 write_unlock_irq(&tasklist_lock);
2377
2378 if (pidfile)
2379 fd_install(pidfd, pidfile);
2380
2381 proc_fork_connector(p);
2382 sched_post_fork(p);
2383 cgroup_post_fork(p, args);
2384 perf_event_fork(p);
2385
2386 trace_task_newtask(p, clone_flags);
2387 uprobe_copy_process(p, clone_flags);
2388
2389 copy_oom_score_adj(clone_flags, p);
2390
2391 return p;
2392
2393 bad_fork_cancel_cgroup:
2394 spin_unlock(¤t->sighand->siglock);
2395 write_unlock_irq(&tasklist_lock);
2396 cgroup_cancel_fork(p, args);
2397 bad_fork_put_pidfd:
2398 if (clone_flags & CLONE_PIDFD) {
2399 fput(pidfile);
2400 put_unused_fd(pidfd);
2401 }
2402 bad_fork_free_pid:
2403 if (pid != &init_struct_pid)
2404 free_pid(pid);
2405 bad_fork_cleanup_thread:
2406 exit_thread(p);
2407 bad_fork_cleanup_io:
2408 if (p->io_context)
2409 exit_io_context(p);
2410 bad_fork_cleanup_namespaces:
2411 exit_task_namespaces(p);
2412 bad_fork_cleanup_mm:
2413 if (p->mm) {
2414 mm_clear_owner(p->mm, p);
2415 mmput(p->mm);
2416 }
2417 bad_fork_cleanup_signal:
2418 if (!(clone_flags & CLONE_THREAD))
2419 free_signal_struct(p->signal);
2420 bad_fork_cleanup_sighand:
2421 __cleanup_sighand(p->sighand);
2422 bad_fork_cleanup_fs:
2423 exit_fs(p); /* blocking */
2424 bad_fork_cleanup_files:
2425 exit_files(p); /* blocking */
2426 bad_fork_cleanup_semundo:
2427 exit_sem(p);
2428 bad_fork_cleanup_security:
2429 security_task_free(p);
2430 bad_fork_cleanup_audit:
2431 audit_free(p);
2432 bad_fork_cleanup_perf:
2433 perf_event_free_task(p);
2434 bad_fork_cleanup_policy:
2435 lockdep_free_task(p);
2436 #ifdef CONFIG_NUMA
2437 mpol_put(p->mempolicy);
2438 bad_fork_cleanup_threadgroup_lock:
2439 #endif
2440 delayacct_tsk_free(p);
2441 bad_fork_cleanup_count:
2442 atomic_dec(&p->cred->user->processes);
2443 exit_creds(p);
2444 bad_fork_free:
2445 p->state = TASK_DEAD;
2446 put_task_stack(p);
2447 delayed_free_task(p);
2448 fork_out:
2449 spin_lock_irq(¤t->sighand->siglock);
2450 hlist_del_init(&delayed.node);
2451 spin_unlock_irq(¤t->sighand->siglock);
2452 return ERR_PTR(retval);
2453 }
2454
init_idle_pids(struct task_struct * idle)2455 static inline void init_idle_pids(struct task_struct *idle)
2456 {
2457 enum pid_type type;
2458
2459 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2460 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2461 init_task_pid(idle, type, &init_struct_pid);
2462 }
2463 }
2464
fork_idle(int cpu)2465 struct task_struct * __init fork_idle(int cpu)
2466 {
2467 struct task_struct *task;
2468 struct kernel_clone_args args = {
2469 .flags = CLONE_VM,
2470 };
2471
2472 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2473 if (!IS_ERR(task)) {
2474 init_idle_pids(task);
2475 init_idle(task, cpu);
2476 }
2477
2478 return task;
2479 }
2480
copy_init_mm(void)2481 struct mm_struct *copy_init_mm(void)
2482 {
2483 return dup_mm(NULL, &init_mm);
2484 }
2485
2486 /*
2487 * This is like kernel_clone(), but shaved down and tailored to just
2488 * creating io_uring workers. It returns a created task, or an error pointer.
2489 * The returned task is inactive, and the caller must fire it up through
2490 * wake_up_new_task(p). All signals are blocked in the created task.
2491 */
create_io_thread(int (* fn)(void *),void * arg,int node)2492 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2493 {
2494 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2495 CLONE_IO;
2496 struct kernel_clone_args args = {
2497 .flags = ((lower_32_bits(flags) | CLONE_VM |
2498 CLONE_UNTRACED) & ~CSIGNAL),
2499 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2500 .stack = (unsigned long)fn,
2501 .stack_size = (unsigned long)arg,
2502 .io_thread = 1,
2503 };
2504
2505 return copy_process(NULL, 0, node, &args);
2506 }
2507
2508 /*
2509 * Ok, this is the main fork-routine.
2510 *
2511 * It copies the process, and if successful kick-starts
2512 * it and waits for it to finish using the VM if required.
2513 *
2514 * args->exit_signal is expected to be checked for sanity by the caller.
2515 */
kernel_clone(struct kernel_clone_args * args)2516 pid_t kernel_clone(struct kernel_clone_args *args)
2517 {
2518 u64 clone_flags = args->flags;
2519 struct completion vfork;
2520 struct pid *pid;
2521 struct task_struct *p;
2522 int trace = 0;
2523 pid_t nr;
2524
2525 /*
2526 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2527 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2528 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2529 * field in struct clone_args and it still doesn't make sense to have
2530 * them both point at the same memory location. Performing this check
2531 * here has the advantage that we don't need to have a separate helper
2532 * to check for legacy clone().
2533 */
2534 if ((args->flags & CLONE_PIDFD) &&
2535 (args->flags & CLONE_PARENT_SETTID) &&
2536 (args->pidfd == args->parent_tid))
2537 return -EINVAL;
2538
2539 /*
2540 * Determine whether and which event to report to ptracer. When
2541 * called from kernel_thread or CLONE_UNTRACED is explicitly
2542 * requested, no event is reported; otherwise, report if the event
2543 * for the type of forking is enabled.
2544 */
2545 if (!(clone_flags & CLONE_UNTRACED)) {
2546 if (clone_flags & CLONE_VFORK)
2547 trace = PTRACE_EVENT_VFORK;
2548 else if (args->exit_signal != SIGCHLD)
2549 trace = PTRACE_EVENT_CLONE;
2550 else
2551 trace = PTRACE_EVENT_FORK;
2552
2553 if (likely(!ptrace_event_enabled(current, trace)))
2554 trace = 0;
2555 }
2556
2557 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2558 add_latent_entropy();
2559
2560 if (IS_ERR(p))
2561 return PTR_ERR(p);
2562
2563 cpufreq_task_times_alloc(p);
2564
2565 /*
2566 * Do this prior waking up the new thread - the thread pointer
2567 * might get invalid after that point, if the thread exits quickly.
2568 */
2569 trace_sched_process_fork(current, p);
2570
2571 pid = get_task_pid(p, PIDTYPE_PID);
2572 nr = pid_vnr(pid);
2573
2574 if (clone_flags & CLONE_PARENT_SETTID)
2575 put_user(nr, args->parent_tid);
2576
2577 if (clone_flags & CLONE_VFORK) {
2578 p->vfork_done = &vfork;
2579 init_completion(&vfork);
2580 get_task_struct(p);
2581 }
2582
2583 wake_up_new_task(p);
2584
2585 /* forking complete and child started to run, tell ptracer */
2586 if (unlikely(trace))
2587 ptrace_event_pid(trace, pid);
2588
2589 if (clone_flags & CLONE_VFORK) {
2590 if (!wait_for_vfork_done(p, &vfork))
2591 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2592 }
2593
2594 put_pid(pid);
2595 return nr;
2596 }
2597
2598 /*
2599 * Create a kernel thread.
2600 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2601 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2602 {
2603 struct kernel_clone_args args = {
2604 .flags = ((lower_32_bits(flags) | CLONE_VM |
2605 CLONE_UNTRACED) & ~CSIGNAL),
2606 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2607 .stack = (unsigned long)fn,
2608 .stack_size = (unsigned long)arg,
2609 };
2610
2611 return kernel_clone(&args);
2612 }
2613
2614 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2615 SYSCALL_DEFINE0(fork)
2616 {
2617 #ifdef CONFIG_MMU
2618 struct kernel_clone_args args = {
2619 .exit_signal = SIGCHLD,
2620 };
2621
2622 return kernel_clone(&args);
2623 #else
2624 /* can not support in nommu mode */
2625 return -EINVAL;
2626 #endif
2627 }
2628 #endif
2629
2630 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2631 SYSCALL_DEFINE0(vfork)
2632 {
2633 struct kernel_clone_args args = {
2634 .flags = CLONE_VFORK | CLONE_VM,
2635 .exit_signal = SIGCHLD,
2636 };
2637
2638 return kernel_clone(&args);
2639 }
2640 #endif
2641
2642 #ifdef __ARCH_WANT_SYS_CLONE
2643 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2644 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2645 int __user *, parent_tidptr,
2646 unsigned long, tls,
2647 int __user *, child_tidptr)
2648 #elif defined(CONFIG_CLONE_BACKWARDS2)
2649 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2650 int __user *, parent_tidptr,
2651 int __user *, child_tidptr,
2652 unsigned long, tls)
2653 #elif defined(CONFIG_CLONE_BACKWARDS3)
2654 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2655 int, stack_size,
2656 int __user *, parent_tidptr,
2657 int __user *, child_tidptr,
2658 unsigned long, tls)
2659 #else
2660 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2661 int __user *, parent_tidptr,
2662 int __user *, child_tidptr,
2663 unsigned long, tls)
2664 #endif
2665 {
2666 struct kernel_clone_args args = {
2667 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2668 .pidfd = parent_tidptr,
2669 .child_tid = child_tidptr,
2670 .parent_tid = parent_tidptr,
2671 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2672 .stack = newsp,
2673 .tls = tls,
2674 };
2675
2676 return kernel_clone(&args);
2677 }
2678 #endif
2679
2680 #ifdef __ARCH_WANT_SYS_CLONE3
2681
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2682 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2683 struct clone_args __user *uargs,
2684 size_t usize)
2685 {
2686 int err;
2687 struct clone_args args;
2688 pid_t *kset_tid = kargs->set_tid;
2689
2690 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2691 CLONE_ARGS_SIZE_VER0);
2692 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2693 CLONE_ARGS_SIZE_VER1);
2694 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2695 CLONE_ARGS_SIZE_VER2);
2696 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2697
2698 if (unlikely(usize > PAGE_SIZE))
2699 return -E2BIG;
2700 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2701 return -EINVAL;
2702
2703 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2704 if (err)
2705 return err;
2706
2707 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2708 return -EINVAL;
2709
2710 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2711 return -EINVAL;
2712
2713 if (unlikely(args.set_tid && args.set_tid_size == 0))
2714 return -EINVAL;
2715
2716 /*
2717 * Verify that higher 32bits of exit_signal are unset and that
2718 * it is a valid signal
2719 */
2720 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2721 !valid_signal(args.exit_signal)))
2722 return -EINVAL;
2723
2724 if ((args.flags & CLONE_INTO_CGROUP) &&
2725 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2726 return -EINVAL;
2727
2728 *kargs = (struct kernel_clone_args){
2729 .flags = args.flags,
2730 .pidfd = u64_to_user_ptr(args.pidfd),
2731 .child_tid = u64_to_user_ptr(args.child_tid),
2732 .parent_tid = u64_to_user_ptr(args.parent_tid),
2733 .exit_signal = args.exit_signal,
2734 .stack = args.stack,
2735 .stack_size = args.stack_size,
2736 .tls = args.tls,
2737 .set_tid_size = args.set_tid_size,
2738 .cgroup = args.cgroup,
2739 };
2740
2741 if (args.set_tid &&
2742 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2743 (kargs->set_tid_size * sizeof(pid_t))))
2744 return -EFAULT;
2745
2746 kargs->set_tid = kset_tid;
2747
2748 return 0;
2749 }
2750
2751 /**
2752 * clone3_stack_valid - check and prepare stack
2753 * @kargs: kernel clone args
2754 *
2755 * Verify that the stack arguments userspace gave us are sane.
2756 * In addition, set the stack direction for userspace since it's easy for us to
2757 * determine.
2758 */
clone3_stack_valid(struct kernel_clone_args * kargs)2759 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2760 {
2761 if (kargs->stack == 0) {
2762 if (kargs->stack_size > 0)
2763 return false;
2764 } else {
2765 if (kargs->stack_size == 0)
2766 return false;
2767
2768 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2769 return false;
2770
2771 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2772 kargs->stack += kargs->stack_size;
2773 #endif
2774 }
2775
2776 return true;
2777 }
2778
clone3_args_valid(struct kernel_clone_args * kargs)2779 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2780 {
2781 /* Verify that no unknown flags are passed along. */
2782 if (kargs->flags &
2783 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2784 return false;
2785
2786 /*
2787 * - make the CLONE_DETACHED bit reuseable for clone3
2788 * - make the CSIGNAL bits reuseable for clone3
2789 */
2790 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2791 return false;
2792
2793 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2794 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2795 return false;
2796
2797 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2798 kargs->exit_signal)
2799 return false;
2800
2801 if (!clone3_stack_valid(kargs))
2802 return false;
2803
2804 return true;
2805 }
2806
2807 /**
2808 * clone3 - create a new process with specific properties
2809 * @uargs: argument structure
2810 * @size: size of @uargs
2811 *
2812 * clone3() is the extensible successor to clone()/clone2().
2813 * It takes a struct as argument that is versioned by its size.
2814 *
2815 * Return: On success, a positive PID for the child process.
2816 * On error, a negative errno number.
2817 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2818 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2819 {
2820 int err;
2821
2822 struct kernel_clone_args kargs;
2823 pid_t set_tid[MAX_PID_NS_LEVEL];
2824
2825 kargs.set_tid = set_tid;
2826
2827 err = copy_clone_args_from_user(&kargs, uargs, size);
2828 if (err)
2829 return err;
2830
2831 if (!clone3_args_valid(&kargs))
2832 return -EINVAL;
2833
2834 return kernel_clone(&kargs);
2835 }
2836 #endif
2837
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2838 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2839 {
2840 struct task_struct *leader, *parent, *child;
2841 int res;
2842
2843 read_lock(&tasklist_lock);
2844 leader = top = top->group_leader;
2845 down:
2846 for_each_thread(leader, parent) {
2847 list_for_each_entry(child, &parent->children, sibling) {
2848 res = visitor(child, data);
2849 if (res) {
2850 if (res < 0)
2851 goto out;
2852 leader = child;
2853 goto down;
2854 }
2855 up:
2856 ;
2857 }
2858 }
2859
2860 if (leader != top) {
2861 child = leader;
2862 parent = child->real_parent;
2863 leader = parent->group_leader;
2864 goto up;
2865 }
2866 out:
2867 read_unlock(&tasklist_lock);
2868 }
2869
2870 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2871 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2872 #endif
2873
sighand_ctor(void * data)2874 static void sighand_ctor(void *data)
2875 {
2876 struct sighand_struct *sighand = data;
2877
2878 spin_lock_init(&sighand->siglock);
2879 init_waitqueue_head(&sighand->signalfd_wqh);
2880 }
2881
proc_caches_init(void)2882 void __init proc_caches_init(void)
2883 {
2884 unsigned int mm_size;
2885
2886 sighand_cachep = kmem_cache_create("sighand_cache",
2887 sizeof(struct sighand_struct), 0,
2888 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2889 SLAB_ACCOUNT, sighand_ctor);
2890 signal_cachep = kmem_cache_create("signal_cache",
2891 sizeof(struct signal_struct), 0,
2892 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2893 NULL);
2894 files_cachep = kmem_cache_create("files_cache",
2895 sizeof(struct files_struct), 0,
2896 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2897 NULL);
2898 fs_cachep = kmem_cache_create("fs_cache",
2899 sizeof(struct fs_struct), 0,
2900 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2901 NULL);
2902
2903 /*
2904 * The mm_cpumask is located at the end of mm_struct, and is
2905 * dynamically sized based on the maximum CPU number this system
2906 * can have, taking hotplug into account (nr_cpu_ids).
2907 */
2908 mm_size = sizeof(struct mm_struct) + cpumask_size();
2909
2910 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2911 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2912 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2913 offsetof(struct mm_struct, saved_auxv),
2914 sizeof_field(struct mm_struct, saved_auxv),
2915 NULL);
2916 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2917 mmap_init();
2918 nsproxy_cache_init();
2919 }
2920
2921 /*
2922 * Check constraints on flags passed to the unshare system call.
2923 */
check_unshare_flags(unsigned long unshare_flags)2924 static int check_unshare_flags(unsigned long unshare_flags)
2925 {
2926 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2927 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2928 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2929 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2930 CLONE_NEWTIME))
2931 return -EINVAL;
2932 /*
2933 * Not implemented, but pretend it works if there is nothing
2934 * to unshare. Note that unsharing the address space or the
2935 * signal handlers also need to unshare the signal queues (aka
2936 * CLONE_THREAD).
2937 */
2938 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2939 if (!thread_group_empty(current))
2940 return -EINVAL;
2941 }
2942 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2943 if (refcount_read(¤t->sighand->count) > 1)
2944 return -EINVAL;
2945 }
2946 if (unshare_flags & CLONE_VM) {
2947 if (!current_is_single_threaded())
2948 return -EINVAL;
2949 }
2950
2951 return 0;
2952 }
2953
2954 /*
2955 * Unshare the filesystem structure if it is being shared
2956 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2957 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2958 {
2959 struct fs_struct *fs = current->fs;
2960
2961 if (!(unshare_flags & CLONE_FS) || !fs)
2962 return 0;
2963
2964 /* don't need lock here; in the worst case we'll do useless copy */
2965 if (fs->users == 1)
2966 return 0;
2967
2968 *new_fsp = copy_fs_struct(fs);
2969 if (!*new_fsp)
2970 return -ENOMEM;
2971
2972 return 0;
2973 }
2974
2975 /*
2976 * Unshare file descriptor table if it is being shared
2977 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2978 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2979 struct files_struct **new_fdp)
2980 {
2981 struct files_struct *fd = current->files;
2982 int error = 0;
2983
2984 if ((unshare_flags & CLONE_FILES) &&
2985 (fd && atomic_read(&fd->count) > 1)) {
2986 *new_fdp = dup_fd(fd, max_fds, &error);
2987 if (!*new_fdp)
2988 return error;
2989 }
2990
2991 return 0;
2992 }
2993
2994 /*
2995 * unshare allows a process to 'unshare' part of the process
2996 * context which was originally shared using clone. copy_*
2997 * functions used by kernel_clone() cannot be used here directly
2998 * because they modify an inactive task_struct that is being
2999 * constructed. Here we are modifying the current, active,
3000 * task_struct.
3001 */
ksys_unshare(unsigned long unshare_flags)3002 int ksys_unshare(unsigned long unshare_flags)
3003 {
3004 struct fs_struct *fs, *new_fs = NULL;
3005 struct files_struct *fd, *new_fd = NULL;
3006 struct cred *new_cred = NULL;
3007 struct nsproxy *new_nsproxy = NULL;
3008 int do_sysvsem = 0;
3009 int err;
3010
3011 /*
3012 * If unsharing a user namespace must also unshare the thread group
3013 * and unshare the filesystem root and working directories.
3014 */
3015 if (unshare_flags & CLONE_NEWUSER)
3016 unshare_flags |= CLONE_THREAD | CLONE_FS;
3017 /*
3018 * If unsharing vm, must also unshare signal handlers.
3019 */
3020 if (unshare_flags & CLONE_VM)
3021 unshare_flags |= CLONE_SIGHAND;
3022 /*
3023 * If unsharing a signal handlers, must also unshare the signal queues.
3024 */
3025 if (unshare_flags & CLONE_SIGHAND)
3026 unshare_flags |= CLONE_THREAD;
3027 /*
3028 * If unsharing namespace, must also unshare filesystem information.
3029 */
3030 if (unshare_flags & CLONE_NEWNS)
3031 unshare_flags |= CLONE_FS;
3032
3033 err = check_unshare_flags(unshare_flags);
3034 if (err)
3035 goto bad_unshare_out;
3036 /*
3037 * CLONE_NEWIPC must also detach from the undolist: after switching
3038 * to a new ipc namespace, the semaphore arrays from the old
3039 * namespace are unreachable.
3040 */
3041 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3042 do_sysvsem = 1;
3043 err = unshare_fs(unshare_flags, &new_fs);
3044 if (err)
3045 goto bad_unshare_out;
3046 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3047 if (err)
3048 goto bad_unshare_cleanup_fs;
3049 err = unshare_userns(unshare_flags, &new_cred);
3050 if (err)
3051 goto bad_unshare_cleanup_fd;
3052 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3053 new_cred, new_fs);
3054 if (err)
3055 goto bad_unshare_cleanup_cred;
3056
3057 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3058 if (do_sysvsem) {
3059 /*
3060 * CLONE_SYSVSEM is equivalent to sys_exit().
3061 */
3062 exit_sem(current);
3063 }
3064 if (unshare_flags & CLONE_NEWIPC) {
3065 /* Orphan segments in old ns (see sem above). */
3066 exit_shm(current);
3067 shm_init_task(current);
3068 }
3069
3070 if (new_nsproxy)
3071 switch_task_namespaces(current, new_nsproxy);
3072
3073 task_lock(current);
3074
3075 if (new_fs) {
3076 fs = current->fs;
3077 spin_lock(&fs->lock);
3078 current->fs = new_fs;
3079 if (--fs->users)
3080 new_fs = NULL;
3081 else
3082 new_fs = fs;
3083 spin_unlock(&fs->lock);
3084 }
3085
3086 if (new_fd) {
3087 fd = current->files;
3088 current->files = new_fd;
3089 new_fd = fd;
3090 }
3091
3092 task_unlock(current);
3093
3094 if (new_cred) {
3095 /* Install the new user namespace */
3096 commit_creds(new_cred);
3097 new_cred = NULL;
3098 }
3099 }
3100
3101 perf_event_namespaces(current);
3102
3103 bad_unshare_cleanup_cred:
3104 if (new_cred)
3105 put_cred(new_cred);
3106 bad_unshare_cleanup_fd:
3107 if (new_fd)
3108 put_files_struct(new_fd);
3109
3110 bad_unshare_cleanup_fs:
3111 if (new_fs)
3112 free_fs_struct(new_fs);
3113
3114 bad_unshare_out:
3115 return err;
3116 }
3117
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3118 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3119 {
3120 return ksys_unshare(unshare_flags);
3121 }
3122
3123 /*
3124 * Helper to unshare the files of the current task.
3125 * We don't want to expose copy_files internals to
3126 * the exec layer of the kernel.
3127 */
3128
unshare_files(struct files_struct ** displaced)3129 int unshare_files(struct files_struct **displaced)
3130 {
3131 struct task_struct *task = current;
3132 struct files_struct *copy = NULL;
3133 int error;
3134
3135 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3136 if (error || !copy) {
3137 *displaced = NULL;
3138 return error;
3139 }
3140 *displaced = task->files;
3141 task_lock(task);
3142 task->files = copy;
3143 task_unlock(task);
3144 return 0;
3145 }
3146
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3147 int sysctl_max_threads(struct ctl_table *table, int write,
3148 void *buffer, size_t *lenp, loff_t *ppos)
3149 {
3150 struct ctl_table t;
3151 int ret;
3152 int threads = max_threads;
3153 int min = 1;
3154 int max = MAX_THREADS;
3155
3156 t = *table;
3157 t.data = &threads;
3158 t.extra1 = &min;
3159 t.extra2 = &max;
3160
3161 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3162 if (ret || !write)
3163 return ret;
3164
3165 max_threads = threads;
3166
3167 return 0;
3168 }
3169