1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54
55 #undef CREATE_TRACE_POINTS
56 #include <trace/hooks/mm.h>
57
58 int sysctl_panic_on_oom;
59 int sysctl_oom_kill_allocating_task;
60 int sysctl_oom_dump_tasks = 1;
61
62 /*
63 * Serializes oom killer invocations (out_of_memory()) from all contexts to
64 * prevent from over eager oom killing (e.g. when the oom killer is invoked
65 * from different domains).
66 *
67 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
68 * and mark_oom_victim
69 */
70 DEFINE_MUTEX(oom_lock);
71 /* Serializes oom_score_adj and oom_score_adj_min updates */
72 DEFINE_MUTEX(oom_adj_mutex);
73
is_memcg_oom(struct oom_control * oc)74 static inline bool is_memcg_oom(struct oom_control *oc)
75 {
76 return oc->memcg != NULL;
77 }
78
79 #ifdef CONFIG_NUMA
80 /**
81 * oom_cpuset_eligible() - check task eligiblity for kill
82 * @start: task struct of which task to consider
83 * @oc: pointer to struct oom_control
84 *
85 * Task eligibility is determined by whether or not a candidate task, @tsk,
86 * shares the same mempolicy nodes as current if it is bound by such a policy
87 * and whether or not it has the same set of allowed cpuset nodes.
88 *
89 * This function is assuming oom-killer context and 'current' has triggered
90 * the oom-killer.
91 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)92 static bool oom_cpuset_eligible(struct task_struct *start,
93 struct oom_control *oc)
94 {
95 struct task_struct *tsk;
96 bool ret = false;
97 const nodemask_t *mask = oc->nodemask;
98
99 if (is_memcg_oom(oc))
100 return true;
101
102 rcu_read_lock();
103 for_each_thread(start, tsk) {
104 if (mask) {
105 /*
106 * If this is a mempolicy constrained oom, tsk's
107 * cpuset is irrelevant. Only return true if its
108 * mempolicy intersects current, otherwise it may be
109 * needlessly killed.
110 */
111 ret = mempolicy_nodemask_intersects(tsk, mask);
112 } else {
113 /*
114 * This is not a mempolicy constrained oom, so only
115 * check the mems of tsk's cpuset.
116 */
117 ret = cpuset_mems_allowed_intersects(current, tsk);
118 }
119 if (ret)
120 break;
121 }
122 rcu_read_unlock();
123
124 return ret;
125 }
126 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)127 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
128 {
129 return true;
130 }
131 #endif /* CONFIG_NUMA */
132
133 /*
134 * The process p may have detached its own ->mm while exiting or through
135 * kthread_use_mm(), but one or more of its subthreads may still have a valid
136 * pointer. Return p, or any of its subthreads with a valid ->mm, with
137 * task_lock() held.
138 */
find_lock_task_mm(struct task_struct * p)139 struct task_struct *find_lock_task_mm(struct task_struct *p)
140 {
141 struct task_struct *t;
142
143 rcu_read_lock();
144
145 for_each_thread(p, t) {
146 task_lock(t);
147 if (likely(t->mm))
148 goto found;
149 task_unlock(t);
150 }
151 t = NULL;
152 found:
153 rcu_read_unlock();
154
155 return t;
156 }
157
158 /*
159 * order == -1 means the oom kill is required by sysrq, otherwise only
160 * for display purposes.
161 */
is_sysrq_oom(struct oom_control * oc)162 static inline bool is_sysrq_oom(struct oom_control *oc)
163 {
164 return oc->order == -1;
165 }
166
167 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)168 static bool oom_unkillable_task(struct task_struct *p)
169 {
170 if (is_global_init(p))
171 return true;
172 if (p->flags & PF_KTHREAD)
173 return true;
174 return false;
175 }
176
177 /*
178 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
179 * than all user memory (LRU pages)
180 */
is_dump_unreclaim_slabs(void)181 static bool is_dump_unreclaim_slabs(void)
182 {
183 unsigned long nr_lru;
184
185 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
186 global_node_page_state(NR_INACTIVE_ANON) +
187 global_node_page_state(NR_ACTIVE_FILE) +
188 global_node_page_state(NR_INACTIVE_FILE) +
189 global_node_page_state(NR_ISOLATED_ANON) +
190 global_node_page_state(NR_ISOLATED_FILE) +
191 global_node_page_state(NR_UNEVICTABLE);
192
193 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
194 }
195
196 /**
197 * oom_badness - heuristic function to determine which candidate task to kill
198 * @p: task struct of which task we should calculate
199 * @totalpages: total present RAM allowed for page allocation
200 *
201 * The heuristic for determining which task to kill is made to be as simple and
202 * predictable as possible. The goal is to return the highest value for the
203 * task consuming the most memory to avoid subsequent oom failures.
204 */
oom_badness(struct task_struct * p,unsigned long totalpages)205 long oom_badness(struct task_struct *p, unsigned long totalpages)
206 {
207 long points;
208 long adj;
209
210 if (oom_unkillable_task(p))
211 return LONG_MIN;
212
213 p = find_lock_task_mm(p);
214 if (!p)
215 return LONG_MIN;
216
217 /*
218 * Do not even consider tasks which are explicitly marked oom
219 * unkillable or have been already oom reaped or the are in
220 * the middle of vfork
221 */
222 adj = (long)p->signal->oom_score_adj;
223 if (adj == OOM_SCORE_ADJ_MIN ||
224 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
225 in_vfork(p)) {
226 task_unlock(p);
227 return LONG_MIN;
228 }
229
230 /*
231 * The baseline for the badness score is the proportion of RAM that each
232 * task's rss, pagetable and swap space use.
233 */
234 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
235 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
236 task_unlock(p);
237
238 /* Normalize to oom_score_adj units */
239 adj *= totalpages / 1000;
240 points += adj;
241
242 return points;
243 }
244
245 static const char * const oom_constraint_text[] = {
246 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
247 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
248 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
249 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
250 };
251
252 /*
253 * Determine the type of allocation constraint.
254 */
constrained_alloc(struct oom_control * oc)255 static enum oom_constraint constrained_alloc(struct oom_control *oc)
256 {
257 struct zone *zone;
258 struct zoneref *z;
259 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
260 bool cpuset_limited = false;
261 int nid;
262
263 if (is_memcg_oom(oc)) {
264 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
265 return CONSTRAINT_MEMCG;
266 }
267
268 /* Default to all available memory */
269 oc->totalpages = totalram_pages() + total_swap_pages;
270
271 if (!IS_ENABLED(CONFIG_NUMA))
272 return CONSTRAINT_NONE;
273
274 if (!oc->zonelist)
275 return CONSTRAINT_NONE;
276 /*
277 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
278 * to kill current.We have to random task kill in this case.
279 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
280 */
281 if (oc->gfp_mask & __GFP_THISNODE)
282 return CONSTRAINT_NONE;
283
284 /*
285 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
286 * the page allocator means a mempolicy is in effect. Cpuset policy
287 * is enforced in get_page_from_freelist().
288 */
289 if (oc->nodemask &&
290 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
291 oc->totalpages = total_swap_pages;
292 for_each_node_mask(nid, *oc->nodemask)
293 oc->totalpages += node_present_pages(nid);
294 return CONSTRAINT_MEMORY_POLICY;
295 }
296
297 /* Check this allocation failure is caused by cpuset's wall function */
298 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
299 highest_zoneidx, oc->nodemask)
300 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
301 cpuset_limited = true;
302
303 if (cpuset_limited) {
304 oc->totalpages = total_swap_pages;
305 for_each_node_mask(nid, cpuset_current_mems_allowed)
306 oc->totalpages += node_present_pages(nid);
307 return CONSTRAINT_CPUSET;
308 }
309 return CONSTRAINT_NONE;
310 }
311
oom_evaluate_task(struct task_struct * task,void * arg)312 static int oom_evaluate_task(struct task_struct *task, void *arg)
313 {
314 struct oom_control *oc = arg;
315 long points;
316
317 if (oom_unkillable_task(task))
318 goto next;
319
320 /* p may not have freeable memory in nodemask */
321 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
322 goto next;
323
324 /*
325 * This task already has access to memory reserves and is being killed.
326 * Don't allow any other task to have access to the reserves unless
327 * the task has MMF_OOM_SKIP because chances that it would release
328 * any memory is quite low.
329 */
330 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
331 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
332 goto next;
333 goto abort;
334 }
335
336 /*
337 * If task is allocating a lot of memory and has been marked to be
338 * killed first if it triggers an oom, then select it.
339 */
340 if (oom_task_origin(task)) {
341 points = LONG_MAX;
342 goto select;
343 }
344
345 points = oom_badness(task, oc->totalpages);
346
347 if (points == LONG_MIN)
348 goto next;
349
350 /*
351 * Check to see if this is the worst task with a non-negative
352 * ADJ score seen so far
353 */
354 if (task->signal->oom_score_adj >= 0 &&
355 points > oc->chosen_non_negative_adj_points) {
356 if (oc->chosen_non_negative_adj)
357 put_task_struct(oc->chosen_non_negative_adj);
358 get_task_struct(task);
359 oc->chosen_non_negative_adj = task;
360 oc->chosen_non_negative_adj_points = points;
361 }
362
363 if (points < oc->chosen_points)
364 goto next;
365
366 select:
367 if (oc->chosen)
368 put_task_struct(oc->chosen);
369 get_task_struct(task);
370 oc->chosen = task;
371 oc->chosen_points = points;
372 next:
373 return 0;
374 abort:
375 if (oc->chosen_non_negative_adj)
376 put_task_struct(oc->chosen_non_negative_adj);
377 if (oc->chosen)
378 put_task_struct(oc->chosen);
379 oc->chosen_non_negative_adj = NULL;
380 oc->chosen = (void *)-1UL;
381 return 1;
382 }
383
384 /*
385 * Simple selection loop. We choose the process with the highest number of
386 * 'points'. In case scan was aborted, oc->chosen is set to -1.
387 */
select_bad_process(struct oom_control * oc)388 static void select_bad_process(struct oom_control *oc)
389 {
390 oc->chosen_points = LONG_MIN;
391 oc->chosen_non_negative_adj_points = LONG_MIN;
392 oc->chosen_non_negative_adj = NULL;
393
394 if (is_memcg_oom(oc))
395 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
396 else {
397 struct task_struct *p;
398
399 rcu_read_lock();
400 for_each_process(p)
401 if (oom_evaluate_task(p, oc))
402 break;
403 rcu_read_unlock();
404 }
405
406 if (oc->chosen_non_negative_adj) {
407 /*
408 * If oc->chosen has a negative ADJ, and we found a task with
409 * a postive ADJ to kill, kill the task with the positive ADJ
410 * instead.
411 */
412 if (oc->chosen && oc->chosen->signal->oom_score_adj < 0) {
413 put_task_struct(oc->chosen);
414 oc->chosen = oc->chosen_non_negative_adj;
415 oc->chosen_points = oc->chosen_non_negative_adj_points;
416 } else
417 put_task_struct(oc->chosen_non_negative_adj);
418 }
419 }
420
dump_task(struct task_struct * p,void * arg)421 static int dump_task(struct task_struct *p, void *arg)
422 {
423 struct oom_control *oc = arg;
424 struct task_struct *task;
425
426 if (oom_unkillable_task(p))
427 return 0;
428
429 /* p may not have freeable memory in nodemask */
430 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
431 return 0;
432
433 task = find_lock_task_mm(p);
434 if (!task) {
435 /*
436 * This is a kthread or all of p's threads have already
437 * detached their mm's. There's no need to report
438 * them; they can't be oom killed anyway.
439 */
440 return 0;
441 }
442
443 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
444 task->pid, from_kuid(&init_user_ns, task_uid(task)),
445 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
446 mm_pgtables_bytes(task->mm),
447 get_mm_counter(task->mm, MM_SWAPENTS),
448 task->signal->oom_score_adj, task->comm);
449 task_unlock(task);
450
451 return 0;
452 }
453
454 /**
455 * dump_tasks - dump current memory state of all system tasks
456 * @oc: pointer to struct oom_control
457 *
458 * Dumps the current memory state of all eligible tasks. Tasks not in the same
459 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
460 * are not shown.
461 * State information includes task's pid, uid, tgid, vm size, rss,
462 * pgtables_bytes, swapents, oom_score_adj value, and name.
463 */
dump_tasks(struct oom_control * oc)464 static void dump_tasks(struct oom_control *oc)
465 {
466 pr_info("Tasks state (memory values in pages):\n");
467 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
468
469 if (is_memcg_oom(oc))
470 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
471 else {
472 struct task_struct *p;
473
474 rcu_read_lock();
475 for_each_process(p)
476 dump_task(p, oc);
477 rcu_read_unlock();
478 }
479 }
480
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)481 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
482 {
483 /* one line summary of the oom killer context. */
484 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
485 oom_constraint_text[oc->constraint],
486 nodemask_pr_args(oc->nodemask));
487 cpuset_print_current_mems_allowed();
488 mem_cgroup_print_oom_context(oc->memcg, victim);
489 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
490 from_kuid(&init_user_ns, task_uid(victim)));
491 }
492
dump_header(struct oom_control * oc,struct task_struct * p)493 static void dump_header(struct oom_control *oc, struct task_struct *p)
494 {
495 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
496 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
497 current->signal->oom_score_adj);
498 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
499 pr_warn("COMPACTION is disabled!!!\n");
500
501 dump_stack();
502 if (is_memcg_oom(oc))
503 mem_cgroup_print_oom_meminfo(oc->memcg);
504 else {
505 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
506 if (is_dump_unreclaim_slabs())
507 dump_unreclaimable_slab();
508 }
509 if (sysctl_oom_dump_tasks)
510 dump_tasks(oc);
511 if (p)
512 dump_oom_summary(oc, p);
513 }
514
515 /*
516 * Number of OOM victims in flight
517 */
518 static atomic_t oom_victims = ATOMIC_INIT(0);
519 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
520
521 static bool oom_killer_disabled __read_mostly;
522
523 #define K(x) ((x) << (PAGE_SHIFT-10))
524
525 /*
526 * task->mm can be NULL if the task is the exited group leader. So to
527 * determine whether the task is using a particular mm, we examine all the
528 * task's threads: if one of those is using this mm then this task was also
529 * using it.
530 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)531 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
532 {
533 struct task_struct *t;
534
535 for_each_thread(p, t) {
536 struct mm_struct *t_mm = READ_ONCE(t->mm);
537 if (t_mm)
538 return t_mm == mm;
539 }
540 return false;
541 }
542
543 #ifdef CONFIG_MMU
544 /*
545 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
546 * victim (if that is possible) to help the OOM killer to move on.
547 */
548 static struct task_struct *oom_reaper_th;
549 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
550 static struct task_struct *oom_reaper_list;
551 static DEFINE_SPINLOCK(oom_reaper_lock);
552
__oom_reap_task_mm(struct mm_struct * mm)553 bool __oom_reap_task_mm(struct mm_struct *mm)
554 {
555 struct vm_area_struct *vma;
556 bool ret = true;
557
558 /*
559 * Tell all users of get_user/copy_from_user etc... that the content
560 * is no longer stable. No barriers really needed because unmapping
561 * should imply barriers already and the reader would hit a page fault
562 * if it stumbled over a reaped memory.
563 */
564 set_bit(MMF_UNSTABLE, &mm->flags);
565
566 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
567 if (!can_madv_lru_vma(vma))
568 continue;
569
570 /*
571 * Only anonymous pages have a good chance to be dropped
572 * without additional steps which we cannot afford as we
573 * are OOM already.
574 *
575 * We do not even care about fs backed pages because all
576 * which are reclaimable have already been reclaimed and
577 * we do not want to block exit_mmap by keeping mm ref
578 * count elevated without a good reason.
579 */
580 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
581 struct mmu_notifier_range range;
582 struct mmu_gather tlb;
583
584 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
585 vma, mm, vma->vm_start,
586 vma->vm_end);
587 tlb_gather_mmu(&tlb, mm, range.start, range.end);
588 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
589 tlb_finish_mmu(&tlb, range.start, range.end);
590 ret = false;
591 continue;
592 }
593 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
594 mmu_notifier_invalidate_range_end(&range);
595 tlb_finish_mmu(&tlb, range.start, range.end);
596 }
597 }
598
599 return ret;
600 }
601
602 /*
603 * Reaps the address space of the give task.
604 *
605 * Returns true on success and false if none or part of the address space
606 * has been reclaimed and the caller should retry later.
607 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)608 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
609 {
610 bool ret = true;
611
612 if (!mmap_read_trylock(mm)) {
613 trace_skip_task_reaping(tsk->pid);
614 return false;
615 }
616
617 /*
618 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
619 * work on the mm anymore. The check for MMF_OOM_SKIP must run
620 * under mmap_lock for reading because it serializes against the
621 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
622 */
623 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
624 trace_skip_task_reaping(tsk->pid);
625 goto out_unlock;
626 }
627
628 trace_start_task_reaping(tsk->pid);
629
630 /* failed to reap part of the address space. Try again later */
631 ret = __oom_reap_task_mm(mm);
632 if (!ret)
633 goto out_finish;
634
635 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
636 task_pid_nr(tsk), tsk->comm,
637 K(get_mm_counter(mm, MM_ANONPAGES)),
638 K(get_mm_counter(mm, MM_FILEPAGES)),
639 K(get_mm_counter(mm, MM_SHMEMPAGES)));
640 out_finish:
641 trace_finish_task_reaping(tsk->pid);
642 out_unlock:
643 mmap_read_unlock(mm);
644
645 return ret;
646 }
647
648 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)649 static void oom_reap_task(struct task_struct *tsk)
650 {
651 int attempts = 0;
652 struct mm_struct *mm = tsk->signal->oom_mm;
653
654 /* Retry the mmap_read_trylock(mm) a few times */
655 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
656 schedule_timeout_idle(HZ/10);
657
658 if (attempts <= MAX_OOM_REAP_RETRIES ||
659 test_bit(MMF_OOM_SKIP, &mm->flags))
660 goto done;
661
662 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
663 task_pid_nr(tsk), tsk->comm);
664 sched_show_task(tsk);
665 debug_show_all_locks();
666
667 done:
668 tsk->oom_reaper_list = NULL;
669
670 /*
671 * Hide this mm from OOM killer because it has been either reaped or
672 * somebody can't call mmap_write_unlock(mm).
673 */
674 set_bit(MMF_OOM_SKIP, &mm->flags);
675
676 /* Drop a reference taken by wake_oom_reaper */
677 put_task_struct(tsk);
678 }
679
oom_reaper(void * unused)680 static int oom_reaper(void *unused)
681 {
682 while (true) {
683 struct task_struct *tsk = NULL;
684
685 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
686 spin_lock(&oom_reaper_lock);
687 if (oom_reaper_list != NULL) {
688 tsk = oom_reaper_list;
689 oom_reaper_list = tsk->oom_reaper_list;
690 }
691 spin_unlock(&oom_reaper_lock);
692
693 if (tsk)
694 oom_reap_task(tsk);
695 }
696
697 return 0;
698 }
699
wake_oom_reaper(struct task_struct * tsk)700 static void wake_oom_reaper(struct task_struct *tsk)
701 {
702 /* mm is already queued? */
703 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
704 return;
705
706 get_task_struct(tsk);
707
708 spin_lock(&oom_reaper_lock);
709 tsk->oom_reaper_list = oom_reaper_list;
710 oom_reaper_list = tsk;
711 spin_unlock(&oom_reaper_lock);
712 trace_wake_reaper(tsk->pid);
713 wake_up(&oom_reaper_wait);
714 }
715
oom_init(void)716 static int __init oom_init(void)
717 {
718 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
719 return 0;
720 }
subsys_initcall(oom_init)721 subsys_initcall(oom_init)
722 #else
723 static inline void wake_oom_reaper(struct task_struct *tsk)
724 {
725 }
726 #endif /* CONFIG_MMU */
727
728 /**
729 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
730 * under task_lock or operate on the current).
731 */
732 static void __mark_oom_victim(struct task_struct *tsk)
733 {
734 struct mm_struct *mm = tsk->mm;
735
736 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
737 mmgrab(tsk->signal->oom_mm);
738 set_bit(MMF_OOM_VICTIM, &mm->flags);
739 }
740 }
741
742 /**
743 * mark_oom_victim - mark the given task as OOM victim
744 * @tsk: task to mark
745 *
746 * Has to be called with oom_lock held and never after
747 * oom has been disabled already.
748 *
749 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
750 * under task_lock or operate on the current).
751 */
mark_oom_victim(struct task_struct * tsk)752 static void mark_oom_victim(struct task_struct *tsk)
753 {
754 WARN_ON(oom_killer_disabled);
755 /* OOM killer might race with memcg OOM */
756 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
757 return;
758
759 /* oom_mm is bound to the signal struct life time. */
760 __mark_oom_victim(tsk);
761
762 /*
763 * Make sure that the task is woken up from uninterruptible sleep
764 * if it is frozen because OOM killer wouldn't be able to free
765 * any memory and livelock. freezing_slow_path will tell the freezer
766 * that TIF_MEMDIE tasks should be ignored.
767 */
768 __thaw_task(tsk);
769 atomic_inc(&oom_victims);
770 trace_mark_victim(tsk->pid);
771 }
772
773 /**
774 * exit_oom_victim - note the exit of an OOM victim
775 */
exit_oom_victim(void)776 void exit_oom_victim(void)
777 {
778 clear_thread_flag(TIF_MEMDIE);
779
780 if (!atomic_dec_return(&oom_victims))
781 wake_up_all(&oom_victims_wait);
782 }
783
784 /**
785 * oom_killer_enable - enable OOM killer
786 */
oom_killer_enable(void)787 void oom_killer_enable(void)
788 {
789 oom_killer_disabled = false;
790 pr_info("OOM killer enabled.\n");
791 }
792
793 /**
794 * oom_killer_disable - disable OOM killer
795 * @timeout: maximum timeout to wait for oom victims in jiffies
796 *
797 * Forces all page allocations to fail rather than trigger OOM killer.
798 * Will block and wait until all OOM victims are killed or the given
799 * timeout expires.
800 *
801 * The function cannot be called when there are runnable user tasks because
802 * the userspace would see unexpected allocation failures as a result. Any
803 * new usage of this function should be consulted with MM people.
804 *
805 * Returns true if successful and false if the OOM killer cannot be
806 * disabled.
807 */
oom_killer_disable(signed long timeout)808 bool oom_killer_disable(signed long timeout)
809 {
810 signed long ret;
811
812 /*
813 * Make sure to not race with an ongoing OOM killer. Check that the
814 * current is not killed (possibly due to sharing the victim's memory).
815 */
816 if (mutex_lock_killable(&oom_lock))
817 return false;
818 oom_killer_disabled = true;
819 mutex_unlock(&oom_lock);
820
821 ret = wait_event_interruptible_timeout(oom_victims_wait,
822 !atomic_read(&oom_victims), timeout);
823 if (ret <= 0) {
824 oom_killer_enable();
825 return false;
826 }
827 pr_info("OOM killer disabled.\n");
828
829 return true;
830 }
831
__task_will_free_mem(struct task_struct * task)832 static inline bool __task_will_free_mem(struct task_struct *task)
833 {
834 struct signal_struct *sig = task->signal;
835
836 /*
837 * A coredumping process may sleep for an extended period in exit_mm(),
838 * so the oom killer cannot assume that the process will promptly exit
839 * and release memory.
840 */
841 if (sig->flags & SIGNAL_GROUP_COREDUMP)
842 return false;
843
844 if (sig->flags & SIGNAL_GROUP_EXIT)
845 return true;
846
847 if (thread_group_empty(task) && (task->flags & PF_EXITING))
848 return true;
849
850 return false;
851 }
852
853 /*
854 * Checks whether the given task is dying or exiting and likely to
855 * release its address space. This means that all threads and processes
856 * sharing the same mm have to be killed or exiting.
857 * Caller has to make sure that task->mm is stable (hold task_lock or
858 * it operates on the current).
859 */
task_will_free_mem(struct task_struct * task)860 static bool task_will_free_mem(struct task_struct *task)
861 {
862 struct mm_struct *mm = task->mm;
863 struct task_struct *p;
864 bool ret = true;
865
866 /*
867 * Skip tasks without mm because it might have passed its exit_mm and
868 * exit_oom_victim. oom_reaper could have rescued that but do not rely
869 * on that for now. We can consider find_lock_task_mm in future.
870 */
871 if (!mm)
872 return false;
873
874 if (!__task_will_free_mem(task))
875 return false;
876
877 /*
878 * This task has already been drained by the oom reaper so there are
879 * only small chances it will free some more
880 */
881 if (test_bit(MMF_OOM_SKIP, &mm->flags))
882 return false;
883
884 if (atomic_read(&mm->mm_users) <= 1)
885 return true;
886
887 /*
888 * Make sure that all tasks which share the mm with the given tasks
889 * are dying as well to make sure that a) nobody pins its mm and
890 * b) the task is also reapable by the oom reaper.
891 */
892 rcu_read_lock();
893 for_each_process(p) {
894 if (!process_shares_mm(p, mm))
895 continue;
896 if (same_thread_group(task, p))
897 continue;
898 ret = __task_will_free_mem(p);
899 if (!ret)
900 break;
901 }
902 rcu_read_unlock();
903
904 return ret;
905 }
906
__oom_kill_process(struct task_struct * victim,const char * message)907 static void __oom_kill_process(struct task_struct *victim, const char *message)
908 {
909 struct task_struct *p;
910 struct mm_struct *mm;
911 bool can_oom_reap = true;
912
913 p = find_lock_task_mm(victim);
914 if (!p) {
915 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
916 message, task_pid_nr(victim), victim->comm);
917 put_task_struct(victim);
918 return;
919 } else if (victim != p) {
920 get_task_struct(p);
921 put_task_struct(victim);
922 victim = p;
923 }
924
925 /* Get a reference to safely compare mm after task_unlock(victim) */
926 mm = victim->mm;
927 mmgrab(mm);
928
929 /* Raise event before sending signal: task reaper must see this */
930 count_vm_event(OOM_KILL);
931 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
932
933 /*
934 * We should send SIGKILL before granting access to memory reserves
935 * in order to prevent the OOM victim from depleting the memory
936 * reserves from the user space under its control.
937 */
938 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
939 mark_oom_victim(victim);
940 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
941 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
942 K(get_mm_counter(mm, MM_ANONPAGES)),
943 K(get_mm_counter(mm, MM_FILEPAGES)),
944 K(get_mm_counter(mm, MM_SHMEMPAGES)),
945 from_kuid(&init_user_ns, task_uid(victim)),
946 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
947 task_unlock(victim);
948
949 /*
950 * Kill all user processes sharing victim->mm in other thread groups, if
951 * any. They don't get access to memory reserves, though, to avoid
952 * depletion of all memory. This prevents mm->mmap_lock livelock when an
953 * oom killed thread cannot exit because it requires the semaphore and
954 * its contended by another thread trying to allocate memory itself.
955 * That thread will now get access to memory reserves since it has a
956 * pending fatal signal.
957 */
958 rcu_read_lock();
959 for_each_process(p) {
960 if (!process_shares_mm(p, mm))
961 continue;
962 if (same_thread_group(p, victim))
963 continue;
964 if (is_global_init(p)) {
965 can_oom_reap = false;
966 set_bit(MMF_OOM_SKIP, &mm->flags);
967 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
968 task_pid_nr(victim), victim->comm,
969 task_pid_nr(p), p->comm);
970 continue;
971 }
972 /*
973 * No kthead_use_mm() user needs to read from the userspace so
974 * we are ok to reap it.
975 */
976 if (unlikely(p->flags & PF_KTHREAD))
977 continue;
978 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
979 }
980 rcu_read_unlock();
981
982 if (can_oom_reap)
983 wake_oom_reaper(victim);
984
985 mmdrop(mm);
986 put_task_struct(victim);
987 }
988 #undef K
989
990 /*
991 * Kill provided task unless it's secured by setting
992 * oom_score_adj to OOM_SCORE_ADJ_MIN.
993 */
oom_kill_memcg_member(struct task_struct * task,void * message)994 static int oom_kill_memcg_member(struct task_struct *task, void *message)
995 {
996 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
997 !is_global_init(task)) {
998 get_task_struct(task);
999 __oom_kill_process(task, message);
1000 }
1001 return 0;
1002 }
1003
oom_kill_process(struct oom_control * oc,const char * message)1004 static void oom_kill_process(struct oom_control *oc, const char *message)
1005 {
1006 struct task_struct *victim = oc->chosen;
1007 struct mem_cgroup *oom_group;
1008 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1009 DEFAULT_RATELIMIT_BURST);
1010
1011 /*
1012 * If the task is already exiting, don't alarm the sysadmin or kill
1013 * its children or threads, just give it access to memory reserves
1014 * so it can die quickly
1015 */
1016 task_lock(victim);
1017 if (task_will_free_mem(victim)) {
1018 mark_oom_victim(victim);
1019 wake_oom_reaper(victim);
1020 task_unlock(victim);
1021 put_task_struct(victim);
1022 return;
1023 }
1024 task_unlock(victim);
1025
1026 if (__ratelimit(&oom_rs))
1027 dump_header(oc, victim);
1028
1029 /*
1030 * Do we need to kill the entire memory cgroup?
1031 * Or even one of the ancestor memory cgroups?
1032 * Check this out before killing the victim task.
1033 */
1034 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1035
1036 __oom_kill_process(victim, message);
1037
1038 /*
1039 * If necessary, kill all tasks in the selected memory cgroup.
1040 */
1041 if (oom_group) {
1042 mem_cgroup_print_oom_group(oom_group);
1043 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1044 (void*)message);
1045 mem_cgroup_put(oom_group);
1046 }
1047 }
1048
1049 /*
1050 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1051 */
check_panic_on_oom(struct oom_control * oc)1052 static void check_panic_on_oom(struct oom_control *oc)
1053 {
1054 if (likely(!sysctl_panic_on_oom))
1055 return;
1056 if (sysctl_panic_on_oom != 2) {
1057 /*
1058 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1059 * does not panic for cpuset, mempolicy, or memcg allocation
1060 * failures.
1061 */
1062 if (oc->constraint != CONSTRAINT_NONE)
1063 return;
1064 }
1065 /* Do not panic for oom kills triggered by sysrq */
1066 if (is_sysrq_oom(oc))
1067 return;
1068 dump_header(oc, NULL);
1069 panic("Out of memory: %s panic_on_oom is enabled\n",
1070 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1071 }
1072
1073 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1074
register_oom_notifier(struct notifier_block * nb)1075 int register_oom_notifier(struct notifier_block *nb)
1076 {
1077 return blocking_notifier_chain_register(&oom_notify_list, nb);
1078 }
1079 EXPORT_SYMBOL_GPL(register_oom_notifier);
1080
unregister_oom_notifier(struct notifier_block * nb)1081 int unregister_oom_notifier(struct notifier_block *nb)
1082 {
1083 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1084 }
1085 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1086
1087 /**
1088 * out_of_memory - kill the "best" process when we run out of memory
1089 * @oc: pointer to struct oom_control
1090 *
1091 * If we run out of memory, we have the choice between either
1092 * killing a random task (bad), letting the system crash (worse)
1093 * OR try to be smart about which process to kill. Note that we
1094 * don't have to be perfect here, we just have to be good.
1095 */
out_of_memory(struct oom_control * oc)1096 bool out_of_memory(struct oom_control *oc)
1097 {
1098 unsigned long freed = 0;
1099
1100 if (oom_killer_disabled)
1101 return false;
1102
1103 if (!is_memcg_oom(oc)) {
1104 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1105 if (freed > 0)
1106 /* Got some memory back in the last second. */
1107 return true;
1108 }
1109
1110 /*
1111 * If current has a pending SIGKILL or is exiting, then automatically
1112 * select it. The goal is to allow it to allocate so that it may
1113 * quickly exit and free its memory.
1114 */
1115 if (task_will_free_mem(current)) {
1116 mark_oom_victim(current);
1117 wake_oom_reaper(current);
1118 return true;
1119 }
1120
1121 /*
1122 * The OOM killer does not compensate for IO-less reclaim.
1123 * pagefault_out_of_memory lost its gfp context so we have to
1124 * make sure exclude 0 mask - all other users should have at least
1125 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1126 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1127 */
1128 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1129 return true;
1130
1131 /*
1132 * Check if there were limitations on the allocation (only relevant for
1133 * NUMA and memcg) that may require different handling.
1134 */
1135 oc->constraint = constrained_alloc(oc);
1136 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1137 oc->nodemask = NULL;
1138 check_panic_on_oom(oc);
1139
1140 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1141 current->mm && !oom_unkillable_task(current) &&
1142 oom_cpuset_eligible(current, oc) &&
1143 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1144 get_task_struct(current);
1145 oc->chosen = current;
1146 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1147 return true;
1148 }
1149
1150 select_bad_process(oc);
1151 /* Found nothing?!?! */
1152 if (!oc->chosen) {
1153 int ret = false;
1154
1155 trace_android_vh_oom_check_panic(oc, &ret);
1156 if (ret)
1157 return true;
1158
1159 dump_header(oc, NULL);
1160 pr_warn("Out of memory and no killable processes...\n");
1161 /*
1162 * If we got here due to an actual allocation at the
1163 * system level, we cannot survive this and will enter
1164 * an endless loop in the allocator. Bail out now.
1165 */
1166 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1167 panic("System is deadlocked on memory\n");
1168 }
1169 if (oc->chosen && oc->chosen != (void *)-1UL)
1170 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1171 "Memory cgroup out of memory");
1172 return !!oc->chosen;
1173 }
1174
1175 /*
1176 * The pagefault handler calls here because some allocation has failed. We have
1177 * to take care of the memcg OOM here because this is the only safe context without
1178 * any locks held but let the oom killer triggered from the allocation context care
1179 * about the global OOM.
1180 */
pagefault_out_of_memory(void)1181 void pagefault_out_of_memory(void)
1182 {
1183 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1184 DEFAULT_RATELIMIT_BURST);
1185
1186 if (mem_cgroup_oom_synchronize(true))
1187 return;
1188
1189 if (fatal_signal_pending(current))
1190 return;
1191
1192 if (__ratelimit(&pfoom_rs))
1193 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1194 }
1195
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1196 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1197 {
1198 #ifdef CONFIG_MMU
1199 struct mm_struct *mm = NULL;
1200 struct task_struct *task;
1201 struct task_struct *p;
1202 unsigned int f_flags;
1203 bool reap = false;
1204 struct pid *pid;
1205 long ret = 0;
1206
1207 if (flags)
1208 return -EINVAL;
1209
1210 pid = pidfd_get_pid(pidfd, &f_flags);
1211 if (IS_ERR(pid))
1212 return PTR_ERR(pid);
1213
1214 task = get_pid_task(pid, PIDTYPE_TGID);
1215 if (!task) {
1216 ret = -ESRCH;
1217 goto put_pid;
1218 }
1219
1220 /*
1221 * Make sure to choose a thread which still has a reference to mm
1222 * during the group exit
1223 */
1224 p = find_lock_task_mm(task);
1225 if (!p) {
1226 ret = -ESRCH;
1227 goto put_task;
1228 }
1229
1230 mm = p->mm;
1231 mmgrab(mm);
1232
1233 /*
1234 * If we are too late and exit_mmap already checked mm_is_oom_victim
1235 * then will block on mmap_read_lock until exit_mmap releases mmap_lock
1236 */
1237 set_bit(MMF_OOM_VICTIM, &mm->flags);
1238
1239 if (task_will_free_mem(p))
1240 reap = true;
1241 else {
1242 /* Error only if the work has not been done already */
1243 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1244 ret = -EINVAL;
1245 }
1246 task_unlock(p);
1247
1248 if (!reap)
1249 goto drop_mm;
1250
1251 if (mmap_read_lock_killable(mm)) {
1252 ret = -EINTR;
1253 goto drop_mm;
1254 }
1255 /*
1256 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1257 * possible change in exit_mmap is seen
1258 */
1259 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1260 ret = -EAGAIN;
1261 mmap_read_unlock(mm);
1262
1263 drop_mm:
1264 mmdrop(mm);
1265 put_task:
1266 put_task_struct(task);
1267 put_pid:
1268 put_pid(pid);
1269 return ret;
1270 #else
1271 return -ENOSYS;
1272 #endif /* CONFIG_MMU */
1273 }
1274
add_to_oom_reaper(struct task_struct * p)1275 void add_to_oom_reaper(struct task_struct *p)
1276 {
1277 p = find_lock_task_mm(p);
1278 if (!p)
1279 return;
1280
1281 get_task_struct(p);
1282 if (task_will_free_mem(p)) {
1283 __mark_oom_victim(p);
1284 wake_oom_reaper(p);
1285 }
1286 task_unlock(p);
1287 put_task_struct(p);
1288 }
1289