xref: /OK3568_Linux_fs/kernel/mm/mempolicy.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
numa_map_to_online_node(int node)136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
get_task_policy(struct task_struct * p)156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
mpol_store_user_nodemask(const struct mempolicy * pol)180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol || pol->mode == MPOL_LOCAL)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
410 		vm_write_begin(vma);
411 		mpol_rebind_policy(vma->vm_policy, new);
412 		vm_write_end(vma);
413 	}
414 	mmap_write_unlock(mm);
415 }
416 
417 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
418 	[MPOL_DEFAULT] = {
419 		.rebind = mpol_rebind_default,
420 	},
421 	[MPOL_INTERLEAVE] = {
422 		.create = mpol_new_interleave,
423 		.rebind = mpol_rebind_nodemask,
424 	},
425 	[MPOL_PREFERRED] = {
426 		.create = mpol_new_preferred,
427 		.rebind = mpol_rebind_preferred,
428 	},
429 	[MPOL_BIND] = {
430 		.create = mpol_new_bind,
431 		.rebind = mpol_rebind_nodemask,
432 	},
433 };
434 
435 static int migrate_page_add(struct page *page, struct list_head *pagelist,
436 				unsigned long flags);
437 
438 struct queue_pages {
439 	struct list_head *pagelist;
440 	unsigned long flags;
441 	nodemask_t *nmask;
442 	unsigned long start;
443 	unsigned long end;
444 	struct vm_area_struct *first;
445 };
446 
447 /*
448  * Check if the page's nid is in qp->nmask.
449  *
450  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
451  * in the invert of qp->nmask.
452  */
queue_pages_required(struct page * page,struct queue_pages * qp)453 static inline bool queue_pages_required(struct page *page,
454 					struct queue_pages *qp)
455 {
456 	int nid = page_to_nid(page);
457 	unsigned long flags = qp->flags;
458 
459 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
460 }
461 
462 /*
463  * queue_pages_pmd() has four possible return values:
464  * 0 - pages are placed on the right node or queued successfully.
465  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
466  *     specified.
467  * 2 - THP was split.
468  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
469  *        existing page was already on a node that does not follow the
470  *        policy.
471  */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)472 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
473 				unsigned long end, struct mm_walk *walk)
474 	__releases(ptl)
475 {
476 	int ret = 0;
477 	struct page *page;
478 	struct queue_pages *qp = walk->private;
479 	unsigned long flags;
480 
481 	if (unlikely(is_pmd_migration_entry(*pmd))) {
482 		ret = -EIO;
483 		goto unlock;
484 	}
485 	page = pmd_page(*pmd);
486 	if (is_huge_zero_page(page)) {
487 		spin_unlock(ptl);
488 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
489 		ret = 2;
490 		goto out;
491 	}
492 	if (!queue_pages_required(page, qp))
493 		goto unlock;
494 
495 	flags = qp->flags;
496 	/* go to thp migration */
497 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
498 		if (!vma_migratable(walk->vma) ||
499 		    migrate_page_add(page, qp->pagelist, flags)) {
500 			ret = 1;
501 			goto unlock;
502 		}
503 	} else
504 		ret = -EIO;
505 unlock:
506 	spin_unlock(ptl);
507 out:
508 	return ret;
509 }
510 
511 /*
512  * Scan through pages checking if pages follow certain conditions,
513  * and move them to the pagelist if they do.
514  *
515  * queue_pages_pte_range() has three possible return values:
516  * 0 - pages are placed on the right node or queued successfully.
517  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
518  *     specified.
519  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
520  *        on a node that does not follow the policy.
521  */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)522 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
523 			unsigned long end, struct mm_walk *walk)
524 {
525 	struct vm_area_struct *vma = walk->vma;
526 	struct page *page;
527 	struct queue_pages *qp = walk->private;
528 	unsigned long flags = qp->flags;
529 	int ret;
530 	bool has_unmovable = false;
531 	pte_t *pte, *mapped_pte;
532 	spinlock_t *ptl;
533 
534 	ptl = pmd_trans_huge_lock(pmd, vma);
535 	if (ptl) {
536 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
537 		if (ret != 2)
538 			return ret;
539 	}
540 	/* THP was split, fall through to pte walk */
541 
542 	if (pmd_trans_unstable(pmd))
543 		return 0;
544 
545 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
546 	for (; addr != end; pte++, addr += PAGE_SIZE) {
547 		if (!pte_present(*pte))
548 			continue;
549 		page = vm_normal_page(vma, addr, *pte);
550 		if (!page)
551 			continue;
552 		/*
553 		 * vm_normal_page() filters out zero pages, but there might
554 		 * still be PageReserved pages to skip, perhaps in a VDSO.
555 		 */
556 		if (PageReserved(page))
557 			continue;
558 		if (!queue_pages_required(page, qp))
559 			continue;
560 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
561 			/* MPOL_MF_STRICT must be specified if we get here */
562 			if (!vma_migratable(vma)) {
563 				has_unmovable = true;
564 				break;
565 			}
566 
567 			/*
568 			 * Do not abort immediately since there may be
569 			 * temporary off LRU pages in the range.  Still
570 			 * need migrate other LRU pages.
571 			 */
572 			if (migrate_page_add(page, qp->pagelist, flags))
573 				has_unmovable = true;
574 		} else
575 			break;
576 	}
577 	pte_unmap_unlock(mapped_pte, ptl);
578 	cond_resched();
579 
580 	if (has_unmovable)
581 		return 1;
582 
583 	return addr != end ? -EIO : 0;
584 }
585 
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)586 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
587 			       unsigned long addr, unsigned long end,
588 			       struct mm_walk *walk)
589 {
590 	int ret = 0;
591 #ifdef CONFIG_HUGETLB_PAGE
592 	struct queue_pages *qp = walk->private;
593 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
594 	struct page *page;
595 	spinlock_t *ptl;
596 	pte_t entry;
597 
598 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
599 	entry = huge_ptep_get(pte);
600 	if (!pte_present(entry))
601 		goto unlock;
602 	page = pte_page(entry);
603 	if (!queue_pages_required(page, qp))
604 		goto unlock;
605 
606 	if (flags == MPOL_MF_STRICT) {
607 		/*
608 		 * STRICT alone means only detecting misplaced page and no
609 		 * need to further check other vma.
610 		 */
611 		ret = -EIO;
612 		goto unlock;
613 	}
614 
615 	if (!vma_migratable(walk->vma)) {
616 		/*
617 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
618 		 * stopped walking current vma.
619 		 * Detecting misplaced page but allow migrating pages which
620 		 * have been queued.
621 		 */
622 		ret = 1;
623 		goto unlock;
624 	}
625 
626 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
627 	if (flags & (MPOL_MF_MOVE_ALL) ||
628 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
629 		if (!isolate_huge_page(page, qp->pagelist) &&
630 			(flags & MPOL_MF_STRICT))
631 			/*
632 			 * Failed to isolate page but allow migrating pages
633 			 * which have been queued.
634 			 */
635 			ret = 1;
636 	}
637 unlock:
638 	spin_unlock(ptl);
639 #else
640 	BUG();
641 #endif
642 	return ret;
643 }
644 
645 #ifdef CONFIG_NUMA_BALANCING
646 /*
647  * This is used to mark a range of virtual addresses to be inaccessible.
648  * These are later cleared by a NUMA hinting fault. Depending on these
649  * faults, pages may be migrated for better NUMA placement.
650  *
651  * This is assuming that NUMA faults are handled using PROT_NONE. If
652  * an architecture makes a different choice, it will need further
653  * changes to the core.
654  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)655 unsigned long change_prot_numa(struct vm_area_struct *vma,
656 			unsigned long addr, unsigned long end)
657 {
658 	int nr_updated;
659 
660 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
661 	if (nr_updated)
662 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
663 
664 	return nr_updated;
665 }
666 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)667 static unsigned long change_prot_numa(struct vm_area_struct *vma,
668 			unsigned long addr, unsigned long end)
669 {
670 	return 0;
671 }
672 #endif /* CONFIG_NUMA_BALANCING */
673 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)674 static int queue_pages_test_walk(unsigned long start, unsigned long end,
675 				struct mm_walk *walk)
676 {
677 	struct vm_area_struct *vma = walk->vma;
678 	struct queue_pages *qp = walk->private;
679 	unsigned long endvma = vma->vm_end;
680 	unsigned long flags = qp->flags;
681 
682 	/* range check first */
683 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
684 
685 	if (!qp->first) {
686 		qp->first = vma;
687 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
688 			(qp->start < vma->vm_start))
689 			/* hole at head side of range */
690 			return -EFAULT;
691 	}
692 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
693 		((vma->vm_end < qp->end) &&
694 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
695 		/* hole at middle or tail of range */
696 		return -EFAULT;
697 
698 	/*
699 	 * Need check MPOL_MF_STRICT to return -EIO if possible
700 	 * regardless of vma_migratable
701 	 */
702 	if (!vma_migratable(vma) &&
703 	    !(flags & MPOL_MF_STRICT))
704 		return 1;
705 
706 	if (endvma > end)
707 		endvma = end;
708 
709 	if (flags & MPOL_MF_LAZY) {
710 		/* Similar to task_numa_work, skip inaccessible VMAs */
711 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
712 			!(vma->vm_flags & VM_MIXEDMAP))
713 			change_prot_numa(vma, start, endvma);
714 		return 1;
715 	}
716 
717 	/* queue pages from current vma */
718 	if (flags & MPOL_MF_VALID)
719 		return 0;
720 	return 1;
721 }
722 
723 static const struct mm_walk_ops queue_pages_walk_ops = {
724 	.hugetlb_entry		= queue_pages_hugetlb,
725 	.pmd_entry		= queue_pages_pte_range,
726 	.test_walk		= queue_pages_test_walk,
727 };
728 
729 /*
730  * Walk through page tables and collect pages to be migrated.
731  *
732  * If pages found in a given range are on a set of nodes (determined by
733  * @nodes and @flags,) it's isolated and queued to the pagelist which is
734  * passed via @private.
735  *
736  * queue_pages_range() has three possible return values:
737  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
738  *     specified.
739  * 0 - queue pages successfully or no misplaced page.
740  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
741  *         memory range specified by nodemask and maxnode points outside
742  *         your accessible address space (-EFAULT)
743  */
744 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)745 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
746 		nodemask_t *nodes, unsigned long flags,
747 		struct list_head *pagelist)
748 {
749 	int err;
750 	struct queue_pages qp = {
751 		.pagelist = pagelist,
752 		.flags = flags,
753 		.nmask = nodes,
754 		.start = start,
755 		.end = end,
756 		.first = NULL,
757 	};
758 
759 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
760 
761 	if (!qp.first)
762 		/* whole range in hole */
763 		err = -EFAULT;
764 
765 	return err;
766 }
767 
768 /*
769  * Apply policy to a single VMA
770  * This must be called with the mmap_lock held for writing.
771  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)772 static int vma_replace_policy(struct vm_area_struct *vma,
773 						struct mempolicy *pol)
774 {
775 	int err;
776 	struct mempolicy *old;
777 	struct mempolicy *new;
778 
779 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
780 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
781 		 vma->vm_ops, vma->vm_file,
782 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
783 
784 	new = mpol_dup(pol);
785 	if (IS_ERR(new))
786 		return PTR_ERR(new);
787 
788 	vm_write_begin(vma);
789 	if (vma->vm_ops && vma->vm_ops->set_policy) {
790 		err = vma->vm_ops->set_policy(vma, new);
791 		if (err)
792 			goto err_out;
793 	}
794 
795 	old = vma->vm_policy;
796 	/*
797 	 * The speculative page fault handler accesses this field without
798 	 * hodling the mmap_sem.
799 	 */
800 	WRITE_ONCE(vma->vm_policy,  new);
801 	vm_write_end(vma);
802 	mpol_put(old);
803 
804 	return 0;
805  err_out:
806 	vm_write_end(vma);
807 	mpol_put(new);
808 	return err;
809 }
810 
811 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)812 static int mbind_range(struct mm_struct *mm, unsigned long start,
813 		       unsigned long end, struct mempolicy *new_pol)
814 {
815 	struct vm_area_struct *prev;
816 	struct vm_area_struct *vma;
817 	int err = 0;
818 	pgoff_t pgoff;
819 	unsigned long vmstart;
820 	unsigned long vmend;
821 
822 	vma = find_vma(mm, start);
823 	VM_BUG_ON(!vma);
824 
825 	prev = vma->vm_prev;
826 	if (start > vma->vm_start)
827 		prev = vma;
828 
829 	for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
830 		vmstart = max(start, vma->vm_start);
831 		vmend   = min(end, vma->vm_end);
832 
833 		if (mpol_equal(vma_policy(vma), new_pol))
834 			continue;
835 
836 		pgoff = vma->vm_pgoff +
837 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
838 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
839 				 vma->anon_vma, vma->vm_file, pgoff,
840 				 new_pol, vma->vm_userfaultfd_ctx,
841 				 vma_get_anon_name(vma));
842 		if (prev) {
843 			vma = prev;
844 			goto replace;
845 		}
846 		if (vma->vm_start != vmstart) {
847 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
848 			if (err)
849 				goto out;
850 		}
851 		if (vma->vm_end != vmend) {
852 			err = split_vma(vma->vm_mm, vma, vmend, 0);
853 			if (err)
854 				goto out;
855 		}
856  replace:
857 		err = vma_replace_policy(vma, new_pol);
858 		if (err)
859 			goto out;
860 	}
861 
862  out:
863 	return err;
864 }
865 
866 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)867 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
868 			     nodemask_t *nodes)
869 {
870 	struct mempolicy *new, *old;
871 	NODEMASK_SCRATCH(scratch);
872 	int ret;
873 
874 	if (!scratch)
875 		return -ENOMEM;
876 
877 	new = mpol_new(mode, flags, nodes);
878 	if (IS_ERR(new)) {
879 		ret = PTR_ERR(new);
880 		goto out;
881 	}
882 
883 	ret = mpol_set_nodemask(new, nodes, scratch);
884 	if (ret) {
885 		mpol_put(new);
886 		goto out;
887 	}
888 	task_lock(current);
889 	old = current->mempolicy;
890 	current->mempolicy = new;
891 	if (new && new->mode == MPOL_INTERLEAVE)
892 		current->il_prev = MAX_NUMNODES-1;
893 	task_unlock(current);
894 	mpol_put(old);
895 	ret = 0;
896 out:
897 	NODEMASK_SCRATCH_FREE(scratch);
898 	return ret;
899 }
900 
901 /*
902  * Return nodemask for policy for get_mempolicy() query
903  *
904  * Called with task's alloc_lock held
905  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)906 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
907 {
908 	nodes_clear(*nodes);
909 	if (p == &default_policy)
910 		return;
911 
912 	switch (p->mode) {
913 	case MPOL_BIND:
914 	case MPOL_INTERLEAVE:
915 		*nodes = p->v.nodes;
916 		break;
917 	case MPOL_PREFERRED:
918 		if (!(p->flags & MPOL_F_LOCAL))
919 			node_set(p->v.preferred_node, *nodes);
920 		/* else return empty node mask for local allocation */
921 		break;
922 	default:
923 		BUG();
924 	}
925 }
926 
lookup_node(struct mm_struct * mm,unsigned long addr)927 static int lookup_node(struct mm_struct *mm, unsigned long addr)
928 {
929 	struct page *p = NULL;
930 	int err;
931 
932 	int locked = 1;
933 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
934 	if (err > 0) {
935 		err = page_to_nid(p);
936 		put_page(p);
937 	}
938 	if (locked)
939 		mmap_read_unlock(mm);
940 	return err;
941 }
942 
943 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)944 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
945 			     unsigned long addr, unsigned long flags)
946 {
947 	int err;
948 	struct mm_struct *mm = current->mm;
949 	struct vm_area_struct *vma = NULL;
950 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
951 
952 	if (flags &
953 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
954 		return -EINVAL;
955 
956 	if (flags & MPOL_F_MEMS_ALLOWED) {
957 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
958 			return -EINVAL;
959 		*policy = 0;	/* just so it's initialized */
960 		task_lock(current);
961 		*nmask  = cpuset_current_mems_allowed;
962 		task_unlock(current);
963 		return 0;
964 	}
965 
966 	if (flags & MPOL_F_ADDR) {
967 		/*
968 		 * Do NOT fall back to task policy if the
969 		 * vma/shared policy at addr is NULL.  We
970 		 * want to return MPOL_DEFAULT in this case.
971 		 */
972 		mmap_read_lock(mm);
973 		vma = find_vma_intersection(mm, addr, addr+1);
974 		if (!vma) {
975 			mmap_read_unlock(mm);
976 			return -EFAULT;
977 		}
978 		if (vma->vm_ops && vma->vm_ops->get_policy)
979 			pol = vma->vm_ops->get_policy(vma, addr);
980 		else
981 			pol = vma->vm_policy;
982 	} else if (addr)
983 		return -EINVAL;
984 
985 	if (!pol)
986 		pol = &default_policy;	/* indicates default behavior */
987 
988 	if (flags & MPOL_F_NODE) {
989 		if (flags & MPOL_F_ADDR) {
990 			/*
991 			 * Take a refcount on the mpol, lookup_node()
992 			 * wil drop the mmap_lock, so after calling
993 			 * lookup_node() only "pol" remains valid, "vma"
994 			 * is stale.
995 			 */
996 			pol_refcount = pol;
997 			vma = NULL;
998 			mpol_get(pol);
999 			err = lookup_node(mm, addr);
1000 			if (err < 0)
1001 				goto out;
1002 			*policy = err;
1003 		} else if (pol == current->mempolicy &&
1004 				pol->mode == MPOL_INTERLEAVE) {
1005 			*policy = next_node_in(current->il_prev, pol->v.nodes);
1006 		} else {
1007 			err = -EINVAL;
1008 			goto out;
1009 		}
1010 	} else {
1011 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1012 						pol->mode;
1013 		/*
1014 		 * Internal mempolicy flags must be masked off before exposing
1015 		 * the policy to userspace.
1016 		 */
1017 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1018 	}
1019 
1020 	err = 0;
1021 	if (nmask) {
1022 		if (mpol_store_user_nodemask(pol)) {
1023 			*nmask = pol->w.user_nodemask;
1024 		} else {
1025 			task_lock(current);
1026 			get_policy_nodemask(pol, nmask);
1027 			task_unlock(current);
1028 		}
1029 	}
1030 
1031  out:
1032 	mpol_cond_put(pol);
1033 	if (vma)
1034 		mmap_read_unlock(mm);
1035 	if (pol_refcount)
1036 		mpol_put(pol_refcount);
1037 	return err;
1038 }
1039 
1040 #ifdef CONFIG_MIGRATION
1041 /*
1042  * page migration, thp tail pages can be passed.
1043  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1044 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1045 				unsigned long flags)
1046 {
1047 	struct page *head = compound_head(page);
1048 	/*
1049 	 * Avoid migrating a page that is shared with others.
1050 	 */
1051 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1052 		if (!isolate_lru_page(head)) {
1053 			list_add_tail(&head->lru, pagelist);
1054 			mod_node_page_state(page_pgdat(head),
1055 				NR_ISOLATED_ANON + page_is_file_lru(head),
1056 				thp_nr_pages(head));
1057 		} else if (flags & MPOL_MF_STRICT) {
1058 			/*
1059 			 * Non-movable page may reach here.  And, there may be
1060 			 * temporary off LRU pages or non-LRU movable pages.
1061 			 * Treat them as unmovable pages since they can't be
1062 			 * isolated, so they can't be moved at the moment.  It
1063 			 * should return -EIO for this case too.
1064 			 */
1065 			return -EIO;
1066 		}
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 /*
1073  * Migrate pages from one node to a target node.
1074  * Returns error or the number of pages not migrated.
1075  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1076 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1077 			   int flags)
1078 {
1079 	nodemask_t nmask;
1080 	LIST_HEAD(pagelist);
1081 	int err = 0;
1082 	struct migration_target_control mtc = {
1083 		.nid = dest,
1084 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1085 	};
1086 
1087 	nodes_clear(nmask);
1088 	node_set(source, nmask);
1089 
1090 	/*
1091 	 * This does not "check" the range but isolates all pages that
1092 	 * need migration.  Between passing in the full user address
1093 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1094 	 */
1095 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1096 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1097 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1098 
1099 	if (!list_empty(&pagelist)) {
1100 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1101 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1102 		if (err)
1103 			putback_movable_pages(&pagelist);
1104 	}
1105 
1106 	return err;
1107 }
1108 
1109 /*
1110  * Move pages between the two nodesets so as to preserve the physical
1111  * layout as much as possible.
1112  *
1113  * Returns the number of page that could not be moved.
1114  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1115 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1116 		     const nodemask_t *to, int flags)
1117 {
1118 	int busy = 0;
1119 	int err = 0;
1120 	nodemask_t tmp;
1121 
1122 	lru_cache_disable();
1123 
1124 	mmap_read_lock(mm);
1125 
1126 	/*
1127 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1128 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1129 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1130 	 * The pair of nodemasks 'to' and 'from' define the map.
1131 	 *
1132 	 * If no pair of bits is found that way, fallback to picking some
1133 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1134 	 * 'source' and 'dest' bits are the same, this represents a node
1135 	 * that will be migrating to itself, so no pages need move.
1136 	 *
1137 	 * If no bits are left in 'tmp', or if all remaining bits left
1138 	 * in 'tmp' correspond to the same bit in 'to', return false
1139 	 * (nothing left to migrate).
1140 	 *
1141 	 * This lets us pick a pair of nodes to migrate between, such that
1142 	 * if possible the dest node is not already occupied by some other
1143 	 * source node, minimizing the risk of overloading the memory on a
1144 	 * node that would happen if we migrated incoming memory to a node
1145 	 * before migrating outgoing memory source that same node.
1146 	 *
1147 	 * A single scan of tmp is sufficient.  As we go, we remember the
1148 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1149 	 * that not only moved, but what's better, moved to an empty slot
1150 	 * (d is not set in tmp), then we break out then, with that pair.
1151 	 * Otherwise when we finish scanning from_tmp, we at least have the
1152 	 * most recent <s, d> pair that moved.  If we get all the way through
1153 	 * the scan of tmp without finding any node that moved, much less
1154 	 * moved to an empty node, then there is nothing left worth migrating.
1155 	 */
1156 
1157 	tmp = *from;
1158 	while (!nodes_empty(tmp)) {
1159 		int s,d;
1160 		int source = NUMA_NO_NODE;
1161 		int dest = 0;
1162 
1163 		for_each_node_mask(s, tmp) {
1164 
1165 			/*
1166 			 * do_migrate_pages() tries to maintain the relative
1167 			 * node relationship of the pages established between
1168 			 * threads and memory areas.
1169                          *
1170 			 * However if the number of source nodes is not equal to
1171 			 * the number of destination nodes we can not preserve
1172 			 * this node relative relationship.  In that case, skip
1173 			 * copying memory from a node that is in the destination
1174 			 * mask.
1175 			 *
1176 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1177 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1178 			 */
1179 
1180 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1181 						(node_isset(s, *to)))
1182 				continue;
1183 
1184 			d = node_remap(s, *from, *to);
1185 			if (s == d)
1186 				continue;
1187 
1188 			source = s;	/* Node moved. Memorize */
1189 			dest = d;
1190 
1191 			/* dest not in remaining from nodes? */
1192 			if (!node_isset(dest, tmp))
1193 				break;
1194 		}
1195 		if (source == NUMA_NO_NODE)
1196 			break;
1197 
1198 		node_clear(source, tmp);
1199 		err = migrate_to_node(mm, source, dest, flags);
1200 		if (err > 0)
1201 			busy += err;
1202 		if (err < 0)
1203 			break;
1204 	}
1205 	mmap_read_unlock(mm);
1206 
1207 	lru_cache_enable();
1208 	if (err < 0)
1209 		return err;
1210 	return busy;
1211 
1212 }
1213 
1214 /*
1215  * Allocate a new page for page migration based on vma policy.
1216  * Start by assuming the page is mapped by the same vma as contains @start.
1217  * Search forward from there, if not.  N.B., this assumes that the
1218  * list of pages handed to migrate_pages()--which is how we get here--
1219  * is in virtual address order.
1220  */
new_page(struct page * page,unsigned long start)1221 static struct page *new_page(struct page *page, unsigned long start)
1222 {
1223 	struct vm_area_struct *vma;
1224 	unsigned long address;
1225 
1226 	vma = find_vma(current->mm, start);
1227 	while (vma) {
1228 		address = page_address_in_vma(page, vma);
1229 		if (address != -EFAULT)
1230 			break;
1231 		vma = vma->vm_next;
1232 	}
1233 
1234 	if (PageHuge(page)) {
1235 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1236 				vma, address);
1237 	} else if (PageTransHuge(page)) {
1238 		struct page *thp;
1239 
1240 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1241 					 HPAGE_PMD_ORDER);
1242 		if (!thp)
1243 			return NULL;
1244 		prep_transhuge_page(thp);
1245 		return thp;
1246 	}
1247 	/*
1248 	 * if !vma, alloc_page_vma() will use task or system default policy
1249 	 */
1250 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1251 			vma, address);
1252 }
1253 #else
1254 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1255 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1256 				unsigned long flags)
1257 {
1258 	return -EIO;
1259 }
1260 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1261 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1262 		     const nodemask_t *to, int flags)
1263 {
1264 	return -ENOSYS;
1265 }
1266 
new_page(struct page * page,unsigned long start)1267 static struct page *new_page(struct page *page, unsigned long start)
1268 {
1269 	return NULL;
1270 }
1271 #endif
1272 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1273 static long do_mbind(unsigned long start, unsigned long len,
1274 		     unsigned short mode, unsigned short mode_flags,
1275 		     nodemask_t *nmask, unsigned long flags)
1276 {
1277 	struct mm_struct *mm = current->mm;
1278 	struct mempolicy *new;
1279 	unsigned long end;
1280 	int err;
1281 	int ret;
1282 	LIST_HEAD(pagelist);
1283 
1284 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1285 		return -EINVAL;
1286 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1287 		return -EPERM;
1288 
1289 	if (start & ~PAGE_MASK)
1290 		return -EINVAL;
1291 
1292 	if (mode == MPOL_DEFAULT)
1293 		flags &= ~MPOL_MF_STRICT;
1294 
1295 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1296 	end = start + len;
1297 
1298 	if (end < start)
1299 		return -EINVAL;
1300 	if (end == start)
1301 		return 0;
1302 
1303 	new = mpol_new(mode, mode_flags, nmask);
1304 	if (IS_ERR(new))
1305 		return PTR_ERR(new);
1306 
1307 	if (flags & MPOL_MF_LAZY)
1308 		new->flags |= MPOL_F_MOF;
1309 
1310 	/*
1311 	 * If we are using the default policy then operation
1312 	 * on discontinuous address spaces is okay after all
1313 	 */
1314 	if (!new)
1315 		flags |= MPOL_MF_DISCONTIG_OK;
1316 
1317 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1318 		 start, start + len, mode, mode_flags,
1319 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1320 
1321 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1322 
1323 		lru_cache_disable();
1324 	}
1325 	{
1326 		NODEMASK_SCRATCH(scratch);
1327 		if (scratch) {
1328 			mmap_write_lock(mm);
1329 			err = mpol_set_nodemask(new, nmask, scratch);
1330 			if (err)
1331 				mmap_write_unlock(mm);
1332 		} else
1333 			err = -ENOMEM;
1334 		NODEMASK_SCRATCH_FREE(scratch);
1335 	}
1336 	if (err)
1337 		goto mpol_out;
1338 
1339 	ret = queue_pages_range(mm, start, end, nmask,
1340 			  flags | MPOL_MF_INVERT, &pagelist);
1341 
1342 	if (ret < 0) {
1343 		err = ret;
1344 		goto up_out;
1345 	}
1346 
1347 	err = mbind_range(mm, start, end, new);
1348 
1349 	if (!err) {
1350 		int nr_failed = 0;
1351 
1352 		if (!list_empty(&pagelist)) {
1353 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1354 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1355 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1356 			if (nr_failed)
1357 				putback_movable_pages(&pagelist);
1358 		}
1359 
1360 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1361 			err = -EIO;
1362 	} else {
1363 up_out:
1364 		if (!list_empty(&pagelist))
1365 			putback_movable_pages(&pagelist);
1366 	}
1367 
1368 	mmap_write_unlock(mm);
1369 mpol_out:
1370 	mpol_put(new);
1371 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1372 		lru_cache_enable();
1373 	return err;
1374 }
1375 
1376 /*
1377  * User space interface with variable sized bitmaps for nodelists.
1378  */
1379 
1380 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1381 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1382 		     unsigned long maxnode)
1383 {
1384 	unsigned long k;
1385 	unsigned long t;
1386 	unsigned long nlongs;
1387 	unsigned long endmask;
1388 
1389 	--maxnode;
1390 	nodes_clear(*nodes);
1391 	if (maxnode == 0 || !nmask)
1392 		return 0;
1393 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1394 		return -EINVAL;
1395 
1396 	nlongs = BITS_TO_LONGS(maxnode);
1397 	if ((maxnode % BITS_PER_LONG) == 0)
1398 		endmask = ~0UL;
1399 	else
1400 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1401 
1402 	/*
1403 	 * When the user specified more nodes than supported just check
1404 	 * if the non supported part is all zero.
1405 	 *
1406 	 * If maxnode have more longs than MAX_NUMNODES, check
1407 	 * the bits in that area first. And then go through to
1408 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1409 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1410 	 */
1411 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1412 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1413 			if (get_user(t, nmask + k))
1414 				return -EFAULT;
1415 			if (k == nlongs - 1) {
1416 				if (t & endmask)
1417 					return -EINVAL;
1418 			} else if (t)
1419 				return -EINVAL;
1420 		}
1421 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1422 		endmask = ~0UL;
1423 	}
1424 
1425 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1426 		unsigned long valid_mask = endmask;
1427 
1428 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1429 		if (get_user(t, nmask + nlongs - 1))
1430 			return -EFAULT;
1431 		if (t & valid_mask)
1432 			return -EINVAL;
1433 	}
1434 
1435 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1436 		return -EFAULT;
1437 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1438 	return 0;
1439 }
1440 
1441 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1442 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1443 			      nodemask_t *nodes)
1444 {
1445 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1446 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1447 
1448 	if (copy > nbytes) {
1449 		if (copy > PAGE_SIZE)
1450 			return -EINVAL;
1451 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1452 			return -EFAULT;
1453 		copy = nbytes;
1454 	}
1455 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1456 }
1457 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1458 static long kernel_mbind(unsigned long start, unsigned long len,
1459 			 unsigned long mode, const unsigned long __user *nmask,
1460 			 unsigned long maxnode, unsigned int flags)
1461 {
1462 	nodemask_t nodes;
1463 	int err;
1464 	unsigned short mode_flags;
1465 
1466 	start = untagged_addr(start);
1467 	mode_flags = mode & MPOL_MODE_FLAGS;
1468 	mode &= ~MPOL_MODE_FLAGS;
1469 	if (mode >= MPOL_MAX)
1470 		return -EINVAL;
1471 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1472 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1473 		return -EINVAL;
1474 	err = get_nodes(&nodes, nmask, maxnode);
1475 	if (err)
1476 		return err;
1477 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1478 }
1479 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1480 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1481 		unsigned long, mode, const unsigned long __user *, nmask,
1482 		unsigned long, maxnode, unsigned int, flags)
1483 {
1484 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1485 }
1486 
1487 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1488 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1489 				 unsigned long maxnode)
1490 {
1491 	int err;
1492 	nodemask_t nodes;
1493 	unsigned short flags;
1494 
1495 	flags = mode & MPOL_MODE_FLAGS;
1496 	mode &= ~MPOL_MODE_FLAGS;
1497 	if ((unsigned int)mode >= MPOL_MAX)
1498 		return -EINVAL;
1499 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1500 		return -EINVAL;
1501 	err = get_nodes(&nodes, nmask, maxnode);
1502 	if (err)
1503 		return err;
1504 	return do_set_mempolicy(mode, flags, &nodes);
1505 }
1506 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1507 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1508 		unsigned long, maxnode)
1509 {
1510 	return kernel_set_mempolicy(mode, nmask, maxnode);
1511 }
1512 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1513 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1514 				const unsigned long __user *old_nodes,
1515 				const unsigned long __user *new_nodes)
1516 {
1517 	struct mm_struct *mm = NULL;
1518 	struct task_struct *task;
1519 	nodemask_t task_nodes;
1520 	int err;
1521 	nodemask_t *old;
1522 	nodemask_t *new;
1523 	NODEMASK_SCRATCH(scratch);
1524 
1525 	if (!scratch)
1526 		return -ENOMEM;
1527 
1528 	old = &scratch->mask1;
1529 	new = &scratch->mask2;
1530 
1531 	err = get_nodes(old, old_nodes, maxnode);
1532 	if (err)
1533 		goto out;
1534 
1535 	err = get_nodes(new, new_nodes, maxnode);
1536 	if (err)
1537 		goto out;
1538 
1539 	/* Find the mm_struct */
1540 	rcu_read_lock();
1541 	task = pid ? find_task_by_vpid(pid) : current;
1542 	if (!task) {
1543 		rcu_read_unlock();
1544 		err = -ESRCH;
1545 		goto out;
1546 	}
1547 	get_task_struct(task);
1548 
1549 	err = -EINVAL;
1550 
1551 	/*
1552 	 * Check if this process has the right to modify the specified process.
1553 	 * Use the regular "ptrace_may_access()" checks.
1554 	 */
1555 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1556 		rcu_read_unlock();
1557 		err = -EPERM;
1558 		goto out_put;
1559 	}
1560 	rcu_read_unlock();
1561 
1562 	task_nodes = cpuset_mems_allowed(task);
1563 	/* Is the user allowed to access the target nodes? */
1564 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1565 		err = -EPERM;
1566 		goto out_put;
1567 	}
1568 
1569 	task_nodes = cpuset_mems_allowed(current);
1570 	nodes_and(*new, *new, task_nodes);
1571 	if (nodes_empty(*new))
1572 		goto out_put;
1573 
1574 	err = security_task_movememory(task);
1575 	if (err)
1576 		goto out_put;
1577 
1578 	mm = get_task_mm(task);
1579 	put_task_struct(task);
1580 
1581 	if (!mm) {
1582 		err = -EINVAL;
1583 		goto out;
1584 	}
1585 
1586 	err = do_migrate_pages(mm, old, new,
1587 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1588 
1589 	mmput(mm);
1590 out:
1591 	NODEMASK_SCRATCH_FREE(scratch);
1592 
1593 	return err;
1594 
1595 out_put:
1596 	put_task_struct(task);
1597 	goto out;
1598 
1599 }
1600 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1601 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1602 		const unsigned long __user *, old_nodes,
1603 		const unsigned long __user *, new_nodes)
1604 {
1605 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1606 }
1607 
1608 
1609 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1610 static int kernel_get_mempolicy(int __user *policy,
1611 				unsigned long __user *nmask,
1612 				unsigned long maxnode,
1613 				unsigned long addr,
1614 				unsigned long flags)
1615 {
1616 	int err;
1617 	int pval;
1618 	nodemask_t nodes;
1619 
1620 	if (nmask != NULL && maxnode < nr_node_ids)
1621 		return -EINVAL;
1622 
1623 	addr = untagged_addr(addr);
1624 
1625 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1626 
1627 	if (err)
1628 		return err;
1629 
1630 	if (policy && put_user(pval, policy))
1631 		return -EFAULT;
1632 
1633 	if (nmask)
1634 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1635 
1636 	return err;
1637 }
1638 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1639 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1640 		unsigned long __user *, nmask, unsigned long, maxnode,
1641 		unsigned long, addr, unsigned long, flags)
1642 {
1643 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1644 }
1645 
1646 #ifdef CONFIG_COMPAT
1647 
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1648 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1649 		       compat_ulong_t __user *, nmask,
1650 		       compat_ulong_t, maxnode,
1651 		       compat_ulong_t, addr, compat_ulong_t, flags)
1652 {
1653 	long err;
1654 	unsigned long __user *nm = NULL;
1655 	unsigned long nr_bits, alloc_size;
1656 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1657 
1658 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1659 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1660 
1661 	if (nmask)
1662 		nm = compat_alloc_user_space(alloc_size);
1663 
1664 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1665 
1666 	if (!err && nmask) {
1667 		unsigned long copy_size;
1668 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1669 		err = copy_from_user(bm, nm, copy_size);
1670 		/* ensure entire bitmap is zeroed */
1671 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1672 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1673 	}
1674 
1675 	return err;
1676 }
1677 
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1678 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1679 		       compat_ulong_t, maxnode)
1680 {
1681 	unsigned long __user *nm = NULL;
1682 	unsigned long nr_bits, alloc_size;
1683 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1684 
1685 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1686 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1687 
1688 	if (nmask) {
1689 		if (compat_get_bitmap(bm, nmask, nr_bits))
1690 			return -EFAULT;
1691 		nm = compat_alloc_user_space(alloc_size);
1692 		if (copy_to_user(nm, bm, alloc_size))
1693 			return -EFAULT;
1694 	}
1695 
1696 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1697 }
1698 
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1699 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1700 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1701 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1702 {
1703 	unsigned long __user *nm = NULL;
1704 	unsigned long nr_bits, alloc_size;
1705 	nodemask_t bm;
1706 
1707 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1708 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1709 
1710 	if (nmask) {
1711 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1712 			return -EFAULT;
1713 		nm = compat_alloc_user_space(alloc_size);
1714 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1715 			return -EFAULT;
1716 	}
1717 
1718 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1719 }
1720 
COMPAT_SYSCALL_DEFINE4(migrate_pages,compat_pid_t,pid,compat_ulong_t,maxnode,const compat_ulong_t __user *,old_nodes,const compat_ulong_t __user *,new_nodes)1721 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1722 		       compat_ulong_t, maxnode,
1723 		       const compat_ulong_t __user *, old_nodes,
1724 		       const compat_ulong_t __user *, new_nodes)
1725 {
1726 	unsigned long __user *old = NULL;
1727 	unsigned long __user *new = NULL;
1728 	nodemask_t tmp_mask;
1729 	unsigned long nr_bits;
1730 	unsigned long size;
1731 
1732 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1733 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1734 	if (old_nodes) {
1735 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1736 			return -EFAULT;
1737 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1738 		if (new_nodes)
1739 			new = old + size / sizeof(unsigned long);
1740 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1741 			return -EFAULT;
1742 	}
1743 	if (new_nodes) {
1744 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1745 			return -EFAULT;
1746 		if (new == NULL)
1747 			new = compat_alloc_user_space(size);
1748 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1749 			return -EFAULT;
1750 	}
1751 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1752 }
1753 
1754 #endif /* CONFIG_COMPAT */
1755 
vma_migratable(struct vm_area_struct * vma)1756 bool vma_migratable(struct vm_area_struct *vma)
1757 {
1758 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1759 		return false;
1760 
1761 	/*
1762 	 * DAX device mappings require predictable access latency, so avoid
1763 	 * incurring periodic faults.
1764 	 */
1765 	if (vma_is_dax(vma))
1766 		return false;
1767 
1768 	if (is_vm_hugetlb_page(vma) &&
1769 		!hugepage_migration_supported(hstate_vma(vma)))
1770 		return false;
1771 
1772 	/*
1773 	 * Migration allocates pages in the highest zone. If we cannot
1774 	 * do so then migration (at least from node to node) is not
1775 	 * possible.
1776 	 */
1777 	if (vma->vm_file &&
1778 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1779 			< policy_zone)
1780 		return false;
1781 	return true;
1782 }
1783 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1784 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1785 						unsigned long addr)
1786 {
1787 	struct mempolicy *pol;
1788 
1789 	if (!vma)
1790 		return NULL;
1791 
1792 	if (vma->vm_ops && vma->vm_ops->get_policy)
1793 		return vma->vm_ops->get_policy(vma, addr);
1794 
1795 	/*
1796 	 * This could be called without holding the mmap_sem in the
1797 	 * speculative page fault handler's path.
1798 	 */
1799 	pol = READ_ONCE(vma->vm_policy);
1800 	if (pol) {
1801 		/*
1802 		 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1803 		 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1804 		 * count on these policies which will be dropped by
1805 		 * mpol_cond_put() later
1806 		 */
1807 		if (mpol_needs_cond_ref(pol))
1808 			mpol_get(pol);
1809 	}
1810 
1811 	return pol;
1812 }
1813 
1814 /*
1815  * get_vma_policy(@vma, @addr)
1816  * @vma: virtual memory area whose policy is sought
1817  * @addr: address in @vma for shared policy lookup
1818  *
1819  * Returns effective policy for a VMA at specified address.
1820  * Falls back to current->mempolicy or system default policy, as necessary.
1821  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1822  * count--added by the get_policy() vm_op, as appropriate--to protect against
1823  * freeing by another task.  It is the caller's responsibility to free the
1824  * extra reference for shared policies.
1825  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1826 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1827 						unsigned long addr)
1828 {
1829 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1830 
1831 	if (!pol)
1832 		pol = get_task_policy(current);
1833 
1834 	return pol;
1835 }
1836 
vma_policy_mof(struct vm_area_struct * vma)1837 bool vma_policy_mof(struct vm_area_struct *vma)
1838 {
1839 	struct mempolicy *pol;
1840 
1841 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1842 		bool ret = false;
1843 
1844 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1845 		if (pol && (pol->flags & MPOL_F_MOF))
1846 			ret = true;
1847 		mpol_cond_put(pol);
1848 
1849 		return ret;
1850 	}
1851 
1852 	pol = vma->vm_policy;
1853 	if (!pol)
1854 		pol = get_task_policy(current);
1855 
1856 	return pol->flags & MPOL_F_MOF;
1857 }
1858 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1859 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1860 {
1861 	enum zone_type dynamic_policy_zone = policy_zone;
1862 
1863 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1864 
1865 	/*
1866 	 * if policy->v.nodes has movable memory only,
1867 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1868 	 *
1869 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1870 	 * so if the following test faile, it implies
1871 	 * policy->v.nodes has movable memory only.
1872 	 */
1873 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1874 		dynamic_policy_zone = ZONE_MOVABLE;
1875 
1876 	return zone >= dynamic_policy_zone;
1877 }
1878 
1879 /*
1880  * Return a nodemask representing a mempolicy for filtering nodes for
1881  * page allocation
1882  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1883 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1884 {
1885 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1886 	if (unlikely(policy->mode == MPOL_BIND) &&
1887 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1888 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1889 		return &policy->v.nodes;
1890 
1891 	return NULL;
1892 }
1893 
1894 /* Return the node id preferred by the given mempolicy, or the given id */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1895 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1896 {
1897 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1898 		nd = policy->v.preferred_node;
1899 	else {
1900 		/*
1901 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1902 		 * because we might easily break the expectation to stay on the
1903 		 * requested node and not break the policy.
1904 		 */
1905 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1906 	}
1907 
1908 	return nd;
1909 }
1910 
1911 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1912 static unsigned interleave_nodes(struct mempolicy *policy)
1913 {
1914 	unsigned next;
1915 	struct task_struct *me = current;
1916 
1917 	next = next_node_in(me->il_prev, policy->v.nodes);
1918 	if (next < MAX_NUMNODES)
1919 		me->il_prev = next;
1920 	return next;
1921 }
1922 
1923 /*
1924  * Depending on the memory policy provide a node from which to allocate the
1925  * next slab entry.
1926  */
mempolicy_slab_node(void)1927 unsigned int mempolicy_slab_node(void)
1928 {
1929 	struct mempolicy *policy;
1930 	int node = numa_mem_id();
1931 
1932 	if (in_interrupt())
1933 		return node;
1934 
1935 	policy = current->mempolicy;
1936 	if (!policy || policy->flags & MPOL_F_LOCAL)
1937 		return node;
1938 
1939 	switch (policy->mode) {
1940 	case MPOL_PREFERRED:
1941 		/*
1942 		 * handled MPOL_F_LOCAL above
1943 		 */
1944 		return policy->v.preferred_node;
1945 
1946 	case MPOL_INTERLEAVE:
1947 		return interleave_nodes(policy);
1948 
1949 	case MPOL_BIND: {
1950 		struct zoneref *z;
1951 
1952 		/*
1953 		 * Follow bind policy behavior and start allocation at the
1954 		 * first node.
1955 		 */
1956 		struct zonelist *zonelist;
1957 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1958 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1959 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1960 							&policy->v.nodes);
1961 		return z->zone ? zone_to_nid(z->zone) : node;
1962 	}
1963 
1964 	default:
1965 		BUG();
1966 	}
1967 }
1968 
1969 /*
1970  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1971  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1972  * number of present nodes.
1973  */
offset_il_node(struct mempolicy * pol,unsigned long n)1974 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1975 {
1976 	unsigned nnodes = nodes_weight(pol->v.nodes);
1977 	unsigned target;
1978 	int i;
1979 	int nid;
1980 
1981 	if (!nnodes)
1982 		return numa_node_id();
1983 	target = (unsigned int)n % nnodes;
1984 	nid = first_node(pol->v.nodes);
1985 	for (i = 0; i < target; i++)
1986 		nid = next_node(nid, pol->v.nodes);
1987 	return nid;
1988 }
1989 
1990 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1991 static inline unsigned interleave_nid(struct mempolicy *pol,
1992 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1993 {
1994 	if (vma) {
1995 		unsigned long off;
1996 
1997 		/*
1998 		 * for small pages, there is no difference between
1999 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
2000 		 * for huge pages, since vm_pgoff is in units of small
2001 		 * pages, we need to shift off the always 0 bits to get
2002 		 * a useful offset.
2003 		 */
2004 		BUG_ON(shift < PAGE_SHIFT);
2005 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2006 		off += (addr - vma->vm_start) >> shift;
2007 		return offset_il_node(pol, off);
2008 	} else
2009 		return interleave_nodes(pol);
2010 }
2011 
2012 #ifdef CONFIG_HUGETLBFS
2013 /*
2014  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2015  * @vma: virtual memory area whose policy is sought
2016  * @addr: address in @vma for shared policy lookup and interleave policy
2017  * @gfp_flags: for requested zone
2018  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2019  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2020  *
2021  * Returns a nid suitable for a huge page allocation and a pointer
2022  * to the struct mempolicy for conditional unref after allocation.
2023  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2024  * @nodemask for filtering the zonelist.
2025  *
2026  * Must be protected by read_mems_allowed_begin()
2027  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2028 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2029 				struct mempolicy **mpol, nodemask_t **nodemask)
2030 {
2031 	int nid;
2032 
2033 	*mpol = get_vma_policy(vma, addr);
2034 	*nodemask = NULL;	/* assume !MPOL_BIND */
2035 
2036 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2037 		nid = interleave_nid(*mpol, vma, addr,
2038 					huge_page_shift(hstate_vma(vma)));
2039 	} else {
2040 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2041 		if ((*mpol)->mode == MPOL_BIND)
2042 			*nodemask = &(*mpol)->v.nodes;
2043 	}
2044 	return nid;
2045 }
2046 
2047 /*
2048  * init_nodemask_of_mempolicy
2049  *
2050  * If the current task's mempolicy is "default" [NULL], return 'false'
2051  * to indicate default policy.  Otherwise, extract the policy nodemask
2052  * for 'bind' or 'interleave' policy into the argument nodemask, or
2053  * initialize the argument nodemask to contain the single node for
2054  * 'preferred' or 'local' policy and return 'true' to indicate presence
2055  * of non-default mempolicy.
2056  *
2057  * We don't bother with reference counting the mempolicy [mpol_get/put]
2058  * because the current task is examining it's own mempolicy and a task's
2059  * mempolicy is only ever changed by the task itself.
2060  *
2061  * N.B., it is the caller's responsibility to free a returned nodemask.
2062  */
init_nodemask_of_mempolicy(nodemask_t * mask)2063 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2064 {
2065 	struct mempolicy *mempolicy;
2066 	int nid;
2067 
2068 	if (!(mask && current->mempolicy))
2069 		return false;
2070 
2071 	task_lock(current);
2072 	mempolicy = current->mempolicy;
2073 	switch (mempolicy->mode) {
2074 	case MPOL_PREFERRED:
2075 		if (mempolicy->flags & MPOL_F_LOCAL)
2076 			nid = numa_node_id();
2077 		else
2078 			nid = mempolicy->v.preferred_node;
2079 		init_nodemask_of_node(mask, nid);
2080 		break;
2081 
2082 	case MPOL_BIND:
2083 	case MPOL_INTERLEAVE:
2084 		*mask =  mempolicy->v.nodes;
2085 		break;
2086 
2087 	default:
2088 		BUG();
2089 	}
2090 	task_unlock(current);
2091 
2092 	return true;
2093 }
2094 #endif
2095 
2096 /*
2097  * mempolicy_nodemask_intersects
2098  *
2099  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2100  * policy.  Otherwise, check for intersection between mask and the policy
2101  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2102  * policy, always return true since it may allocate elsewhere on fallback.
2103  *
2104  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2105  */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)2106 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2107 					const nodemask_t *mask)
2108 {
2109 	struct mempolicy *mempolicy;
2110 	bool ret = true;
2111 
2112 	if (!mask)
2113 		return ret;
2114 	task_lock(tsk);
2115 	mempolicy = tsk->mempolicy;
2116 	if (!mempolicy)
2117 		goto out;
2118 
2119 	switch (mempolicy->mode) {
2120 	case MPOL_PREFERRED:
2121 		/*
2122 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2123 		 * allocate from, they may fallback to other nodes when oom.
2124 		 * Thus, it's possible for tsk to have allocated memory from
2125 		 * nodes in mask.
2126 		 */
2127 		break;
2128 	case MPOL_BIND:
2129 	case MPOL_INTERLEAVE:
2130 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2131 		break;
2132 	default:
2133 		BUG();
2134 	}
2135 out:
2136 	task_unlock(tsk);
2137 	return ret;
2138 }
2139 
2140 /* Allocate a page in interleaved policy.
2141    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2142 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2143 					unsigned nid)
2144 {
2145 	struct page *page;
2146 
2147 	page = __alloc_pages(gfp, order, nid);
2148 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2149 	if (!static_branch_likely(&vm_numa_stat_key))
2150 		return page;
2151 	if (page && page_to_nid(page) == nid) {
2152 		preempt_disable();
2153 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2154 		preempt_enable();
2155 	}
2156 	return page;
2157 }
2158 
2159 /**
2160  * 	alloc_pages_vma	- Allocate a page for a VMA.
2161  *
2162  * 	@gfp:
2163  *      %GFP_USER    user allocation.
2164  *      %GFP_KERNEL  kernel allocations,
2165  *      %GFP_HIGHMEM highmem/user allocations,
2166  *      %GFP_FS      allocation should not call back into a file system.
2167  *      %GFP_ATOMIC  don't sleep.
2168  *
2169  *	@order:Order of the GFP allocation.
2170  * 	@vma:  Pointer to VMA or NULL if not available.
2171  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2172  *	@node: Which node to prefer for allocation (modulo policy).
2173  *	@hugepage: for hugepages try only the preferred node if possible
2174  *
2175  * 	This function allocates a page from the kernel page pool and applies
2176  *	a NUMA policy associated with the VMA or the current process.
2177  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2178  *	mm_struct of the VMA to prevent it from going away. Should be used for
2179  *	all allocations for pages that will be mapped into user space. Returns
2180  *	NULL when no page can be allocated.
2181  */
2182 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2183 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2184 		unsigned long addr, int node, bool hugepage)
2185 {
2186 	struct mempolicy *pol;
2187 	struct page *page;
2188 	int preferred_nid;
2189 	nodemask_t *nmask;
2190 
2191 	pol = get_vma_policy(vma, addr);
2192 
2193 	if (pol->mode == MPOL_INTERLEAVE) {
2194 		unsigned nid;
2195 
2196 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2197 		mpol_cond_put(pol);
2198 		page = alloc_page_interleave(gfp, order, nid);
2199 		goto out;
2200 	}
2201 
2202 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2203 		int hpage_node = node;
2204 
2205 		/*
2206 		 * For hugepage allocation and non-interleave policy which
2207 		 * allows the current node (or other explicitly preferred
2208 		 * node) we only try to allocate from the current/preferred
2209 		 * node and don't fall back to other nodes, as the cost of
2210 		 * remote accesses would likely offset THP benefits.
2211 		 *
2212 		 * If the policy is interleave, or does not allow the current
2213 		 * node in its nodemask, we allocate the standard way.
2214 		 */
2215 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2216 			hpage_node = pol->v.preferred_node;
2217 
2218 		nmask = policy_nodemask(gfp, pol);
2219 		if (!nmask || node_isset(hpage_node, *nmask)) {
2220 			mpol_cond_put(pol);
2221 			/*
2222 			 * First, try to allocate THP only on local node, but
2223 			 * don't reclaim unnecessarily, just compact.
2224 			 */
2225 			page = __alloc_pages_node(hpage_node,
2226 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2227 
2228 			/*
2229 			 * If hugepage allocations are configured to always
2230 			 * synchronous compact or the vma has been madvised
2231 			 * to prefer hugepage backing, retry allowing remote
2232 			 * memory with both reclaim and compact as well.
2233 			 */
2234 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2235 				page = __alloc_pages_nodemask(gfp, order,
2236 							hpage_node, nmask);
2237 
2238 			goto out;
2239 		}
2240 	}
2241 
2242 	nmask = policy_nodemask(gfp, pol);
2243 	preferred_nid = policy_node(gfp, pol, node);
2244 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2245 	mpol_cond_put(pol);
2246 out:
2247 	return page;
2248 }
2249 EXPORT_SYMBOL(alloc_pages_vma);
2250 
2251 /**
2252  * 	alloc_pages_current - Allocate pages.
2253  *
2254  *	@gfp:
2255  *		%GFP_USER   user allocation,
2256  *      	%GFP_KERNEL kernel allocation,
2257  *      	%GFP_HIGHMEM highmem allocation,
2258  *      	%GFP_FS     don't call back into a file system.
2259  *      	%GFP_ATOMIC don't sleep.
2260  *	@order: Power of two of allocation size in pages. 0 is a single page.
2261  *
2262  *	Allocate a page from the kernel page pool.  When not in
2263  *	interrupt context and apply the current process NUMA policy.
2264  *	Returns NULL when no page can be allocated.
2265  */
alloc_pages_current(gfp_t gfp,unsigned order)2266 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2267 {
2268 	struct mempolicy *pol = &default_policy;
2269 	struct page *page;
2270 
2271 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2272 		pol = get_task_policy(current);
2273 
2274 	/*
2275 	 * No reference counting needed for current->mempolicy
2276 	 * nor system default_policy
2277 	 */
2278 	if (pol->mode == MPOL_INTERLEAVE)
2279 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2280 	else
2281 		page = __alloc_pages_nodemask(gfp, order,
2282 				policy_node(gfp, pol, numa_node_id()),
2283 				policy_nodemask(gfp, pol));
2284 
2285 	return page;
2286 }
2287 EXPORT_SYMBOL(alloc_pages_current);
2288 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2289 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2290 {
2291 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2292 
2293 	if (IS_ERR(pol))
2294 		return PTR_ERR(pol);
2295 	dst->vm_policy = pol;
2296 	return 0;
2297 }
2298 
2299 /*
2300  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2301  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2302  * with the mems_allowed returned by cpuset_mems_allowed().  This
2303  * keeps mempolicies cpuset relative after its cpuset moves.  See
2304  * further kernel/cpuset.c update_nodemask().
2305  *
2306  * current's mempolicy may be rebinded by the other task(the task that changes
2307  * cpuset's mems), so we needn't do rebind work for current task.
2308  */
2309 
2310 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2311 struct mempolicy *__mpol_dup(struct mempolicy *old)
2312 {
2313 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2314 
2315 	if (!new)
2316 		return ERR_PTR(-ENOMEM);
2317 
2318 	/* task's mempolicy is protected by alloc_lock */
2319 	if (old == current->mempolicy) {
2320 		task_lock(current);
2321 		*new = *old;
2322 		task_unlock(current);
2323 	} else
2324 		*new = *old;
2325 
2326 	if (current_cpuset_is_being_rebound()) {
2327 		nodemask_t mems = cpuset_mems_allowed(current);
2328 		mpol_rebind_policy(new, &mems);
2329 	}
2330 	atomic_set(&new->refcnt, 1);
2331 	return new;
2332 }
2333 
2334 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2335 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2336 {
2337 	if (!a || !b)
2338 		return false;
2339 	if (a->mode != b->mode)
2340 		return false;
2341 	if (a->flags != b->flags)
2342 		return false;
2343 	if (mpol_store_user_nodemask(a))
2344 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2345 			return false;
2346 
2347 	switch (a->mode) {
2348 	case MPOL_BIND:
2349 	case MPOL_INTERLEAVE:
2350 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2351 	case MPOL_PREFERRED:
2352 		/* a's ->flags is the same as b's */
2353 		if (a->flags & MPOL_F_LOCAL)
2354 			return true;
2355 		return a->v.preferred_node == b->v.preferred_node;
2356 	default:
2357 		BUG();
2358 		return false;
2359 	}
2360 }
2361 
2362 /*
2363  * Shared memory backing store policy support.
2364  *
2365  * Remember policies even when nobody has shared memory mapped.
2366  * The policies are kept in Red-Black tree linked from the inode.
2367  * They are protected by the sp->lock rwlock, which should be held
2368  * for any accesses to the tree.
2369  */
2370 
2371 /*
2372  * lookup first element intersecting start-end.  Caller holds sp->lock for
2373  * reading or for writing
2374  */
2375 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2376 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2377 {
2378 	struct rb_node *n = sp->root.rb_node;
2379 
2380 	while (n) {
2381 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2382 
2383 		if (start >= p->end)
2384 			n = n->rb_right;
2385 		else if (end <= p->start)
2386 			n = n->rb_left;
2387 		else
2388 			break;
2389 	}
2390 	if (!n)
2391 		return NULL;
2392 	for (;;) {
2393 		struct sp_node *w = NULL;
2394 		struct rb_node *prev = rb_prev(n);
2395 		if (!prev)
2396 			break;
2397 		w = rb_entry(prev, struct sp_node, nd);
2398 		if (w->end <= start)
2399 			break;
2400 		n = prev;
2401 	}
2402 	return rb_entry(n, struct sp_node, nd);
2403 }
2404 
2405 /*
2406  * Insert a new shared policy into the list.  Caller holds sp->lock for
2407  * writing.
2408  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2409 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2410 {
2411 	struct rb_node **p = &sp->root.rb_node;
2412 	struct rb_node *parent = NULL;
2413 	struct sp_node *nd;
2414 
2415 	while (*p) {
2416 		parent = *p;
2417 		nd = rb_entry(parent, struct sp_node, nd);
2418 		if (new->start < nd->start)
2419 			p = &(*p)->rb_left;
2420 		else if (new->end > nd->end)
2421 			p = &(*p)->rb_right;
2422 		else
2423 			BUG();
2424 	}
2425 	rb_link_node(&new->nd, parent, p);
2426 	rb_insert_color(&new->nd, &sp->root);
2427 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2428 		 new->policy ? new->policy->mode : 0);
2429 }
2430 
2431 /* Find shared policy intersecting idx */
2432 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2433 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2434 {
2435 	struct mempolicy *pol = NULL;
2436 	struct sp_node *sn;
2437 
2438 	if (!sp->root.rb_node)
2439 		return NULL;
2440 	read_lock(&sp->lock);
2441 	sn = sp_lookup(sp, idx, idx+1);
2442 	if (sn) {
2443 		mpol_get(sn->policy);
2444 		pol = sn->policy;
2445 	}
2446 	read_unlock(&sp->lock);
2447 	return pol;
2448 }
2449 
sp_free(struct sp_node * n)2450 static void sp_free(struct sp_node *n)
2451 {
2452 	mpol_put(n->policy);
2453 	kmem_cache_free(sn_cache, n);
2454 }
2455 
2456 /**
2457  * mpol_misplaced - check whether current page node is valid in policy
2458  *
2459  * @page: page to be checked
2460  * @vma: vm area where page mapped
2461  * @addr: virtual address where page mapped
2462  *
2463  * Lookup current policy node id for vma,addr and "compare to" page's
2464  * node id.
2465  *
2466  * Returns:
2467  *	-1	- not misplaced, page is in the right node
2468  *	node	- node id where the page should be
2469  *
2470  * Policy determination "mimics" alloc_page_vma().
2471  * Called from fault path where we know the vma and faulting address.
2472  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2473 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2474 {
2475 	struct mempolicy *pol;
2476 	struct zoneref *z;
2477 	int curnid = page_to_nid(page);
2478 	unsigned long pgoff;
2479 	int thiscpu = raw_smp_processor_id();
2480 	int thisnid = cpu_to_node(thiscpu);
2481 	int polnid = NUMA_NO_NODE;
2482 	int ret = -1;
2483 
2484 	pol = get_vma_policy(vma, addr);
2485 	if (!(pol->flags & MPOL_F_MOF))
2486 		goto out;
2487 
2488 	switch (pol->mode) {
2489 	case MPOL_INTERLEAVE:
2490 		pgoff = vma->vm_pgoff;
2491 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2492 		polnid = offset_il_node(pol, pgoff);
2493 		break;
2494 
2495 	case MPOL_PREFERRED:
2496 		if (pol->flags & MPOL_F_LOCAL)
2497 			polnid = numa_node_id();
2498 		else
2499 			polnid = pol->v.preferred_node;
2500 		break;
2501 
2502 	case MPOL_BIND:
2503 
2504 		/*
2505 		 * allows binding to multiple nodes.
2506 		 * use current page if in policy nodemask,
2507 		 * else select nearest allowed node, if any.
2508 		 * If no allowed nodes, use current [!misplaced].
2509 		 */
2510 		if (node_isset(curnid, pol->v.nodes))
2511 			goto out;
2512 		z = first_zones_zonelist(
2513 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2514 				gfp_zone(GFP_HIGHUSER),
2515 				&pol->v.nodes);
2516 		polnid = zone_to_nid(z->zone);
2517 		break;
2518 
2519 	default:
2520 		BUG();
2521 	}
2522 
2523 	/* Migrate the page towards the node whose CPU is referencing it */
2524 	if (pol->flags & MPOL_F_MORON) {
2525 		polnid = thisnid;
2526 
2527 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2528 			goto out;
2529 	}
2530 
2531 	if (curnid != polnid)
2532 		ret = polnid;
2533 out:
2534 	mpol_cond_put(pol);
2535 
2536 	return ret;
2537 }
2538 
2539 /*
2540  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2541  * dropped after task->mempolicy is set to NULL so that any allocation done as
2542  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2543  * policy.
2544  */
mpol_put_task_policy(struct task_struct * task)2545 void mpol_put_task_policy(struct task_struct *task)
2546 {
2547 	struct mempolicy *pol;
2548 
2549 	task_lock(task);
2550 	pol = task->mempolicy;
2551 	task->mempolicy = NULL;
2552 	task_unlock(task);
2553 	mpol_put(pol);
2554 }
2555 
sp_delete(struct shared_policy * sp,struct sp_node * n)2556 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2557 {
2558 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2559 	rb_erase(&n->nd, &sp->root);
2560 	sp_free(n);
2561 }
2562 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2563 static void sp_node_init(struct sp_node *node, unsigned long start,
2564 			unsigned long end, struct mempolicy *pol)
2565 {
2566 	node->start = start;
2567 	node->end = end;
2568 	node->policy = pol;
2569 }
2570 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2571 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2572 				struct mempolicy *pol)
2573 {
2574 	struct sp_node *n;
2575 	struct mempolicy *newpol;
2576 
2577 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2578 	if (!n)
2579 		return NULL;
2580 
2581 	newpol = mpol_dup(pol);
2582 	if (IS_ERR(newpol)) {
2583 		kmem_cache_free(sn_cache, n);
2584 		return NULL;
2585 	}
2586 	newpol->flags |= MPOL_F_SHARED;
2587 	sp_node_init(n, start, end, newpol);
2588 
2589 	return n;
2590 }
2591 
2592 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2593 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2594 				 unsigned long end, struct sp_node *new)
2595 {
2596 	struct sp_node *n;
2597 	struct sp_node *n_new = NULL;
2598 	struct mempolicy *mpol_new = NULL;
2599 	int ret = 0;
2600 
2601 restart:
2602 	write_lock(&sp->lock);
2603 	n = sp_lookup(sp, start, end);
2604 	/* Take care of old policies in the same range. */
2605 	while (n && n->start < end) {
2606 		struct rb_node *next = rb_next(&n->nd);
2607 		if (n->start >= start) {
2608 			if (n->end <= end)
2609 				sp_delete(sp, n);
2610 			else
2611 				n->start = end;
2612 		} else {
2613 			/* Old policy spanning whole new range. */
2614 			if (n->end > end) {
2615 				if (!n_new)
2616 					goto alloc_new;
2617 
2618 				*mpol_new = *n->policy;
2619 				atomic_set(&mpol_new->refcnt, 1);
2620 				sp_node_init(n_new, end, n->end, mpol_new);
2621 				n->end = start;
2622 				sp_insert(sp, n_new);
2623 				n_new = NULL;
2624 				mpol_new = NULL;
2625 				break;
2626 			} else
2627 				n->end = start;
2628 		}
2629 		if (!next)
2630 			break;
2631 		n = rb_entry(next, struct sp_node, nd);
2632 	}
2633 	if (new)
2634 		sp_insert(sp, new);
2635 	write_unlock(&sp->lock);
2636 	ret = 0;
2637 
2638 err_out:
2639 	if (mpol_new)
2640 		mpol_put(mpol_new);
2641 	if (n_new)
2642 		kmem_cache_free(sn_cache, n_new);
2643 
2644 	return ret;
2645 
2646 alloc_new:
2647 	write_unlock(&sp->lock);
2648 	ret = -ENOMEM;
2649 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2650 	if (!n_new)
2651 		goto err_out;
2652 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2653 	if (!mpol_new)
2654 		goto err_out;
2655 	atomic_set(&mpol_new->refcnt, 1);
2656 	goto restart;
2657 }
2658 
2659 /**
2660  * mpol_shared_policy_init - initialize shared policy for inode
2661  * @sp: pointer to inode shared policy
2662  * @mpol:  struct mempolicy to install
2663  *
2664  * Install non-NULL @mpol in inode's shared policy rb-tree.
2665  * On entry, the current task has a reference on a non-NULL @mpol.
2666  * This must be released on exit.
2667  * This is called at get_inode() calls and we can use GFP_KERNEL.
2668  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2669 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2670 {
2671 	int ret;
2672 
2673 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2674 	rwlock_init(&sp->lock);
2675 
2676 	if (mpol) {
2677 		struct vm_area_struct pvma;
2678 		struct mempolicy *new;
2679 		NODEMASK_SCRATCH(scratch);
2680 
2681 		if (!scratch)
2682 			goto put_mpol;
2683 		/* contextualize the tmpfs mount point mempolicy */
2684 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2685 		if (IS_ERR(new))
2686 			goto free_scratch; /* no valid nodemask intersection */
2687 
2688 		task_lock(current);
2689 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2690 		task_unlock(current);
2691 		if (ret)
2692 			goto put_new;
2693 
2694 		/* Create pseudo-vma that contains just the policy */
2695 		vma_init(&pvma, NULL);
2696 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2697 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2698 
2699 put_new:
2700 		mpol_put(new);			/* drop initial ref */
2701 free_scratch:
2702 		NODEMASK_SCRATCH_FREE(scratch);
2703 put_mpol:
2704 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2705 	}
2706 }
2707 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2708 int mpol_set_shared_policy(struct shared_policy *info,
2709 			struct vm_area_struct *vma, struct mempolicy *npol)
2710 {
2711 	int err;
2712 	struct sp_node *new = NULL;
2713 	unsigned long sz = vma_pages(vma);
2714 
2715 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2716 		 vma->vm_pgoff,
2717 		 sz, npol ? npol->mode : -1,
2718 		 npol ? npol->flags : -1,
2719 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2720 
2721 	if (npol) {
2722 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2723 		if (!new)
2724 			return -ENOMEM;
2725 	}
2726 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2727 	if (err && new)
2728 		sp_free(new);
2729 	return err;
2730 }
2731 
2732 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2733 void mpol_free_shared_policy(struct shared_policy *p)
2734 {
2735 	struct sp_node *n;
2736 	struct rb_node *next;
2737 
2738 	if (!p->root.rb_node)
2739 		return;
2740 	write_lock(&p->lock);
2741 	next = rb_first(&p->root);
2742 	while (next) {
2743 		n = rb_entry(next, struct sp_node, nd);
2744 		next = rb_next(&n->nd);
2745 		sp_delete(p, n);
2746 	}
2747 	write_unlock(&p->lock);
2748 }
2749 
2750 #ifdef CONFIG_NUMA_BALANCING
2751 static int __initdata numabalancing_override;
2752 
check_numabalancing_enable(void)2753 static void __init check_numabalancing_enable(void)
2754 {
2755 	bool numabalancing_default = false;
2756 
2757 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2758 		numabalancing_default = true;
2759 
2760 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2761 	if (numabalancing_override)
2762 		set_numabalancing_state(numabalancing_override == 1);
2763 
2764 	if (num_online_nodes() > 1 && !numabalancing_override) {
2765 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2766 			numabalancing_default ? "Enabling" : "Disabling");
2767 		set_numabalancing_state(numabalancing_default);
2768 	}
2769 }
2770 
setup_numabalancing(char * str)2771 static int __init setup_numabalancing(char *str)
2772 {
2773 	int ret = 0;
2774 	if (!str)
2775 		goto out;
2776 
2777 	if (!strcmp(str, "enable")) {
2778 		numabalancing_override = 1;
2779 		ret = 1;
2780 	} else if (!strcmp(str, "disable")) {
2781 		numabalancing_override = -1;
2782 		ret = 1;
2783 	}
2784 out:
2785 	if (!ret)
2786 		pr_warn("Unable to parse numa_balancing=\n");
2787 
2788 	return ret;
2789 }
2790 __setup("numa_balancing=", setup_numabalancing);
2791 #else
check_numabalancing_enable(void)2792 static inline void __init check_numabalancing_enable(void)
2793 {
2794 }
2795 #endif /* CONFIG_NUMA_BALANCING */
2796 
2797 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2798 void __init numa_policy_init(void)
2799 {
2800 	nodemask_t interleave_nodes;
2801 	unsigned long largest = 0;
2802 	int nid, prefer = 0;
2803 
2804 	policy_cache = kmem_cache_create("numa_policy",
2805 					 sizeof(struct mempolicy),
2806 					 0, SLAB_PANIC, NULL);
2807 
2808 	sn_cache = kmem_cache_create("shared_policy_node",
2809 				     sizeof(struct sp_node),
2810 				     0, SLAB_PANIC, NULL);
2811 
2812 	for_each_node(nid) {
2813 		preferred_node_policy[nid] = (struct mempolicy) {
2814 			.refcnt = ATOMIC_INIT(1),
2815 			.mode = MPOL_PREFERRED,
2816 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2817 			.v = { .preferred_node = nid, },
2818 		};
2819 	}
2820 
2821 	/*
2822 	 * Set interleaving policy for system init. Interleaving is only
2823 	 * enabled across suitably sized nodes (default is >= 16MB), or
2824 	 * fall back to the largest node if they're all smaller.
2825 	 */
2826 	nodes_clear(interleave_nodes);
2827 	for_each_node_state(nid, N_MEMORY) {
2828 		unsigned long total_pages = node_present_pages(nid);
2829 
2830 		/* Preserve the largest node */
2831 		if (largest < total_pages) {
2832 			largest = total_pages;
2833 			prefer = nid;
2834 		}
2835 
2836 		/* Interleave this node? */
2837 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2838 			node_set(nid, interleave_nodes);
2839 	}
2840 
2841 	/* All too small, use the largest */
2842 	if (unlikely(nodes_empty(interleave_nodes)))
2843 		node_set(prefer, interleave_nodes);
2844 
2845 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2846 		pr_err("%s: interleaving failed\n", __func__);
2847 
2848 	check_numabalancing_enable();
2849 }
2850 
2851 /* Reset policy of current process to default */
numa_default_policy(void)2852 void numa_default_policy(void)
2853 {
2854 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2855 }
2856 
2857 /*
2858  * Parse and format mempolicy from/to strings
2859  */
2860 
2861 /*
2862  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2863  */
2864 static const char * const policy_modes[] =
2865 {
2866 	[MPOL_DEFAULT]    = "default",
2867 	[MPOL_PREFERRED]  = "prefer",
2868 	[MPOL_BIND]       = "bind",
2869 	[MPOL_INTERLEAVE] = "interleave",
2870 	[MPOL_LOCAL]      = "local",
2871 };
2872 
2873 
2874 #ifdef CONFIG_TMPFS
2875 /**
2876  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2877  * @str:  string containing mempolicy to parse
2878  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2879  *
2880  * Format of input:
2881  *	<mode>[=<flags>][:<nodelist>]
2882  *
2883  * On success, returns 0, else 1
2884  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2885 int mpol_parse_str(char *str, struct mempolicy **mpol)
2886 {
2887 	struct mempolicy *new = NULL;
2888 	unsigned short mode_flags;
2889 	nodemask_t nodes;
2890 	char *nodelist = strchr(str, ':');
2891 	char *flags = strchr(str, '=');
2892 	int err = 1, mode;
2893 
2894 	if (flags)
2895 		*flags++ = '\0';	/* terminate mode string */
2896 
2897 	if (nodelist) {
2898 		/* NUL-terminate mode or flags string */
2899 		*nodelist++ = '\0';
2900 		if (nodelist_parse(nodelist, nodes))
2901 			goto out;
2902 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2903 			goto out;
2904 	} else
2905 		nodes_clear(nodes);
2906 
2907 	mode = match_string(policy_modes, MPOL_MAX, str);
2908 	if (mode < 0)
2909 		goto out;
2910 
2911 	switch (mode) {
2912 	case MPOL_PREFERRED:
2913 		/*
2914 		 * Insist on a nodelist of one node only, although later
2915 		 * we use first_node(nodes) to grab a single node, so here
2916 		 * nodelist (or nodes) cannot be empty.
2917 		 */
2918 		if (nodelist) {
2919 			char *rest = nodelist;
2920 			while (isdigit(*rest))
2921 				rest++;
2922 			if (*rest)
2923 				goto out;
2924 			if (nodes_empty(nodes))
2925 				goto out;
2926 		}
2927 		break;
2928 	case MPOL_INTERLEAVE:
2929 		/*
2930 		 * Default to online nodes with memory if no nodelist
2931 		 */
2932 		if (!nodelist)
2933 			nodes = node_states[N_MEMORY];
2934 		break;
2935 	case MPOL_LOCAL:
2936 		/*
2937 		 * Don't allow a nodelist;  mpol_new() checks flags
2938 		 */
2939 		if (nodelist)
2940 			goto out;
2941 		mode = MPOL_PREFERRED;
2942 		break;
2943 	case MPOL_DEFAULT:
2944 		/*
2945 		 * Insist on a empty nodelist
2946 		 */
2947 		if (!nodelist)
2948 			err = 0;
2949 		goto out;
2950 	case MPOL_BIND:
2951 		/*
2952 		 * Insist on a nodelist
2953 		 */
2954 		if (!nodelist)
2955 			goto out;
2956 	}
2957 
2958 	mode_flags = 0;
2959 	if (flags) {
2960 		/*
2961 		 * Currently, we only support two mutually exclusive
2962 		 * mode flags.
2963 		 */
2964 		if (!strcmp(flags, "static"))
2965 			mode_flags |= MPOL_F_STATIC_NODES;
2966 		else if (!strcmp(flags, "relative"))
2967 			mode_flags |= MPOL_F_RELATIVE_NODES;
2968 		else
2969 			goto out;
2970 	}
2971 
2972 	new = mpol_new(mode, mode_flags, &nodes);
2973 	if (IS_ERR(new))
2974 		goto out;
2975 
2976 	/*
2977 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2978 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2979 	 */
2980 	if (mode != MPOL_PREFERRED)
2981 		new->v.nodes = nodes;
2982 	else if (nodelist)
2983 		new->v.preferred_node = first_node(nodes);
2984 	else
2985 		new->flags |= MPOL_F_LOCAL;
2986 
2987 	/*
2988 	 * Save nodes for contextualization: this will be used to "clone"
2989 	 * the mempolicy in a specific context [cpuset] at a later time.
2990 	 */
2991 	new->w.user_nodemask = nodes;
2992 
2993 	err = 0;
2994 
2995 out:
2996 	/* Restore string for error message */
2997 	if (nodelist)
2998 		*--nodelist = ':';
2999 	if (flags)
3000 		*--flags = '=';
3001 	if (!err)
3002 		*mpol = new;
3003 	return err;
3004 }
3005 #endif /* CONFIG_TMPFS */
3006 
3007 /**
3008  * mpol_to_str - format a mempolicy structure for printing
3009  * @buffer:  to contain formatted mempolicy string
3010  * @maxlen:  length of @buffer
3011  * @pol:  pointer to mempolicy to be formatted
3012  *
3013  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3014  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3015  * longest flag, "relative", and to display at least a few node ids.
3016  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3017 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3018 {
3019 	char *p = buffer;
3020 	nodemask_t nodes = NODE_MASK_NONE;
3021 	unsigned short mode = MPOL_DEFAULT;
3022 	unsigned short flags = 0;
3023 
3024 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3025 		mode = pol->mode;
3026 		flags = pol->flags;
3027 	}
3028 
3029 	switch (mode) {
3030 	case MPOL_DEFAULT:
3031 		break;
3032 	case MPOL_PREFERRED:
3033 		if (flags & MPOL_F_LOCAL)
3034 			mode = MPOL_LOCAL;
3035 		else
3036 			node_set(pol->v.preferred_node, nodes);
3037 		break;
3038 	case MPOL_BIND:
3039 	case MPOL_INTERLEAVE:
3040 		nodes = pol->v.nodes;
3041 		break;
3042 	default:
3043 		WARN_ON_ONCE(1);
3044 		snprintf(p, maxlen, "unknown");
3045 		return;
3046 	}
3047 
3048 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3049 
3050 	if (flags & MPOL_MODE_FLAGS) {
3051 		p += snprintf(p, buffer + maxlen - p, "=");
3052 
3053 		/*
3054 		 * Currently, the only defined flags are mutually exclusive
3055 		 */
3056 		if (flags & MPOL_F_STATIC_NODES)
3057 			p += snprintf(p, buffer + maxlen - p, "static");
3058 		else if (flags & MPOL_F_RELATIVE_NODES)
3059 			p += snprintf(p, buffer + maxlen - p, "relative");
3060 	}
3061 
3062 	if (!nodes_empty(nodes))
3063 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3064 			       nodemask_pr_args(&nodes));
3065 }
3066