1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright 2019 Google LLC
4 */
5
6 /*
7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8 */
9
10 #define pr_fmt(fmt) "blk-crypto: " fmt
11
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/keyslot-manager.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #include "blk-crypto-internal.h"
19
20 const struct blk_crypto_mode blk_crypto_modes[] = {
21 [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
22 .cipher_str = "xts(aes)",
23 .keysize = 64,
24 .ivsize = 16,
25 },
26 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
27 .cipher_str = "essiv(cbc(aes),sha256)",
28 .keysize = 16,
29 .ivsize = 16,
30 },
31 [BLK_ENCRYPTION_MODE_ADIANTUM] = {
32 .cipher_str = "adiantum(xchacha12,aes)",
33 .keysize = 32,
34 .ivsize = 32,
35 },
36 };
37
38 /*
39 * This number needs to be at least (the number of threads doing IO
40 * concurrently) * (maximum recursive depth of a bio), so that we don't
41 * deadlock on crypt_ctx allocations. The default is chosen to be the same
42 * as the default number of post read contexts in both EXT4 and F2FS.
43 */
44 static int num_prealloc_crypt_ctxs = 128;
45
46 module_param(num_prealloc_crypt_ctxs, int, 0444);
47 MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
48 "Number of bio crypto contexts to preallocate");
49
50 static struct kmem_cache *bio_crypt_ctx_cache;
51 static mempool_t *bio_crypt_ctx_pool;
52
bio_crypt_ctx_init(void)53 static int __init bio_crypt_ctx_init(void)
54 {
55 size_t i;
56
57 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
58 if (!bio_crypt_ctx_cache)
59 goto out_no_mem;
60
61 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
62 bio_crypt_ctx_cache);
63 if (!bio_crypt_ctx_pool)
64 goto out_no_mem;
65
66 /* This is assumed in various places. */
67 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
68
69 /* Sanity check that no algorithm exceeds the defined limits. */
70 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
71 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
72 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
73 }
74
75 return 0;
76 out_no_mem:
77 panic("Failed to allocate mem for bio crypt ctxs\n");
78 }
79 subsys_initcall(bio_crypt_ctx_init);
80
bio_crypt_set_ctx(struct bio * bio,const struct blk_crypto_key * key,const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],gfp_t gfp_mask)81 void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
82 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
83 {
84 struct bio_crypt_ctx *bc;
85
86 /*
87 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
88 * that the mempool_alloc() can't fail.
89 */
90 WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
91
92 bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
93
94 bc->bc_key = key;
95 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
96
97 bio->bi_crypt_context = bc;
98 }
99 EXPORT_SYMBOL_GPL(bio_crypt_set_ctx);
100
__bio_crypt_free_ctx(struct bio * bio)101 void __bio_crypt_free_ctx(struct bio *bio)
102 {
103 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
104 bio->bi_crypt_context = NULL;
105 }
106
__bio_crypt_clone(struct bio * dst,struct bio * src,gfp_t gfp_mask)107 int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
108 {
109 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
110 if (!dst->bi_crypt_context)
111 return -ENOMEM;
112 *dst->bi_crypt_context = *src->bi_crypt_context;
113 return 0;
114 }
115 EXPORT_SYMBOL_GPL(__bio_crypt_clone);
116
117 /* Increments @dun by @inc, treating @dun as a multi-limb integer. */
bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],unsigned int inc)118 void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
119 unsigned int inc)
120 {
121 int i;
122
123 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
124 dun[i] += inc;
125 /*
126 * If the addition in this limb overflowed, then we need to
127 * carry 1 into the next limb. Else the carry is 0.
128 */
129 if (dun[i] < inc)
130 inc = 1;
131 else
132 inc = 0;
133 }
134 }
135
__bio_crypt_advance(struct bio * bio,unsigned int bytes)136 void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
137 {
138 struct bio_crypt_ctx *bc = bio->bi_crypt_context;
139
140 bio_crypt_dun_increment(bc->bc_dun,
141 bytes >> bc->bc_key->data_unit_size_bits);
142 }
143
144 /*
145 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
146 * @next_dun, treating the DUNs as multi-limb integers.
147 */
bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx * bc,unsigned int bytes,const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])148 bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
149 unsigned int bytes,
150 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
151 {
152 int i;
153 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
154
155 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
156 if (bc->bc_dun[i] + carry != next_dun[i])
157 return false;
158 /*
159 * If the addition in this limb overflowed, then we need to
160 * carry 1 into the next limb. Else the carry is 0.
161 */
162 if ((bc->bc_dun[i] + carry) < carry)
163 carry = 1;
164 else
165 carry = 0;
166 }
167
168 /* If the DUN wrapped through 0, don't treat it as contiguous. */
169 return carry == 0;
170 }
171
172 /*
173 * Checks that two bio crypt contexts are compatible - i.e. that
174 * they are mergeable except for data_unit_num continuity.
175 */
bio_crypt_ctx_compatible(struct bio_crypt_ctx * bc1,struct bio_crypt_ctx * bc2)176 static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
177 struct bio_crypt_ctx *bc2)
178 {
179 if (!bc1)
180 return !bc2;
181
182 return bc2 && bc1->bc_key == bc2->bc_key;
183 }
184
bio_crypt_rq_ctx_compatible(struct request * rq,struct bio * bio)185 bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
186 {
187 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
188 }
189
190 /*
191 * Checks that two bio crypt contexts are compatible, and also
192 * that their data_unit_nums are continuous (and can hence be merged)
193 * in the order @bc1 followed by @bc2.
194 */
bio_crypt_ctx_mergeable(struct bio_crypt_ctx * bc1,unsigned int bc1_bytes,struct bio_crypt_ctx * bc2)195 bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
196 struct bio_crypt_ctx *bc2)
197 {
198 if (!bio_crypt_ctx_compatible(bc1, bc2))
199 return false;
200
201 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
202 }
203
204 /* Check that all I/O segments are data unit aligned. */
bio_crypt_check_alignment(struct bio * bio)205 static bool bio_crypt_check_alignment(struct bio *bio)
206 {
207 const unsigned int data_unit_size =
208 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
209 struct bvec_iter iter;
210 struct bio_vec bv;
211
212 bio_for_each_segment(bv, bio, iter) {
213 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
214 return false;
215 }
216
217 return true;
218 }
219
__blk_crypto_init_request(struct request * rq)220 blk_status_t __blk_crypto_init_request(struct request *rq)
221 {
222 return blk_ksm_get_slot_for_key(rq->q->ksm, rq->crypt_ctx->bc_key,
223 &rq->crypt_keyslot);
224 }
225
226 /**
227 * __blk_crypto_free_request - Uninitialize the crypto fields of a request.
228 *
229 * @rq: The request whose crypto fields to uninitialize.
230 *
231 * Completely uninitializes the crypto fields of a request. If a keyslot has
232 * been programmed into some inline encryption hardware, that keyslot is
233 * released. The rq->crypt_ctx is also freed.
234 */
__blk_crypto_free_request(struct request * rq)235 void __blk_crypto_free_request(struct request *rq)
236 {
237 blk_ksm_put_slot(rq->crypt_keyslot);
238 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
239 blk_crypto_rq_set_defaults(rq);
240 }
241
242 /**
243 * __blk_crypto_bio_prep - Prepare bio for inline encryption
244 *
245 * @bio_ptr: pointer to original bio pointer
246 *
247 * If the bio crypt context provided for the bio is supported by the underlying
248 * device's inline encryption hardware, do nothing.
249 *
250 * Otherwise, try to perform en/decryption for this bio by falling back to the
251 * kernel crypto API. When the crypto API fallback is used for encryption,
252 * blk-crypto may choose to split the bio into 2 - the first one that will
253 * continue to be processed and the second one that will be resubmitted via
254 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
255 * of the aforementioned "first one", and *bio_ptr will be updated to this
256 * bounce bio.
257 *
258 * Caller must ensure bio has bio_crypt_ctx.
259 *
260 * Return: true on success; false on error (and bio->bi_status will be set
261 * appropriately, and bio_endio() will have been called so bio
262 * submission should abort).
263 */
__blk_crypto_bio_prep(struct bio ** bio_ptr)264 bool __blk_crypto_bio_prep(struct bio **bio_ptr)
265 {
266 struct bio *bio = *bio_ptr;
267 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
268
269 /* Error if bio has no data. */
270 if (WARN_ON_ONCE(!bio_has_data(bio))) {
271 bio->bi_status = BLK_STS_IOERR;
272 goto fail;
273 }
274
275 if (!bio_crypt_check_alignment(bio)) {
276 bio->bi_status = BLK_STS_IOERR;
277 goto fail;
278 }
279
280 /*
281 * Success if device supports the encryption context, or if we succeeded
282 * in falling back to the crypto API.
283 */
284 if (blk_ksm_crypto_cfg_supported(bio->bi_disk->queue->ksm,
285 &bc_key->crypto_cfg))
286 return true;
287
288 if (blk_crypto_fallback_bio_prep(bio_ptr))
289 return true;
290 fail:
291 bio_endio(*bio_ptr);
292 return false;
293 }
294
__blk_crypto_rq_bio_prep(struct request * rq,struct bio * bio,gfp_t gfp_mask)295 int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
296 gfp_t gfp_mask)
297 {
298 if (!rq->crypt_ctx) {
299 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
300 if (!rq->crypt_ctx)
301 return -ENOMEM;
302 }
303 *rq->crypt_ctx = *bio->bi_crypt_context;
304 return 0;
305 }
306
307 /**
308 * blk_crypto_init_key() - Prepare a key for use with blk-crypto
309 * @blk_key: Pointer to the blk_crypto_key to initialize.
310 * @raw_key: Pointer to the raw key.
311 * @raw_key_size: Size of raw key. Must be at least the required size for the
312 * chosen @crypto_mode; see blk_crypto_modes[]. (It's allowed
313 * to be longer than the mode's actual key size, in order to
314 * support inline encryption hardware that accepts wrapped keys.
315 * @is_hw_wrapped has to be set for such keys)
316 * @is_hw_wrapped: Denotes @raw_key is wrapped.
317 * @crypto_mode: identifier for the encryption algorithm to use
318 * @dun_bytes: number of bytes that will be used to specify the DUN when this
319 * key is used
320 * @data_unit_size: the data unit size to use for en/decryption
321 *
322 * Return: 0 on success, -errno on failure. The caller is responsible for
323 * zeroizing both blk_key and raw_key when done with them.
324 */
blk_crypto_init_key(struct blk_crypto_key * blk_key,const u8 * raw_key,unsigned int raw_key_size,bool is_hw_wrapped,enum blk_crypto_mode_num crypto_mode,unsigned int dun_bytes,unsigned int data_unit_size)325 int blk_crypto_init_key(struct blk_crypto_key *blk_key,
326 const u8 *raw_key, unsigned int raw_key_size,
327 bool is_hw_wrapped,
328 enum blk_crypto_mode_num crypto_mode,
329 unsigned int dun_bytes,
330 unsigned int data_unit_size)
331 {
332 const struct blk_crypto_mode *mode;
333
334 memset(blk_key, 0, sizeof(*blk_key));
335
336 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
337 return -EINVAL;
338
339 BUILD_BUG_ON(BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE < BLK_CRYPTO_MAX_KEY_SIZE);
340
341 mode = &blk_crypto_modes[crypto_mode];
342 if (is_hw_wrapped) {
343 if (raw_key_size < mode->keysize ||
344 raw_key_size > BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE)
345 return -EINVAL;
346 } else {
347 if (raw_key_size != mode->keysize)
348 return -EINVAL;
349 }
350
351 if (dun_bytes == 0 || dun_bytes > mode->ivsize)
352 return -EINVAL;
353
354 if (!is_power_of_2(data_unit_size))
355 return -EINVAL;
356
357 blk_key->crypto_cfg.crypto_mode = crypto_mode;
358 blk_key->crypto_cfg.dun_bytes = dun_bytes;
359 blk_key->crypto_cfg.data_unit_size = data_unit_size;
360 blk_key->crypto_cfg.is_hw_wrapped = is_hw_wrapped;
361 blk_key->data_unit_size_bits = ilog2(data_unit_size);
362 blk_key->size = raw_key_size;
363 memcpy(blk_key->raw, raw_key, raw_key_size);
364
365 return 0;
366 }
367 EXPORT_SYMBOL_GPL(blk_crypto_init_key);
368
369 /*
370 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
371 * request queue it's submitted to supports inline crypto, or the
372 * blk-crypto-fallback is enabled and supports the cfg).
373 */
blk_crypto_config_supported(struct request_queue * q,const struct blk_crypto_config * cfg)374 bool blk_crypto_config_supported(struct request_queue *q,
375 const struct blk_crypto_config *cfg)
376 {
377 if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
378 !cfg->is_hw_wrapped)
379 return true;
380 return blk_ksm_crypto_cfg_supported(q->ksm, cfg);
381 }
382
383 /**
384 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
385 * @key: A key to use on the device
386 * @q: the request queue for the device
387 *
388 * Upper layers must call this function to ensure that either the hardware
389 * supports the key's crypto settings, or the crypto API fallback has transforms
390 * for the needed mode allocated and ready to go. This function may allocate
391 * an skcipher, and *should not* be called from the data path, since that might
392 * cause a deadlock
393 *
394 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
395 * blk-crypto-fallback is either disabled or the needed algorithm
396 * is disabled in the crypto API; or another -errno code.
397 */
blk_crypto_start_using_key(const struct blk_crypto_key * key,struct request_queue * q)398 int blk_crypto_start_using_key(const struct blk_crypto_key *key,
399 struct request_queue *q)
400 {
401 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
402 return 0;
403 if (key->crypto_cfg.is_hw_wrapped) {
404 pr_warn_once("hardware doesn't support wrapped keys\n");
405 return -EOPNOTSUPP;
406 }
407 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
408 }
409 EXPORT_SYMBOL_GPL(blk_crypto_start_using_key);
410
411 /**
412 * blk_crypto_evict_key() - Evict a key from any inline encryption hardware
413 * it may have been programmed into
414 * @q: The request queue who's associated inline encryption hardware this key
415 * might have been programmed into
416 * @key: The key to evict
417 *
418 * Upper layers (filesystems) must call this function to ensure that a key is
419 * evicted from any hardware that it might have been programmed into. The key
420 * must not be in use by any in-flight IO when this function is called.
421 *
422 * Return: 0 on success or if key is not present in the q's ksm, -err on error.
423 */
blk_crypto_evict_key(struct request_queue * q,const struct blk_crypto_key * key)424 int blk_crypto_evict_key(struct request_queue *q,
425 const struct blk_crypto_key *key)
426 {
427 if (blk_ksm_crypto_cfg_supported(q->ksm, &key->crypto_cfg))
428 return blk_ksm_evict_key(q->ksm, key);
429
430 /*
431 * If the request queue's associated inline encryption hardware didn't
432 * have support for the key, then the key might have been programmed
433 * into the fallback keyslot manager, so try to evict from there.
434 */
435 return blk_crypto_fallback_evict_key(key);
436 }
437 EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
438