xref: /OK3568_Linux_fs/kernel/arch/arm64/include/asm/pgtable.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22  *	and fixed mappings
23  */
24 #define VMALLOC_START		(MODULES_END)
25 #define VMALLOC_END		(- PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
26 
27 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28 
29 #define FIRST_USER_ADDRESS	0UL
30 
31 #ifndef __ASSEMBLY__
32 
33 #include <asm/cmpxchg.h>
34 #include <asm/fixmap.h>
35 #include <linux/mmdebug.h>
36 #include <linux/mm_types.h>
37 #include <linux/sched.h>
38 
39 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
40 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
41 
42 /* Set stride and tlb_level in flush_*_tlb_range */
43 #define flush_pmd_tlb_range(vma, addr, end)	\
44 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
45 #define flush_pud_tlb_range(vma, addr, end)	\
46 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
47 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
48 
49 /*
50  * Outside of a few very special situations (e.g. hibernation), we always
51  * use broadcast TLB invalidation instructions, therefore a spurious page
52  * fault on one CPU which has been handled concurrently by another CPU
53  * does not need to perform additional invalidation.
54  */
55 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
56 
57 /*
58  * ZERO_PAGE is a global shared page that is always zero: used
59  * for zero-mapped memory areas etc..
60  */
61 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
62 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
63 
64 #define pte_ERROR(e)	\
65 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
66 
67 /*
68  * Macros to convert between a physical address and its placement in a
69  * page table entry, taking care of 52-bit addresses.
70  */
71 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)72 static inline phys_addr_t __pte_to_phys(pte_t pte)
73 {
74 	return (pte_val(pte) & PTE_ADDR_LOW) |
75 		((pte_val(pte) & PTE_ADDR_HIGH) << 36);
76 }
__phys_to_pte_val(phys_addr_t phys)77 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
78 {
79 	return (phys | (phys >> 36)) & PTE_ADDR_MASK;
80 }
81 #else
82 #define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
83 #define __phys_to_pte_val(phys)	(phys)
84 #endif
85 
86 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
87 #define pfn_pte(pfn,prot)	\
88 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
89 
90 #define pte_none(pte)		(!pte_val(pte))
91 #define pte_clear(mm,addr,ptep)	set_pte(ptep, __pte(0))
92 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
93 
94 /*
95  * The following only work if pte_present(). Undefined behaviour otherwise.
96  */
97 #define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
98 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
99 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
100 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
101 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
102 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
103 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
104 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
105 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
106 
107 #define pte_cont_addr_end(addr, end)						\
108 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
109 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
110 })
111 
112 #define pmd_cont_addr_end(addr, end)						\
113 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
114 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
115 })
116 
117 #define pte_hw_dirty(pte)	(pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
118 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
119 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
120 
121 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
122 #define pte_valid_not_user(pte) \
123 	((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
124 #define pte_valid_user(pte) \
125 	((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
126 
127 /*
128  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
129  * so that we don't erroneously return false for pages that have been
130  * remapped as PROT_NONE but are yet to be flushed from the TLB.
131  * Note that we can't make any assumptions based on the state of the access
132  * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
133  * TLB.
134  */
135 #define pte_accessible(mm, pte)	\
136 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
137 
138 /*
139  * p??_access_permitted() is true for valid user mappings (subject to the
140  * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
141  * set.
142  */
143 #define pte_access_permitted(pte, write) \
144 	(pte_valid_user(pte) && (!(write) || pte_write(pte)))
145 #define pmd_access_permitted(pmd, write) \
146 	(pte_access_permitted(pmd_pte(pmd), (write)))
147 #define pud_access_permitted(pud, write) \
148 	(pte_access_permitted(pud_pte(pud), (write)))
149 
clear_pte_bit(pte_t pte,pgprot_t prot)150 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
151 {
152 	pte_val(pte) &= ~pgprot_val(prot);
153 	return pte;
154 }
155 
set_pte_bit(pte_t pte,pgprot_t prot)156 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
157 {
158 	pte_val(pte) |= pgprot_val(prot);
159 	return pte;
160 }
161 
clear_pmd_bit(pmd_t pmd,pgprot_t prot)162 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
163 {
164 	pmd_val(pmd) &= ~pgprot_val(prot);
165 	return pmd;
166 }
167 
set_pmd_bit(pmd_t pmd,pgprot_t prot)168 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
169 {
170 	pmd_val(pmd) |= pgprot_val(prot);
171 	return pmd;
172 }
173 
pte_mkwrite(pte_t pte)174 static inline pte_t pte_mkwrite(pte_t pte)
175 {
176 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
177 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
178 	return pte;
179 }
180 
pte_mkclean(pte_t pte)181 static inline pte_t pte_mkclean(pte_t pte)
182 {
183 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
184 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
185 
186 	return pte;
187 }
188 
pte_mkdirty(pte_t pte)189 static inline pte_t pte_mkdirty(pte_t pte)
190 {
191 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
192 
193 	if (pte_write(pte))
194 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
195 
196 	return pte;
197 }
198 
pte_wrprotect(pte_t pte)199 static inline pte_t pte_wrprotect(pte_t pte)
200 {
201 	/*
202 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
203 	 * clear), set the PTE_DIRTY bit.
204 	 */
205 	if (pte_hw_dirty(pte))
206 		pte = pte_mkdirty(pte);
207 
208 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
209 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
210 	return pte;
211 }
212 
pte_mkold(pte_t pte)213 static inline pte_t pte_mkold(pte_t pte)
214 {
215 	return clear_pte_bit(pte, __pgprot(PTE_AF));
216 }
217 
pte_mkyoung(pte_t pte)218 static inline pte_t pte_mkyoung(pte_t pte)
219 {
220 	return set_pte_bit(pte, __pgprot(PTE_AF));
221 }
222 
pte_mkspecial(pte_t pte)223 static inline pte_t pte_mkspecial(pte_t pte)
224 {
225 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
226 }
227 
pte_mkcont(pte_t pte)228 static inline pte_t pte_mkcont(pte_t pte)
229 {
230 	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
231 	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
232 }
233 
pte_mknoncont(pte_t pte)234 static inline pte_t pte_mknoncont(pte_t pte)
235 {
236 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
237 }
238 
pte_mkpresent(pte_t pte)239 static inline pte_t pte_mkpresent(pte_t pte)
240 {
241 	return set_pte_bit(pte, __pgprot(PTE_VALID));
242 }
243 
pmd_mkcont(pmd_t pmd)244 static inline pmd_t pmd_mkcont(pmd_t pmd)
245 {
246 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
247 }
248 
pte_mkdevmap(pte_t pte)249 static inline pte_t pte_mkdevmap(pte_t pte)
250 {
251 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
252 }
253 
set_pte(pte_t * ptep,pte_t pte)254 static inline void set_pte(pte_t *ptep, pte_t pte)
255 {
256 	WRITE_ONCE(*ptep, pte);
257 
258 	/*
259 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
260 	 * or update_mmu_cache() have the necessary barriers.
261 	 */
262 	if (pte_valid_not_user(pte)) {
263 		dsb(ishst);
264 		isb();
265 	}
266 }
267 
268 extern void __sync_icache_dcache(pte_t pteval);
269 
270 /*
271  * PTE bits configuration in the presence of hardware Dirty Bit Management
272  * (PTE_WRITE == PTE_DBM):
273  *
274  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
275  *   0      0      |   1           0          0
276  *   0      1      |   1           1          0
277  *   1      0      |   1           0          1
278  *   1      1      |   0           1          x
279  *
280  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
281  * the page fault mechanism. Checking the dirty status of a pte becomes:
282  *
283  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
284  */
285 
__check_racy_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)286 static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
287 					   pte_t pte)
288 {
289 	pte_t old_pte;
290 
291 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
292 		return;
293 
294 	old_pte = READ_ONCE(*ptep);
295 
296 	if (!pte_valid(old_pte) || !pte_valid(pte))
297 		return;
298 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
299 		return;
300 
301 	/*
302 	 * Check for potential race with hardware updates of the pte
303 	 * (ptep_set_access_flags safely changes valid ptes without going
304 	 * through an invalid entry).
305 	 */
306 	VM_WARN_ONCE(!pte_young(pte),
307 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
308 		     __func__, pte_val(old_pte), pte_val(pte));
309 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
310 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
311 		     __func__, pte_val(old_pte), pte_val(pte));
312 }
313 
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)314 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
315 			      pte_t *ptep, pte_t pte)
316 {
317 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
318 		__sync_icache_dcache(pte);
319 
320 	if (system_supports_mte() &&
321 	    pte_present(pte) && pte_tagged(pte) && !pte_special(pte))
322 		mte_sync_tags(ptep, pte);
323 
324 	__check_racy_pte_update(mm, ptep, pte);
325 
326 	set_pte(ptep, pte);
327 }
328 
329 /*
330  * Huge pte definitions.
331  */
332 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
333 
334 /*
335  * Hugetlb definitions.
336  */
337 #define HUGE_MAX_HSTATE		4
338 #define HPAGE_SHIFT		PMD_SHIFT
339 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
340 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
341 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
342 
pgd_pte(pgd_t pgd)343 static inline pte_t pgd_pte(pgd_t pgd)
344 {
345 	return __pte(pgd_val(pgd));
346 }
347 
p4d_pte(p4d_t p4d)348 static inline pte_t p4d_pte(p4d_t p4d)
349 {
350 	return __pte(p4d_val(p4d));
351 }
352 
pud_pte(pud_t pud)353 static inline pte_t pud_pte(pud_t pud)
354 {
355 	return __pte(pud_val(pud));
356 }
357 
pte_pud(pte_t pte)358 static inline pud_t pte_pud(pte_t pte)
359 {
360 	return __pud(pte_val(pte));
361 }
362 
pud_pmd(pud_t pud)363 static inline pmd_t pud_pmd(pud_t pud)
364 {
365 	return __pmd(pud_val(pud));
366 }
367 
pmd_pte(pmd_t pmd)368 static inline pte_t pmd_pte(pmd_t pmd)
369 {
370 	return __pte(pmd_val(pmd));
371 }
372 
pte_pmd(pte_t pte)373 static inline pmd_t pte_pmd(pte_t pte)
374 {
375 	return __pmd(pte_val(pte));
376 }
377 
mk_pud_sect_prot(pgprot_t prot)378 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
379 {
380 	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
381 }
382 
mk_pmd_sect_prot(pgprot_t prot)383 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
384 {
385 	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
386 }
387 
388 #ifdef CONFIG_NUMA_BALANCING
389 /*
390  * See the comment in include/linux/pgtable.h
391  */
pte_protnone(pte_t pte)392 static inline int pte_protnone(pte_t pte)
393 {
394 	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
395 }
396 
pmd_protnone(pmd_t pmd)397 static inline int pmd_protnone(pmd_t pmd)
398 {
399 	return pte_protnone(pmd_pte(pmd));
400 }
401 #endif
402 
403 #define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
404 
pmd_present(pmd_t pmd)405 static inline int pmd_present(pmd_t pmd)
406 {
407 	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
408 }
409 
410 /*
411  * THP definitions.
412  */
413 
414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)415 static inline int pmd_trans_huge(pmd_t pmd)
416 {
417 	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
418 }
419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
420 
421 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
422 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
423 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
424 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
425 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
426 #define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
427 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
428 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
429 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
430 
pmd_mkinvalid(pmd_t pmd)431 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
432 {
433 	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
434 	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
435 
436 	return pmd;
437 }
438 
439 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
440 
441 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
442 
443 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
444 
445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
446 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
447 #endif
pmd_mkdevmap(pmd_t pmd)448 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
449 {
450 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
451 }
452 
453 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
454 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
455 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
456 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
457 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
458 
459 #define pud_young(pud)		pte_young(pud_pte(pud))
460 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
461 #define pud_write(pud)		pte_write(pud_pte(pud))
462 
463 #define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
464 
465 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
466 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
467 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
468 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
469 
470 #define set_pmd_at(mm, addr, pmdp, pmd)	set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
471 #define set_pud_at(mm, addr, pudp, pud)	set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud))
472 
473 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
474 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
475 
476 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
477 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
478 
479 #define __pgprot_modify(prot,mask,bits) \
480 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
481 
482 #define pgprot_nx(prot) \
483 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
484 
485 /*
486  * Mark the prot value as uncacheable and unbufferable.
487  */
488 #define pgprot_noncached(prot) \
489 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
490 #define pgprot_writecombine(prot) \
491 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
492 #define pgprot_device(prot) \
493 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
494 #define pgprot_tagged(prot) \
495 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
496 #define pgprot_mhp	pgprot_tagged
497 /*
498  * DMA allocations for non-coherent devices use what the Arm architecture calls
499  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
500  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
501  * is intended for MMIO and thus forbids speculation, preserves access size,
502  * requires strict alignment and can also force write responses to come from the
503  * endpoint.
504  */
505 #define pgprot_dmacoherent(prot) \
506 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
507 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
508 
509 /*
510  * Mark the prot value as outer cacheable and inner non-cacheable. Non-coherent
511  * devices on a system with support for a system or last level cache use these
512  * attributes to cache allocations in the system cache.
513  */
514 #define pgprot_syscached(prot) \
515 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
516 			PTE_ATTRINDX(MT_NORMAL_iNC_oWB) | PTE_PXN | PTE_UXN)
517 
518 #define __HAVE_PHYS_MEM_ACCESS_PROT
519 struct file;
520 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
521 				     unsigned long size, pgprot_t vma_prot);
522 
523 #define pmd_none(pmd)		(!pmd_val(pmd))
524 
525 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
526 				 PMD_TYPE_TABLE)
527 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
528 				 PMD_TYPE_SECT)
529 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
530 #define pmd_bad(pmd)		(!pmd_table(pmd))
531 
532 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)533 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)534 static inline bool pud_table(pud_t pud) { return true; }
535 #else
536 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
537 				 PUD_TYPE_SECT)
538 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
539 				 PUD_TYPE_TABLE)
540 #endif
541 
542 extern pgd_t init_pg_dir[PTRS_PER_PGD];
543 extern pgd_t init_pg_end[];
544 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
545 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
546 extern pgd_t idmap_pg_end[];
547 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
548 extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
549 
550 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
551 
552 #ifdef CONFIG_MEMORY_HOTPLUG
553 extern int populate_range_driver_managed(u64 start, u64 size,
554 		const char *resource_name);
555 extern int depopulate_range_driver_managed(u64 start, u64 size,
556 		const char *resource_name);
557 #endif
558 
in_swapper_pgdir(void * addr)559 static inline bool in_swapper_pgdir(void *addr)
560 {
561 	return ((unsigned long)addr & PAGE_MASK) ==
562 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
563 }
564 
set_pmd(pmd_t * pmdp,pmd_t pmd)565 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
566 {
567 #ifdef __PAGETABLE_PMD_FOLDED
568 	if (in_swapper_pgdir(pmdp)) {
569 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
570 		return;
571 	}
572 #endif /* __PAGETABLE_PMD_FOLDED */
573 
574 	WRITE_ONCE(*pmdp, pmd);
575 
576 	if (pmd_valid(pmd)) {
577 		dsb(ishst);
578 		isb();
579 	}
580 }
581 
pmd_clear(pmd_t * pmdp)582 static inline void pmd_clear(pmd_t *pmdp)
583 {
584 	set_pmd(pmdp, __pmd(0));
585 }
586 
pmd_page_paddr(pmd_t pmd)587 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
588 {
589 	return __pmd_to_phys(pmd);
590 }
591 
pmd_page_vaddr(pmd_t pmd)592 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
593 {
594 	return (unsigned long)__va(pmd_page_paddr(pmd));
595 }
596 
597 /* Find an entry in the third-level page table. */
598 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
599 
600 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
601 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
602 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
603 
604 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
605 
606 /* use ONLY for statically allocated translation tables */
607 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
608 
609 /*
610  * Conversion functions: convert a page and protection to a page entry,
611  * and a page entry and page directory to the page they refer to.
612  */
613 #define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
614 
615 #if CONFIG_PGTABLE_LEVELS > 2
616 
617 #define pmd_ERROR(e)	\
618 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
619 
620 #define pud_none(pud)		(!pud_val(pud))
621 #define pud_bad(pud)		(!pud_table(pud))
622 #define pud_present(pud)	pte_present(pud_pte(pud))
623 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
624 #define pud_valid(pud)		pte_valid(pud_pte(pud))
625 
set_pud(pud_t * pudp,pud_t pud)626 static inline void set_pud(pud_t *pudp, pud_t pud)
627 {
628 #ifdef __PAGETABLE_PUD_FOLDED
629 	if (in_swapper_pgdir(pudp)) {
630 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
631 		return;
632 	}
633 #endif /* __PAGETABLE_PUD_FOLDED */
634 
635 	WRITE_ONCE(*pudp, pud);
636 
637 	if (pud_valid(pud)) {
638 		dsb(ishst);
639 		isb();
640 	}
641 }
642 
pud_clear(pud_t * pudp)643 static inline void pud_clear(pud_t *pudp)
644 {
645 	set_pud(pudp, __pud(0));
646 }
647 
pud_page_paddr(pud_t pud)648 static inline phys_addr_t pud_page_paddr(pud_t pud)
649 {
650 	return __pud_to_phys(pud);
651 }
652 
pud_page_vaddr(pud_t pud)653 static inline unsigned long pud_page_vaddr(pud_t pud)
654 {
655 	return (unsigned long)__va(pud_page_paddr(pud));
656 }
657 
658 /* Find an entry in the second-level page table. */
659 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
660 
661 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
662 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
663 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
664 
665 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
666 
667 /* use ONLY for statically allocated translation tables */
668 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
669 
670 #else
671 
672 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
673 
674 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
675 #define pmd_set_fixmap(addr)		NULL
676 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
677 #define pmd_clear_fixmap()
678 
679 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
680 
681 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
682 
683 #if CONFIG_PGTABLE_LEVELS > 3
684 
685 #define pud_ERROR(e)	\
686 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
687 
688 #define p4d_none(p4d)		(!p4d_val(p4d))
689 #define p4d_bad(p4d)		(!(p4d_val(p4d) & 2))
690 #define p4d_present(p4d)	(p4d_val(p4d))
691 
set_p4d(p4d_t * p4dp,p4d_t p4d)692 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
693 {
694 	if (in_swapper_pgdir(p4dp)) {
695 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
696 		return;
697 	}
698 
699 	WRITE_ONCE(*p4dp, p4d);
700 	dsb(ishst);
701 	isb();
702 }
703 
p4d_clear(p4d_t * p4dp)704 static inline void p4d_clear(p4d_t *p4dp)
705 {
706 	set_p4d(p4dp, __p4d(0));
707 }
708 
p4d_page_paddr(p4d_t p4d)709 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
710 {
711 	return __p4d_to_phys(p4d);
712 }
713 
p4d_page_vaddr(p4d_t p4d)714 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
715 {
716 	return (unsigned long)__va(p4d_page_paddr(p4d));
717 }
718 
719 /* Find an entry in the frst-level page table. */
720 #define pud_offset_phys(dir, addr)	(p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
721 
722 #define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
723 #define pud_set_fixmap_offset(p4d, addr)	pud_set_fixmap(pud_offset_phys(p4d, addr))
724 #define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
725 
726 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
727 
728 /* use ONLY for statically allocated translation tables */
729 #define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
730 
731 #else
732 
733 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
734 #define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
735 
736 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
737 #define pud_set_fixmap(addr)		NULL
738 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
739 #define pud_clear_fixmap()
740 
741 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
742 
743 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
744 
745 #define pgd_ERROR(e)	\
746 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
747 
748 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
749 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
750 
pte_modify(pte_t pte,pgprot_t newprot)751 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
752 {
753 	/*
754 	 * Normal and Normal-Tagged are two different memory types and indices
755 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
756 	 */
757 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
758 			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
759 			      PTE_ATTRINDX_MASK;
760 	/* preserve the hardware dirty information */
761 	if (pte_hw_dirty(pte))
762 		pte = pte_mkdirty(pte);
763 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
764 	return pte;
765 }
766 
pmd_modify(pmd_t pmd,pgprot_t newprot)767 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
768 {
769 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
770 }
771 
772 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
773 extern int ptep_set_access_flags(struct vm_area_struct *vma,
774 				 unsigned long address, pte_t *ptep,
775 				 pte_t entry, int dirty);
776 
777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
778 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)779 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
780 					unsigned long address, pmd_t *pmdp,
781 					pmd_t entry, int dirty)
782 {
783 	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
784 }
785 
pud_devmap(pud_t pud)786 static inline int pud_devmap(pud_t pud)
787 {
788 	return 0;
789 }
790 
pgd_devmap(pgd_t pgd)791 static inline int pgd_devmap(pgd_t pgd)
792 {
793 	return 0;
794 }
795 #endif
796 
797 /*
798  * Atomic pte/pmd modifications.
799  */
800 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(pte_t * ptep)801 static inline int __ptep_test_and_clear_young(pte_t *ptep)
802 {
803 	pte_t old_pte, pte;
804 
805 	pte = READ_ONCE(*ptep);
806 	do {
807 		old_pte = pte;
808 		pte = pte_mkold(pte);
809 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
810 					       pte_val(old_pte), pte_val(pte));
811 	} while (pte_val(pte) != pte_val(old_pte));
812 
813 	return pte_young(pte);
814 }
815 
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)816 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
817 					    unsigned long address,
818 					    pte_t *ptep)
819 {
820 	return __ptep_test_and_clear_young(ptep);
821 }
822 
823 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)824 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
825 					 unsigned long address, pte_t *ptep)
826 {
827 	int young = ptep_test_and_clear_young(vma, address, ptep);
828 
829 	if (young) {
830 		/*
831 		 * We can elide the trailing DSB here since the worst that can
832 		 * happen is that a CPU continues to use the young entry in its
833 		 * TLB and we mistakenly reclaim the associated page. The
834 		 * window for such an event is bounded by the next
835 		 * context-switch, which provides a DSB to complete the TLB
836 		 * invalidation.
837 		 */
838 		flush_tlb_page_nosync(vma, address);
839 	}
840 
841 	return young;
842 }
843 
844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
845 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)846 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
847 					    unsigned long address,
848 					    pmd_t *pmdp)
849 {
850 	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
851 }
852 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
853 
854 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)855 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
856 				       unsigned long address, pte_t *ptep)
857 {
858 	return __pte(xchg_relaxed(&pte_val(*ptep), 0));
859 }
860 
861 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
862 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)863 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
864 					    unsigned long address, pmd_t *pmdp)
865 {
866 	return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
867 }
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
869 
870 /*
871  * ptep_set_wrprotect - mark read-only while trasferring potential hardware
872  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
873  */
874 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)875 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
876 {
877 	pte_t old_pte, pte;
878 
879 	pte = READ_ONCE(*ptep);
880 	do {
881 		old_pte = pte;
882 		pte = pte_wrprotect(pte);
883 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
884 					       pte_val(old_pte), pte_val(pte));
885 	} while (pte_val(pte) != pte_val(old_pte));
886 }
887 
888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
889 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)890 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
891 				      unsigned long address, pmd_t *pmdp)
892 {
893 	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
894 }
895 
896 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)897 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
898 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
899 {
900 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
901 }
902 #endif
903 
904 /*
905  * Encode and decode a swap entry:
906  *	bits 0-1:	present (must be zero)
907  *	bits 2-7:	swap type
908  *	bits 8-57:	swap offset
909  *	bit  58:	PTE_PROT_NONE (must be zero)
910  */
911 #define __SWP_TYPE_SHIFT	2
912 #define __SWP_TYPE_BITS		6
913 #define __SWP_OFFSET_BITS	50
914 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
915 #define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
916 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
917 
918 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
919 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
920 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
921 
922 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
923 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
924 
925 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
926 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
927 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
928 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
929 
930 /*
931  * Ensure that there are not more swap files than can be encoded in the kernel
932  * PTEs.
933  */
934 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
935 
936 extern int kern_addr_valid(unsigned long addr);
937 
938 #ifdef CONFIG_ARM64_MTE
939 
940 #define __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)941 static inline int arch_prepare_to_swap(struct page *page)
942 {
943 	if (system_supports_mte())
944 		return mte_save_tags(page);
945 	return 0;
946 }
947 
948 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)949 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
950 {
951 	if (system_supports_mte())
952 		mte_invalidate_tags(type, offset);
953 }
954 
arch_swap_invalidate_area(int type)955 static inline void arch_swap_invalidate_area(int type)
956 {
957 	if (system_supports_mte())
958 		mte_invalidate_tags_area(type);
959 }
960 
961 #define __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct page * page)962 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
963 {
964 	if (system_supports_mte() && mte_restore_tags(entry, page))
965 		set_bit(PG_mte_tagged, &page->flags);
966 }
967 
968 #endif /* CONFIG_ARM64_MTE */
969 
970 /*
971  * On AArch64, the cache coherency is handled via the set_pte_at() function.
972  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)973 static inline void update_mmu_cache(struct vm_area_struct *vma,
974 				    unsigned long addr, pte_t *ptep)
975 {
976 	/*
977 	 * We don't do anything here, so there's a very small chance of
978 	 * us retaking a user fault which we just fixed up. The alternative
979 	 * is doing a dsb(ishst), but that penalises the fastpath.
980 	 */
981 }
982 
983 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
984 
985 #ifdef CONFIG_ARM64_PA_BITS_52
986 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
987 #else
988 #define phys_to_ttbr(addr)	(addr)
989 #endif
990 
991 /*
992  * On arm64 without hardware Access Flag, copying from user will fail because
993  * the pte is old and cannot be marked young. So we always end up with zeroed
994  * page after fork() + CoW for pfn mappings. We don't always have a
995  * hardware-managed access flag on arm64.
996  */
arch_faults_on_old_pte(void)997 static inline bool arch_faults_on_old_pte(void)
998 {
999 	WARN_ON(preemptible());
1000 
1001 	return !cpu_has_hw_af();
1002 }
1003 #define arch_faults_on_old_pte		arch_faults_on_old_pte
1004 
1005 /*
1006  * Experimentally, it's cheap to set the access flag in hardware and we
1007  * benefit from prefaulting mappings as 'old' to start with.
1008  */
arch_wants_old_prefaulted_pte(void)1009 static inline bool arch_wants_old_prefaulted_pte(void)
1010 {
1011 	return !arch_faults_on_old_pte();
1012 }
1013 #define arch_wants_old_prefaulted_pte	arch_wants_old_prefaulted_pte
1014 
1015 #endif /* !__ASSEMBLY__ */
1016 
1017 #endif /* __ASM_PGTABLE_H */
1018