1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
7 * Jaswinder Singh <jassi.brar@samsung.com>
8 */
9
10 #include <linux/debugfs.h>
11 #include <linux/kernel.h>
12 #include <linux/io.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dmaengine.h>
21 #include <linux/amba/bus.h>
22 #include <linux/scatterlist.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/err.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/bug.h>
28 #include <linux/reset.h>
29
30 #include "dmaengine.h"
31 #define PL330_MAX_CHAN 8
32 #define PL330_MAX_IRQS 32
33 #define PL330_MAX_PERI 32
34 #define PL330_MAX_BURST 16
35
36 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
37 #define PL330_QUIRK_PERIPH_BURST BIT(1)
38
39 enum pl330_cachectrl {
40 CCTRL0, /* Noncacheable and nonbufferable */
41 CCTRL1, /* Bufferable only */
42 CCTRL2, /* Cacheable, but do not allocate */
43 CCTRL3, /* Cacheable and bufferable, but do not allocate */
44 INVALID1, /* AWCACHE = 0x1000 */
45 INVALID2,
46 CCTRL6, /* Cacheable write-through, allocate on writes only */
47 CCTRL7, /* Cacheable write-back, allocate on writes only */
48 };
49
50 enum pl330_byteswap {
51 SWAP_NO,
52 SWAP_2,
53 SWAP_4,
54 SWAP_8,
55 SWAP_16,
56 };
57
58 /* Register and Bit field Definitions */
59 #define DS 0x0
60 #define DS_ST_STOP 0x0
61 #define DS_ST_EXEC 0x1
62 #define DS_ST_CMISS 0x2
63 #define DS_ST_UPDTPC 0x3
64 #define DS_ST_WFE 0x4
65 #define DS_ST_ATBRR 0x5
66 #define DS_ST_QBUSY 0x6
67 #define DS_ST_WFP 0x7
68 #define DS_ST_KILL 0x8
69 #define DS_ST_CMPLT 0x9
70 #define DS_ST_FLTCMP 0xe
71 #define DS_ST_FAULT 0xf
72
73 #define DPC 0x4
74 #define INTEN 0x20
75 #define ES 0x24
76 #define INTSTATUS 0x28
77 #define INTCLR 0x2c
78 #define FSM 0x30
79 #define FSC 0x34
80 #define FTM 0x38
81
82 #define _FTC 0x40
83 #define FTC(n) (_FTC + (n)*0x4)
84
85 #define _CS 0x100
86 #define CS(n) (_CS + (n)*0x8)
87 #define CS_CNS (1 << 21)
88
89 #define _CPC 0x104
90 #define CPC(n) (_CPC + (n)*0x8)
91
92 #define _SA 0x400
93 #define SA(n) (_SA + (n)*0x20)
94
95 #define _DA 0x404
96 #define DA(n) (_DA + (n)*0x20)
97
98 #define _CC 0x408
99 #define CC(n) (_CC + (n)*0x20)
100
101 #define CC_SRCINC (1 << 0)
102 #define CC_DSTINC (1 << 14)
103 #define CC_SRCPRI (1 << 8)
104 #define CC_DSTPRI (1 << 22)
105 #define CC_SRCNS (1 << 9)
106 #define CC_DSTNS (1 << 23)
107 #define CC_SRCIA (1 << 10)
108 #define CC_DSTIA (1 << 24)
109 #define CC_SRCBRSTLEN_SHFT 4
110 #define CC_DSTBRSTLEN_SHFT 18
111 #define CC_SRCBRSTSIZE_SHFT 1
112 #define CC_DSTBRSTSIZE_SHFT 15
113 #define CC_SRCCCTRL_SHFT 11
114 #define CC_SRCCCTRL_MASK 0x7
115 #define CC_DSTCCTRL_SHFT 25
116 #define CC_DRCCCTRL_MASK 0x7
117 #define CC_SWAP_SHFT 28
118
119 #define _LC0 0x40c
120 #define LC0(n) (_LC0 + (n)*0x20)
121
122 #define _LC1 0x410
123 #define LC1(n) (_LC1 + (n)*0x20)
124
125 #define DBGSTATUS 0xd00
126 #define DBG_BUSY (1 << 0)
127
128 #define DBGCMD 0xd04
129 #define DBGINST0 0xd08
130 #define DBGINST1 0xd0c
131
132 #define CR0 0xe00
133 #define CR1 0xe04
134 #define CR2 0xe08
135 #define CR3 0xe0c
136 #define CR4 0xe10
137 #define CRD 0xe14
138
139 #define PERIPH_ID 0xfe0
140 #define PERIPH_REV_SHIFT 20
141 #define PERIPH_REV_MASK 0xf
142 #define PERIPH_REV_R0P0 0
143 #define PERIPH_REV_R1P0 1
144 #define PERIPH_REV_R1P1 2
145
146 #define CR0_PERIPH_REQ_SET (1 << 0)
147 #define CR0_BOOT_EN_SET (1 << 1)
148 #define CR0_BOOT_MAN_NS (1 << 2)
149 #define CR0_NUM_CHANS_SHIFT 4
150 #define CR0_NUM_CHANS_MASK 0x7
151 #define CR0_NUM_PERIPH_SHIFT 12
152 #define CR0_NUM_PERIPH_MASK 0x1f
153 #define CR0_NUM_EVENTS_SHIFT 17
154 #define CR0_NUM_EVENTS_MASK 0x1f
155
156 #define CR1_ICACHE_LEN_SHIFT 0
157 #define CR1_ICACHE_LEN_MASK 0x7
158 #define CR1_NUM_ICACHELINES_SHIFT 4
159 #define CR1_NUM_ICACHELINES_MASK 0xf
160
161 #define CRD_DATA_WIDTH_SHIFT 0
162 #define CRD_DATA_WIDTH_MASK 0x7
163 #define CRD_WR_CAP_SHIFT 4
164 #define CRD_WR_CAP_MASK 0x7
165 #define CRD_WR_Q_DEP_SHIFT 8
166 #define CRD_WR_Q_DEP_MASK 0xf
167 #define CRD_RD_CAP_SHIFT 12
168 #define CRD_RD_CAP_MASK 0x7
169 #define CRD_RD_Q_DEP_SHIFT 16
170 #define CRD_RD_Q_DEP_MASK 0xf
171 #define CRD_DATA_BUFF_SHIFT 20
172 #define CRD_DATA_BUFF_MASK 0x3ff
173
174 #define PART 0x330
175 #define DESIGNER 0x41
176 #define REVISION 0x0
177 #define INTEG_CFG 0x0
178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
179
180 #define PL330_STATE_STOPPED (1 << 0)
181 #define PL330_STATE_EXECUTING (1 << 1)
182 #define PL330_STATE_WFE (1 << 2)
183 #define PL330_STATE_FAULTING (1 << 3)
184 #define PL330_STATE_COMPLETING (1 << 4)
185 #define PL330_STATE_WFP (1 << 5)
186 #define PL330_STATE_KILLING (1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
188 #define PL330_STATE_CACHEMISS (1 << 8)
189 #define PL330_STATE_UPDTPC (1 << 9)
190 #define PL330_STATE_ATBARRIER (1 << 10)
191 #define PL330_STATE_QUEUEBUSY (1 << 11)
192 #define PL330_STATE_INVALID (1 << 15)
193
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 | PL330_STATE_WFE | PL330_STATE_FAULTING)
196
197 #define CMD_DMAADDH 0x54
198 #define CMD_DMAEND 0x00
199 #define CMD_DMAFLUSHP 0x35
200 #define CMD_DMAGO 0xa0
201 #define CMD_DMALD 0x04
202 #define CMD_DMALDP 0x25
203 #define CMD_DMALP 0x20
204 #define CMD_DMALPEND 0x28
205 #define CMD_DMAKILL 0x01
206 #define CMD_DMAMOV 0xbc
207 #define CMD_DMANOP 0x18
208 #define CMD_DMARMB 0x12
209 #define CMD_DMASEV 0x34
210 #define CMD_DMAST 0x08
211 #define CMD_DMASTP 0x29
212 #define CMD_DMASTZ 0x0c
213 #define CMD_DMAWFE 0x36
214 #define CMD_DMAWFP 0x30
215 #define CMD_DMAWMB 0x13
216
217 #define SZ_DMAADDH 3
218 #define SZ_DMAEND 1
219 #define SZ_DMAFLUSHP 2
220 #define SZ_DMALD 1
221 #define SZ_DMALDP 2
222 #define SZ_DMALP 2
223 #define SZ_DMALPEND 2
224 #define SZ_DMAKILL 1
225 #define SZ_DMAMOV 6
226 #define SZ_DMANOP 1
227 #define SZ_DMARMB 1
228 #define SZ_DMASEV 2
229 #define SZ_DMAST 1
230 #define SZ_DMASTP 2
231 #define SZ_DMASTZ 1
232 #define SZ_DMAWFE 2
233 #define SZ_DMAWFP 2
234 #define SZ_DMAWMB 1
235 #define SZ_DMAGO 6
236
237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239
240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242 #define BYTE_MOD_BURST_LEN(b, ccr) (((b) / BRST_SIZE(ccr)) % BRST_LEN(ccr))
243
244 /*
245 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246 * at 1byte/burst for P<->M and M<->M respectively.
247 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248 * should be enough for P<->M and M<->M respectively.
249 */
250 #define MCODE_BUFF_PER_REQ 256
251
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
254
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...) do { \
258 printk("%x:", cmd_line); \
259 printk(KERN_CONT x); \
260 cmd_line += off; \
261 } while (0)
262 #define PL330_DBGMC_START(addr) (cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
265 #define PL330_DBGMC_START(addr) do {} while (0)
266 #endif
267
268 /* The number of default descriptors */
269
270 #define NR_DEFAULT_DESC 16
271
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 u32 periph_id;
278 #define DMAC_MODE_NS (1 << 0)
279 unsigned int mode;
280 unsigned int data_bus_width:10; /* In number of bits */
281 unsigned int data_buf_dep:11;
282 unsigned int num_chan:4;
283 unsigned int num_peri:6;
284 u32 peri_ns;
285 unsigned int num_events:6;
286 u32 irq_ns;
287 };
288
289 /*
290 * Request Configuration.
291 * The PL330 core does not modify this and uses the last
292 * working configuration if the request doesn't provide any.
293 *
294 * The Client may want to provide this info only for the
295 * first request and a request with new settings.
296 */
297 struct pl330_reqcfg {
298 /* Address Incrementing */
299 unsigned dst_inc:1;
300 unsigned src_inc:1;
301
302 /*
303 * For now, the SRC & DST protection levels
304 * and burst size/length are assumed same.
305 */
306 bool nonsecure;
307 bool privileged;
308 bool insnaccess;
309 unsigned brst_len:5;
310 unsigned brst_size:3; /* in power of 2 */
311
312 enum pl330_cachectrl dcctl;
313 enum pl330_cachectrl scctl;
314 enum pl330_byteswap swap;
315 struct pl330_config *pcfg;
316 };
317
318 /*
319 * One cycle of DMAC operation.
320 * There may be more than one xfer in a request.
321 */
322 struct pl330_xfer {
323 u32 src_addr;
324 u32 dst_addr;
325 /* Size to xfer */
326 u32 bytes;
327 };
328
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 /* The all xfers in the request were success. */
332 PL330_ERR_NONE,
333 /* If req aborted due to global error. */
334 PL330_ERR_ABORT,
335 /* If req failed due to problem with Channel. */
336 PL330_ERR_FAIL,
337 };
338
339 enum dmamov_dst {
340 SAR = 0,
341 CCR,
342 DAR,
343 };
344
345 enum pl330_dst {
346 SRC = 0,
347 DST,
348 };
349
350 enum pl330_cond {
351 SINGLE,
352 BURST,
353 ALWAYS,
354 };
355
356 struct dma_pl330_desc;
357
358 struct _pl330_req {
359 u32 mc_bus;
360 void *mc_cpu;
361 struct dma_pl330_desc *desc;
362 };
363
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 bool reset_dmac;
367 bool reset_mngr;
368 u8 reset_chan;
369 };
370
371 /* A DMAC Thread */
372 struct pl330_thread {
373 u8 id;
374 int ev;
375 /* If the channel is not yet acquired by any client */
376 bool free;
377 /* Parent DMAC */
378 struct pl330_dmac *dmac;
379 /* Only two at a time */
380 struct _pl330_req req[2];
381 /* Index of the last enqueued request */
382 unsigned lstenq;
383 /* Index of the last submitted request or -1 if the DMA is stopped */
384 int req_running;
385 };
386
387 enum pl330_dmac_state {
388 UNINIT,
389 INIT,
390 DYING,
391 };
392
393 enum desc_status {
394 /* In the DMAC pool */
395 FREE,
396 /*
397 * Allocated to some channel during prep_xxx
398 * Also may be sitting on the work_list.
399 */
400 PREP,
401 /*
402 * Sitting on the work_list and already submitted
403 * to the PL330 core. Not more than two descriptors
404 * of a channel can be BUSY at any time.
405 */
406 BUSY,
407 /*
408 * Sitting on the channel work_list but xfer done
409 * by PL330 core
410 */
411 DONE,
412 };
413
414 struct dma_pl330_chan {
415 /* Schedule desc completion */
416 struct tasklet_struct task;
417
418 /* DMA-Engine Channel */
419 struct dma_chan chan;
420
421 /* List of submitted descriptors */
422 struct list_head submitted_list;
423 /* List of issued descriptors */
424 struct list_head work_list;
425 /* List of completed descriptors */
426 struct list_head completed_list;
427
428 /* Pointer to the DMAC that manages this channel,
429 * NULL if the channel is available to be acquired.
430 * As the parent, this DMAC also provides descriptors
431 * to the channel.
432 */
433 struct pl330_dmac *dmac;
434
435 /* To protect channel manipulation */
436 spinlock_t lock;
437
438 /*
439 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 * available.
441 */
442 struct pl330_thread *thread;
443
444 /* For D-to-M and M-to-D channels */
445 int burst_sz; /* the peripheral fifo width */
446 int burst_len; /* the number of burst */
447 phys_addr_t fifo_addr;
448 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
449 dma_addr_t fifo_dma;
450 enum dma_data_direction dir;
451 struct dma_slave_config slave_config;
452
453 /* for runtime pm tracking */
454 bool active;
455 };
456
457 struct pl330_dmac {
458 /* DMA-Engine Device */
459 struct dma_device ddma;
460
461 /* Pool of descriptors available for the DMAC's channels */
462 struct list_head desc_pool;
463 /* To protect desc_pool manipulation */
464 spinlock_t pool_lock;
465
466 /* Size of MicroCode buffers for each channel. */
467 unsigned mcbufsz;
468 /* ioremap'ed address of PL330 registers. */
469 void __iomem *base;
470 /* Populated by the PL330 core driver during pl330_add */
471 struct pl330_config pcfg;
472
473 spinlock_t lock;
474 /* Maximum possible events/irqs */
475 int events[32];
476 /* BUS address of MicroCode buffer */
477 dma_addr_t mcode_bus;
478 /* CPU address of MicroCode buffer */
479 void *mcode_cpu;
480 /* List of all Channel threads */
481 struct pl330_thread *channels;
482 /* Pointer to the MANAGER thread */
483 struct pl330_thread *manager;
484 /* To handle bad news in interrupt */
485 struct tasklet_struct tasks;
486 struct _pl330_tbd dmac_tbd;
487 /* State of DMAC operation */
488 enum pl330_dmac_state state;
489 /* Holds list of reqs with due callbacks */
490 struct list_head req_done;
491
492 /* Peripheral channels connected to this DMAC */
493 unsigned int num_peripherals;
494 struct dma_pl330_chan *peripherals; /* keep at end */
495 int quirks;
496
497 struct reset_control *rstc;
498 struct reset_control *rstc_ocp;
499 };
500
501 static struct pl330_of_quirks {
502 char *quirk;
503 int id;
504 } of_quirks[] = {
505 {
506 .quirk = "arm,pl330-broken-no-flushp",
507 .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
508 },
509 {
510 .quirk = "arm,pl330-periph-burst",
511 .id = PL330_QUIRK_PERIPH_BURST,
512 }
513 };
514
515 struct dma_pl330_desc {
516 /* To attach to a queue as child */
517 struct list_head node;
518
519 /* Descriptor for the DMA Engine API */
520 struct dma_async_tx_descriptor txd;
521
522 /* Xfer for PL330 core */
523 struct pl330_xfer px;
524
525 struct pl330_reqcfg rqcfg;
526
527 enum desc_status status;
528
529 int bytes_requested;
530 bool last;
531
532 /* The channel which currently holds this desc */
533 struct dma_pl330_chan *pchan;
534
535 enum dma_transfer_direction rqtype;
536 /* Index of peripheral for the xfer. */
537 unsigned peri:5;
538 /* Hook to attach to DMAC's list of reqs with due callback */
539 struct list_head rqd;
540
541 /* For cyclic capability */
542 bool cyclic;
543 size_t num_periods;
544 #ifdef CONFIG_NO_GKI
545 /* interlace size */
546 unsigned int src_interlace_size;
547 unsigned int dst_interlace_size;
548 #endif
549 };
550
551 struct _xfer_spec {
552 u32 ccr;
553 struct dma_pl330_desc *desc;
554 };
555
556 static int pl330_config_write(struct dma_chan *chan,
557 struct dma_slave_config *slave_config,
558 enum dma_transfer_direction direction);
559
_queue_full(struct pl330_thread * thrd)560 static inline bool _queue_full(struct pl330_thread *thrd)
561 {
562 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
563 }
564
is_manager(struct pl330_thread * thrd)565 static inline bool is_manager(struct pl330_thread *thrd)
566 {
567 return thrd->dmac->manager == thrd;
568 }
569
570 /* If manager of the thread is in Non-Secure mode */
_manager_ns(struct pl330_thread * thrd)571 static inline bool _manager_ns(struct pl330_thread *thrd)
572 {
573 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
574 }
575
get_revision(u32 periph_id)576 static inline u32 get_revision(u32 periph_id)
577 {
578 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
579 }
580
_emit_ADDH(unsigned dry_run,u8 buf[],enum pl330_dst da,u16 val)581 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
582 enum pl330_dst da, u16 val)
583 {
584 if (dry_run)
585 return SZ_DMAADDH;
586
587 buf[0] = CMD_DMAADDH;
588 buf[0] |= (da << 1);
589 *((__le16 *)&buf[1]) = cpu_to_le16(val);
590
591 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
592 da == 1 ? "DA" : "SA", val);
593
594 return SZ_DMAADDH;
595 }
596
_emit_END(unsigned dry_run,u8 buf[])597 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
598 {
599 if (dry_run)
600 return SZ_DMAEND;
601
602 buf[0] = CMD_DMAEND;
603
604 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
605
606 return SZ_DMAEND;
607 }
608
_emit_FLUSHP(unsigned dry_run,u8 buf[],u8 peri)609 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
610 {
611 if (dry_run)
612 return SZ_DMAFLUSHP;
613
614 buf[0] = CMD_DMAFLUSHP;
615
616 peri &= 0x1f;
617 peri <<= 3;
618 buf[1] = peri;
619
620 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
621
622 return SZ_DMAFLUSHP;
623 }
624
_emit_LD(unsigned dry_run,u8 buf[],enum pl330_cond cond)625 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
626 {
627 if (dry_run)
628 return SZ_DMALD;
629
630 buf[0] = CMD_DMALD;
631
632 if (cond == SINGLE)
633 buf[0] |= (0 << 1) | (1 << 0);
634 else if (cond == BURST)
635 buf[0] |= (1 << 1) | (1 << 0);
636
637 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
638 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
639
640 return SZ_DMALD;
641 }
642
_emit_LDP(unsigned dry_run,u8 buf[],enum pl330_cond cond,u8 peri)643 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
644 enum pl330_cond cond, u8 peri)
645 {
646 if (dry_run)
647 return SZ_DMALDP;
648
649 buf[0] = CMD_DMALDP;
650
651 if (cond == BURST)
652 buf[0] |= (1 << 1);
653
654 peri &= 0x1f;
655 peri <<= 3;
656 buf[1] = peri;
657
658 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
659 cond == SINGLE ? 'S' : 'B', peri >> 3);
660
661 return SZ_DMALDP;
662 }
663
_emit_LP(unsigned dry_run,u8 buf[],unsigned loop,u8 cnt)664 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
665 unsigned loop, u8 cnt)
666 {
667 if (dry_run)
668 return SZ_DMALP;
669
670 buf[0] = CMD_DMALP;
671
672 if (loop)
673 buf[0] |= (1 << 1);
674
675 cnt--; /* DMAC increments by 1 internally */
676 buf[1] = cnt;
677
678 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
679
680 return SZ_DMALP;
681 }
682
683 struct _arg_LPEND {
684 enum pl330_cond cond;
685 bool forever;
686 unsigned loop;
687 u8 bjump;
688 };
689
_emit_LPEND(unsigned dry_run,u8 buf[],const struct _arg_LPEND * arg)690 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
691 const struct _arg_LPEND *arg)
692 {
693 enum pl330_cond cond = arg->cond;
694 bool forever = arg->forever;
695 unsigned loop = arg->loop;
696 u8 bjump = arg->bjump;
697
698 if (dry_run)
699 return SZ_DMALPEND;
700
701 buf[0] = CMD_DMALPEND;
702
703 if (loop)
704 buf[0] |= (1 << 2);
705
706 if (!forever)
707 buf[0] |= (1 << 4);
708
709 if (cond == SINGLE)
710 buf[0] |= (0 << 1) | (1 << 0);
711 else if (cond == BURST)
712 buf[0] |= (1 << 1) | (1 << 0);
713
714 buf[1] = bjump;
715
716 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
717 forever ? "FE" : "END",
718 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
719 loop ? '1' : '0',
720 bjump);
721
722 return SZ_DMALPEND;
723 }
724
_emit_KILL(unsigned dry_run,u8 buf[])725 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
726 {
727 if (dry_run)
728 return SZ_DMAKILL;
729
730 buf[0] = CMD_DMAKILL;
731
732 return SZ_DMAKILL;
733 }
734
_emit_MOV(unsigned dry_run,u8 buf[],enum dmamov_dst dst,u32 val)735 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
736 enum dmamov_dst dst, u32 val)
737 {
738 if (dry_run)
739 return SZ_DMAMOV;
740
741 buf[0] = CMD_DMAMOV;
742 buf[1] = dst;
743 buf[2] = val;
744 buf[3] = val >> 8;
745 buf[4] = val >> 16;
746 buf[5] = val >> 24;
747
748 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
749 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
750
751 return SZ_DMAMOV;
752 }
753
_emit_RMB(unsigned dry_run,u8 buf[])754 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
755 {
756 if (dry_run)
757 return SZ_DMARMB;
758
759 buf[0] = CMD_DMARMB;
760
761 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
762
763 return SZ_DMARMB;
764 }
765
_emit_SEV(unsigned dry_run,u8 buf[],u8 ev)766 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
767 {
768 if (dry_run)
769 return SZ_DMASEV;
770
771 buf[0] = CMD_DMASEV;
772
773 ev &= 0x1f;
774 ev <<= 3;
775 buf[1] = ev;
776
777 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
778
779 return SZ_DMASEV;
780 }
781
_emit_ST(unsigned dry_run,u8 buf[],enum pl330_cond cond)782 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
783 {
784 if (dry_run)
785 return SZ_DMAST;
786
787 buf[0] = CMD_DMAST;
788
789 if (cond == SINGLE)
790 buf[0] |= (0 << 1) | (1 << 0);
791 else if (cond == BURST)
792 buf[0] |= (1 << 1) | (1 << 0);
793
794 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
795 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
796
797 return SZ_DMAST;
798 }
799
_emit_STP(unsigned dry_run,u8 buf[],enum pl330_cond cond,u8 peri)800 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
801 enum pl330_cond cond, u8 peri)
802 {
803 if (dry_run)
804 return SZ_DMASTP;
805
806 buf[0] = CMD_DMASTP;
807
808 if (cond == BURST)
809 buf[0] |= (1 << 1);
810
811 peri &= 0x1f;
812 peri <<= 3;
813 buf[1] = peri;
814
815 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
816 cond == SINGLE ? 'S' : 'B', peri >> 3);
817
818 return SZ_DMASTP;
819 }
820
_emit_WFP(unsigned dry_run,u8 buf[],enum pl330_cond cond,u8 peri)821 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
822 enum pl330_cond cond, u8 peri)
823 {
824 if (dry_run)
825 return SZ_DMAWFP;
826
827 buf[0] = CMD_DMAWFP;
828
829 if (cond == SINGLE)
830 buf[0] |= (0 << 1) | (0 << 0);
831 else if (cond == BURST)
832 buf[0] |= (1 << 1) | (0 << 0);
833 else
834 buf[0] |= (0 << 1) | (1 << 0);
835
836 peri &= 0x1f;
837 peri <<= 3;
838 buf[1] = peri;
839
840 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
841 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
842
843 return SZ_DMAWFP;
844 }
845
_emit_WMB(unsigned dry_run,u8 buf[])846 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
847 {
848 if (dry_run)
849 return SZ_DMAWMB;
850
851 buf[0] = CMD_DMAWMB;
852
853 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
854
855 return SZ_DMAWMB;
856 }
857
858 struct _arg_GO {
859 u8 chan;
860 u32 addr;
861 unsigned ns;
862 };
863
_emit_GO(unsigned dry_run,u8 buf[],const struct _arg_GO * arg)864 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
865 const struct _arg_GO *arg)
866 {
867 u8 chan = arg->chan;
868 u32 addr = arg->addr;
869 unsigned ns = arg->ns;
870
871 if (dry_run)
872 return SZ_DMAGO;
873
874 buf[0] = CMD_DMAGO;
875 buf[0] |= (ns << 1);
876 buf[1] = chan & 0x7;
877 buf[2] = addr;
878 buf[3] = addr >> 8;
879 buf[4] = addr >> 16;
880 buf[5] = addr >> 24;
881
882 return SZ_DMAGO;
883 }
884
885 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
886
887 /* Returns Time-Out */
_until_dmac_idle(struct pl330_thread * thrd)888 static bool _until_dmac_idle(struct pl330_thread *thrd)
889 {
890 void __iomem *regs = thrd->dmac->base;
891 unsigned long loops = msecs_to_loops(5);
892
893 do {
894 /* Until Manager is Idle */
895 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
896 break;
897
898 cpu_relax();
899 } while (--loops);
900
901 if (!loops)
902 return true;
903
904 return false;
905 }
906
_execute_DBGINSN(struct pl330_thread * thrd,u8 insn[],bool as_manager)907 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
908 u8 insn[], bool as_manager)
909 {
910 void __iomem *regs = thrd->dmac->base;
911 u32 val;
912
913 /* If timed out due to halted state-machine */
914 if (_until_dmac_idle(thrd)) {
915 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
916 return;
917 }
918
919 val = (insn[0] << 16) | (insn[1] << 24);
920 if (!as_manager) {
921 val |= (1 << 0);
922 val |= (thrd->id << 8); /* Channel Number */
923 }
924 writel(val, regs + DBGINST0);
925
926 val = le32_to_cpu(*((__le32 *)&insn[2]));
927 writel(val, regs + DBGINST1);
928
929 /* Get going */
930 writel(0, regs + DBGCMD);
931 }
932
_state(struct pl330_thread * thrd)933 static inline u32 _state(struct pl330_thread *thrd)
934 {
935 void __iomem *regs = thrd->dmac->base;
936 u32 val;
937
938 if (is_manager(thrd))
939 val = readl(regs + DS) & 0xf;
940 else
941 val = readl(regs + CS(thrd->id)) & 0xf;
942
943 switch (val) {
944 case DS_ST_STOP:
945 return PL330_STATE_STOPPED;
946 case DS_ST_EXEC:
947 return PL330_STATE_EXECUTING;
948 case DS_ST_CMISS:
949 return PL330_STATE_CACHEMISS;
950 case DS_ST_UPDTPC:
951 return PL330_STATE_UPDTPC;
952 case DS_ST_WFE:
953 return PL330_STATE_WFE;
954 case DS_ST_FAULT:
955 return PL330_STATE_FAULTING;
956 case DS_ST_ATBRR:
957 if (is_manager(thrd))
958 return PL330_STATE_INVALID;
959 else
960 return PL330_STATE_ATBARRIER;
961 case DS_ST_QBUSY:
962 if (is_manager(thrd))
963 return PL330_STATE_INVALID;
964 else
965 return PL330_STATE_QUEUEBUSY;
966 case DS_ST_WFP:
967 if (is_manager(thrd))
968 return PL330_STATE_INVALID;
969 else
970 return PL330_STATE_WFP;
971 case DS_ST_KILL:
972 if (is_manager(thrd))
973 return PL330_STATE_INVALID;
974 else
975 return PL330_STATE_KILLING;
976 case DS_ST_CMPLT:
977 if (is_manager(thrd))
978 return PL330_STATE_INVALID;
979 else
980 return PL330_STATE_COMPLETING;
981 case DS_ST_FLTCMP:
982 if (is_manager(thrd))
983 return PL330_STATE_INVALID;
984 else
985 return PL330_STATE_FAULT_COMPLETING;
986 default:
987 return PL330_STATE_INVALID;
988 }
989 }
990
_stop(struct pl330_thread * thrd)991 static void _stop(struct pl330_thread *thrd)
992 {
993 void __iomem *regs = thrd->dmac->base;
994 u8 insn[6] = {0, 0, 0, 0, 0, 0};
995 u32 inten = readl(regs + INTEN);
996
997 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
998 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
999
1000 /* Return if nothing needs to be done */
1001 if (_state(thrd) == PL330_STATE_COMPLETING
1002 || _state(thrd) == PL330_STATE_KILLING
1003 || _state(thrd) == PL330_STATE_STOPPED)
1004 return;
1005
1006 _emit_KILL(0, insn);
1007
1008 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1009
1010 /* clear the event */
1011 if (inten & (1 << thrd->ev))
1012 writel(1 << thrd->ev, regs + INTCLR);
1013 /* Stop generating interrupts for SEV */
1014 writel(inten & ~(1 << thrd->ev), regs + INTEN);
1015 }
1016
1017 /* Start doing req 'idx' of thread 'thrd' */
_trigger(struct pl330_thread * thrd)1018 static bool _trigger(struct pl330_thread *thrd)
1019 {
1020 void __iomem *regs = thrd->dmac->base;
1021 struct _pl330_req *req;
1022 struct dma_pl330_desc *desc;
1023 struct _arg_GO go;
1024 unsigned ns;
1025 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1026 int idx;
1027
1028 /* Return if already ACTIVE */
1029 if (_state(thrd) != PL330_STATE_STOPPED)
1030 return true;
1031
1032 idx = 1 - thrd->lstenq;
1033 if (thrd->req[idx].desc != NULL) {
1034 req = &thrd->req[idx];
1035 } else {
1036 idx = thrd->lstenq;
1037 if (thrd->req[idx].desc != NULL)
1038 req = &thrd->req[idx];
1039 else
1040 req = NULL;
1041 }
1042
1043 /* Return if no request */
1044 if (!req)
1045 return true;
1046
1047 /* Return if req is running */
1048 if (idx == thrd->req_running)
1049 return true;
1050
1051 desc = req->desc;
1052
1053 ns = desc->rqcfg.nonsecure ? 1 : 0;
1054
1055 /* See 'Abort Sources' point-4 at Page 2-25 */
1056 if (_manager_ns(thrd) && !ns)
1057 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1058 __func__, __LINE__);
1059
1060 go.chan = thrd->id;
1061 go.addr = req->mc_bus;
1062 go.ns = ns;
1063 _emit_GO(0, insn, &go);
1064
1065 /* Set to generate interrupts for SEV */
1066 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1067
1068 /* Only manager can execute GO */
1069 _execute_DBGINSN(thrd, insn, true);
1070
1071 thrd->req_running = idx;
1072
1073 return true;
1074 }
1075
_start(struct pl330_thread * thrd)1076 static bool _start(struct pl330_thread *thrd)
1077 {
1078 switch (_state(thrd)) {
1079 case PL330_STATE_FAULT_COMPLETING:
1080 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1081
1082 if (_state(thrd) == PL330_STATE_KILLING)
1083 UNTIL(thrd, PL330_STATE_STOPPED)
1084 fallthrough;
1085
1086 case PL330_STATE_FAULTING:
1087 _stop(thrd);
1088 fallthrough;
1089
1090 case PL330_STATE_KILLING:
1091 case PL330_STATE_COMPLETING:
1092 UNTIL(thrd, PL330_STATE_STOPPED)
1093 fallthrough;
1094
1095 case PL330_STATE_STOPPED:
1096 return _trigger(thrd);
1097
1098 case PL330_STATE_WFP:
1099 case PL330_STATE_QUEUEBUSY:
1100 case PL330_STATE_ATBARRIER:
1101 case PL330_STATE_UPDTPC:
1102 case PL330_STATE_CACHEMISS:
1103 case PL330_STATE_EXECUTING:
1104 return true;
1105
1106 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1107 default:
1108 return false;
1109 }
1110 }
1111
_ldst_memtomem(unsigned dry_run,u8 buf[],const struct _xfer_spec * pxs,int cyc)1112 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1113 const struct _xfer_spec *pxs, int cyc)
1114 {
1115 int off = 0;
1116 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1117
1118 /* check lock-up free version */
1119 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1120 while (cyc--) {
1121 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1122 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1123 }
1124 } else {
1125 while (cyc--) {
1126 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1127 off += _emit_RMB(dry_run, &buf[off]);
1128 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1129 off += _emit_WMB(dry_run, &buf[off]);
1130 }
1131 }
1132
1133 return off;
1134 }
1135
_emit_load(unsigned int dry_run,u8 buf[],enum pl330_cond cond,enum dma_transfer_direction direction,u8 peri)1136 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1137 enum pl330_cond cond, enum dma_transfer_direction direction,
1138 u8 peri)
1139 {
1140 int off = 0;
1141
1142 switch (direction) {
1143 case DMA_MEM_TO_MEM:
1144 case DMA_MEM_TO_DEV:
1145 off += _emit_LD(dry_run, &buf[off], cond);
1146 break;
1147
1148 case DMA_DEV_TO_MEM:
1149 if (cond == ALWAYS) {
1150 off += _emit_LDP(dry_run, &buf[off], SINGLE,
1151 peri);
1152 off += _emit_LDP(dry_run, &buf[off], BURST,
1153 peri);
1154 } else {
1155 off += _emit_LDP(dry_run, &buf[off], cond,
1156 peri);
1157 }
1158 break;
1159
1160 default:
1161 /* this code should be unreachable */
1162 WARN_ON(1);
1163 break;
1164 }
1165
1166 return off;
1167 }
1168
_emit_store(unsigned int dry_run,u8 buf[],enum pl330_cond cond,enum dma_transfer_direction direction,u8 peri)1169 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1170 enum pl330_cond cond, enum dma_transfer_direction direction,
1171 u8 peri)
1172 {
1173 int off = 0;
1174
1175 switch (direction) {
1176 case DMA_MEM_TO_MEM:
1177 case DMA_DEV_TO_MEM:
1178 off += _emit_ST(dry_run, &buf[off], cond);
1179 break;
1180
1181 case DMA_MEM_TO_DEV:
1182 if (cond == ALWAYS) {
1183 off += _emit_STP(dry_run, &buf[off], SINGLE,
1184 peri);
1185 off += _emit_STP(dry_run, &buf[off], BURST,
1186 peri);
1187 } else {
1188 off += _emit_STP(dry_run, &buf[off], cond,
1189 peri);
1190 }
1191 break;
1192
1193 default:
1194 /* this code should be unreachable */
1195 WARN_ON(1);
1196 break;
1197 }
1198
1199 return off;
1200 }
1201
_ldst_peripheral(struct pl330_dmac * pl330,unsigned dry_run,u8 buf[],const struct _xfer_spec * pxs,int cyc,enum pl330_cond cond)1202 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1203 unsigned dry_run, u8 buf[],
1204 const struct _xfer_spec *pxs, int cyc,
1205 enum pl330_cond cond)
1206 {
1207 int off = 0;
1208
1209 /*
1210 * do FLUSHP at beginning to clear any stale dma requests before the
1211 * first WFP.
1212 */
1213 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1214 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1215 while (cyc--) {
1216 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1217 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1218 pxs->desc->peri);
1219 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1220 pxs->desc->peri);
1221 #ifdef CONFIG_NO_GKI
1222 switch (pxs->desc->rqtype) {
1223 case DMA_DEV_TO_MEM:
1224
1225 if (pxs->desc->dst_interlace_size)
1226 off += _emit_ADDH(dry_run, &buf[off], DST,
1227 pxs->desc->dst_interlace_size);
1228 break;
1229 case DMA_MEM_TO_DEV:
1230 if (pxs->desc->src_interlace_size)
1231 off += _emit_ADDH(dry_run, &buf[off], SRC,
1232 pxs->desc->src_interlace_size);
1233 break;
1234 default:
1235 WARN_ON(1);
1236 break;
1237 }
1238 #endif
1239 }
1240
1241 return off;
1242 }
1243
_bursts(struct pl330_dmac * pl330,unsigned dry_run,u8 buf[],const struct _xfer_spec * pxs,int cyc)1244 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1245 const struct _xfer_spec *pxs, int cyc)
1246 {
1247 int off = 0;
1248 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1249
1250 if (pl330->quirks & PL330_QUIRK_PERIPH_BURST)
1251 cond = BURST;
1252
1253 switch (pxs->desc->rqtype) {
1254 case DMA_MEM_TO_DEV:
1255 case DMA_DEV_TO_MEM:
1256 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1257 cond);
1258 break;
1259
1260 case DMA_MEM_TO_MEM:
1261 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1262 break;
1263
1264 default:
1265 /* this code should be unreachable */
1266 WARN_ON(1);
1267 break;
1268 }
1269
1270 return off;
1271 }
1272
1273 /*
1274 * only the unaligned bursts transfers have the dregs.
1275 * transfer dregs with a reduced size burst to peripheral,
1276 * or a reduced size burst for mem-to-mem.
1277 */
_dregs(struct pl330_dmac * pl330,unsigned int dry_run,u8 buf[],const struct _xfer_spec * pxs,int transfer_length)1278 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1279 const struct _xfer_spec *pxs, int transfer_length)
1280 {
1281 int off = 0;
1282 int dregs_ccr;
1283
1284 if (transfer_length == 0)
1285 return off;
1286
1287 switch (pxs->desc->rqtype) {
1288 case DMA_MEM_TO_DEV:
1289 fallthrough;
1290 case DMA_DEV_TO_MEM:
1291 /*
1292 * dregs_len = (total bytes - BURST_TO_BYTE(bursts, ccr)) /
1293 * BRST_SIZE(ccr)
1294 * the dregs len must be smaller than burst len,
1295 * so, for higher efficiency, we can modify CCR
1296 * to use a reduced size burst len for the dregs.
1297 */
1298 dregs_ccr = pxs->ccr;
1299 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1300 (0xf << CC_DSTBRSTLEN_SHFT));
1301 dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1302 CC_SRCBRSTLEN_SHFT);
1303 dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1304 CC_DSTBRSTLEN_SHFT);
1305 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1306 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, 1,
1307 BURST);
1308 break;
1309
1310 case DMA_MEM_TO_MEM:
1311 dregs_ccr = pxs->ccr;
1312 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1313 (0xf << CC_DSTBRSTLEN_SHFT));
1314 dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1315 CC_SRCBRSTLEN_SHFT);
1316 dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1317 CC_DSTBRSTLEN_SHFT);
1318 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1319 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1320 break;
1321
1322 default:
1323 /* this code should be unreachable */
1324 WARN_ON(1);
1325 break;
1326 }
1327
1328 return off;
1329 }
1330
1331 /* Returns bytes consumed and updates bursts */
_loop(struct pl330_dmac * pl330,unsigned dry_run,u8 buf[],unsigned long * bursts,const struct _xfer_spec * pxs)1332 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1333 unsigned long *bursts, const struct _xfer_spec *pxs)
1334 {
1335 int cyc, cycmax, szlp, szlpend, szbrst, off;
1336 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1337 struct _arg_LPEND lpend;
1338
1339 if (*bursts == 1)
1340 return _bursts(pl330, dry_run, buf, pxs, 1);
1341
1342 /* Max iterations possible in DMALP is 256 */
1343 if (*bursts >= 256*256) {
1344 lcnt1 = 256;
1345 lcnt0 = 256;
1346 cyc = *bursts / lcnt1 / lcnt0;
1347 } else if (*bursts > 256) {
1348 lcnt1 = 256;
1349 lcnt0 = *bursts / lcnt1;
1350 cyc = 1;
1351 } else {
1352 lcnt1 = *bursts;
1353 lcnt0 = 0;
1354 cyc = 1;
1355 }
1356
1357 szlp = _emit_LP(1, buf, 0, 0);
1358 szbrst = _bursts(pl330, 1, buf, pxs, 1);
1359
1360 lpend.cond = ALWAYS;
1361 lpend.forever = false;
1362 lpend.loop = 0;
1363 lpend.bjump = 0;
1364 szlpend = _emit_LPEND(1, buf, &lpend);
1365
1366 if (lcnt0) {
1367 szlp *= 2;
1368 szlpend *= 2;
1369 }
1370
1371 /*
1372 * Max bursts that we can unroll due to limit on the
1373 * size of backward jump that can be encoded in DMALPEND
1374 * which is 8-bits and hence 255
1375 */
1376 cycmax = (255 - (szlp + szlpend)) / szbrst;
1377
1378 cyc = (cycmax < cyc) ? cycmax : cyc;
1379
1380 off = 0;
1381
1382 if (lcnt0) {
1383 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1384 ljmp0 = off;
1385 }
1386
1387 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1388 ljmp1 = off;
1389
1390 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1391
1392 lpend.cond = ALWAYS;
1393 lpend.forever = false;
1394 lpend.loop = 1;
1395 lpend.bjump = off - ljmp1;
1396 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1397
1398 if (lcnt0) {
1399 lpend.cond = ALWAYS;
1400 lpend.forever = false;
1401 lpend.loop = 0;
1402 lpend.bjump = off - ljmp0;
1403 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1404 }
1405
1406 *bursts = lcnt1 * cyc;
1407 if (lcnt0)
1408 *bursts *= lcnt0;
1409
1410 return off;
1411 }
1412
_period(struct pl330_dmac * pl330,unsigned int dry_run,u8 buf[],unsigned long bursts,const struct _xfer_spec * pxs,int ev)1413 static int _period(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1414 unsigned long bursts, const struct _xfer_spec *pxs, int ev)
1415 {
1416 unsigned int lcnt1, ljmp1;
1417 int cyc, off = 0, num_dregs = 0;
1418 struct _arg_LPEND lpend;
1419 struct pl330_xfer *x = &pxs->desc->px;
1420
1421 if (bursts > 256) {
1422 lcnt1 = 256;
1423 cyc = bursts / 256;
1424 } else {
1425 lcnt1 = bursts;
1426 cyc = 1;
1427 }
1428
1429 /* loop1 */
1430 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1431 ljmp1 = off;
1432 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1433 lpend.cond = ALWAYS;
1434 lpend.forever = false;
1435 lpend.loop = 1;
1436 lpend.bjump = off - ljmp1;
1437 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1438
1439 /* remainder */
1440 lcnt1 = bursts - (lcnt1 * cyc);
1441
1442 if (lcnt1) {
1443 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1444 ljmp1 = off;
1445 off += _bursts(pl330, dry_run, &buf[off], pxs, 1);
1446 lpend.cond = ALWAYS;
1447 lpend.forever = false;
1448 lpend.loop = 1;
1449 lpend.bjump = off - ljmp1;
1450 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1451 }
1452
1453 #ifdef CONFIG_NO_GKI
1454 if (!pxs->desc->src_interlace_size &&
1455 !pxs->desc->dst_interlace_size) {
1456 num_dregs = BYTE_MOD_BURST_LEN(x->bytes, pxs->ccr);
1457
1458 if (num_dregs) {
1459 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1460 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1461 }
1462 }
1463 #else
1464 num_dregs = BYTE_MOD_BURST_LEN(x->bytes, pxs->ccr);
1465
1466 if (num_dregs) {
1467 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1468 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1469 }
1470 #endif
1471
1472 off += _emit_SEV(dry_run, &buf[off], ev);
1473
1474 return off;
1475 }
1476
_loop_cyclic(struct pl330_dmac * pl330,unsigned int dry_run,u8 buf[],unsigned long bursts,const struct _xfer_spec * pxs,int ev)1477 static inline int _loop_cyclic(struct pl330_dmac *pl330, unsigned int dry_run,
1478 u8 buf[], unsigned long bursts,
1479 const struct _xfer_spec *pxs, int ev)
1480 {
1481 int off, periods, residue, i;
1482 unsigned int lcnt0, ljmp0, ljmpfe;
1483 struct _arg_LPEND lpend;
1484 struct pl330_xfer *x = &pxs->desc->px;
1485
1486 off = 0;
1487 ljmpfe = off;
1488 lcnt0 = pxs->desc->num_periods;
1489 periods = 1;
1490
1491 while (lcnt0 > 256) {
1492 periods++;
1493 lcnt0 = pxs->desc->num_periods / periods;
1494 }
1495
1496 residue = pxs->desc->num_periods % periods;
1497
1498 /* forever loop */
1499 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1500 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1501
1502 /* loop0 */
1503 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1504 ljmp0 = off;
1505
1506 for (i = 0; i < periods; i++)
1507 off += _period(pl330, dry_run, &buf[off], bursts, pxs, ev);
1508
1509 lpend.cond = ALWAYS;
1510 lpend.forever = false;
1511 lpend.loop = 0;
1512 lpend.bjump = off - ljmp0;
1513 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1514
1515 for (i = 0; i < residue; i++)
1516 off += _period(pl330, dry_run, &buf[off], bursts, pxs, ev);
1517
1518 lpend.cond = ALWAYS;
1519 lpend.forever = true;
1520 lpend.loop = 1;
1521 lpend.bjump = off - ljmpfe;
1522 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1523
1524 return off;
1525 }
1526
_setup_loops(struct pl330_dmac * pl330,unsigned dry_run,u8 buf[],const struct _xfer_spec * pxs)1527 static inline int _setup_loops(struct pl330_dmac *pl330,
1528 unsigned dry_run, u8 buf[],
1529 const struct _xfer_spec *pxs)
1530 {
1531 struct pl330_xfer *x = &pxs->desc->px;
1532 u32 ccr = pxs->ccr;
1533 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1534 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1535 BRST_SIZE(ccr);
1536 int off = 0;
1537
1538 #ifdef CONFIG_NO_GKI
1539 if (pxs->desc->rqtype == DMA_DEV_TO_MEM)
1540 bursts = x->bytes / (BRST_SIZE(ccr) * BRST_LEN(ccr) +
1541 pxs->desc->dst_interlace_size);
1542 else if (pxs->desc->rqtype == DMA_MEM_TO_DEV)
1543 bursts = x->bytes / (BRST_SIZE(ccr) * BRST_LEN(ccr) +
1544 pxs->desc->src_interlace_size);
1545 #endif
1546 while (bursts) {
1547 c = bursts;
1548 off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1549 bursts -= c;
1550 }
1551 #ifdef CONFIG_NO_GKI
1552 if (!pxs->desc->src_interlace_size &&
1553 !pxs->desc->dst_interlace_size)
1554 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1555 #else
1556 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1557 #endif
1558 return off;
1559 }
1560
_setup_xfer(struct pl330_dmac * pl330,unsigned dry_run,u8 buf[],const struct _xfer_spec * pxs)1561 static inline int _setup_xfer(struct pl330_dmac *pl330,
1562 unsigned dry_run, u8 buf[],
1563 const struct _xfer_spec *pxs)
1564 {
1565 struct pl330_xfer *x = &pxs->desc->px;
1566 int off = 0;
1567
1568 /* DMAMOV SAR, x->src_addr */
1569 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1570 /* DMAMOV DAR, x->dst_addr */
1571 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1572
1573 /* Setup Loop(s) */
1574 off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1575
1576 return off;
1577 }
1578
_setup_xfer_cyclic(struct pl330_dmac * pl330,unsigned int dry_run,u8 buf[],const struct _xfer_spec * pxs,int ev)1579 static inline int _setup_xfer_cyclic(struct pl330_dmac *pl330,
1580 unsigned int dry_run, u8 buf[],
1581 const struct _xfer_spec *pxs, int ev)
1582 {
1583 struct pl330_xfer *x = &pxs->desc->px;
1584 u32 ccr = pxs->ccr;
1585 unsigned long bursts = BYTE_TO_BURST(x->bytes, ccr);
1586 int off = 0;
1587
1588 #ifdef CONFIG_NO_GKI
1589 if (pxs->desc->rqtype == DMA_DEV_TO_MEM)
1590 bursts = x->bytes / (BRST_SIZE(ccr) * BRST_LEN(ccr)
1591 + pxs->desc->dst_interlace_size);
1592 else if (pxs->desc->rqtype == DMA_MEM_TO_DEV)
1593 bursts = x->bytes / (BRST_SIZE(ccr) * BRST_LEN(ccr)
1594 + pxs->desc->src_interlace_size);
1595 #endif
1596 /* Setup Loop(s) */
1597 off += _loop_cyclic(pl330, dry_run, &buf[off], bursts, pxs, ev);
1598
1599 return off;
1600 }
1601
1602 /*
1603 * A req is a sequence of one or more xfer units.
1604 * Returns the number of bytes taken to setup the MC for the req.
1605 */
_setup_req(struct pl330_dmac * pl330,unsigned dry_run,struct pl330_thread * thrd,unsigned index,struct _xfer_spec * pxs)1606 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1607 struct pl330_thread *thrd, unsigned index,
1608 struct _xfer_spec *pxs)
1609 {
1610 struct _pl330_req *req = &thrd->req[index];
1611 u8 *buf = req->mc_cpu;
1612 int off = 0;
1613
1614 PL330_DBGMC_START(req->mc_bus);
1615
1616 /* DMAMOV CCR, ccr */
1617 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1618
1619 if (!pxs->desc->cyclic) {
1620 off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1621
1622 /* DMASEV peripheral/event */
1623 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1624 /* DMAEND */
1625 off += _emit_END(dry_run, &buf[off]);
1626 } else {
1627 off += _setup_xfer_cyclic(pl330, dry_run, &buf[off],
1628 pxs, thrd->ev);
1629 }
1630
1631 return off;
1632 }
1633
_prepare_ccr(const struct pl330_reqcfg * rqc)1634 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1635 {
1636 u32 ccr = 0;
1637
1638 if (rqc->src_inc)
1639 ccr |= CC_SRCINC;
1640
1641 if (rqc->dst_inc)
1642 ccr |= CC_DSTINC;
1643
1644 /* We set same protection levels for Src and DST for now */
1645 if (rqc->privileged)
1646 ccr |= CC_SRCPRI | CC_DSTPRI;
1647 if (rqc->nonsecure)
1648 ccr |= CC_SRCNS | CC_DSTNS;
1649 if (rqc->insnaccess)
1650 ccr |= CC_SRCIA | CC_DSTIA;
1651
1652 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1653 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1654
1655 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1656 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1657
1658 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1659 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1660
1661 ccr |= (rqc->swap << CC_SWAP_SHFT);
1662
1663 return ccr;
1664 }
1665
1666 /*
1667 * Submit a list of xfers after which the client wants notification.
1668 * Client is not notified after each xfer unit, just once after all
1669 * xfer units are done or some error occurs.
1670 */
pl330_submit_req(struct pl330_thread * thrd,struct dma_pl330_desc * desc)1671 static int pl330_submit_req(struct pl330_thread *thrd,
1672 struct dma_pl330_desc *desc)
1673 {
1674 struct pl330_dmac *pl330 = thrd->dmac;
1675 struct _xfer_spec xs;
1676 unsigned long flags;
1677 unsigned idx;
1678 u32 ccr;
1679 int ret = 0;
1680
1681 switch (desc->rqtype) {
1682 case DMA_MEM_TO_DEV:
1683 break;
1684
1685 case DMA_DEV_TO_MEM:
1686 break;
1687
1688 case DMA_MEM_TO_MEM:
1689 break;
1690
1691 default:
1692 return -ENOTSUPP;
1693 }
1694
1695 if (pl330->state == DYING
1696 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1697 dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1698 __func__, __LINE__);
1699 return -EAGAIN;
1700 }
1701
1702 /* If request for non-existing peripheral */
1703 if (desc->rqtype != DMA_MEM_TO_MEM &&
1704 desc->peri >= pl330->pcfg.num_peri) {
1705 dev_info(thrd->dmac->ddma.dev,
1706 "%s:%d Invalid peripheral(%u)!\n",
1707 __func__, __LINE__, desc->peri);
1708 return -EINVAL;
1709 }
1710
1711 spin_lock_irqsave(&pl330->lock, flags);
1712
1713 if (_queue_full(thrd)) {
1714 ret = -EAGAIN;
1715 goto xfer_exit;
1716 }
1717
1718 /* Prefer Secure Channel */
1719 if (!_manager_ns(thrd))
1720 desc->rqcfg.nonsecure = 0;
1721 else
1722 desc->rqcfg.nonsecure = 1;
1723
1724 ccr = _prepare_ccr(&desc->rqcfg);
1725
1726 idx = thrd->req[0].desc == NULL ? 0 : 1;
1727
1728 xs.ccr = ccr;
1729 xs.desc = desc;
1730
1731 /* First dry run to check if req is acceptable */
1732 ret = _setup_req(pl330, 1, thrd, idx, &xs);
1733 if (ret < 0)
1734 goto xfer_exit;
1735
1736 if (ret > pl330->mcbufsz / 2) {
1737 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1738 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1739 ret = -ENOMEM;
1740 goto xfer_exit;
1741 }
1742
1743 /* Hook the request */
1744 thrd->lstenq = idx;
1745 thrd->req[idx].desc = desc;
1746 _setup_req(pl330, 0, thrd, idx, &xs);
1747
1748 ret = 0;
1749
1750 xfer_exit:
1751 spin_unlock_irqrestore(&pl330->lock, flags);
1752
1753 return ret;
1754 }
1755
dma_pl330_rqcb(struct dma_pl330_desc * desc,enum pl330_op_err err)1756 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1757 {
1758 struct dma_pl330_chan *pch;
1759 unsigned long flags;
1760
1761 if (!desc)
1762 return;
1763
1764 pch = desc->pchan;
1765
1766 /* If desc aborted */
1767 if (!pch)
1768 return;
1769
1770 spin_lock_irqsave(&pch->lock, flags);
1771
1772 desc->status = DONE;
1773
1774 spin_unlock_irqrestore(&pch->lock, flags);
1775
1776 tasklet_schedule(&pch->task);
1777 }
1778
pl330_dotask(struct tasklet_struct * t)1779 static void pl330_dotask(struct tasklet_struct *t)
1780 {
1781 struct pl330_dmac *pl330 = from_tasklet(pl330, t, tasks);
1782 unsigned long flags;
1783 int i;
1784
1785 spin_lock_irqsave(&pl330->lock, flags);
1786
1787 /* The DMAC itself gone nuts */
1788 if (pl330->dmac_tbd.reset_dmac) {
1789 pl330->state = DYING;
1790 /* Reset the manager too */
1791 pl330->dmac_tbd.reset_mngr = true;
1792 /* Clear the reset flag */
1793 pl330->dmac_tbd.reset_dmac = false;
1794 }
1795
1796 if (pl330->dmac_tbd.reset_mngr) {
1797 _stop(pl330->manager);
1798 /* Reset all channels */
1799 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1800 /* Clear the reset flag */
1801 pl330->dmac_tbd.reset_mngr = false;
1802 }
1803
1804 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1805
1806 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1807 struct pl330_thread *thrd = &pl330->channels[i];
1808 void __iomem *regs = pl330->base;
1809 enum pl330_op_err err;
1810
1811 _stop(thrd);
1812
1813 if (readl(regs + FSC) & (1 << thrd->id))
1814 err = PL330_ERR_FAIL;
1815 else
1816 err = PL330_ERR_ABORT;
1817
1818 spin_unlock_irqrestore(&pl330->lock, flags);
1819 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1820 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1821 spin_lock_irqsave(&pl330->lock, flags);
1822
1823 thrd->req[0].desc = NULL;
1824 thrd->req[1].desc = NULL;
1825 thrd->req_running = -1;
1826
1827 /* Clear the reset flag */
1828 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1829 }
1830 }
1831
1832 spin_unlock_irqrestore(&pl330->lock, flags);
1833
1834 return;
1835 }
1836
1837 /* Returns 1 if state was updated, 0 otherwise */
pl330_update(struct pl330_dmac * pl330)1838 static int pl330_update(struct pl330_dmac *pl330)
1839 {
1840 struct dma_pl330_desc *descdone;
1841 unsigned long flags;
1842 void __iomem *regs;
1843 u32 val;
1844 int id, ev, ret = 0;
1845
1846 regs = pl330->base;
1847
1848 spin_lock_irqsave(&pl330->lock, flags);
1849
1850 val = readl(regs + FSM) & 0x1;
1851 if (val)
1852 pl330->dmac_tbd.reset_mngr = true;
1853 else
1854 pl330->dmac_tbd.reset_mngr = false;
1855
1856 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1857 pl330->dmac_tbd.reset_chan |= val;
1858 if (val) {
1859 int i = 0;
1860 while (i < pl330->pcfg.num_chan) {
1861 if (val & (1 << i)) {
1862 dev_info(pl330->ddma.dev,
1863 "Reset Channel-%d\t CS-%x FTC-%x\n",
1864 i, readl(regs + CS(i)),
1865 readl(regs + FTC(i)));
1866 _stop(&pl330->channels[i]);
1867 }
1868 i++;
1869 }
1870 }
1871
1872 /* Check which event happened i.e, thread notified */
1873 val = readl(regs + ES);
1874 if (pl330->pcfg.num_events < 32
1875 && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1876 pl330->dmac_tbd.reset_dmac = true;
1877 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1878 __LINE__);
1879 ret = 1;
1880 goto updt_exit;
1881 }
1882
1883 for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1884 if (val & (1 << ev)) { /* Event occurred */
1885 struct pl330_thread *thrd;
1886 u32 inten = readl(regs + INTEN);
1887 int active;
1888
1889 /* Clear the event */
1890 if (inten & (1 << ev))
1891 writel(1 << ev, regs + INTCLR);
1892
1893 ret = 1;
1894
1895 id = pl330->events[ev];
1896
1897 thrd = &pl330->channels[id];
1898
1899 active = thrd->req_running;
1900 if (active == -1) /* Aborted */
1901 continue;
1902
1903 /* Detach the req */
1904 descdone = thrd->req[active].desc;
1905 if (descdone) {
1906 if (!descdone->cyclic) {
1907 thrd->req[active].desc = NULL;
1908 thrd->req_running = -1;
1909 /* Get going again ASAP */
1910 _start(thrd);
1911 }
1912
1913 /* For now, just make a list of callbacks to be done */
1914 list_add_tail(&descdone->rqd, &pl330->req_done);
1915 }
1916 }
1917 }
1918
1919 /* Now that we are in no hurry, do the callbacks */
1920 while (!list_empty(&pl330->req_done)) {
1921 descdone = list_first_entry(&pl330->req_done,
1922 struct dma_pl330_desc, rqd);
1923 list_del(&descdone->rqd);
1924 spin_unlock_irqrestore(&pl330->lock, flags);
1925 dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1926 spin_lock_irqsave(&pl330->lock, flags);
1927 }
1928
1929 updt_exit:
1930 spin_unlock_irqrestore(&pl330->lock, flags);
1931
1932 if (pl330->dmac_tbd.reset_dmac
1933 || pl330->dmac_tbd.reset_mngr
1934 || pl330->dmac_tbd.reset_chan) {
1935 ret = 1;
1936 tasklet_schedule(&pl330->tasks);
1937 }
1938
1939 return ret;
1940 }
1941
1942 /* Reserve an event */
_alloc_event(struct pl330_thread * thrd)1943 static inline int _alloc_event(struct pl330_thread *thrd)
1944 {
1945 struct pl330_dmac *pl330 = thrd->dmac;
1946 int ev;
1947
1948 for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1949 if (pl330->events[ev] == -1) {
1950 pl330->events[ev] = thrd->id;
1951 return ev;
1952 }
1953
1954 return -1;
1955 }
1956
_chan_ns(const struct pl330_dmac * pl330,int i)1957 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1958 {
1959 return pl330->pcfg.irq_ns & (1 << i);
1960 }
1961
1962 /* Upon success, returns IdentityToken for the
1963 * allocated channel, NULL otherwise.
1964 */
pl330_request_channel(struct pl330_dmac * pl330)1965 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1966 {
1967 struct pl330_thread *thrd = NULL;
1968 int chans, i;
1969
1970 if (pl330->state == DYING)
1971 return NULL;
1972
1973 chans = pl330->pcfg.num_chan;
1974
1975 for (i = 0; i < chans; i++) {
1976 thrd = &pl330->channels[i];
1977 if ((thrd->free) && (!_manager_ns(thrd) ||
1978 _chan_ns(pl330, i))) {
1979 thrd->ev = _alloc_event(thrd);
1980 if (thrd->ev >= 0) {
1981 thrd->free = false;
1982 thrd->lstenq = 1;
1983 thrd->req[0].desc = NULL;
1984 thrd->req[1].desc = NULL;
1985 thrd->req_running = -1;
1986 break;
1987 }
1988 }
1989 thrd = NULL;
1990 }
1991
1992 return thrd;
1993 }
1994
1995 /* Release an event */
_free_event(struct pl330_thread * thrd,int ev)1996 static inline void _free_event(struct pl330_thread *thrd, int ev)
1997 {
1998 struct pl330_dmac *pl330 = thrd->dmac;
1999
2000 /* If the event is valid and was held by the thread */
2001 if (ev >= 0 && ev < pl330->pcfg.num_events
2002 && pl330->events[ev] == thrd->id)
2003 pl330->events[ev] = -1;
2004 }
2005
pl330_release_channel(struct pl330_thread * thrd)2006 static void pl330_release_channel(struct pl330_thread *thrd)
2007 {
2008 if (!thrd || thrd->free)
2009 return;
2010
2011 _stop(thrd);
2012
2013 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
2014 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
2015
2016 _free_event(thrd, thrd->ev);
2017 thrd->free = true;
2018 }
2019
2020 /* Initialize the structure for PL330 configuration, that can be used
2021 * by the client driver the make best use of the DMAC
2022 */
read_dmac_config(struct pl330_dmac * pl330)2023 static void read_dmac_config(struct pl330_dmac *pl330)
2024 {
2025 void __iomem *regs = pl330->base;
2026 u32 val;
2027
2028 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
2029 val &= CRD_DATA_WIDTH_MASK;
2030 pl330->pcfg.data_bus_width = 8 * (1 << val);
2031
2032 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
2033 val &= CRD_DATA_BUFF_MASK;
2034 pl330->pcfg.data_buf_dep = val + 1;
2035
2036 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
2037 val &= CR0_NUM_CHANS_MASK;
2038 val += 1;
2039 pl330->pcfg.num_chan = val;
2040
2041 val = readl(regs + CR0);
2042 if (val & CR0_PERIPH_REQ_SET) {
2043 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
2044 val += 1;
2045 pl330->pcfg.num_peri = val;
2046 pl330->pcfg.peri_ns = readl(regs + CR4);
2047 } else {
2048 pl330->pcfg.num_peri = 0;
2049 }
2050
2051 val = readl(regs + CR0);
2052 if (val & CR0_BOOT_MAN_NS)
2053 pl330->pcfg.mode |= DMAC_MODE_NS;
2054 else
2055 pl330->pcfg.mode &= ~DMAC_MODE_NS;
2056
2057 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
2058 val &= CR0_NUM_EVENTS_MASK;
2059 val += 1;
2060 pl330->pcfg.num_events = val;
2061
2062 pl330->pcfg.irq_ns = readl(regs + CR3);
2063 }
2064
_reset_thread(struct pl330_thread * thrd)2065 static inline void _reset_thread(struct pl330_thread *thrd)
2066 {
2067 struct pl330_dmac *pl330 = thrd->dmac;
2068
2069 thrd->req[0].mc_cpu = pl330->mcode_cpu
2070 + (thrd->id * pl330->mcbufsz);
2071 thrd->req[0].mc_bus = pl330->mcode_bus
2072 + (thrd->id * pl330->mcbufsz);
2073 thrd->req[0].desc = NULL;
2074
2075 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2076 + pl330->mcbufsz / 2;
2077 thrd->req[1].mc_bus = thrd->req[0].mc_bus
2078 + pl330->mcbufsz / 2;
2079 thrd->req[1].desc = NULL;
2080
2081 thrd->req_running = -1;
2082 }
2083
dmac_alloc_threads(struct pl330_dmac * pl330)2084 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2085 {
2086 int chans = pl330->pcfg.num_chan;
2087 struct pl330_thread *thrd;
2088 int i;
2089
2090 /* Allocate 1 Manager and 'chans' Channel threads */
2091 pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
2092 GFP_KERNEL);
2093 if (!pl330->channels)
2094 return -ENOMEM;
2095
2096 /* Init Channel threads */
2097 for (i = 0; i < chans; i++) {
2098 thrd = &pl330->channels[i];
2099 thrd->id = i;
2100 thrd->dmac = pl330;
2101 _reset_thread(thrd);
2102 thrd->free = true;
2103 }
2104
2105 /* MANAGER is indexed at the end */
2106 thrd = &pl330->channels[chans];
2107 thrd->id = chans;
2108 thrd->dmac = pl330;
2109 thrd->free = false;
2110 pl330->manager = thrd;
2111
2112 return 0;
2113 }
2114
dmac_alloc_resources(struct pl330_dmac * pl330)2115 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2116 {
2117 int chans = pl330->pcfg.num_chan;
2118 int ret;
2119
2120 /*
2121 * Alloc MicroCode buffer for 'chans' Channel threads.
2122 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2123 */
2124 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
2125 chans * pl330->mcbufsz,
2126 &pl330->mcode_bus, GFP_KERNEL,
2127 DMA_ATTR_PRIVILEGED);
2128 if (!pl330->mcode_cpu) {
2129 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
2130 __func__, __LINE__);
2131 return -ENOMEM;
2132 }
2133
2134 ret = dmac_alloc_threads(pl330);
2135 if (ret) {
2136 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
2137 __func__, __LINE__);
2138 dma_free_attrs(pl330->ddma.dev,
2139 chans * pl330->mcbufsz,
2140 pl330->mcode_cpu, pl330->mcode_bus,
2141 DMA_ATTR_PRIVILEGED);
2142 return ret;
2143 }
2144
2145 return 0;
2146 }
2147
pl330_add(struct pl330_dmac * pl330)2148 static int pl330_add(struct pl330_dmac *pl330)
2149 {
2150 int i, ret;
2151
2152 /* Check if we can handle this DMAC */
2153 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
2154 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
2155 pl330->pcfg.periph_id);
2156 return -EINVAL;
2157 }
2158
2159 /* Read the configuration of the DMAC */
2160 read_dmac_config(pl330);
2161
2162 if (pl330->pcfg.num_events == 0) {
2163 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
2164 __func__, __LINE__);
2165 return -EINVAL;
2166 }
2167
2168 spin_lock_init(&pl330->lock);
2169
2170 INIT_LIST_HEAD(&pl330->req_done);
2171
2172 /* Use default MC buffer size if not provided */
2173 if (!pl330->mcbufsz)
2174 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2175
2176 /* Mark all events as free */
2177 for (i = 0; i < pl330->pcfg.num_events; i++)
2178 pl330->events[i] = -1;
2179
2180 /* Allocate resources needed by the DMAC */
2181 ret = dmac_alloc_resources(pl330);
2182 if (ret) {
2183 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
2184 return ret;
2185 }
2186
2187 tasklet_setup(&pl330->tasks, pl330_dotask);
2188
2189 pl330->state = INIT;
2190
2191 return 0;
2192 }
2193
dmac_free_threads(struct pl330_dmac * pl330)2194 static int dmac_free_threads(struct pl330_dmac *pl330)
2195 {
2196 struct pl330_thread *thrd;
2197 int i;
2198
2199 /* Release Channel threads */
2200 for (i = 0; i < pl330->pcfg.num_chan; i++) {
2201 thrd = &pl330->channels[i];
2202 pl330_release_channel(thrd);
2203 }
2204
2205 /* Free memory */
2206 kfree(pl330->channels);
2207
2208 return 0;
2209 }
2210
pl330_del(struct pl330_dmac * pl330)2211 static void pl330_del(struct pl330_dmac *pl330)
2212 {
2213 pl330->state = UNINIT;
2214
2215 tasklet_kill(&pl330->tasks);
2216
2217 /* Free DMAC resources */
2218 dmac_free_threads(pl330);
2219
2220 dma_free_attrs(pl330->ddma.dev,
2221 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2222 pl330->mcode_bus, DMA_ATTR_PRIVILEGED);
2223 }
2224
2225 /* forward declaration */
2226 static struct amba_driver pl330_driver;
2227
2228 static inline struct dma_pl330_chan *
to_pchan(struct dma_chan * ch)2229 to_pchan(struct dma_chan *ch)
2230 {
2231 if (!ch)
2232 return NULL;
2233
2234 return container_of(ch, struct dma_pl330_chan, chan);
2235 }
2236
2237 static inline struct dma_pl330_desc *
to_desc(struct dma_async_tx_descriptor * tx)2238 to_desc(struct dma_async_tx_descriptor *tx)
2239 {
2240 return container_of(tx, struct dma_pl330_desc, txd);
2241 }
2242
fill_queue(struct dma_pl330_chan * pch)2243 static inline void fill_queue(struct dma_pl330_chan *pch)
2244 {
2245 struct dma_pl330_desc *desc;
2246 int ret;
2247
2248 list_for_each_entry(desc, &pch->work_list, node) {
2249
2250 /* If already submitted */
2251 if (desc->status == BUSY)
2252 continue;
2253
2254 ret = pl330_submit_req(pch->thread, desc);
2255 if (!ret) {
2256 desc->status = BUSY;
2257 } else if (ret == -EAGAIN) {
2258 /* QFull or DMAC Dying */
2259 break;
2260 } else {
2261 /* Unacceptable request */
2262 desc->status = DONE;
2263 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2264 __func__, __LINE__, desc->txd.cookie);
2265 tasklet_schedule(&pch->task);
2266 }
2267 }
2268 }
2269
pl330_tasklet(struct tasklet_struct * t)2270 static void pl330_tasklet(struct tasklet_struct *t)
2271 {
2272 struct dma_pl330_chan *pch = from_tasklet(pch, t, task);
2273 struct dma_pl330_desc *desc, *_dt;
2274 unsigned long flags;
2275 bool power_down = false;
2276
2277 spin_lock_irqsave(&pch->lock, flags);
2278
2279 /* Pick up ripe tomatoes */
2280 list_for_each_entry_safe(desc, _dt, &pch->work_list, node) {
2281 if (desc->status == DONE) {
2282 if (!desc->cyclic) {
2283 dma_cookie_complete(&desc->txd);
2284 list_move_tail(&desc->node, &pch->completed_list);
2285 } else {
2286 struct dmaengine_desc_callback cb;
2287
2288 desc->status = BUSY;
2289 dmaengine_desc_get_callback(&desc->txd, &cb);
2290
2291 if (dmaengine_desc_callback_valid(&cb)) {
2292 spin_unlock_irqrestore(&pch->lock, flags);
2293 dmaengine_desc_callback_invoke(&cb, NULL);
2294 spin_lock_irqsave(&pch->lock, flags);
2295 }
2296 }
2297 }
2298 }
2299
2300 /* Try to submit a req imm. next to the last completed cookie */
2301 fill_queue(pch);
2302
2303 if (list_empty(&pch->work_list)) {
2304 spin_lock(&pch->thread->dmac->lock);
2305 _stop(pch->thread);
2306 spin_unlock(&pch->thread->dmac->lock);
2307 power_down = pch->active;
2308 pch->active = false;
2309 } else {
2310 /* Make sure the PL330 Channel thread is active */
2311 spin_lock(&pch->thread->dmac->lock);
2312 _start(pch->thread);
2313 spin_unlock(&pch->thread->dmac->lock);
2314 }
2315
2316 while (!list_empty(&pch->completed_list)) {
2317 struct dmaengine_desc_callback cb;
2318
2319 desc = list_first_entry(&pch->completed_list,
2320 struct dma_pl330_desc, node);
2321
2322 dmaengine_desc_get_callback(&desc->txd, &cb);
2323
2324 desc->status = FREE;
2325 list_move_tail(&desc->node, &pch->dmac->desc_pool);
2326
2327 dma_descriptor_unmap(&desc->txd);
2328
2329 if (dmaengine_desc_callback_valid(&cb)) {
2330 spin_unlock_irqrestore(&pch->lock, flags);
2331 dmaengine_desc_callback_invoke(&cb, NULL);
2332 spin_lock_irqsave(&pch->lock, flags);
2333 }
2334 }
2335 spin_unlock_irqrestore(&pch->lock, flags);
2336
2337 /* If work list empty, power down */
2338 if (power_down) {
2339 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2340 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2341 }
2342 }
2343
of_dma_pl330_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2344 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2345 struct of_dma *ofdma)
2346 {
2347 int count = dma_spec->args_count;
2348 struct pl330_dmac *pl330 = ofdma->of_dma_data;
2349 unsigned int chan_id;
2350
2351 if (!pl330)
2352 return NULL;
2353
2354 if (count != 1)
2355 return NULL;
2356
2357 chan_id = dma_spec->args[0];
2358 if (chan_id >= pl330->num_peripherals)
2359 return NULL;
2360
2361 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2362 }
2363
pl330_alloc_chan_resources(struct dma_chan * chan)2364 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2365 {
2366 struct dma_pl330_chan *pch = to_pchan(chan);
2367 struct pl330_dmac *pl330 = pch->dmac;
2368 unsigned long flags;
2369
2370 spin_lock_irqsave(&pl330->lock, flags);
2371
2372 dma_cookie_init(chan);
2373
2374 pch->thread = pl330_request_channel(pl330);
2375 if (!pch->thread) {
2376 spin_unlock_irqrestore(&pl330->lock, flags);
2377 return -ENOMEM;
2378 }
2379
2380 tasklet_setup(&pch->task, pl330_tasklet);
2381
2382 spin_unlock_irqrestore(&pl330->lock, flags);
2383
2384 return 1;
2385 }
2386
2387 /*
2388 * We need the data direction between the DMAC (the dma-mapping "device") and
2389 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2390 */
2391 static enum dma_data_direction
pl330_dma_slave_map_dir(enum dma_transfer_direction dir)2392 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2393 {
2394 switch (dir) {
2395 case DMA_MEM_TO_DEV:
2396 return DMA_FROM_DEVICE;
2397 case DMA_DEV_TO_MEM:
2398 return DMA_TO_DEVICE;
2399 case DMA_DEV_TO_DEV:
2400 return DMA_BIDIRECTIONAL;
2401 default:
2402 return DMA_NONE;
2403 }
2404 }
2405
pl330_unprep_slave_fifo(struct dma_pl330_chan * pch)2406 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2407 {
2408 if (pch->dir != DMA_NONE)
2409 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2410 1 << pch->burst_sz, pch->dir, 0);
2411 pch->dir = DMA_NONE;
2412 }
2413
2414
pl330_prep_slave_fifo(struct dma_pl330_chan * pch,enum dma_transfer_direction dir)2415 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2416 enum dma_transfer_direction dir)
2417 {
2418 struct device *dev = pch->chan.device->dev;
2419 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2420
2421 /* Already mapped for this config? */
2422 if (pch->dir == dma_dir)
2423 return true;
2424
2425 pl330_unprep_slave_fifo(pch);
2426 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2427 1 << pch->burst_sz, dma_dir, 0);
2428 if (dma_mapping_error(dev, pch->fifo_dma))
2429 return false;
2430
2431 pch->dir = dma_dir;
2432 return true;
2433 }
2434
fixup_burst_len(int max_burst_len,int quirks)2435 static int fixup_burst_len(int max_burst_len, int quirks)
2436 {
2437 if (max_burst_len > PL330_MAX_BURST)
2438 return PL330_MAX_BURST;
2439 else if (max_burst_len < 1)
2440 return 1;
2441 else
2442 return max_burst_len;
2443 }
2444
pl330_config_write(struct dma_chan * chan,struct dma_slave_config * slave_config,enum dma_transfer_direction direction)2445 static int pl330_config_write(struct dma_chan *chan,
2446 struct dma_slave_config *slave_config,
2447 enum dma_transfer_direction direction)
2448 {
2449 struct dma_pl330_chan *pch = to_pchan(chan);
2450
2451 pl330_unprep_slave_fifo(pch);
2452 if (direction == DMA_MEM_TO_DEV) {
2453 if (slave_config->dst_addr)
2454 pch->fifo_addr = slave_config->dst_addr;
2455 if (slave_config->dst_addr_width)
2456 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2457 #ifdef CONFIG_NO_GKI
2458 if (slave_config->src_interlace_size)
2459 pch->slave_config.src_interlace_size = slave_config->src_interlace_size;
2460 #endif
2461 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2462 pch->dmac->quirks);
2463 } else if (direction == DMA_DEV_TO_MEM) {
2464 if (slave_config->src_addr)
2465 pch->fifo_addr = slave_config->src_addr;
2466 if (slave_config->src_addr_width)
2467 pch->burst_sz = __ffs(slave_config->src_addr_width);
2468 #ifdef CONFIG_NO_GKI
2469 if (slave_config->dst_interlace_size)
2470 pch->slave_config.dst_interlace_size = slave_config->dst_interlace_size;
2471 #endif
2472 pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2473 pch->dmac->quirks);
2474 }
2475
2476 return 0;
2477 }
2478
pl330_config(struct dma_chan * chan,struct dma_slave_config * slave_config)2479 static int pl330_config(struct dma_chan *chan,
2480 struct dma_slave_config *slave_config)
2481 {
2482 struct dma_pl330_chan *pch = to_pchan(chan);
2483
2484 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2485
2486 return 0;
2487 }
2488
pl330_terminate_all(struct dma_chan * chan)2489 static int pl330_terminate_all(struct dma_chan *chan)
2490 {
2491 struct dma_pl330_chan *pch = to_pchan(chan);
2492 struct dma_pl330_desc *desc;
2493 unsigned long flags;
2494 struct pl330_dmac *pl330 = pch->dmac;
2495 bool power_down = false;
2496
2497 pm_runtime_get_sync(pl330->ddma.dev);
2498 spin_lock_irqsave(&pch->lock, flags);
2499
2500 spin_lock(&pl330->lock);
2501 _stop(pch->thread);
2502 pch->thread->req[0].desc = NULL;
2503 pch->thread->req[1].desc = NULL;
2504 pch->thread->req_running = -1;
2505 spin_unlock(&pl330->lock);
2506
2507 power_down = pch->active;
2508 pch->active = false;
2509
2510 /* Mark all desc done */
2511 list_for_each_entry(desc, &pch->submitted_list, node) {
2512 desc->status = FREE;
2513 dma_cookie_complete(&desc->txd);
2514 }
2515
2516 list_for_each_entry(desc, &pch->work_list , node) {
2517 desc->status = FREE;
2518 dma_cookie_complete(&desc->txd);
2519 }
2520
2521 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2522 list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2523 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2524 spin_unlock_irqrestore(&pch->lock, flags);
2525 pm_runtime_mark_last_busy(pl330->ddma.dev);
2526 if (power_down)
2527 pm_runtime_put_autosuspend(pl330->ddma.dev);
2528 pm_runtime_put_autosuspend(pl330->ddma.dev);
2529
2530 return 0;
2531 }
2532
2533 /*
2534 * We don't support DMA_RESUME command because of hardware
2535 * limitations, so after pausing the channel we cannot restore
2536 * it to active state. We have to terminate channel and setup
2537 * DMA transfer again. This pause feature was implemented to
2538 * allow safely read residue before channel termination.
2539 */
pl330_pause(struct dma_chan * chan)2540 static int pl330_pause(struct dma_chan *chan)
2541 {
2542 struct dma_pl330_chan *pch = to_pchan(chan);
2543 struct pl330_dmac *pl330 = pch->dmac;
2544 unsigned long flags;
2545
2546 pm_runtime_get_sync(pl330->ddma.dev);
2547 spin_lock_irqsave(&pch->lock, flags);
2548
2549 spin_lock(&pl330->lock);
2550 _stop(pch->thread);
2551 spin_unlock(&pl330->lock);
2552
2553 spin_unlock_irqrestore(&pch->lock, flags);
2554 pm_runtime_mark_last_busy(pl330->ddma.dev);
2555 pm_runtime_put_autosuspend(pl330->ddma.dev);
2556
2557 return 0;
2558 }
2559
pl330_free_chan_resources(struct dma_chan * chan)2560 static void pl330_free_chan_resources(struct dma_chan *chan)
2561 {
2562 struct dma_pl330_chan *pch = to_pchan(chan);
2563 struct pl330_dmac *pl330 = pch->dmac;
2564 unsigned long flags;
2565
2566 tasklet_kill(&pch->task);
2567
2568 pm_runtime_get_sync(pch->dmac->ddma.dev);
2569 spin_lock_irqsave(&pl330->lock, flags);
2570
2571 pl330_release_channel(pch->thread);
2572 pch->thread = NULL;
2573
2574 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2575
2576 spin_unlock_irqrestore(&pl330->lock, flags);
2577 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2578 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2579 pl330_unprep_slave_fifo(pch);
2580 }
2581
pl330_get_current_xferred_count(struct dma_pl330_chan * pch,struct dma_pl330_desc * desc)2582 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2583 struct dma_pl330_desc *desc)
2584 {
2585 struct pl330_thread *thrd = pch->thread;
2586 struct pl330_dmac *pl330 = pch->dmac;
2587 void __iomem *regs = thrd->dmac->base;
2588 u32 val, addr;
2589
2590 pm_runtime_get_sync(pl330->ddma.dev);
2591 val = addr = 0;
2592 if (desc->rqcfg.src_inc) {
2593 val = readl(regs + SA(thrd->id));
2594 addr = desc->px.src_addr;
2595 } else {
2596 val = readl(regs + DA(thrd->id));
2597 addr = desc->px.dst_addr;
2598 }
2599 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2600 pm_runtime_put_autosuspend(pl330->ddma.dev);
2601
2602 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2603 if (!val)
2604 return 0;
2605
2606 return val - addr;
2607 }
2608
2609 static enum dma_status
pl330_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)2610 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2611 struct dma_tx_state *txstate)
2612 {
2613 enum dma_status ret;
2614 unsigned long flags;
2615 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2616 struct dma_pl330_chan *pch = to_pchan(chan);
2617 unsigned int transferred, residual = 0;
2618
2619 ret = dma_cookie_status(chan, cookie, txstate);
2620
2621 if (!txstate)
2622 return ret;
2623
2624 if (ret == DMA_COMPLETE)
2625 goto out;
2626
2627 spin_lock_irqsave(&pch->lock, flags);
2628 spin_lock(&pch->thread->dmac->lock);
2629
2630 if (pch->thread->req_running != -1)
2631 running = pch->thread->req[pch->thread->req_running].desc;
2632
2633 last_enq = pch->thread->req[pch->thread->lstenq].desc;
2634
2635 /* Check in pending list */
2636 list_for_each_entry(desc, &pch->work_list, node) {
2637 if (desc->status == DONE && !desc->cyclic)
2638 transferred = desc->bytes_requested;
2639 else if (running && desc == running)
2640 transferred =
2641 pl330_get_current_xferred_count(pch, desc);
2642 else if (desc->status == BUSY)
2643 /*
2644 * Busy but not running means either just enqueued,
2645 * or finished and not yet marked done
2646 */
2647 if (desc == last_enq)
2648 transferred = 0;
2649 else
2650 transferred = desc->bytes_requested;
2651 else
2652 transferred = 0;
2653 residual += desc->bytes_requested - transferred;
2654 if (desc->txd.cookie == cookie) {
2655 switch (desc->status) {
2656 case DONE:
2657 ret = DMA_COMPLETE;
2658 break;
2659 case PREP:
2660 case BUSY:
2661 ret = DMA_IN_PROGRESS;
2662 break;
2663 default:
2664 WARN_ON(1);
2665 }
2666 break;
2667 }
2668 if (desc->last)
2669 residual = 0;
2670 }
2671 spin_unlock(&pch->thread->dmac->lock);
2672 spin_unlock_irqrestore(&pch->lock, flags);
2673
2674 out:
2675 dma_set_residue(txstate, residual);
2676
2677 return ret;
2678 }
2679
pl330_issue_pending(struct dma_chan * chan)2680 static void pl330_issue_pending(struct dma_chan *chan)
2681 {
2682 struct dma_pl330_chan *pch = to_pchan(chan);
2683 unsigned long flags;
2684
2685 spin_lock_irqsave(&pch->lock, flags);
2686 if (list_empty(&pch->work_list)) {
2687 /*
2688 * Warn on nothing pending. Empty submitted_list may
2689 * break our pm_runtime usage counter as it is
2690 * updated on work_list emptiness status.
2691 */
2692 WARN_ON(list_empty(&pch->submitted_list));
2693 pch->active = true;
2694 pm_runtime_get_sync(pch->dmac->ddma.dev);
2695 }
2696 list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2697 spin_unlock_irqrestore(&pch->lock, flags);
2698
2699 pl330_tasklet(&pch->task);
2700 }
2701
2702 /*
2703 * We returned the last one of the circular list of descriptor(s)
2704 * from prep_xxx, so the argument to submit corresponds to the last
2705 * descriptor of the list.
2706 */
pl330_tx_submit(struct dma_async_tx_descriptor * tx)2707 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2708 {
2709 struct dma_pl330_desc *desc, *last = to_desc(tx);
2710 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2711 dma_cookie_t cookie;
2712 unsigned long flags;
2713
2714 spin_lock_irqsave(&pch->lock, flags);
2715
2716 /* Assign cookies to all nodes */
2717 while (!list_empty(&last->node)) {
2718 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2719
2720 desc->last = false;
2721
2722 dma_cookie_assign(&desc->txd);
2723
2724 list_move_tail(&desc->node, &pch->submitted_list);
2725 }
2726
2727 last->last = true;
2728 cookie = dma_cookie_assign(&last->txd);
2729 list_add_tail(&last->node, &pch->submitted_list);
2730 spin_unlock_irqrestore(&pch->lock, flags);
2731
2732 return cookie;
2733 }
2734
_init_desc(struct dma_pl330_desc * desc)2735 static inline void _init_desc(struct dma_pl330_desc *desc)
2736 {
2737 desc->rqcfg.swap = SWAP_NO;
2738 desc->rqcfg.scctl = CCTRL0;
2739 desc->rqcfg.dcctl = CCTRL0;
2740 desc->txd.tx_submit = pl330_tx_submit;
2741
2742 INIT_LIST_HEAD(&desc->node);
2743 }
2744
2745 /* Returns the number of descriptors added to the DMAC pool */
add_desc(struct list_head * pool,spinlock_t * lock,gfp_t flg,int count)2746 static int add_desc(struct list_head *pool, spinlock_t *lock,
2747 gfp_t flg, int count)
2748 {
2749 struct dma_pl330_desc *desc;
2750 unsigned long flags;
2751 int i;
2752
2753 desc = kcalloc(count, sizeof(*desc), flg);
2754 if (!desc)
2755 return 0;
2756
2757 spin_lock_irqsave(lock, flags);
2758
2759 for (i = 0; i < count; i++) {
2760 _init_desc(&desc[i]);
2761 list_add_tail(&desc[i].node, pool);
2762 }
2763
2764 spin_unlock_irqrestore(lock, flags);
2765
2766 return count;
2767 }
2768
pluck_desc(struct list_head * pool,spinlock_t * lock)2769 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2770 spinlock_t *lock)
2771 {
2772 struct dma_pl330_desc *desc = NULL;
2773 unsigned long flags;
2774
2775 spin_lock_irqsave(lock, flags);
2776
2777 if (!list_empty(pool)) {
2778 desc = list_entry(pool->next,
2779 struct dma_pl330_desc, node);
2780
2781 list_del_init(&desc->node);
2782
2783 desc->status = PREP;
2784 desc->txd.callback = NULL;
2785 }
2786
2787 spin_unlock_irqrestore(lock, flags);
2788
2789 return desc;
2790 }
2791
pl330_get_desc(struct dma_pl330_chan * pch)2792 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2793 {
2794 struct pl330_dmac *pl330 = pch->dmac;
2795 u8 *peri_id = pch->chan.private;
2796 struct dma_pl330_desc *desc;
2797
2798 /* Pluck one desc from the pool of DMAC */
2799 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2800
2801 /* If the DMAC pool is empty, alloc new */
2802 if (!desc) {
2803 static DEFINE_SPINLOCK(lock);
2804 LIST_HEAD(pool);
2805
2806 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2807 return NULL;
2808
2809 desc = pluck_desc(&pool, &lock);
2810 WARN_ON(!desc || !list_empty(&pool));
2811 }
2812
2813 /* Initialize the descriptor */
2814 desc->pchan = pch;
2815 desc->txd.cookie = 0;
2816 async_tx_ack(&desc->txd);
2817
2818 desc->peri = peri_id ? pch->chan.chan_id : 0;
2819 desc->rqcfg.pcfg = &pch->dmac->pcfg;
2820
2821 desc->cyclic = false;
2822 desc->num_periods = 1;
2823
2824 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2825
2826 return desc;
2827 }
2828
fill_px(struct pl330_xfer * px,dma_addr_t dst,dma_addr_t src,size_t len)2829 static inline void fill_px(struct pl330_xfer *px,
2830 dma_addr_t dst, dma_addr_t src, size_t len)
2831 {
2832 px->bytes = len;
2833 px->dst_addr = dst;
2834 px->src_addr = src;
2835 }
2836
2837 static struct dma_pl330_desc *
__pl330_prep_dma_memcpy(struct dma_pl330_chan * pch,dma_addr_t dst,dma_addr_t src,size_t len)2838 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2839 dma_addr_t src, size_t len)
2840 {
2841 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2842
2843 if (!desc) {
2844 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2845 __func__, __LINE__);
2846 return NULL;
2847 }
2848
2849 /*
2850 * Ideally we should lookout for reqs bigger than
2851 * those that can be programmed with 256 bytes of
2852 * MC buffer, but considering a req size is seldom
2853 * going to be word-unaligned and more than 200MB,
2854 * we take it easy.
2855 * Also, should the limit is reached we'd rather
2856 * have the platform increase MC buffer size than
2857 * complicating this API driver.
2858 */
2859 fill_px(&desc->px, dst, src, len);
2860
2861 return desc;
2862 }
2863
2864 /* Call after fixing burst size */
get_burst_len(struct dma_pl330_desc * desc,size_t len)2865 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2866 {
2867 struct dma_pl330_chan *pch = desc->pchan;
2868 struct pl330_dmac *pl330 = pch->dmac;
2869 int burst_len;
2870
2871 burst_len = pl330->pcfg.data_bus_width / 8;
2872 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2873 burst_len >>= desc->rqcfg.brst_size;
2874
2875 /* src/dst_burst_len can't be more than 16 */
2876 if (burst_len > PL330_MAX_BURST)
2877 burst_len = PL330_MAX_BURST;
2878
2879 return burst_len;
2880 }
2881
pl330_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t dma_addr,size_t len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)2882 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2883 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2884 size_t period_len, enum dma_transfer_direction direction,
2885 unsigned long flags)
2886 {
2887 struct dma_pl330_desc *desc = NULL;
2888 struct dma_pl330_chan *pch = to_pchan(chan);
2889 dma_addr_t dst = 0;
2890 dma_addr_t src = 0;
2891
2892 if (len % period_len != 0)
2893 return NULL;
2894
2895 if (!is_slave_direction(direction)) {
2896 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2897 __func__, __LINE__);
2898 return NULL;
2899 }
2900
2901 pl330_config_write(chan, &pch->slave_config, direction);
2902
2903 if (!pl330_prep_slave_fifo(pch, direction))
2904 return NULL;
2905
2906 desc = pl330_get_desc(pch);
2907 if (!desc) {
2908 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2909 __func__, __LINE__);
2910 return NULL;
2911 }
2912
2913 switch (direction) {
2914 case DMA_MEM_TO_DEV:
2915 desc->rqcfg.src_inc = 1;
2916 desc->rqcfg.dst_inc = 0;
2917 src = dma_addr;
2918 dst = pch->fifo_dma;
2919 break;
2920 case DMA_DEV_TO_MEM:
2921 desc->rqcfg.src_inc = 0;
2922 desc->rqcfg.dst_inc = 1;
2923 src = pch->fifo_dma;
2924 dst = dma_addr;
2925 break;
2926 default:
2927 break;
2928 }
2929
2930 desc->rqtype = direction;
2931 desc->rqcfg.brst_size = pch->burst_sz;
2932 desc->rqcfg.brst_len = pch->burst_len;
2933 desc->bytes_requested = len;
2934 fill_px(&desc->px, dst, src, period_len);
2935
2936 desc->cyclic = true;
2937 desc->num_periods = len / period_len;
2938 desc->txd.flags = flags;
2939 #ifdef CONFIG_NO_GKI
2940 desc->src_interlace_size = pch->slave_config.src_interlace_size;
2941 desc->dst_interlace_size = pch->slave_config.dst_interlace_size;
2942 #endif
2943 return &desc->txd;
2944 }
2945
2946 static struct dma_async_tx_descriptor *
pl330_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dst,dma_addr_t src,size_t len,unsigned long flags)2947 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2948 dma_addr_t src, size_t len, unsigned long flags)
2949 {
2950 struct dma_pl330_desc *desc;
2951 struct dma_pl330_chan *pch = to_pchan(chan);
2952 struct pl330_dmac *pl330;
2953 int burst;
2954
2955 if (unlikely(!pch || !len))
2956 return NULL;
2957
2958 pl330 = pch->dmac;
2959
2960 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2961 if (!desc)
2962 return NULL;
2963
2964 desc->rqcfg.src_inc = 1;
2965 desc->rqcfg.dst_inc = 1;
2966 desc->rqtype = DMA_MEM_TO_MEM;
2967
2968 /* Select max possible burst size */
2969 burst = pl330->pcfg.data_bus_width / 8;
2970
2971 /*
2972 * Make sure we use a burst size that aligns with all the memcpy
2973 * parameters because our DMA programming algorithm doesn't cope with
2974 * transfers which straddle an entry in the DMA device's MFIFO.
2975 */
2976 while ((src | dst | len) & (burst - 1))
2977 burst /= 2;
2978
2979 desc->rqcfg.brst_size = 0;
2980 while (burst != (1 << desc->rqcfg.brst_size))
2981 desc->rqcfg.brst_size++;
2982
2983 desc->rqcfg.brst_len = get_burst_len(desc, len);
2984 /*
2985 * If burst size is smaller than bus width then make sure we only
2986 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2987 */
2988 if (burst * 8 < pl330->pcfg.data_bus_width)
2989 desc->rqcfg.brst_len = 1;
2990
2991 desc->bytes_requested = len;
2992
2993 desc->txd.flags = flags;
2994
2995 return &desc->txd;
2996 }
2997
__pl330_giveback_desc(struct pl330_dmac * pl330,struct dma_pl330_desc * first)2998 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2999 struct dma_pl330_desc *first)
3000 {
3001 unsigned long flags;
3002 struct dma_pl330_desc *desc;
3003
3004 if (!first)
3005 return;
3006
3007 spin_lock_irqsave(&pl330->pool_lock, flags);
3008
3009 while (!list_empty(&first->node)) {
3010 desc = list_entry(first->node.next,
3011 struct dma_pl330_desc, node);
3012 list_move_tail(&desc->node, &pl330->desc_pool);
3013 }
3014
3015 list_move_tail(&first->node, &pl330->desc_pool);
3016
3017 spin_unlock_irqrestore(&pl330->pool_lock, flags);
3018 }
3019
3020 static struct dma_async_tx_descriptor *
pl330_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flg,void * context)3021 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
3022 unsigned int sg_len, enum dma_transfer_direction direction,
3023 unsigned long flg, void *context)
3024 {
3025 struct dma_pl330_desc *first, *desc = NULL;
3026 struct dma_pl330_chan *pch = to_pchan(chan);
3027 struct scatterlist *sg;
3028 int i;
3029
3030 if (unlikely(!pch || !sgl || !sg_len))
3031 return NULL;
3032
3033 pl330_config_write(chan, &pch->slave_config, direction);
3034
3035 if (!pl330_prep_slave_fifo(pch, direction))
3036 return NULL;
3037
3038 first = NULL;
3039
3040 for_each_sg(sgl, sg, sg_len, i) {
3041
3042 desc = pl330_get_desc(pch);
3043 if (!desc) {
3044 struct pl330_dmac *pl330 = pch->dmac;
3045
3046 dev_err(pch->dmac->ddma.dev,
3047 "%s:%d Unable to fetch desc\n",
3048 __func__, __LINE__);
3049 __pl330_giveback_desc(pl330, first);
3050
3051 return NULL;
3052 }
3053
3054 if (!first)
3055 first = desc;
3056 else
3057 list_add_tail(&desc->node, &first->node);
3058
3059 if (direction == DMA_MEM_TO_DEV) {
3060 desc->rqcfg.src_inc = 1;
3061 desc->rqcfg.dst_inc = 0;
3062 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
3063 sg_dma_len(sg));
3064 } else {
3065 desc->rqcfg.src_inc = 0;
3066 desc->rqcfg.dst_inc = 1;
3067 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
3068 sg_dma_len(sg));
3069 }
3070
3071 desc->rqcfg.brst_size = pch->burst_sz;
3072 desc->rqcfg.brst_len = pch->burst_len;
3073 desc->rqtype = direction;
3074 desc->bytes_requested = sg_dma_len(sg);
3075 #ifdef CONFIG_NO_GKI
3076 desc->src_interlace_size = pch->slave_config.src_interlace_size;
3077 desc->dst_interlace_size = pch->slave_config.dst_interlace_size;
3078 #endif
3079 }
3080
3081 /* Return the last desc in the chain */
3082 desc->txd.flags = flg;
3083 return &desc->txd;
3084 }
3085
pl330_irq_handler(int irq,void * data)3086 static irqreturn_t pl330_irq_handler(int irq, void *data)
3087 {
3088 if (pl330_update(data))
3089 return IRQ_HANDLED;
3090 else
3091 return IRQ_NONE;
3092 }
3093
3094 #define PL330_DMA_BUSWIDTHS \
3095 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
3096 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
3097 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
3098 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
3099 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
3100
3101 #ifdef CONFIG_DEBUG_FS
pl330_debugfs_show(struct seq_file * s,void * data)3102 static int pl330_debugfs_show(struct seq_file *s, void *data)
3103 {
3104 struct pl330_dmac *pl330 = s->private;
3105 int chans, pchs, ch, pr;
3106
3107 chans = pl330->pcfg.num_chan;
3108 pchs = pl330->num_peripherals;
3109
3110 seq_puts(s, "PL330 physical channels:\n");
3111 seq_puts(s, "THREAD:\t\tCHANNEL:\n");
3112 seq_puts(s, "--------\t-----\n");
3113 for (ch = 0; ch < chans; ch++) {
3114 struct pl330_thread *thrd = &pl330->channels[ch];
3115 int found = -1;
3116
3117 for (pr = 0; pr < pchs; pr++) {
3118 struct dma_pl330_chan *pch = &pl330->peripherals[pr];
3119
3120 if (!pch->thread || thrd->id != pch->thread->id)
3121 continue;
3122
3123 found = pr;
3124 }
3125
3126 seq_printf(s, "%d\t\t", thrd->id);
3127 if (found == -1)
3128 seq_puts(s, "--\n");
3129 else
3130 seq_printf(s, "%d\n", found);
3131 }
3132
3133 return 0;
3134 }
3135
3136 DEFINE_SHOW_ATTRIBUTE(pl330_debugfs);
3137
init_pl330_debugfs(struct pl330_dmac * pl330)3138 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
3139 {
3140 debugfs_create_file(dev_name(pl330->ddma.dev),
3141 S_IFREG | 0444, NULL, pl330,
3142 &pl330_debugfs_fops);
3143 }
3144 #else
init_pl330_debugfs(struct pl330_dmac * pl330)3145 static inline void init_pl330_debugfs(struct pl330_dmac *pl330)
3146 {
3147 }
3148 #endif
3149
3150 /*
3151 * Runtime PM callbacks are provided by amba/bus.c driver.
3152 *
3153 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
3154 * bus driver will only disable/enable the clock in runtime PM callbacks.
3155 */
pl330_suspend(struct device * dev)3156 static int __maybe_unused pl330_suspend(struct device *dev)
3157 {
3158 struct amba_device *pcdev = to_amba_device(dev);
3159
3160 pm_runtime_force_suspend(dev);
3161 amba_pclk_unprepare(pcdev);
3162
3163 return 0;
3164 }
3165
pl330_resume(struct device * dev)3166 static int __maybe_unused pl330_resume(struct device *dev)
3167 {
3168 struct amba_device *pcdev = to_amba_device(dev);
3169 int ret;
3170
3171 ret = amba_pclk_prepare(pcdev);
3172 if (ret)
3173 return ret;
3174
3175 pm_runtime_force_resume(dev);
3176
3177 return ret;
3178 }
3179
3180 static const struct dev_pm_ops pl330_pm = {
3181 SET_LATE_SYSTEM_SLEEP_PM_OPS(pl330_suspend, pl330_resume)
3182 };
3183
3184 static int
pl330_probe(struct amba_device * adev,const struct amba_id * id)3185 pl330_probe(struct amba_device *adev, const struct amba_id *id)
3186 {
3187 struct pl330_config *pcfg;
3188 struct pl330_dmac *pl330;
3189 struct dma_pl330_chan *pch, *_p;
3190 struct dma_device *pd;
3191 struct resource *res;
3192 int i, ret, irq;
3193 int num_chan;
3194 struct device_node *np = adev->dev.of_node;
3195
3196 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
3197 if (ret)
3198 return ret;
3199
3200 /* Allocate a new DMAC and its Channels */
3201 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
3202 if (!pl330)
3203 return -ENOMEM;
3204
3205 pd = &pl330->ddma;
3206 pd->dev = &adev->dev;
3207
3208 pl330->mcbufsz = 0;
3209
3210 /* get quirk */
3211 for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
3212 if (of_property_read_bool(np, of_quirks[i].quirk))
3213 pl330->quirks |= of_quirks[i].id;
3214
3215 res = &adev->res;
3216 pl330->base = devm_ioremap_resource(&adev->dev, res);
3217 if (IS_ERR(pl330->base))
3218 return PTR_ERR(pl330->base);
3219
3220 amba_set_drvdata(adev, pl330);
3221
3222 pl330->rstc = devm_reset_control_get_optional(&adev->dev, "dma");
3223 if (IS_ERR(pl330->rstc)) {
3224 return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc), "Failed to get reset!\n");
3225 } else {
3226 ret = reset_control_deassert(pl330->rstc);
3227 if (ret) {
3228 dev_err(&adev->dev, "Couldn't deassert the device from reset!\n");
3229 return ret;
3230 }
3231 }
3232
3233 pl330->rstc_ocp = devm_reset_control_get_optional(&adev->dev, "dma-ocp");
3234 if (IS_ERR(pl330->rstc_ocp)) {
3235 return dev_err_probe(&adev->dev, PTR_ERR(pl330->rstc_ocp),
3236 "Failed to get OCP reset!\n");
3237 } else {
3238 ret = reset_control_deassert(pl330->rstc_ocp);
3239 if (ret) {
3240 dev_err(&adev->dev, "Couldn't deassert the device from OCP reset!\n");
3241 return ret;
3242 }
3243 }
3244
3245 for (i = 0; i < AMBA_NR_IRQS; i++) {
3246 irq = adev->irq[i];
3247 if (irq) {
3248 ret = devm_request_irq(&adev->dev, irq,
3249 pl330_irq_handler, 0,
3250 dev_name(&adev->dev), pl330);
3251 if (ret)
3252 return ret;
3253 } else {
3254 break;
3255 }
3256 }
3257
3258 pcfg = &pl330->pcfg;
3259
3260 pcfg->periph_id = adev->periphid;
3261 ret = pl330_add(pl330);
3262 if (ret)
3263 return ret;
3264
3265 INIT_LIST_HEAD(&pl330->desc_pool);
3266 spin_lock_init(&pl330->pool_lock);
3267
3268 /* Create a descriptor pool of default size */
3269 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3270 GFP_KERNEL, NR_DEFAULT_DESC))
3271 dev_warn(&adev->dev, "unable to allocate desc\n");
3272
3273 INIT_LIST_HEAD(&pd->channels);
3274
3275 /* Initialize channel parameters */
3276 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3277
3278 pl330->num_peripherals = num_chan;
3279
3280 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3281 if (!pl330->peripherals) {
3282 ret = -ENOMEM;
3283 goto probe_err2;
3284 }
3285
3286 for (i = 0; i < num_chan; i++) {
3287 pch = &pl330->peripherals[i];
3288
3289 pch->chan.private = adev->dev.of_node;
3290 INIT_LIST_HEAD(&pch->submitted_list);
3291 INIT_LIST_HEAD(&pch->work_list);
3292 INIT_LIST_HEAD(&pch->completed_list);
3293 spin_lock_init(&pch->lock);
3294 pch->thread = NULL;
3295 pch->chan.device = pd;
3296 pch->dmac = pl330;
3297 pch->dir = DMA_NONE;
3298
3299 /* Add the channel to the DMAC list */
3300 list_add_tail(&pch->chan.device_node, &pd->channels);
3301 }
3302
3303 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3304 if (pcfg->num_peri) {
3305 dma_cap_set(DMA_SLAVE, pd->cap_mask);
3306 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3307 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3308 }
3309
3310 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3311 pd->device_free_chan_resources = pl330_free_chan_resources;
3312 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3313 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3314 pd->device_tx_status = pl330_tx_status;
3315 pd->device_prep_slave_sg = pl330_prep_slave_sg;
3316 pd->device_config = pl330_config;
3317 pd->device_pause = pl330_pause;
3318 pd->device_terminate_all = pl330_terminate_all;
3319 pd->device_issue_pending = pl330_issue_pending;
3320 pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3321 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3322 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3323 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3324 pd->max_burst = PL330_MAX_BURST;
3325
3326 ret = dma_async_device_register(pd);
3327 if (ret) {
3328 dev_err(&adev->dev, "unable to register DMAC\n");
3329 goto probe_err3;
3330 }
3331
3332 if (adev->dev.of_node) {
3333 ret = of_dma_controller_register(adev->dev.of_node,
3334 of_dma_pl330_xlate, pl330);
3335 if (ret) {
3336 dev_err(&adev->dev,
3337 "unable to register DMA to the generic DT DMA helpers\n");
3338 }
3339 }
3340
3341 /*
3342 * This is the limit for transfers with a buswidth of 1, larger
3343 * buswidths will have larger limits.
3344 */
3345 ret = dma_set_max_seg_size(&adev->dev, 1900800);
3346 if (ret)
3347 dev_err(&adev->dev, "unable to set the seg size\n");
3348
3349
3350 init_pl330_debugfs(pl330);
3351 dev_info(&adev->dev,
3352 "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3353 dev_info(&adev->dev,
3354 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3355 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3356 pcfg->num_peri, pcfg->num_events);
3357
3358 pm_runtime_irq_safe(&adev->dev);
3359 pm_runtime_use_autosuspend(&adev->dev);
3360 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3361 pm_runtime_mark_last_busy(&adev->dev);
3362 pm_runtime_put_autosuspend(&adev->dev);
3363
3364 return 0;
3365 probe_err3:
3366 /* Idle the DMAC */
3367 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3368 chan.device_node) {
3369
3370 /* Remove the channel */
3371 list_del(&pch->chan.device_node);
3372
3373 /* Flush the channel */
3374 if (pch->thread) {
3375 pl330_terminate_all(&pch->chan);
3376 pl330_free_chan_resources(&pch->chan);
3377 }
3378 }
3379 probe_err2:
3380 pl330_del(pl330);
3381
3382 if (pl330->rstc_ocp)
3383 reset_control_assert(pl330->rstc_ocp);
3384
3385 if (pl330->rstc)
3386 reset_control_assert(pl330->rstc);
3387 return ret;
3388 }
3389
pl330_remove(struct amba_device * adev)3390 static void pl330_remove(struct amba_device *adev)
3391 {
3392 struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3393 struct dma_pl330_chan *pch, *_p;
3394 int i, irq;
3395
3396 pm_runtime_get_noresume(pl330->ddma.dev);
3397
3398 if (adev->dev.of_node)
3399 of_dma_controller_free(adev->dev.of_node);
3400
3401 for (i = 0; i < AMBA_NR_IRQS; i++) {
3402 irq = adev->irq[i];
3403 if (irq)
3404 devm_free_irq(&adev->dev, irq, pl330);
3405 }
3406
3407 dma_async_device_unregister(&pl330->ddma);
3408
3409 /* Idle the DMAC */
3410 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3411 chan.device_node) {
3412
3413 /* Remove the channel */
3414 list_del(&pch->chan.device_node);
3415
3416 /* Flush the channel */
3417 if (pch->thread) {
3418 pl330_terminate_all(&pch->chan);
3419 pl330_free_chan_resources(&pch->chan);
3420 }
3421 }
3422
3423 pl330_del(pl330);
3424
3425 if (pl330->rstc_ocp)
3426 reset_control_assert(pl330->rstc_ocp);
3427
3428 if (pl330->rstc)
3429 reset_control_assert(pl330->rstc);
3430 }
3431
3432 static const struct amba_id pl330_ids[] = {
3433 {
3434 .id = 0x00041330,
3435 .mask = 0x000fffff,
3436 },
3437 { 0, 0 },
3438 };
3439
3440 MODULE_DEVICE_TABLE(amba, pl330_ids);
3441
3442 static struct amba_driver pl330_driver = {
3443 .drv = {
3444 .owner = THIS_MODULE,
3445 .name = "dma-pl330",
3446 .pm = &pl330_pm,
3447 },
3448 .id_table = pl330_ids,
3449 .probe = pl330_probe,
3450 .remove = pl330_remove,
3451 };
3452
3453 module_amba_driver(pl330_driver);
3454
3455 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3456 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3457 MODULE_LICENSE("GPL");
3458