xref: /OK3568_Linux_fs/external/rknpu2/examples/3rdparty/opencv/opencv-linux-aarch64/include/opencv2/dnn/dnn.hpp (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of the copyright holders may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #ifndef OPENCV_DNN_DNN_HPP
43 #define OPENCV_DNN_DNN_HPP
44 
45 #include <vector>
46 #include <opencv2/core.hpp>
47 
48 #if !defined CV_DOXYGEN && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
49 #define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_34_v11 {
50 #define CV__DNN_EXPERIMENTAL_NS_END }
51 namespace cv { namespace dnn { namespace experimental_dnn_34_v11 { } using namespace experimental_dnn_34_v11; }}
52 #else
53 #define CV__DNN_EXPERIMENTAL_NS_BEGIN
54 #define CV__DNN_EXPERIMENTAL_NS_END
55 #endif
56 
57 #include <opencv2/dnn/dict.hpp>
58 
59 namespace cv {
60 namespace dnn {
61 CV__DNN_EXPERIMENTAL_NS_BEGIN
62 //! @addtogroup dnn
63 //! @{
64 
65     typedef std::vector<int> MatShape;
66 
67     /**
68      * @brief Enum of computation backends supported by layers.
69      * @see Net::setPreferableBackend
70      */
71     enum Backend
72     {
73         //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if
74         //! OpenCV is built with Intel's Inference Engine library or
75         //! DNN_BACKEND_OPENCV otherwise.
76         DNN_BACKEND_DEFAULT,
77         DNN_BACKEND_HALIDE,
78         DNN_BACKEND_INFERENCE_ENGINE,
79         DNN_BACKEND_OPENCV
80     };
81 
82     /**
83      * @brief Enum of target devices for computations.
84      * @see Net::setPreferableTarget
85      */
86     enum Target
87     {
88         DNN_TARGET_CPU,
89         DNN_TARGET_OPENCL,
90         DNN_TARGET_OPENCL_FP16,
91         DNN_TARGET_MYRIAD,
92         //! FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
93         DNN_TARGET_FPGA
94     };
95 
96     CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
97     CV_EXPORTS std::vector<Target> getAvailableTargets(Backend be);
98 
99     /** @brief This class provides all data needed to initialize layer.
100      *
101      * It includes dictionary with scalar params (which can be read by using Dict interface),
102      * blob params #blobs and optional meta information: #name and #type of layer instance.
103     */
104     class CV_EXPORTS LayerParams : public Dict
105     {
106     public:
107         //TODO: Add ability to name blob params
108         std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
109 
110         String name; //!< Name of the layer instance (optional, can be used internal purposes).
111         String type; //!< Type name which was used for creating layer by layer factory (optional).
112     };
113 
114    /**
115     * @brief Derivatives of this class encapsulates functions of certain backends.
116     */
117     class BackendNode
118     {
119     public:
120         BackendNode(int backendId);
121 
122         virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
123 
124         int backendId; //!< Backend identifier.
125     };
126 
127     /**
128      * @brief Derivatives of this class wraps cv::Mat for different backends and targets.
129      */
130     class BackendWrapper
131     {
132     public:
133         BackendWrapper(int backendId, int targetId);
134 
135         /**
136          * @brief Wrap cv::Mat for specific backend and target.
137          * @param[in] targetId Target identifier.
138          * @param[in] m cv::Mat for wrapping.
139          *
140          * Make CPU->GPU data transfer if it's require for the target.
141          */
142         BackendWrapper(int targetId, const cv::Mat& m);
143 
144         /**
145          * @brief Make wrapper for reused cv::Mat.
146          * @param[in] base Wrapper of cv::Mat that will be reused.
147          * @param[in] shape Specific shape.
148          *
149          * Initialize wrapper from another one. It'll wrap the same host CPU
150          * memory and mustn't allocate memory on device(i.e. GPU). It might
151          * has different shape. Use in case of CPU memory reusing for reuse
152          * associated memory on device too.
153          */
154         BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
155 
156         virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
157 
158         /**
159          * @brief Transfer data to CPU host memory.
160          */
161         virtual void copyToHost() = 0;
162 
163         /**
164          * @brief Indicate that an actual data is on CPU.
165          */
166         virtual void setHostDirty() = 0;
167 
168         int backendId;  //!< Backend identifier.
169         int targetId;   //!< Target identifier.
170     };
171 
172     class CV_EXPORTS ActivationLayer;
173 
174     /** @brief This interface class allows to build new Layers - are building blocks of networks.
175      *
176      * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
177      * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
178      */
179     class CV_EXPORTS_W Layer : public Algorithm
180     {
181     public:
182 
183         //! List of learned parameters must be stored here to allow read them by using Net::getParam().
184         CV_PROP_RW std::vector<Mat> blobs;
185 
186         /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
187          *  @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
188          *  @param[in]  input  vector of already allocated input blobs
189          *  @param[out] output vector of already allocated output blobs
190          *
191          * If this method is called after network has allocated all memory for input and output blobs
192          * and before inferencing.
193          */
194         CV_DEPRECATED_EXTERNAL
195         virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
196 
197         /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
198          *  @param[in]  inputs  vector of already allocated input blobs
199          *  @param[out] outputs vector of already allocated output blobs
200          *
201          * If this method is called after network has allocated all memory for input and output blobs
202          * and before inferencing.
203          */
204         CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);
205 
206         /** @brief Given the @p input blobs, computes the output @p blobs.
207          *  @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
208          *  @param[in]  input  the input blobs.
209          *  @param[out] output allocated output blobs, which will store results of the computation.
210          *  @param[out] internals allocated internal blobs
211          */
212         CV_DEPRECATED_EXTERNAL
213         virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);
214 
215         /** @brief Given the @p input blobs, computes the output @p blobs.
216          *  @param[in]  inputs  the input blobs.
217          *  @param[out] outputs allocated output blobs, which will store results of the computation.
218          *  @param[out] internals allocated internal blobs
219          */
220         virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
221 
222         /** @brief Given the @p input blobs, computes the output @p blobs.
223          *  @param[in]  inputs  the input blobs.
224          *  @param[out] outputs allocated output blobs, which will store results of the computation.
225          *  @param[out] internals allocated internal blobs
226          */
227         void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
228 
229         /** @brief
230          * @overload
231          * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
232          */
233         CV_DEPRECATED_EXTERNAL
234         void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
235 
236         /** @brief
237          * @overload
238          * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
239          */
240         CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);
241 
242         /** @brief Allocates layer and computes output.
243          *  @deprecated This method will be removed in the future release.
244          */
245         CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
246                                        CV_IN_OUT std::vector<Mat> &internals);
247 
248         /** @brief Returns index of input blob into the input array.
249          *  @param inputName label of input blob
250          *
251          * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
252          * This method maps label of input blob to its index into input vector.
253          */
254         virtual int inputNameToIndex(String inputName);
255         /** @brief Returns index of output blob in output array.
256          *  @see inputNameToIndex()
257          */
258         CV_WRAP virtual int outputNameToIndex(const String& outputName);
259 
260         /**
261          * @brief Ask layer if it support specific backend for doing computations.
262          * @param[in] backendId computation backend identifier.
263          * @see Backend
264          */
265         virtual bool supportBackend(int backendId);
266 
267         /**
268          * @brief Returns Halide backend node.
269          * @param[in] inputs Input Halide buffers.
270          * @see BackendNode, BackendWrapper
271          *
272          * Input buffers should be exactly the same that will be used in forward invocations.
273          * Despite we can use Halide::ImageParam based on input shape only,
274          * it helps prevent some memory management issues (if something wrong,
275          * Halide tests will be failed).
276          */
277         virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
278 
279         virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> > &inputs);
280 
281        /**
282         * @brief Automatic Halide scheduling based on layer hyper-parameters.
283         * @param[in] node Backend node with Halide functions.
284         * @param[in] inputs Blobs that will be used in forward invocations.
285         * @param[in] outputs Blobs that will be used in forward invocations.
286         * @param[in] targetId Target identifier
287         * @see BackendNode, Target
288         *
289         * Layer don't use own Halide::Func members because we can have applied
290         * layers fusing. In this way the fused function should be scheduled.
291         */
292         virtual void applyHalideScheduler(Ptr<BackendNode>& node,
293                                           const std::vector<Mat*> &inputs,
294                                           const std::vector<Mat> &outputs,
295                                           int targetId) const;
296 
297         /**
298          * @brief Implement layers fusing.
299          * @param[in] node Backend node of bottom layer.
300          * @see BackendNode
301          *
302          * Actual for graph-based backends. If layer attached successfully,
303          * returns non-empty cv::Ptr to node of the same backend.
304          * Fuse only over the last function.
305          */
306         virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
307 
308         /**
309          * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
310          * @param[in] layer The subsequent activation layer.
311          *
312          * Returns true if the activation layer has been attached successfully.
313          */
314         virtual bool setActivation(const Ptr<ActivationLayer>& layer);
315 
316         /**
317          * @brief Try to fuse current layer with a next one
318          * @param[in] top Next layer to be fused.
319          * @returns True if fusion was performed.
320          */
321         virtual bool tryFuse(Ptr<Layer>& top);
322 
323         /**
324          * @brief Returns parameters of layers with channel-wise multiplication and addition.
325          * @param[out] scale Channel-wise multipliers. Total number of values should
326          *                   be equal to number of channels.
327          * @param[out] shift Channel-wise offsets. Total number of values should
328          *                   be equal to number of channels.
329          *
330          * Some layers can fuse their transformations with further layers.
331          * In example, convolution + batch normalization. This way base layer
332          * use weights from layer after it. Fused layer is skipped.
333          * By default, @p scale and @p shift are empty that means layer has no
334          * element-wise multiplications or additions.
335          */
336         virtual void getScaleShift(Mat& scale, Mat& shift) const;
337 
338         /**
339          * @brief "Deattaches" all the layers, attached to particular layer.
340          */
341         virtual void unsetAttached();
342 
343         virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
344                                      const int requiredOutputs,
345                                      std::vector<MatShape> &outputs,
346                                      std::vector<MatShape> &internals) const;
getFLOPS(const std::vector<MatShape> & inputs,const std::vector<MatShape> & outputs) const347         virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
348                                const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
349 
350         CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
351         CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
352         CV_PROP int preferableTarget; //!< prefer target for layer forwarding
353 
354         Layer();
355         explicit Layer(const LayerParams &params);      //!< Initializes only #name, #type and #blobs fields.
356         void setParamsFrom(const LayerParams &params);  //!< Initializes only #name, #type and #blobs fields.
357         virtual ~Layer();
358     };
359 
360     /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
361      *
362      * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
363      * and edges specify relationships between layers inputs and outputs.
364      *
365      * Each network layer has unique integer id and unique string name inside its network.
366      * LayerId can store either layer name or layer id.
367      *
368      * This class supports reference counting of its instances, i. e. copies point to the same instance.
369      */
370     class CV_EXPORTS_W_SIMPLE Net
371     {
372     public:
373 
374         CV_WRAP Net();  //!< Default constructor.
375         CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
376 
377         /** @brief Create a network from Intel's Model Optimizer intermediate representation.
378          *  @param[in] xml XML configuration file with network's topology.
379          *  @param[in] bin Binary file with trained weights.
380          *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
381          *  backend.
382          */
383         CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);
384 
385         /** Returns true if there are no layers in the network. */
386         CV_WRAP bool empty() const;
387 
388         /** @brief Adds new layer to the net.
389          *  @param name   unique name of the adding layer.
390          *  @param type   typename of the adding layer (type must be registered in LayerRegister).
391          *  @param params parameters which will be used to initialize the creating layer.
392          *  @returns unique identifier of created layer, or -1 if a failure will happen.
393          */
394         int addLayer(const String &name, const String &type, LayerParams &params);
395         /** @brief Adds new layer and connects its first input to the first output of previously added layer.
396          *  @see addLayer()
397          */
398         int addLayerToPrev(const String &name, const String &type, LayerParams &params);
399 
400         /** @brief Converts string name of the layer to the integer identifier.
401          *  @returns id of the layer, or -1 if the layer wasn't found.
402          */
403         CV_WRAP int getLayerId(const String &layer);
404 
405         CV_WRAP std::vector<String> getLayerNames() const;
406 
407         /** @brief Container for strings and integers. */
408         typedef DictValue LayerId;
409 
410         /** @brief Returns pointer to layer with specified id or name which the network use. */
411         CV_WRAP Ptr<Layer> getLayer(LayerId layerId);
412 
413         /** @brief Returns pointers to input layers of specific layer. */
414         std::vector<Ptr<Layer> > getLayerInputs(LayerId layerId); // FIXIT: CV_WRAP
415 
416         /** @brief Connects output of the first layer to input of the second layer.
417          *  @param outPin descriptor of the first layer output.
418          *  @param inpPin descriptor of the second layer input.
419          *
420          * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
421          * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
422          *   If this part is empty then the network input pseudo layer will be used;
423          * - the second optional part of the template <DFN>input_number</DFN>
424          *   is either number of the layer input, either label one.
425          *   If this part is omitted then the first layer input will be used.
426          *
427          *  @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
428          */
429         CV_WRAP void connect(String outPin, String inpPin);
430 
431         /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
432          *  @param outLayerId identifier of the first layer
433          *  @param outNum number of the first layer output
434          *  @param inpLayerId identifier of the second layer
435          *  @param inpNum number of the second layer input
436          */
437         void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
438 
439         /** @brief Sets outputs names of the network input pseudo layer.
440          *
441          * Each net always has special own the network input pseudo layer with id=0.
442          * This layer stores the user blobs only and don't make any computations.
443          * In fact, this layer provides the only way to pass user data into the network.
444          * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
445          */
446         CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
447 
448         /** @brief Runs forward pass to compute output of layer with name @p outputName.
449          *  @param outputName name for layer which output is needed to get
450          *  @return blob for first output of specified layer.
451          *  @details By default runs forward pass for the whole network.
452          */
453         CV_WRAP Mat forward(const String& outputName = String());
454 
455         /** @brief Runs forward pass to compute output of layer with name @p outputName.
456          *  @param outputBlobs contains all output blobs for specified layer.
457          *  @param outputName name for layer which output is needed to get
458          *  @details If @p outputName is empty, runs forward pass for the whole network.
459          */
460         CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
461 
462         /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
463          *  @param outputBlobs contains blobs for first outputs of specified layers.
464          *  @param outBlobNames names for layers which outputs are needed to get
465          */
466         CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
467                              const std::vector<String>& outBlobNames);
468 
469         /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
470          *  @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
471          *  @param outBlobNames names for layers which outputs are needed to get
472          */
473         CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
474                                                     const std::vector<String>& outBlobNames);
475 
476         /**
477          * @brief Compile Halide layers.
478          * @param[in] scheduler Path to YAML file with scheduling directives.
479          * @see setPreferableBackend
480          *
481          * Schedule layers that support Halide backend. Then compile them for
482          * specific target. For layers that not represented in scheduling file
483          * or if no manual scheduling used at all, automatic scheduling will be applied.
484          */
485         CV_WRAP void setHalideScheduler(const String& scheduler);
486 
487         /**
488          * @brief Ask network to use specific computation backend where it supported.
489          * @param[in] backendId backend identifier.
490          * @see Backend
491          *
492          * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
493          * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
494          */
495         CV_WRAP void setPreferableBackend(int backendId);
496 
497         /**
498          * @brief Ask network to make computations on specific target device.
499          * @param[in] targetId target identifier.
500          * @see Target
501          *
502          * List of supported combinations backend / target:
503          * |                        | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE |
504          * |------------------------|--------------------|------------------------------|--------------------|
505          * | DNN_TARGET_CPU         |                  + |                            + |                  + |
506          * | DNN_TARGET_OPENCL      |                  + |                            + |                  + |
507          * | DNN_TARGET_OPENCL_FP16 |                  + |                            + |                    |
508          * | DNN_TARGET_MYRIAD      |                    |                            + |                    |
509          * | DNN_TARGET_FPGA        |                    |                            + |                    |
510          */
511         CV_WRAP void setPreferableTarget(int targetId);
512 
513         /** @brief Sets the new input value for the network
514          *  @param blob        A new blob. Should have CV_32F or CV_8U depth.
515          *  @param name        A name of input layer.
516          *  @param scalefactor An optional normalization scale.
517          *  @param mean        An optional mean subtraction values.
518          *  @see connect(String, String) to know format of the descriptor.
519          *
520          *  If scale or mean values are specified, a final input blob is computed
521          *  as:
522          * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
523          */
524         CV_WRAP void setInput(InputArray blob, const String& name = "",
525                               double scalefactor = 1.0, const Scalar& mean = Scalar());
526 
527         /** @brief Sets the new value for the learned param of the layer.
528          *  @param layer name or id of the layer.
529          *  @param numParam index of the layer parameter in the Layer::blobs array.
530          *  @param blob the new value.
531          *  @see Layer::blobs
532          *  @note If shape of the new blob differs from the previous shape,
533          *  then the following forward pass may fail.
534         */
535         CV_WRAP void setParam(LayerId layer, int numParam, const Mat &blob);
536 
537         /** @brief Returns parameter blob of the layer.
538          *  @param layer name or id of the layer.
539          *  @param numParam index of the layer parameter in the Layer::blobs array.
540          *  @see Layer::blobs
541          */
542         CV_WRAP Mat getParam(LayerId layer, int numParam = 0);
543 
544         /** @brief Returns indexes of layers with unconnected outputs.
545          */
546         CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
547 
548         /** @brief Returns names of layers with unconnected outputs.
549          */
550         CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
551 
552         /** @brief Returns input and output shapes for all layers in loaded model;
553          *  preliminary inferencing isn't necessary.
554          *  @param netInputShapes shapes for all input blobs in net input layer.
555          *  @param layersIds output parameter for layer IDs.
556          *  @param inLayersShapes output parameter for input layers shapes;
557          * order is the same as in layersIds
558          *  @param outLayersShapes output parameter for output layers shapes;
559          * order is the same as in layersIds
560          */
561         CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
562                                      CV_OUT std::vector<int>& layersIds,
563                                      CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
564                                      CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
565 
566         /** @overload */
567         CV_WRAP void getLayersShapes(const MatShape& netInputShape,
568                                      CV_OUT std::vector<int>& layersIds,
569                                      CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
570                                      CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
571 
572         /** @brief Returns input and output shapes for layer with specified
573          * id in loaded model; preliminary inferencing isn't necessary.
574          *  @param netInputShape shape input blob in net input layer.
575          *  @param layerId id for layer.
576          *  @param inLayerShapes output parameter for input layers shapes;
577          * order is the same as in layersIds
578          *  @param outLayerShapes output parameter for output layers shapes;
579          * order is the same as in layersIds
580          */
581         void getLayerShapes(const MatShape& netInputShape,
582                                     const int layerId,
583                                     CV_OUT std::vector<MatShape>& inLayerShapes,
584                                     CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
585 
586         /** @overload */
587         void getLayerShapes(const std::vector<MatShape>& netInputShapes,
588                                     const int layerId,
589                                     CV_OUT std::vector<MatShape>& inLayerShapes,
590                                     CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
591 
592         /** @brief Computes FLOP for whole loaded model with specified input shapes.
593          * @param netInputShapes vector of shapes for all net inputs.
594          * @returns computed FLOP.
595          */
596         CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
597         /** @overload */
598         CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
599         /** @overload */
600         CV_WRAP int64 getFLOPS(const int layerId,
601                                const std::vector<MatShape>& netInputShapes) const;
602         /** @overload */
603         CV_WRAP int64 getFLOPS(const int layerId,
604                                const MatShape& netInputShape) const;
605 
606         /** @brief Returns list of types for layer used in model.
607          * @param layersTypes output parameter for returning types.
608          */
609         CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
610 
611         /** @brief Returns count of layers of specified type.
612          * @param layerType type.
613          * @returns count of layers
614          */
615         CV_WRAP int getLayersCount(const String& layerType) const;
616 
617         /** @brief Computes bytes number which are required to store
618          * all weights and intermediate blobs for model.
619          * @param netInputShapes vector of shapes for all net inputs.
620          * @param weights output parameter to store resulting bytes for weights.
621          * @param blobs output parameter to store resulting bytes for intermediate blobs.
622          */
623         void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
624                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
625         /** @overload */
626         CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
627                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
628         /** @overload */
629         CV_WRAP void getMemoryConsumption(const int layerId,
630                                           const std::vector<MatShape>& netInputShapes,
631                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
632         /** @overload */
633         CV_WRAP void getMemoryConsumption(const int layerId,
634                                           const MatShape& netInputShape,
635                                           CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
636 
637         /** @brief Computes bytes number which are required to store
638          * all weights and intermediate blobs for each layer.
639          * @param netInputShapes vector of shapes for all net inputs.
640          * @param layerIds output vector to save layer IDs.
641          * @param weights output parameter to store resulting bytes for weights.
642          * @param blobs output parameter to store resulting bytes for intermediate blobs.
643          */
644         void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
645                                           CV_OUT std::vector<int>& layerIds,
646                                           CV_OUT std::vector<size_t>& weights,
647                                           CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
648         /** @overload */
649         void getMemoryConsumption(const MatShape& netInputShape,
650                                           CV_OUT std::vector<int>& layerIds,
651                                           CV_OUT std::vector<size_t>& weights,
652                                           CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
653 
654         /** @brief Enables or disables layer fusion in the network.
655          * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
656          */
657         CV_WRAP void enableFusion(bool fusion);
658 
659         /** @brief Returns overall time for inference and timings (in ticks) for layers.
660          * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
661          * in this case zero ticks count will be return for that skipped layers.
662          * @param timings vector for tick timings for all layers.
663          * @return overall ticks for model inference.
664          */
665         CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
666 
667     private:
668         struct Impl;
669         Ptr<Impl> impl;
670     };
671 
672     /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
673     *  @param cfgFile      path to the .cfg file with text description of the network architecture.
674     *  @param darknetModel path to the .weights file with learned network.
675     *  @returns Network object that ready to do forward, throw an exception in failure cases.
676     *  @returns Net object.
677     */
678     CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
679 
680     /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
681      *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
682      *  @param bufferModel A buffer contains a content of .weights file with learned network.
683      *  @returns Net object.
684      */
685     CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
686                                         const std::vector<uchar>& bufferModel = std::vector<uchar>());
687 
688     /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
689      *  @param bufferCfg   A buffer contains a content of .cfg file with text description of the network architecture.
690      *  @param lenCfg      Number of bytes to read from bufferCfg
691      *  @param bufferModel A buffer contains a content of .weights file with learned network.
692      *  @param lenModel    Number of bytes to read from bufferModel
693      *  @returns Net object.
694      */
695     CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
696                                       const char *bufferModel = NULL, size_t lenModel = 0);
697 
698     /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
699       * @param prototxt   path to the .prototxt file with text description of the network architecture.
700       * @param caffeModel path to the .caffemodel file with learned network.
701       * @returns Net object.
702       */
703     CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
704 
705     /** @brief Reads a network model stored in Caffe model in memory.
706       * @param bufferProto buffer containing the content of the .prototxt file
707       * @param bufferModel buffer containing the content of the .caffemodel file
708       * @returns Net object.
709       */
710     CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
711                                       const std::vector<uchar>& bufferModel = std::vector<uchar>());
712 
713     /** @brief Reads a network model stored in Caffe model in memory.
714       * @details This is an overloaded member function, provided for convenience.
715       * It differs from the above function only in what argument(s) it accepts.
716       * @param bufferProto buffer containing the content of the .prototxt file
717       * @param lenProto length of bufferProto
718       * @param bufferModel buffer containing the content of the .caffemodel file
719       * @param lenModel length of bufferModel
720       * @returns Net object.
721       */
722     CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
723                                     const char *bufferModel = NULL, size_t lenModel = 0);
724 
725     /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
726       * @param model  path to the .pb file with binary protobuf description of the network architecture
727       * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
728       *               Resulting Net object is built by text graph using weights from a binary one that
729       *               let us make it more flexible.
730       * @returns Net object.
731       */
732     CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
733 
734     /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
735       * @param bufferModel buffer containing the content of the pb file
736       * @param bufferConfig buffer containing the content of the pbtxt file
737       * @returns Net object.
738       */
739     CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
740                                            const std::vector<uchar>& bufferConfig = std::vector<uchar>());
741 
742     /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
743       * @details This is an overloaded member function, provided for convenience.
744       * It differs from the above function only in what argument(s) it accepts.
745       * @param bufferModel buffer containing the content of the pb file
746       * @param lenModel length of bufferModel
747       * @param bufferConfig buffer containing the content of the pbtxt file
748       * @param lenConfig length of bufferConfig
749       */
750     CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
751                                          const char *bufferConfig = NULL, size_t lenConfig = 0);
752 
753     /**
754      *  @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
755      *  @param model    path to the file, dumped from Torch by using torch.save() function.
756      *  @param isBinary specifies whether the network was serialized in ascii mode or binary.
757      *  @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
758      *  @returns Net object.
759      *
760      *  @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
761      *  which has various bit-length on different systems.
762      *
763      * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
764      * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
765      *
766      * List of supported layers (i.e. object instances derived from Torch nn.Module class):
767      * - nn.Sequential
768      * - nn.Parallel
769      * - nn.Concat
770      * - nn.Linear
771      * - nn.SpatialConvolution
772      * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
773      * - nn.ReLU, nn.TanH, nn.Sigmoid
774      * - nn.Reshape
775      * - nn.SoftMax, nn.LogSoftMax
776      *
777      * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
778      */
779      CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);
780 
781      /**
782       * @brief Read deep learning network represented in one of the supported formats.
783       * @param[in] model Binary file contains trained weights. The following file
784       *                  extensions are expected for models from different frameworks:
785       *                  * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
786       *                  * `*.pb` (TensorFlow, https://www.tensorflow.org/)
787       *                  * `*.t7` | `*.net` (Torch, http://torch.ch/)
788       *                  * `*.weights` (Darknet, https://pjreddie.com/darknet/)
789       *                  * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
790       * @param[in] config Text file contains network configuration. It could be a
791       *                   file with the following extensions:
792       *                  * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
793       *                  * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
794       *                  * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
795       *                  * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
796       * @param[in] framework Explicit framework name tag to determine a format.
797       * @returns Net object.
798       *
799       * This function automatically detects an origin framework of trained model
800       * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
801       * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
802       * arguments does not matter.
803       */
804      CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
805 
806      /**
807       * @brief Read deep learning network represented in one of the supported formats.
808       * @details This is an overloaded member function, provided for convenience.
809       *          It differs from the above function only in what argument(s) it accepts.
810       * @param[in] framework    Name of origin framework.
811       * @param[in] bufferModel  A buffer with a content of binary file with weights
812       * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
813       * @returns Net object.
814       */
815      CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
816                               const std::vector<uchar>& bufferConfig = std::vector<uchar>());
817 
818     /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
819      *  @warning This function has the same limitations as readNetFromTorch().
820      */
821     CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
822 
823     /** @brief Load a network from Intel's Model Optimizer intermediate representation.
824      *  @param[in] xml XML configuration file with network's topology.
825      *  @param[in] bin Binary file with trained weights.
826      *  @returns Net object.
827      *  Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
828      *  backend.
829      */
830     CV_EXPORTS_W Net readNetFromModelOptimizer(const String &xml, const String &bin);
831 
832     /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
833      *  @param onnxFile path to the .onnx file with text description of the network architecture.
834      *  @returns Network object that ready to do forward, throw an exception in failure cases.
835      */
836     CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
837 
838     /** @brief Creates blob from .pb file.
839      *  @param path to the .pb file with input tensor.
840      *  @returns Mat.
841      */
842     CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
843 
844     /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
845      *  subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
846      *  @param image input image (with 1-, 3- or 4-channels).
847      *  @param size spatial size for output image
848      *  @param mean scalar with mean values which are subtracted from channels. Values are intended
849      *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
850      *  @param scalefactor multiplier for @p image values.
851      *  @param swapRB flag which indicates that swap first and last channels
852      *  in 3-channel image is necessary.
853      *  @param crop flag which indicates whether image will be cropped after resize or not
854      *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
855      *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
856      *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
857      *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
858      *  @returns 4-dimensional Mat with NCHW dimensions order.
859      */
860     CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
861                                    const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
862                                    int ddepth=CV_32F);
863 
864     /** @brief Creates 4-dimensional blob from image.
865      *  @details This is an overloaded member function, provided for convenience.
866      *           It differs from the above function only in what argument(s) it accepts.
867      */
868     CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
869                                   const Size& size = Size(), const Scalar& mean = Scalar(),
870                                   bool swapRB=false, bool crop=false, int ddepth=CV_32F);
871 
872 
873     /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
874      *  crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
875      *  swap Blue and Red channels.
876      *  @param images input images (all with 1-, 3- or 4-channels).
877      *  @param size spatial size for output image
878      *  @param mean scalar with mean values which are subtracted from channels. Values are intended
879      *  to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
880      *  @param scalefactor multiplier for @p images values.
881      *  @param swapRB flag which indicates that swap first and last channels
882      *  in 3-channel image is necessary.
883      *  @param crop flag which indicates whether image will be cropped after resize or not
884      *  @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
885      *  @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
886      *  dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
887      *  If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
888      *  @returns 4-dimensional Mat with NCHW dimensions order.
889      */
890     CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
891                                     Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
892                                     int ddepth=CV_32F);
893 
894     /** @brief Creates 4-dimensional blob from series of images.
895      *  @details This is an overloaded member function, provided for convenience.
896      *           It differs from the above function only in what argument(s) it accepts.
897      */
898     CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
899                                    double scalefactor=1.0, Size size = Size(),
900                                    const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
901                                    int ddepth=CV_32F);
902 
903     /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
904      *  (std::vector<cv::Mat>).
905      *  @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
906      *  which you would like to extract the images.
907      *  @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
908      *  (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
909      *  of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
910      */
911     CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
912 
913     /** @brief Convert all weights of Caffe network to half precision floating point.
914      * @param src Path to origin model from Caffe framework contains single
915      *            precision floating point weights (usually has `.caffemodel` extension).
916      * @param dst Path to destination model with updated weights.
917      * @param layersTypes Set of layers types which parameters will be converted.
918      *                    By default, converts only Convolutional and Fully-Connected layers'
919      *                    weights.
920      *
921      * @note Shrinked model has no origin float32 weights so it can't be used
922      *       in origin Caffe framework anymore. However the structure of data
923      *       is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
924      *       So the resulting model may be used there.
925      */
926     CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
927                                        const std::vector<String>& layersTypes = std::vector<String>());
928 
929     /** @brief Create a text representation for a binary network stored in protocol buffer format.
930      *  @param[in] model  A path to binary network.
931      *  @param[in] output A path to output text file to be created.
932      *
933      *  @note To reduce output file size, trained weights are not included.
934      */
935     CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);
936 
937     /** @brief Performs non maximum suppression given boxes and corresponding scores.
938 
939      * @param bboxes a set of bounding boxes to apply NMS.
940      * @param scores a set of corresponding confidences.
941      * @param score_threshold a threshold used to filter boxes by score.
942      * @param nms_threshold a threshold used in non maximum suppression.
943      * @param indices the kept indices of bboxes after NMS.
944      * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
945      * @param top_k if `>0`, keep at most @p top_k picked indices.
946      */
947     CV_EXPORTS_W void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
948                                const float score_threshold, const float nms_threshold,
949                                CV_OUT std::vector<int>& indices,
950                                const float eta = 1.f, const int top_k = 0);
951 
952     CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
953                                const float score_threshold, const float nms_threshold,
954                                CV_OUT std::vector<int>& indices,
955                                const float eta = 1.f, const int top_k = 0);
956 
957     CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
958                              const float score_threshold, const float nms_threshold,
959                              CV_OUT std::vector<int>& indices,
960                              const float eta = 1.f, const int top_k = 0);
961 
962     /** @brief Release a Myriad device is binded by OpenCV.
963      *
964      * Single Myriad device cannot be shared across multiple processes which uses
965      * Inference Engine's Myriad plugin.
966      */
967     CV_EXPORTS_W void resetMyriadDevice();
968 
969 //! @}
970 CV__DNN_EXPERIMENTAL_NS_END
971 }
972 }
973 
974 #include <opencv2/dnn/layer.hpp>
975 #include <opencv2/dnn/dnn.inl.hpp>
976 
977 #endif  /* OPENCV_DNN_DNN_HPP */
978