1 /*
2 * Poly2Tri Copyright (c) 2009-2010, Poly2Tri Contributors
3 * http://code.google.com/p/poly2tri/
4 *
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modification,
8 * are permitted provided that the following conditions are met:
9 *
10 * * Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above copyright notice,
13 * this list of conditions and the following disclaimer in the documentation
14 * and/or other materials provided with the distribution.
15 * * Neither the name of Poly2Tri nor the names of its contributors may be
16 * used to endorse or promote products derived from this software without specific
17 * prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31 #include <stddef.h>
32 #include <stdexcept>
33 #include "sweep.h"
34 #include "sweep_context.h"
35 #include "advancing_front.h"
36 #include "../common/utils.h"
37
38 namespace p2t {
39
40 // Triangulate simple polygon with holes
Triangulate(SweepContext & tcx)41 void Sweep::Triangulate(SweepContext& tcx)
42 {
43 tcx.InitTriangulation();
44 tcx.CreateAdvancingFront(nodes_);
45 // Sweep points; build mesh
46 SweepPoints(tcx);
47 // Clean up
48 FinalizationPolygon(tcx);
49 }
50
SweepPoints(SweepContext & tcx)51 void Sweep::SweepPoints(SweepContext& tcx)
52 {
53 for (int i = 1; i < tcx.point_count(); i++) {
54 Point& point = *tcx.GetPoint(i);
55 Node* node = &PointEvent(tcx, point);
56 for (unsigned int i = 0; i < point.edge_list.size(); i++) {
57 EdgeEvent(tcx, point.edge_list[i], node);
58 }
59 }
60 }
61
FinalizationPolygon(SweepContext & tcx)62 void Sweep::FinalizationPolygon(SweepContext& tcx)
63 {
64 // Get an Internal triangle to start with
65 Triangle* t = tcx.front()->head()->next->triangle;
66 Point* p = tcx.front()->head()->next->point;
67 while (!t->GetConstrainedEdgeCW(*p)) {
68 t = t->NeighborCCW(*p);
69 }
70
71 // Collect interior triangles constrained by edges
72 tcx.MeshClean(*t);
73 }
74
PointEvent(SweepContext & tcx,Point & point)75 Node& Sweep::PointEvent(SweepContext& tcx, Point& point)
76 {
77 Node& node = tcx.LocateNode(point);
78 Node& new_node = NewFrontTriangle(tcx, point, node);
79
80 // Only need to check +epsilon since point never have smaller
81 // x value than node due to how we fetch nodes from the front
82 if (point.x <= node.point->x + EPSILON) {
83 Fill(tcx, node);
84 }
85
86 //tcx.AddNode(new_node);
87
88 FillAdvancingFront(tcx, new_node);
89 return new_node;
90 }
91
EdgeEvent(SweepContext & tcx,Edge * edge,Node * node)92 void Sweep::EdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
93 {
94 tcx.edge_event.constrained_edge = edge;
95 tcx.edge_event.right = (edge->p->x > edge->q->x);
96
97 if (IsEdgeSideOfTriangle(*node->triangle, *edge->p, *edge->q)) {
98 return;
99 }
100
101 // For now we will do all needed filling
102 // TODO: integrate with flip process might give some better performance
103 // but for now this avoid the issue with cases that needs both flips and fills
104 FillEdgeEvent(tcx, edge, node);
105 EdgeEvent(tcx, *edge->p, *edge->q, node->triangle, *edge->q);
106 }
107
EdgeEvent(SweepContext & tcx,Point & ep,Point & eq,Triangle * triangle,Point & point)108 void Sweep::EdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* triangle, Point& point)
109 {
110 if (IsEdgeSideOfTriangle(*triangle, ep, eq)) {
111 return;
112 }
113
114 Point* p1 = triangle->PointCCW(point);
115 Orientation o1 = Orient2d(eq, *p1, ep);
116 if (o1 == COLLINEAR) {
117 if ( triangle->Contains(&eq, p1)) {
118 triangle->MarkConstrainedEdge(&eq, p1 );
119 // We are modifying the constraint maybe it would be better to
120 // not change the given constraint and just keep a variable for the new constraint
121 tcx.edge_event.constrained_edge->q = p1;
122 triangle = &triangle->NeighborAcross(point);
123 EdgeEvent( tcx, ep, *p1, triangle, *p1 );
124 } else {
125 std::runtime_error("EdgeEvent - collinear points not supported");
126 assert(0);
127 }
128 return;
129 }
130
131 Point* p2 = triangle->PointCW(point);
132 Orientation o2 = Orient2d(eq, *p2, ep);
133 if (o2 == COLLINEAR) {
134 if ( triangle->Contains(&eq, p2)) {
135 triangle->MarkConstrainedEdge(&eq, p2 );
136 // We are modifying the constraint maybe it would be better to
137 // not change the given constraint and just keep a variable for the new constraint
138 tcx.edge_event.constrained_edge->q = p2;
139 triangle = &triangle->NeighborAcross(point);
140 EdgeEvent( tcx, ep, *p2, triangle, *p2 );
141 } else {
142 std::runtime_error("EdgeEvent - collinear points not supported");
143 assert(0);
144 }
145 return;
146 }
147
148 if (o1 == o2) {
149 // Need to decide if we are rotating CW or CCW to get to a triangle
150 // that will cross edge
151 if (o1 == CW) {
152 triangle = triangle->NeighborCCW(point);
153 } else{
154 triangle = triangle->NeighborCW(point);
155 }
156 EdgeEvent(tcx, ep, eq, triangle, point);
157 } else {
158 // This triangle crosses constraint so lets flippin start!
159 FlipEdgeEvent(tcx, ep, eq, triangle, point);
160 }
161 }
162
IsEdgeSideOfTriangle(Triangle & triangle,Point & ep,Point & eq)163 bool Sweep::IsEdgeSideOfTriangle(Triangle& triangle, Point& ep, Point& eq)
164 {
165 int index = triangle.EdgeIndex(&ep, &eq);
166
167 if (index != -1) {
168 triangle.MarkConstrainedEdge(index);
169 Triangle* t = triangle.GetNeighbor(index);
170 if (t) {
171 t->MarkConstrainedEdge(&ep, &eq);
172 }
173 return true;
174 }
175 return false;
176 }
177
NewFrontTriangle(SweepContext & tcx,Point & point,Node & node)178 Node& Sweep::NewFrontTriangle(SweepContext& tcx, Point& point, Node& node)
179 {
180 Triangle* triangle = new Triangle(point, *node.point, *node.next->point);
181
182 triangle->MarkNeighbor(*node.triangle);
183 tcx.AddToMap(triangle);
184
185 Node* new_node = new Node(point);
186 nodes_.push_back(new_node);
187
188 new_node->next = node.next;
189 new_node->prev = &node;
190 node.next->prev = new_node;
191 node.next = new_node;
192
193 if (!Legalize(tcx, *triangle)) {
194 tcx.MapTriangleToNodes(*triangle);
195 }
196
197 return *new_node;
198 }
199
Fill(SweepContext & tcx,Node & node)200 void Sweep::Fill(SweepContext& tcx, Node& node)
201 {
202 Triangle* triangle = new Triangle(*node.prev->point, *node.point, *node.next->point);
203
204 // TODO: should copy the constrained_edge value from neighbor triangles
205 // for now constrained_edge values are copied during the legalize
206 triangle->MarkNeighbor(*node.prev->triangle);
207 triangle->MarkNeighbor(*node.triangle);
208
209 tcx.AddToMap(triangle);
210
211 // Update the advancing front
212 node.prev->next = node.next;
213 node.next->prev = node.prev;
214
215 // If it was legalized the triangle has already been mapped
216 if (!Legalize(tcx, *triangle)) {
217 tcx.MapTriangleToNodes(*triangle);
218 }
219
220 }
221
FillAdvancingFront(SweepContext & tcx,Node & n)222 void Sweep::FillAdvancingFront(SweepContext& tcx, Node& n)
223 {
224
225 // Fill right holes
226 Node* node = n.next;
227
228 while (node->next) {
229 // if HoleAngle exceeds 90 degrees then break.
230 if (LargeHole_DontFill(node)) break;
231 Fill(tcx, *node);
232 node = node->next;
233 }
234
235 // Fill left holes
236 node = n.prev;
237
238 while (node->prev) {
239 // if HoleAngle exceeds 90 degrees then break.
240 if (LargeHole_DontFill(node)) break;
241 Fill(tcx, *node);
242 node = node->prev;
243 }
244
245 // Fill right basins
246 if (n.next && n.next->next) {
247 double angle = BasinAngle(n);
248 if (angle < PI_3div4) {
249 FillBasin(tcx, n);
250 }
251 }
252 }
253
254 // True if HoleAngle exceeds 90 degrees.
LargeHole_DontFill(Node * node)255 bool Sweep::LargeHole_DontFill(Node* node) {
256
257 Node* nextNode = node->next;
258 Node* prevNode = node->prev;
259 if (!AngleExceeds90Degrees(node->point, nextNode->point, prevNode->point))
260 return false;
261
262 // Check additional points on front.
263 Node* next2Node = nextNode->next;
264 // "..Plus.." because only want angles on same side as point being added.
265 if ((next2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, next2Node->point, prevNode->point))
266 return false;
267
268 Node* prev2Node = prevNode->prev;
269 // "..Plus.." because only want angles on same side as point being added.
270 if ((prev2Node != NULL) && !AngleExceedsPlus90DegreesOrIsNegative(node->point, nextNode->point, prev2Node->point))
271 return false;
272
273 return true;
274 }
275
AngleExceeds90Degrees(Point * origin,Point * pa,Point * pb)276 bool Sweep::AngleExceeds90Degrees(Point* origin, Point* pa, Point* pb) {
277 double angle = Angle(*origin, *pa, *pb);
278 bool exceeds90Degrees = ((angle > PI_div2) || (angle < -PI_div2));
279 return exceeds90Degrees;
280 }
281
AngleExceedsPlus90DegreesOrIsNegative(Point * origin,Point * pa,Point * pb)282 bool Sweep::AngleExceedsPlus90DegreesOrIsNegative(Point* origin, Point* pa, Point* pb) {
283 double angle = Angle(*origin, *pa, *pb);
284 bool exceedsPlus90DegreesOrIsNegative = (angle > PI_div2) || (angle < 0);
285 return exceedsPlus90DegreesOrIsNegative;
286 }
287
Angle(Point & origin,Point & pa,Point & pb)288 double Sweep::Angle(Point& origin, Point& pa, Point& pb) {
289 /* Complex plane
290 * ab = cosA +i*sinA
291 * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
292 * atan2(y,x) computes the principal value of the argument function
293 * applied to the complex number x+iy
294 * Where x = ax*bx + ay*by
295 * y = ax*by - ay*bx
296 */
297 double px = origin.x;
298 double py = origin.y;
299 double ax = pa.x- px;
300 double ay = pa.y - py;
301 double bx = pb.x - px;
302 double by = pb.y - py;
303 double x = ax * by - ay * bx;
304 double y = ax * bx + ay * by;
305 double angle = atan2(x, y);
306 return angle;
307 }
308
BasinAngle(Node & node)309 double Sweep::BasinAngle(Node& node)
310 {
311 double ax = node.point->x - node.next->next->point->x;
312 double ay = node.point->y - node.next->next->point->y;
313 return atan2(ay, ax);
314 }
315
HoleAngle(Node & node)316 double Sweep::HoleAngle(Node& node)
317 {
318 /* Complex plane
319 * ab = cosA +i*sinA
320 * ab = (ax + ay*i)(bx + by*i) = (ax*bx + ay*by) + i(ax*by-ay*bx)
321 * atan2(y,x) computes the principal value of the argument function
322 * applied to the complex number x+iy
323 * Where x = ax*bx + ay*by
324 * y = ax*by - ay*bx
325 */
326 double ax = node.next->point->x - node.point->x;
327 double ay = node.next->point->y - node.point->y;
328 double bx = node.prev->point->x - node.point->x;
329 double by = node.prev->point->y - node.point->y;
330 return atan2(ax * by - ay * bx, ax * bx + ay * by);
331 }
332
Legalize(SweepContext & tcx,Triangle & t)333 bool Sweep::Legalize(SweepContext& tcx, Triangle& t)
334 {
335 // To legalize a triangle we start by finding if any of the three edges
336 // violate the Delaunay condition
337 for (int i = 0; i < 3; i++) {
338 if (t.delaunay_edge[i])
339 continue;
340
341 Triangle* ot = t.GetNeighbor(i);
342
343 if (ot) {
344 Point* p = t.GetPoint(i);
345 Point* op = ot->OppositePoint(t, *p);
346 int oi = ot->Index(op);
347
348 // If this is a Constrained Edge or a Delaunay Edge(only during recursive legalization)
349 // then we should not try to legalize
350 if (ot->constrained_edge[oi] || ot->delaunay_edge[oi]) {
351 t.constrained_edge[i] = ot->constrained_edge[oi];
352 continue;
353 }
354
355 bool inside = Incircle(*p, *t.PointCCW(*p), *t.PointCW(*p), *op);
356
357 if (inside) {
358 // Lets mark this shared edge as Delaunay
359 t.delaunay_edge[i] = true;
360 ot->delaunay_edge[oi] = true;
361
362 // Lets rotate shared edge one vertex CW to legalize it
363 RotateTrianglePair(t, *p, *ot, *op);
364
365 // We now got one valid Delaunay Edge shared by two triangles
366 // This gives us 4 new edges to check for Delaunay
367
368 // Make sure that triangle to node mapping is done only one time for a specific triangle
369 bool not_legalized = !Legalize(tcx, t);
370 if (not_legalized) {
371 tcx.MapTriangleToNodes(t);
372 }
373
374 not_legalized = !Legalize(tcx, *ot);
375 if (not_legalized)
376 tcx.MapTriangleToNodes(*ot);
377
378 // Reset the Delaunay edges, since they only are valid Delaunay edges
379 // until we add a new triangle or point.
380 // XXX: need to think about this. Can these edges be tried after we
381 // return to previous recursive level?
382 t.delaunay_edge[i] = false;
383 ot->delaunay_edge[oi] = false;
384
385 // If triangle have been legalized no need to check the other edges since
386 // the recursive legalization will handles those so we can end here.
387 return true;
388 }
389 }
390 }
391 return false;
392 }
393
Incircle(Point & pa,Point & pb,Point & pc,Point & pd)394 bool Sweep::Incircle(Point& pa, Point& pb, Point& pc, Point& pd)
395 {
396 double adx = pa.x - pd.x;
397 double ady = pa.y - pd.y;
398 double bdx = pb.x - pd.x;
399 double bdy = pb.y - pd.y;
400
401 double adxbdy = adx * bdy;
402 double bdxady = bdx * ady;
403 double oabd = adxbdy - bdxady;
404
405 if (oabd <= 0)
406 return false;
407
408 double cdx = pc.x - pd.x;
409 double cdy = pc.y - pd.y;
410
411 double cdxady = cdx * ady;
412 double adxcdy = adx * cdy;
413 double ocad = cdxady - adxcdy;
414
415 if (ocad <= 0)
416 return false;
417
418 double bdxcdy = bdx * cdy;
419 double cdxbdy = cdx * bdy;
420
421 double alift = adx * adx + ady * ady;
422 double blift = bdx * bdx + bdy * bdy;
423 double clift = cdx * cdx + cdy * cdy;
424
425 double det = alift * (bdxcdy - cdxbdy) + blift * ocad + clift * oabd;
426
427 return det > 0;
428 }
429
RotateTrianglePair(Triangle & t,Point & p,Triangle & ot,Point & op)430 void Sweep::RotateTrianglePair(Triangle& t, Point& p, Triangle& ot, Point& op)
431 {
432 Triangle* n1, *n2, *n3, *n4;
433 n1 = t.NeighborCCW(p);
434 n2 = t.NeighborCW(p);
435 n3 = ot.NeighborCCW(op);
436 n4 = ot.NeighborCW(op);
437
438 bool ce1, ce2, ce3, ce4;
439 ce1 = t.GetConstrainedEdgeCCW(p);
440 ce2 = t.GetConstrainedEdgeCW(p);
441 ce3 = ot.GetConstrainedEdgeCCW(op);
442 ce4 = ot.GetConstrainedEdgeCW(op);
443
444 bool de1, de2, de3, de4;
445 de1 = t.GetDelunayEdgeCCW(p);
446 de2 = t.GetDelunayEdgeCW(p);
447 de3 = ot.GetDelunayEdgeCCW(op);
448 de4 = ot.GetDelunayEdgeCW(op);
449
450 t.Legalize(p, op);
451 ot.Legalize(op, p);
452
453 // Remap delaunay_edge
454 ot.SetDelunayEdgeCCW(p, de1);
455 t.SetDelunayEdgeCW(p, de2);
456 t.SetDelunayEdgeCCW(op, de3);
457 ot.SetDelunayEdgeCW(op, de4);
458
459 // Remap constrained_edge
460 ot.SetConstrainedEdgeCCW(p, ce1);
461 t.SetConstrainedEdgeCW(p, ce2);
462 t.SetConstrainedEdgeCCW(op, ce3);
463 ot.SetConstrainedEdgeCW(op, ce4);
464
465 // Remap neighbors
466 // XXX: might optimize the markNeighbor by keeping track of
467 // what side should be assigned to what neighbor after the
468 // rotation. Now mark neighbor does lots of testing to find
469 // the right side.
470 t.ClearNeighbors();
471 ot.ClearNeighbors();
472 if (n1) ot.MarkNeighbor(*n1);
473 if (n2) t.MarkNeighbor(*n2);
474 if (n3) t.MarkNeighbor(*n3);
475 if (n4) ot.MarkNeighbor(*n4);
476 t.MarkNeighbor(ot);
477 }
478
FillBasin(SweepContext & tcx,Node & node)479 void Sweep::FillBasin(SweepContext& tcx, Node& node)
480 {
481 if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
482 tcx.basin.left_node = node.next->next;
483 } else {
484 tcx.basin.left_node = node.next;
485 }
486
487 // Find the bottom and right node
488 tcx.basin.bottom_node = tcx.basin.left_node;
489 while (tcx.basin.bottom_node->next
490 && tcx.basin.bottom_node->point->y >= tcx.basin.bottom_node->next->point->y) {
491 tcx.basin.bottom_node = tcx.basin.bottom_node->next;
492 }
493 if (tcx.basin.bottom_node == tcx.basin.left_node) {
494 // No valid basin
495 return;
496 }
497
498 tcx.basin.right_node = tcx.basin.bottom_node;
499 while (tcx.basin.right_node->next
500 && tcx.basin.right_node->point->y < tcx.basin.right_node->next->point->y) {
501 tcx.basin.right_node = tcx.basin.right_node->next;
502 }
503 if (tcx.basin.right_node == tcx.basin.bottom_node) {
504 // No valid basins
505 return;
506 }
507
508 tcx.basin.width = tcx.basin.right_node->point->x - tcx.basin.left_node->point->x;
509 tcx.basin.left_highest = tcx.basin.left_node->point->y > tcx.basin.right_node->point->y;
510
511 FillBasinReq(tcx, tcx.basin.bottom_node);
512 }
513
FillBasinReq(SweepContext & tcx,Node * node)514 void Sweep::FillBasinReq(SweepContext& tcx, Node* node)
515 {
516 // if shallow stop filling
517 if (IsShallow(tcx, *node)) {
518 return;
519 }
520
521 Fill(tcx, *node);
522
523 if (node->prev == tcx.basin.left_node && node->next == tcx.basin.right_node) {
524 return;
525 } else if (node->prev == tcx.basin.left_node) {
526 Orientation o = Orient2d(*node->point, *node->next->point, *node->next->next->point);
527 if (o == CW) {
528 return;
529 }
530 node = node->next;
531 } else if (node->next == tcx.basin.right_node) {
532 Orientation o = Orient2d(*node->point, *node->prev->point, *node->prev->prev->point);
533 if (o == CCW) {
534 return;
535 }
536 node = node->prev;
537 } else {
538 // Continue with the neighbor node with lowest Y value
539 if (node->prev->point->y < node->next->point->y) {
540 node = node->prev;
541 } else {
542 node = node->next;
543 }
544 }
545
546 FillBasinReq(tcx, node);
547 }
548
IsShallow(SweepContext & tcx,Node & node)549 bool Sweep::IsShallow(SweepContext& tcx, Node& node)
550 {
551 double height;
552
553 if (tcx.basin.left_highest) {
554 height = tcx.basin.left_node->point->y - node.point->y;
555 } else {
556 height = tcx.basin.right_node->point->y - node.point->y;
557 }
558
559 // if shallow stop filling
560 if (tcx.basin.width > height) {
561 return true;
562 }
563 return false;
564 }
565
FillEdgeEvent(SweepContext & tcx,Edge * edge,Node * node)566 void Sweep::FillEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
567 {
568 if (tcx.edge_event.right) {
569 FillRightAboveEdgeEvent(tcx, edge, node);
570 } else {
571 FillLeftAboveEdgeEvent(tcx, edge, node);
572 }
573 }
574
FillRightAboveEdgeEvent(SweepContext & tcx,Edge * edge,Node * node)575 void Sweep::FillRightAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
576 {
577 while (node->next->point->x < edge->p->x) {
578 // Check if next node is below the edge
579 if (Orient2d(*edge->q, *node->next->point, *edge->p) == CCW) {
580 FillRightBelowEdgeEvent(tcx, edge, *node);
581 } else {
582 node = node->next;
583 }
584 }
585 }
586
FillRightBelowEdgeEvent(SweepContext & tcx,Edge * edge,Node & node)587 void Sweep::FillRightBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
588 {
589 if (node.point->x < edge->p->x) {
590 if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
591 // Concave
592 FillRightConcaveEdgeEvent(tcx, edge, node);
593 } else{
594 // Convex
595 FillRightConvexEdgeEvent(tcx, edge, node);
596 // Retry this one
597 FillRightBelowEdgeEvent(tcx, edge, node);
598 }
599 }
600 }
601
FillRightConcaveEdgeEvent(SweepContext & tcx,Edge * edge,Node & node)602 void Sweep::FillRightConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
603 {
604 Fill(tcx, *node.next);
605 if (node.next->point != edge->p) {
606 // Next above or below edge?
607 if (Orient2d(*edge->q, *node.next->point, *edge->p) == CCW) {
608 // Below
609 if (Orient2d(*node.point, *node.next->point, *node.next->next->point) == CCW) {
610 // Next is concave
611 FillRightConcaveEdgeEvent(tcx, edge, node);
612 } else {
613 // Next is convex
614 }
615 }
616 }
617
618 }
619
FillRightConvexEdgeEvent(SweepContext & tcx,Edge * edge,Node & node)620 void Sweep::FillRightConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
621 {
622 // Next concave or convex?
623 if (Orient2d(*node.next->point, *node.next->next->point, *node.next->next->next->point) == CCW) {
624 // Concave
625 FillRightConcaveEdgeEvent(tcx, edge, *node.next);
626 } else{
627 // Convex
628 // Next above or below edge?
629 if (Orient2d(*edge->q, *node.next->next->point, *edge->p) == CCW) {
630 // Below
631 FillRightConvexEdgeEvent(tcx, edge, *node.next);
632 } else{
633 // Above
634 }
635 }
636 }
637
FillLeftAboveEdgeEvent(SweepContext & tcx,Edge * edge,Node * node)638 void Sweep::FillLeftAboveEdgeEvent(SweepContext& tcx, Edge* edge, Node* node)
639 {
640 while (node->prev->point->x > edge->p->x) {
641 // Check if next node is below the edge
642 if (Orient2d(*edge->q, *node->prev->point, *edge->p) == CW) {
643 FillLeftBelowEdgeEvent(tcx, edge, *node);
644 } else {
645 node = node->prev;
646 }
647 }
648 }
649
FillLeftBelowEdgeEvent(SweepContext & tcx,Edge * edge,Node & node)650 void Sweep::FillLeftBelowEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
651 {
652 if (node.point->x > edge->p->x) {
653 if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
654 // Concave
655 FillLeftConcaveEdgeEvent(tcx, edge, node);
656 } else {
657 // Convex
658 FillLeftConvexEdgeEvent(tcx, edge, node);
659 // Retry this one
660 FillLeftBelowEdgeEvent(tcx, edge, node);
661 }
662 }
663 }
664
FillLeftConvexEdgeEvent(SweepContext & tcx,Edge * edge,Node & node)665 void Sweep::FillLeftConvexEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
666 {
667 // Next concave or convex?
668 if (Orient2d(*node.prev->point, *node.prev->prev->point, *node.prev->prev->prev->point) == CW) {
669 // Concave
670 FillLeftConcaveEdgeEvent(tcx, edge, *node.prev);
671 } else{
672 // Convex
673 // Next above or below edge?
674 if (Orient2d(*edge->q, *node.prev->prev->point, *edge->p) == CW) {
675 // Below
676 FillLeftConvexEdgeEvent(tcx, edge, *node.prev);
677 } else{
678 // Above
679 }
680 }
681 }
682
FillLeftConcaveEdgeEvent(SweepContext & tcx,Edge * edge,Node & node)683 void Sweep::FillLeftConcaveEdgeEvent(SweepContext& tcx, Edge* edge, Node& node)
684 {
685 Fill(tcx, *node.prev);
686 if (node.prev->point != edge->p) {
687 // Next above or below edge?
688 if (Orient2d(*edge->q, *node.prev->point, *edge->p) == CW) {
689 // Below
690 if (Orient2d(*node.point, *node.prev->point, *node.prev->prev->point) == CW) {
691 // Next is concave
692 FillLeftConcaveEdgeEvent(tcx, edge, node);
693 } else{
694 // Next is convex
695 }
696 }
697 }
698
699 }
700
FlipEdgeEvent(SweepContext & tcx,Point & ep,Point & eq,Triangle * t,Point & p)701 void Sweep::FlipEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle* t, Point& p)
702 {
703 Triangle& ot = t->NeighborAcross(p);
704 Point& op = *ot.OppositePoint(*t, p);
705
706 if (&ot == NULL) {
707 // If we want to integrate the fillEdgeEvent do it here
708 // With current implementation we should never get here
709 //throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
710 assert(0);
711 }
712
713 if (InScanArea(p, *t->PointCCW(p), *t->PointCW(p), op)) {
714 // Lets rotate shared edge one vertex CW
715 RotateTrianglePair(*t, p, ot, op);
716 tcx.MapTriangleToNodes(*t);
717 tcx.MapTriangleToNodes(ot);
718
719 if (p == eq && op == ep) {
720 if (eq == *tcx.edge_event.constrained_edge->q && ep == *tcx.edge_event.constrained_edge->p) {
721 t->MarkConstrainedEdge(&ep, &eq);
722 ot.MarkConstrainedEdge(&ep, &eq);
723 Legalize(tcx, *t);
724 Legalize(tcx, ot);
725 } else {
726 // XXX: I think one of the triangles should be legalized here?
727 }
728 } else {
729 Orientation o = Orient2d(eq, op, ep);
730 t = &NextFlipTriangle(tcx, (int)o, *t, ot, p, op);
731 FlipEdgeEvent(tcx, ep, eq, t, p);
732 }
733 } else {
734 Point& newP = NextFlipPoint(ep, eq, ot, op);
735 FlipScanEdgeEvent(tcx, ep, eq, *t, ot, newP);
736 EdgeEvent(tcx, ep, eq, t, p);
737 }
738 }
739
NextFlipTriangle(SweepContext & tcx,int o,Triangle & t,Triangle & ot,Point & p,Point & op)740 Triangle& Sweep::NextFlipTriangle(SweepContext& tcx, int o, Triangle& t, Triangle& ot, Point& p, Point& op)
741 {
742 if (o == CCW) {
743 // ot is not crossing edge after flip
744 int edge_index = ot.EdgeIndex(&p, &op);
745 ot.delaunay_edge[edge_index] = true;
746 Legalize(tcx, ot);
747 ot.ClearDelunayEdges();
748 return t;
749 }
750
751 // t is not crossing edge after flip
752 int edge_index = t.EdgeIndex(&p, &op);
753
754 t.delaunay_edge[edge_index] = true;
755 Legalize(tcx, t);
756 t.ClearDelunayEdges();
757 return ot;
758 }
759
NextFlipPoint(Point & ep,Point & eq,Triangle & ot,Point & op)760 Point& Sweep::NextFlipPoint(Point& ep, Point& eq, Triangle& ot, Point& op)
761 {
762 Orientation o2d = Orient2d(eq, op, ep);
763 if (o2d == CW) {
764 // Right
765 return *ot.PointCCW(op);
766 } else if (o2d == CCW) {
767 // Left
768 return *ot.PointCW(op);
769 } else{
770 //throw new RuntimeException("[Unsupported] Opposing point on constrained edge");
771 assert(0);
772 }
773 }
774
FlipScanEdgeEvent(SweepContext & tcx,Point & ep,Point & eq,Triangle & flip_triangle,Triangle & t,Point & p)775 void Sweep::FlipScanEdgeEvent(SweepContext& tcx, Point& ep, Point& eq, Triangle& flip_triangle,
776 Triangle& t, Point& p)
777 {
778 Triangle& ot = t.NeighborAcross(p);
779 Point& op = *ot.OppositePoint(t, p);
780
781 if (&t.NeighborAcross(p) == NULL) {
782 // If we want to integrate the fillEdgeEvent do it here
783 // With current implementation we should never get here
784 //throw new RuntimeException( "[BUG:FIXME] FLIP failed due to missing triangle");
785 assert(0);
786 }
787
788 if (InScanArea(eq, *flip_triangle.PointCCW(eq), *flip_triangle.PointCW(eq), op)) {
789 // flip with new edge op->eq
790 FlipEdgeEvent(tcx, eq, op, &ot, op);
791 // TODO: Actually I just figured out that it should be possible to
792 // improve this by getting the next ot and op before the above
793 // flip and continue the flipScanEdgeEvent here
794 // set new ot and op here and loop back to inScanArea test
795 // also need to set a new flip_triangle first
796 // Turns out at first glance that this is somewhat complicated
797 // so it will have to wait.
798 } else{
799 Point& newP = NextFlipPoint(ep, eq, ot, op);
800 FlipScanEdgeEvent(tcx, ep, eq, flip_triangle, ot, newP);
801 }
802 }
803
~Sweep()804 Sweep::~Sweep() {
805
806 // Clean up memory
807 for (size_t i = 0; i < nodes_.size(); i++) {
808 delete nodes_[i];
809 }
810
811 }
812
813 }
814
815