// //****************************************************************************** // MStar Software // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved. // All software, firmware and related documentation herein ("MStar Software") are // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by // law, including, but not limited to, copyright law and international treaties. // Any use, modification, reproduction, retransmission, or republication of all // or part of MStar Software is expressly prohibited, unless prior written // permission has been granted by MStar. // // By accessing, browsing and/or using MStar Software, you acknowledge that you // have read, understood, and agree, to be bound by below terms ("Terms") and to // comply with all applicable laws and regulations: // // 1. MStar shall retain any and all right, ownership and interest to MStar // Software and any modification/derivatives thereof. // No right, ownership, or interest to MStar Software and any // modification/derivatives thereof is transferred to you under Terms. // // 2. You understand that MStar Software might include, incorporate or be // supplied together with third party`s software and the use of MStar // Software may require additional licenses from third parties. // Therefore, you hereby agree it is your sole responsibility to separately // obtain any and all third party right and license necessary for your use of // such third party`s software. // // 3. MStar Software and any modification/derivatives thereof shall be deemed as // MStar`s confidential information and you agree to keep MStar`s // confidential information in strictest confidence and not disclose to any // third party. // // 4. MStar Software is provided on an "AS IS" basis without warranties of any // kind. Any warranties are hereby expressly disclaimed by MStar, including // without limitation, any warranties of merchantability, non-infringement of // intellectual property rights, fitness for a particular purpose, error free // and in conformity with any international standard. You agree to waive any // claim against MStar for any loss, damage, cost or expense that you may // incur related to your use of MStar Software. // In no event shall MStar be liable for any direct, indirect, incidental or // consequential damages, including without limitation, lost of profit or // revenues, lost or damage of data, and unauthorized system use. // You agree that this Section 4 shall still apply without being affected // even if MStar Software has been modified by MStar in accordance with your // request or instruction for your use, except otherwise agreed by both // parties in writing. // // 5. If requested, MStar may from time to time provide technical supports or // services in relation with MStar Software to you for your use of // MStar Software in conjunction with your or your customer`s product // ("Services"). // You understand and agree that, except otherwise agreed by both parties in // writing, Services are provided on an "AS IS" basis and the warranty // disclaimer set forth in Section 4 above shall apply. // // 6. Nothing contained herein shall be construed as by implication, estoppels // or otherwise: // (a) conferring any license or right to use MStar name, trademark, service // mark, symbol or any other identification; // (b) obligating MStar or any of its affiliates to furnish any person, // including without limitation, you and your customers, any assistance // of any kind whatsoever, or any information; or // (c) conferring any license or right under any intellectual property right. // // 7. These terms shall be governed by and construed in accordance with the laws // of Taiwan, R.O.C., excluding its conflict of law rules. // Any and all dispute arising out hereof or related hereto shall be finally // settled by arbitration referred to the Chinese Arbitration Association, // Taipei in accordance with the ROC Arbitration Law and the Arbitration // Rules of the Association by three (3) arbitrators appointed in accordance // with the said Rules. // The place of arbitration shall be in Taipei, Taiwan and the language shall // be English. // The arbitration award shall be final and binding to both parties. // //****************************************************************************** // #ifndef _HAL_PNL_C_ #define _HAL_PNL_C_ //------------------------------------------------------------------------------------------------- // Include Files //------------------------------------------------------------------------------------------------- #include "MsCommon.h" #include "MsTypes.h" #include "utopia.h" #include "utopia_dapi.h" #include "apiPNL.h" #include "apiPNL_v2.h" #include "drvPNL.h" #include "halPNL.h" #include "PNL_private.h" #include "pnl_hwreg_utility2.h" #include "Messi_pnl_lpll_tbl.h" #ifdef MSOS_TYPE_LINUX_KERNEL #include #include #include #else #include "string.h" #define do_div(x,y) ((x)/=(y)) #endif //------------------------------------------------------------------------------------------------- // Driver Compiler Options //------------------------------------------------------------------------------------------------- //------------------------------------------------------------------------------------------------- // Local Defines //------------------------------------------------------------------------------------------------- #define UNUSED(x) (x=x) #if 1 #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...) { if((_dbgSwitch_ & _u16PnlDbgSwitch) != 0) printf("PNL:"_fmt, ##_args); } #define HAL_MOD_CAL_DBG(x) //x #else #define HAL_PNL_DBG(_dbgSwitch_, _fmt, _args...) { } #endif #define DAC_LPLL_ICTRL 0x0002 #define LVDS_LPLL_ICTRL 0x0001 //Get MOD calibration time #define MOD_CAL_TIMER FALSE //------------------------------------------------------------------------------------------------- // Local Structurs //------------------------------------------------------------------------------------------------- //------------------------------------------------------------------------------------------------- // Global Variables //------------------------------------------------------------------------------------------------- #define LANE_NUM_EACH_PINMAPPING_GROUP1 4 #define LANE_NUM_EACH_PINMAPPING_GROUP2 4 #define LANE_NUM_EACH_PINMAPPING_GROUP3 4 #define LANE_NUM_EACH_PINMAPPING_GROUP4 2 #define PINMAPPING_EXP 16 //------------------------------------------------------------------------------------------------- // Local Variables //------------------------------------------------------------------------------------------------- MS_U8 LANE_AND_CLK_TBL[VBY1_CLK_TBL_ROW][3]= { //lane(from) lane(to) bit(mask) { 0, 3, 0x02, }, { 4, 6, 0x04, }, { 7, 9, 0x08, }, { 10, 13, 0x10, } }; //------------------------------------------------------------------------------------------------- // Debug Functions //------------------------------------------------------------------------------------------------- //------------------------------------------------------------------------------------------------- // Local Functions //------------------------------------------------------------------------------------------------- static void _MHal_PNL_Set_Clk(void *pInstance, MS_U8 u8LaneNum, MS_U16 u16OutputOrder0_3, MS_U16 u16OutputOrder4_7, MS_U16 u16OutputOrder8_11, MS_U16 u16OutputOrder12_13); static MS_U8 _MHal_PNL_Get_LaneNum(void *pInstance); //------------------------------------------------------------------------------------------------- // Global Function //------------------------------------------------------------------------------------------------- /** * @brief: Power On MOD. but not mutex protected * */ MS_U8 MHal_MOD_PowerOn(void *pInstance, MS_BOOL bEn, MS_U8 u8LPLL_Type,MS_U8 DualModeType, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); if( bEn ) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x00, BIT(8)); //analog MOD power down. 1: power down, 0: power up // For Mod2 no output signel /////////////////////////////////////////////////// //2. Power on MOD (current and regulator) MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00 , BIT(0)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(8) , BIT(8)); //enable ib, enable ck MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1C, 0x1C); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, (BIT(1) | BIT(0)), (BIT(1) | BIT(0))); // clock gen of dot-mini if(u8LPLL_Type == E_PNL_TYPE_MINILVDS) { MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x4400); MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x4400); } //// for osd dedicated output port, 1 port for video and 1 port for osd else if((u8LPLL_Type == E_PNL_TYPE_HS_LVDS)&& (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE)) { MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0400); // [11:8]reg_ckg_dot_mini_pre2_osd MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0044); // [3:0]reg_ckg_dot_mini_osd // [7:4]reg_ckg_dot_mini_pre_osd } else { MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x0000); MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x0000); } // 3. 4. 5. MHal_Output_LVDS_Pair_Setting(pInstance, DualModeType, u16OutputCFG0_7, u16OutputCFG8_15, u16OutputCFG16_21); } else { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, BIT(8), BIT(8)); if(u8LPLL_Type !=E_PNL_TYPE_MINILVDS) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(0), BIT(0)); //analog MOD power down. 1: power down, 0: power up MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00, BIT(8)); } MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0, (BIT(1) | BIT(0) )); //enable ib, enable ck // clock gen of dot-mini MOD_A_W2BYTE(REG_MOD_A_BK00_58_L, 0x1100); MOD_A_W2BYTE(REG_MOD_A_BK00_59_L, 0x1100); } return 1; } /** * @brief: Setup the PVDD power 1:2.5V, 0:3.3V * */ void MHal_MOD_PVDD_Power_Setting(void *pInstance, MS_BOOL bIs2p5) { //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, ((bIs2p5)? BIT(6):0), BIT(6)); //MOD PVDD=1: 0.9 } void MHal_PNL_TCON_Init(void *pInstance) { } void MHal_Shift_LVDS_Pair(void *pInstance, MS_U8 Type) { if(Type == 1) MOD_W2BYTEMSK(REG_MOD_BK00_42_L, (BIT(7) | BIT(6)), (BIT(7) | BIT(6))); // shift_lvds_pair, set LVDS Mode3 else MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6))); } void MHal_Output_LVDS_Pair_Setting(void *pInstance, MS_U8 Type, MS_U16 u16OutputCFG0_7, MS_U16 u16OutputCFG8_15, MS_U16 u16OutputCFG16_21) { if(Type == LVDS_DUAL_OUTPUT_SPECIAL ) { MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0555); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x1554); } else if(Type == LVDS_SINGLE_OUTPUT_A) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555); } else if( Type == LVDS_SINGLE_OUTPUT_B) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555); } else if( Type == LVDS_OUTPUT_User) { MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16OutputCFG0_7); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16OutputCFG8_15); } else { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0x5550, 0xFFF0); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0555); } MsOS_DelayTask(2); } static MS_U8 _MHal_PNL_Get_LaneNum(void *pInstance) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); MS_U8 u8LaneNum = 0; //check lane num return u8LaneNum; } static void _MHal_PNL_Set_Clk(void *pInstance, MS_U8 Type, MS_U16 u16OutputOrder0_3, MS_U16 u16OutputOrder4_7, MS_U16 u16OutputOrder8_11, MS_U16 u16OutputOrder12_13) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER ) { MS_U8 u8Clk = 0; MS_U8 u8LaneNum = 0; MS_BOOL bSkip = TRUE; MS_U8 u8Count = 0; MS_U8 u8Count1 = 0; MS_U8 u8StartLane = 0; //check lane num u8LaneNum = _MHal_PNL_Get_LaneNum(pInstance); if(u8LaneNum!=0) { bSkip = FALSE; } else { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0x1F, 0x1F); //open all clk bSkip = TRUE; } //count clk if(!bSkip) { u8Clk = 0; u8StartLane = 0; for( u8Count = u8StartLane ; u8Count < (u8StartLane+LANE_NUM_EACH_PINMAPPING_GROUP1) ; u8Count++ ) {//lane 0 - lane 3 if( ( u16OutputOrder0_3 % PINMAPPING_EXP ) < u8LaneNum) { u8Count1 = 0; do { if(u8Count>=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1]) { u8Clk |= LANE_AND_CLK_TBL[u8Count1][2]; u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable break; } u8Count1 ++; } while(u8Count1=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1]) { u8Clk |= LANE_AND_CLK_TBL[u8Count1][2]; u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable break; } u8Count1 ++; } while(u8Count1=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1]) { u8Clk |= LANE_AND_CLK_TBL[u8Count1][2]; u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable break; } u8Count1 ++; } while(u8Count1=LANE_AND_CLK_TBL[u8Count1][0] && u8Count<=LANE_AND_CLK_TBL[u8Count1][1]) { u8Clk |= LANE_AND_CLK_TBL[u8Count1][2]; u8Clk |= 0x01;//mod_a_reg38 [1]:clk enable break; } u8Count1 ++; } while(u8Count1u32DeviceID)],(void**)(&pPNLResourcePrivate)); if(Type == APIPNL_OUTPUT_CHANNEL_ORDER_USER ) { MOD_W2BYTE(REG_MOD_BK00_08_L, u16OutputOrder0_3); MOD_W2BYTE(REG_MOD_BK00_09_L, u16OutputOrder4_7); MOD_W2BYTE(REG_MOD_BK00_0A_L, u16OutputOrder8_11); MOD_W2BYTE(REG_MOD_BK00_0B_L, u16OutputOrder12_13); } else { if( (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_10BIT_8LANE) ||(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type_Ext == E_PNL_LPLL_VBY1_8BIT_8LANE)) { if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16MOD_CTRLA & BIT(1)) { MOD_W2BYTE(REG_MOD_BK00_08_L, 0xDCBA); MOD_W2BYTE(REG_MOD_BK00_09_L, 0x6420); MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7531); MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0098); } else { MOD_W2BYTE(REG_MOD_BK00_08_L, 0xDCBA); MOD_W2BYTE(REG_MOD_BK00_09_L, 0x3210); MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7654); MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0098); } } else if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS) {//LVDS MOD_W2BYTE(REG_MOD_BK00_08_L, 0x10DC); MOD_W2BYTE(REG_MOD_BK00_09_L, 0x5432); MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x9876); MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x00BA); } else { MOD_W2BYTE(REG_MOD_BK00_08_L, 0xDCBA); MOD_W2BYTE(REG_MOD_BK00_09_L, 0x3210); MOD_W2BYTE(REG_MOD_BK00_0A_L, 0x7654); MOD_W2BYTE(REG_MOD_BK00_0B_L, 0x0098); } } } void MHal_PQ_Clock_Gen_For_Gamma(void *pInstance) { W2BYTEMSK(REG_CLKGEN0_52_L, 0x00, 0x07); } void MHal_VOP_SetGammaMappingMode(void *pInstance, MS_U8 u8Mapping) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); if(u8Mapping & GAMMA_MAPPING) { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_74_L, (u8Mapping & GAMMA_10BIT_MAPPING)? BIT(15):0, BIT(15)); } else { PNL_ASSERT(0, "Invalid eSupportGammaMapMode [%d] Passed to [%s], please make sure the u8Mapping[%d] is valid\n.", u8Mapping, __FUNCTION__, u8Mapping); } } MS_BOOL Hal_VOP_Is_GammaMappingMode_enable(void *pInstance) { // Only support 1024 entry return TRUE; } // After A5, 8 bit mode only support burst write!!! MS_BOOL Hal_VOP_Is_GammaSupportSignalWrite(void *pInstance, DRVPNL_GAMMA_MAPPEING_MODE u8Mapping) { if( u8Mapping == E_DRVPNL_GAMMA_10BIT_MAPPING ) return TRUE; else return FALSE; } void hal_PNL_WriteGamma12Bit(void *pInstance, MS_U8 u8Channel, MS_BOOL bBurstWrite, MS_U16 u16Addr, MS_U16 u16GammaValue) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); MS_U16 u16Delay = 0xFFFF; PNL_DBG(PNL_DBGLEVEL_GAMMA, "Write [ch %d][addr 0x%x]: 0x%x \n", u8Channel, u16Addr, u16GammaValue); if (!bBurstWrite ) { while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0xE0) && (--u16Delay)); // Check whether the Write chanel is ready PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout"); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6C_L, u16Addr, 0x3FF); // set address port SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, (REG_SC_BK10_6E_L + u8Channel *2), u16GammaValue, 0xFFF); // Set channel data // kick off write switch(u8Channel) { case 0: // Red SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(5), BIT(5)); break; case 1: // Green SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(6), BIT(6)); break; case 2: // Blue SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, BIT(7), BIT(7)); break; } while (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_6D_L, 0xE0) && (--u16Delay)); // Check whether the Write chanel is ready } else { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6E_L, u16GammaValue, 0xFFF); } PNL_ASSERT(u16Delay > 0, "%s\n", "WriteGamma timeout"); } void hal_PNL_SetMaxGammaValue(void *pInstance, MS_U8 u8Channel, MS_U16 u16MaxGammaValue) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); PNL_DBG(PNL_DBGLEVEL_GAMMA, "Max gamma of SC%u %d is 0x%x\n", (unsigned int)pPNLInstancePrivate->u32DeviceID, u8Channel, u16MaxGammaValue); switch(u8Channel) { case 0: // max. Red SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7A_L , u16MaxGammaValue, 0xFFF); // max. base 0 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7B_L , u16MaxGammaValue, 0xFFF); // max. base 1 break; case 1: // max. Green SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7C_L , u16MaxGammaValue, 0xFFF); // max. base 0 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7D_L , u16MaxGammaValue, 0xFFF); // max. base 1 break; case 2: //max. Blue SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7E_L , u16MaxGammaValue, 0xFFF); // max. base 0 SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_7F_L , u16MaxGammaValue, 0xFFF); // max. base 1 break; } } ///////////////////////////////////////////////////////////////////////////// // Gamma format (12 bit LUT) // 0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[], // 1 set uses 2 bytes of memory. // // [T2 and before ] N = 256 // [T3] N = 256 or 1024 // ______________________________________________________________________________ // Byte | 0 1 2 n-1 n // [G1|G0] [G0] [G1] . ...... . [Gmax] [Gmax] // 3:0 3:0 11:4 11:4 3:0 11:4 // void Hal_PNL_Set12BitGammaPerChannel(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); MS_U16 u16Addr = 0; MS_U16 u16CodeTableIndex = u16Addr/2*3; MS_U16 u16GammaValue = 0; MS_U16 u16MaxGammaValue = 0; MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024; MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode); #if 0 //The patch for Messi Burst Write bug. Mantis: 1111420 bUsingBurstWrite=FALSE; #endif // Go to burst write if not support if ( bUsingBurstWrite ) { // 1. initial burst write address, LUT_ADDR[7:0] SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6C_L, 0x00 , 0x3FF); // 2. select burst write channel, REG_LUT_BW_CH_SEL[1:0] switch(u8Channel) { case 0: // Red SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(3) | BIT(2) ); break; case 1: // Green SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(2) , BIT(3) | BIT(2) ); break; case 2: // Blue SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(3) , BIT(3) | BIT(2) ); break; } // 3. enable burst write mode, REG_LUT_BW_MAIN_EN SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(0) , BIT(0)); // Burst write enable } //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode ); // write gamma table per one channel for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3) { // gamma x u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F; u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4; PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel); if(u16MaxGammaValue < u16GammaValue) { u16MaxGammaValue = u16GammaValue; } // write gamma value hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue); u16Addr++; // gamma x+1 u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4; u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4; PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue); if(u16MaxGammaValue < u16GammaValue) { u16MaxGammaValue = u16GammaValue; } // write gamma value hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue); u16Addr++; } if ( bUsingBurstWrite ) { // 5. after finish burst write data of one channel, disable burst write mode SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(0)); } hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue); } ///////////////////////////////////////////////////////////////////////////// // Gamma format (12 bit LUT) // 0, 1, 2, 3, ..., NumOfLevel, totally N Sets of tNormalGammaR/G/B[], // 1 set uses 2 bytes of memory. // // [T2 and before ] N = 256 // [T3] N = 256 or 1024 // ______________________________________________________________________________ // Byte | 0 1 2 n-1 n // [G1|G0] [G0] [G1] . ...... . [Gmax] [Gmax] // 3:0 3:0 11:4 11:4 3:0 11:4 // #ifdef MONACO_SC2 void Hal_PNL_Set12BitGammaPerChannel_SC2(void *pInstance, MS_U8 u8Channel, MS_U8 * u8Tab, DRVPNL_GAMMA_MAPPEING_MODE GammaMapMode ) { MS_U16 u16Addr = 0; MS_U16 u16CodeTableIndex = u16Addr/2*3; MS_U16 u16GammaValue = 0; MS_U16 u16MaxGammaValue = 0; MS_U16 u16NumOfLevel = GammaMapMode == E_DRVPNL_GAMMA_8BIT_MAPPING ? 256 : 1024; MS_BOOL bUsingBurstWrite = !Hal_VOP_Is_GammaSupportSignalWrite(pInstance,GammaMapMode); PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); // Go to burst write if not support if ( bUsingBurstWrite ) { // 1. initial burst write address, LUT_ADDR[7:0] SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6C_L, 0x00 , 0x3FF); // 2. select burst write channel, REG_LUT_BW_CH_SEL[1:0] switch(u8Channel) { case 0: // Red SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(3) | BIT(2) ); break; case 1: // Green SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(2) , BIT(3) | BIT(2) ); break; case 2: // Blue SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(3) , BIT(3) | BIT(2) ); break; } // 3. enable burst write mode, REG_LUT_BW_MAIN_EN SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, BIT(0) , BIT(0)); // Burst write enable } //printf("\33[0;31m Gamma Mapping mode %d \n \33[m",GammaMapMode ); // write gamma table per one channel for(; u16Addr < u16NumOfLevel; u16CodeTableIndex += 3) { // gamma x u16GammaValue = u8Tab[u16CodeTableIndex] & 0x0F; u16GammaValue |= u8Tab[u16CodeTableIndex+1] << 4; PNL_DBG(PNL_DBGLEVEL_GAMMA,"Gamma x: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x, GammaLvl=%d\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+1, u8Tab[u16CodeTableIndex+1], u16GammaValue, u16NumOfLevel); if(u16MaxGammaValue < u16GammaValue) { u16MaxGammaValue = u16GammaValue; } // write gamma value hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue); u16Addr++; // gamma x+1 u16GammaValue = (u8Tab[u16CodeTableIndex] & 0xF0) >> 4; u16GammaValue |= u8Tab[u16CodeTableIndex+2] << 4; PNL_DBG(PNL_DBGLEVEL_GAMMA, "Gamma x+1: SrcGTbl[%d] = 0x%x, [%d] = 0x%x, Gamma = 0x%x\n", u16CodeTableIndex, u8Tab[u16CodeTableIndex], u16CodeTableIndex+2, u8Tab[u16CodeTableIndex+2], u16GammaValue); if(u16MaxGammaValue < u16GammaValue) { u16MaxGammaValue = u16GammaValue; } // write gamma value hal_PNL_WriteGamma12Bit(pInstance,u8Channel,bUsingBurstWrite, u16Addr, u16GammaValue); u16Addr++; } if ( bUsingBurstWrite ) { // 5. after finish burst write data of one channel, disable burst write mode SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK10_6D_L, 0x00 , BIT(0)); } hal_PNL_SetMaxGammaValue(pInstance,u8Channel, u16MaxGammaValue); } #endif // src : 1 (scaler lpll) // src : 0 (frc lpll) MS_U8 MHal_PNL_FRC_lpll_src_sel(void *pInstance, MS_U8 u8src) { if (u8src > 1) { return FALSE; } else { //Not support FRCINSIDE(frc lpll) for Monet #if 0 W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F); W2BYTEMSK(L_BK_LPLL(0x7F), u8src?BIT(8):0, BIT(8)); if(u8src==0) { W2BYTEMSK(L_BK_LPLL(0x00), 0x01, 0x0F); W2BYTEMSK(L_BK_LPLL(0x7F), BIT(8), BIT(8)); W2BYTEMSK(L_BK_LPLL(0x00), 0x00, 0x0F); // restore to sub bnak 0 } #endif return TRUE; } } static MS_U8 _MHal_PNL_GetSupportedLPLLIndex(void *pInstance, PNL_TYPE eLPLL_Type, PNL_MODE eLPLL_Mode, MS_U64 ldHz, PNL_LPLL_TYPE_SEL lpll_type_sel) { MS_U8 u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX; #if defined (__aarch64__) PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel); #else PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu, lpll_type_sel=%u\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz, lpll_type_sel); #endif switch(lpll_type_sel) { default: case E_PNL_LPLL_VIDEO: { switch (eLPLL_Type) { case E_PNL_TYPE_TTL: if ((ldHz >= 250000000) && (ldHz < 500000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_25to50MHz; } else if((ldHz >= 500000000) && (ldHz < 750000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_50to75MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_TTL_75to150MHz; } break; case E_PNL_TYPE_LVDS: switch (eLPLL_Mode) { case E_PNL_MODE_SINGLE: u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_1CH_50to80MHz; break; default: case E_PNL_MODE_DUAL: if ((ldHz >= 500000000) && (ldHz < 1150000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_50to115MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_LVDS_2CH_115to150MHz; } break; } break; case E_PNL_TYPE_HS_LVDS: if((ldHz >= 500000000) && (ldHz < 1150000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_50to115MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_HS_LVDS_1CH_115to150MHz; } break; case E_PNL_LPLL_MINILVDS_1CH_3P_8BIT: u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1CH_3PAIR_8BIT_50to80MHz; break; case E_PNL_LPLL_MINILVDS_2CH_3P_8BIT: if((ldHz >= 500000000) && (ldHz < 1000000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_50to100MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_8BIT_100to150MHz; } break; case E_PNL_LPLL_MINILVDS_2CH_6P_8BIT: if((ldHz >= 500000000) && (ldHz < 1000000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_50to100MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_6PAIR_8BIT_100to150MHz; } break; case E_PNL_LPLL_MINILVDS_1CH_3P_6BIT: if((ldHz >= 500000000) && (ldHz < 666700000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1BK_3PAIR_6BIT_50to66_67MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_1BK_3PAIR_6BIT_66_67to80MHz; } break; case E_PNL_LPLL_MINILVDS_2CH_3P_6BIT: if ((ldHz <= 500000000) && (ldHz < 666700000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_50to66_67MHz; } else if((ldHz >= 666700000) && (ldHz < 1333300000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_66_67to133_33MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_133_33to150MHz; } break; case E_PNL_LPLL_MINILVDS_2CH_6P_6BIT: if ((ldHz <= 500000000) && (ldHz < 670000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_50to66_67MHz; } else if((ldHz >= 670000000) && (ldHz < 1330000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_66_67to133_33MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MINILVDS_2CH_3PAIR_6BIT_133_33to150MHz; } break; case E_PNL_LPLL_EPI28_4P: if((ldHz >= 800000000) && (ldHz < 1140000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_4PAIR_80to114MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_4PAIR_114to150MHz; } break; case E_PNL_LPLL_EPI28_6P: u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_6PAIR_80to150MHz; break; case E_PNL_LPLL_EPI28_8P: if((ldHz >= 800000000) && (ldHz < 1140000000)) { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_80to114MHz; } else { u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_EPI_28_8BIT_8PAIR_114to150MHz; } break; default: u8SupportedLPLLIndex = E_PNL_SUPPORTED_LPLL_MAX; break; } } break; } return u8SupportedLPLLIndex; } static void _MHal_PNL_DumpLPLLTable(void *pInstance, MS_U8 LPLLTblIndex, PNL_LPLL_TYPE_SEL lpll_type_sel) { if(lpll_type_sel == E_PNL_LPLL_VIDEO) { if (LPLLTblIndex == E_PNL_SUPPORTED_LPLL_MAX) { printf("[%s,%5d] Unspported LPLL Type, skip LPLL setting\n",__FUNCTION__,__LINE__); return; } int indexCounter = 0; for(indexCounter = 0 ; indexCounteru32DeviceID)],(void**)(&pPNLResourcePrivate)); E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX; PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__); u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz, E_PNL_LPLL_VIDEO); if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX) { printf("Not Supported LPLL Type, skip LPLL Init\n"); return; } _MHal_PNL_DumpLPLLTable(pInstance, u8SupportedLPLLLIndex, E_PNL_LPLL_VIDEO); MHal_MOD_PVDD_Power_Setting(pInstance, pPNLResourcePrivate->sthalPNL._bPVDD_2V5); // Einstein is always use 3.3V PVDD Power. } MS_U8 MHal_PNL_Get_Loop_DIV(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz) { MS_U16 u16loop_div = 0; E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX; #if defined (__aarch64__) PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz); #else PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, u8LPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, u8LPLL_Mode, ldHz); #endif u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,u8LPLL_Mode,ldHz,E_PNL_LPLL_VIDEO); if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX) { printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__); u16loop_div = 0 ; } else { u16loop_div = u16LoopDiv[u8SupportedLPLLLIndex]; } PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_div=%u\n", u16loop_div); u16loop_div *= 2; return u16loop_div; } MS_U16 MHal_PNL_Get_LPLL_LoopGain(void *pInstance, MS_U8 eLPLL_Mode, MS_U8 eLPLL_Type, MS_U64 ldHz) { MS_U16 u16loop_gain = 0; E_PNL_SUPPORTED_LPLL_TYPE u8SupportedLPLLLIndex = E_PNL_SUPPORTED_LPLL_MAX; #if defined (__aarch64__) PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%lu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz); #else PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]E_PNL_LPLL_VIDEO : eLPLL_Type=%u, eLPLL_Mode=%u, ldHz=%llu\n", __FUNCTION__, __LINE__, eLPLL_Type, eLPLL_Mode, ldHz); #endif u8SupportedLPLLLIndex = _MHal_PNL_GetSupportedLPLLIndex(pInstance, eLPLL_Type,eLPLL_Mode,ldHz,E_PNL_LPLL_VIDEO); if (u8SupportedLPLLLIndex == E_PNL_SUPPORTED_LPLL_MAX) { printf("[%s,%5d] Error LPLL type\n",__FUNCTION__,__LINE__); u16loop_gain = 0 ; } else { u16loop_gain = u16LoopGain[u8SupportedLPLLLIndex]; } PNL_DBG(PNL_DBGLEVEL_INIT, "E_PNL_LPLL_VIDEO : u16loop_gain=%u\n", u16loop_gain); return u16loop_gain; } #define SKIP_TIMING_CHANGE_CAP TRUE MS_BOOL Hal_PNL_SkipTimingChange_GetCaps(void *pInstance) { #if (SKIP_TIMING_CHANGE_CAP) return TRUE; #else return FALSE; #endif } void MHal_PNL_PreSetModeOn(void *pInstance, MS_BOOL bSetMode) { if (bSetMode == TRUE) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0, BIT(15)); } else { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); } } void MHal_PNL_HWLVDSReservedtoLRFlag(void *pInstance, PNL_DrvHW_LVDSResInfo lvdsresinfo) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); if (lvdsresinfo.bEnable) { if (lvdsresinfo.u16channel & BIT(0)) // Channel A { if (lvdsresinfo.u32pair & BIT(3)) // pair 3 { MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(15), BIT(15)); } if (lvdsresinfo.u32pair & BIT(4)) // pair 4 { MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(14), BIT(14)); } } if (lvdsresinfo.u16channel & BIT(1)) // Channel B { if (lvdsresinfo.u32pair & BIT(3)) // pair 3 { MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(13), BIT(13)); } if (lvdsresinfo.u32pair & BIT(4)) // pair 4 { MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, BIT(12), BIT(12)); } } } else { MOD_W2BYTEMSK(REG_MOD_BK00_5A_L, 0x0000, (BIT(15) | BIT(14) | BIT(13) | BIT(12))); } } //////////////////////////////////////////////////////////////////////// // Turn OD function //////////////////////////////////////////////////////////////////////// void MHal_PNL_OverDriver_Init(void *pInstance, MS_PHY u32OD_MSB_Addr, MS_PHY u32OD_MSB_limit, MS_U32 u32OD_LSB_Addr, MS_U32 u32OD_LSB_limit, MS_U8 u8MIUSel) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID,REG_SC_BK16_61_L,u8MIUSel<<8,BIT(8)|BIT(9)); // OD MIU select SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_15_L, (MS_U16)(u32OD_MSB_Addr & 0xFFFF)); // OD MSB request base address SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_16_L, (MS_U16)((u32OD_MSB_Addr >> 16) & 0x00FF), 0x00FF); // OD MSB request base address SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_Addr >> 24) & 0x0003), 0x0003); // OD MSB request base address SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_17_L, (MS_U16)(u32OD_MSB_limit & 0xFFFF)); // OD MSB request address limit SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_18_L, (MS_U16)((u32OD_MSB_limit >> 16) & 0x00FF), 0x00FF); // OD MSB request address limit SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_60_L, (MS_U16)((u32OD_MSB_limit >> 24) & 0x0003)<<2, 0x000C); // OD MSB request address limit SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_39_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer write address limit SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer write address limit SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3B_L, (MS_U16)(u32OD_LSB_limit & 0xFFFF)); // OD frame buffer read address limit SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3C_L, (MS_U16)((u32OD_LSB_limit >> 16) & 0x00FF), 0x00FF); // OD frame buffer read address limit SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_4F_L, (MS_U16)(u32OD_LSB_Addr & 0xFFFF)); // OD LSB request base address SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_Addr >> 16) & 0x00FF), 0x00FF); // OD LSB request base address SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_50_L, (MS_U16)((u32OD_LSB_limit & 0x00FF) << 8), 0xFF00); // OD LSB request limit address SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_51_L, (MS_U16)((u32OD_LSB_limit >> 8) & 0xFFFF)); // OD LSB request limit address SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1A_L, 0x4020); // OD request rFIFO limit threshold, priority threshold SC_W2BYTE(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_1C_L, 0x4020); // OD request wFIFO limit threshold, priority threshold SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x00, BIT(14)); // OD strength gradually bypass SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_3A_L, 0x2F00, 0x3F00); // OD strength gradually slop SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_12_L, 0x0C, 0xFF); // OD active threshold } void MHal_PNL_OverDriver_Enable(void *pInstance, MS_BOOL bEnable) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); // OD mode // OD used user weight to output blending directly // OD Enable if (bEnable) { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2D, 0x2F); } else { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x2C, 0x2F); } } void MHal_PNL_OverDriver_TBL(void *pInstance, MS_U8 u8ODTbl[1056]) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); MS_U16 i; MS_U8 u8target; MS_BOOL bEnable; bEnable = SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, BIT(0)); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, 0x00, BIT(0)); // OD enable SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x0E, 0x0E); // OD table SRAM enable, RGB channel u8target= u8ODTbl[9]; for (i=0; i<272; i++) { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_03_L, (i == 9)?u8target:(u8target ^ u8ODTbl[i]), 0x00FF); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, (i|0x8000), 0x81FF); while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_02_L, BIT(15))); } u8target= u8ODTbl[(272+19)]; for (i=0; i<272; i++) { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_06_L, (i == 19)?u8target:(u8target ^ u8ODTbl[(272+i)]), 0x00FF); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, (i|0x8000), 0x81FF); while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_05_L, BIT(15))); } u8target= u8ODTbl[(272*2+29)]; for (i=0; i<256; i++) { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_09_L, (i == 29)?u8target:(u8target ^ u8ODTbl[(272*2+i)]), 0x00FF); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, (i|0x8000), 0x81FF); while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_08_L, BIT(15))); } u8target= u8ODTbl[(272*2+256+39)]; for (i=0; i<256; i++) { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0C_L, (i == 39)?u8target:(u8target ^ u8ODTbl[(272*2+256+i)]), 0x00FF); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0B_L, (i|0x8000), 0x81FF); while(SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_0D_L, BIT(15))); } SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_01_L, 0x00, 0x0E); // OD table SRAM enable, RGB channel SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK16_10_L, bEnable, BIT(0)); // OD enable } MS_U16 _MHal_PNL_MOD_Swing_Refactor_AfterCAL(void *pInstance, MS_U16 u16Swing_Level) { MS_U8 u8ibcal = 0x00; MS_U16 u16AfterCal_value = 0; MS_U16 u16Cus_value = 0; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); // ========= // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L => // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21) // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31) // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26) // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16) // ========= switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET) { default: case 0: u8ibcal = 0x15; break; case 1: u8ibcal = 0x1F; break; case 2: u8ibcal = 0x1A; break; case 3: u8ibcal = 0x10; break; } u16Cus_value = (u16Swing_Level) * (pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4)/(u8ibcal + 4); u16AfterCal_value = (u16Cus_value-40)/10+2; HAL_MOD_CAL_DBG(printf("\r\n--Swing value after refactor = %d\n", u16AfterCal_value)); return u16AfterCal_value; } MS_U16 MHal_PNL_MODSwingRegToRealLevelValue(void *pInstance, MS_U16 u16SwingRegValue) { MS_U8 u8ibcal = 0x00; MS_U16 u16SwingRealLevelValue = 0; MS_U16 u16CusValue = 0; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); // ========= // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L => // 2'b00 250mV ' GCR_ICON_CHx[5:0]=2'h15 (decimal 21) // 2'b01 350mV ' GCR_ICON_CHx[5:0]=2'h1F (decimal 31) // 2'b10 300mV ' GCR_ICON_CHx[5:0]=2'h1A (decimal 26) // 2'b11 200mV ' GCR_ICON_CHx[5:0]=2'h10 (decimal 16) // ========= switch(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET) { default: case 0: u8ibcal = 0x15; break; case 1: u8ibcal = 0x1F; break; case 2: u8ibcal = 0x1A; break; case 3: u8ibcal = 0x10; break; } u16CusValue = ((u16SwingRegValue-2)*10)+40; u16SwingRealLevelValue=(u16CusValue*(u8ibcal + 4))/(pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE + 4); HAL_MOD_CAL_DBG(printf("\r\n--Swing Real Level Value = %d\n", u16SwingRealLevelValue)); return u16SwingRealLevelValue; } MS_BOOL MHal_PNL_MOD_Control_Out_Swing(void *pInstance, MS_U16 u16Swing_Level) { MS_BOOL bStatus = FALSE; MS_U16 u16ValidSwing = 0; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS)|| (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_HS_LVDS)) { if(u16Swing_Level>600) u16Swing_Level=600; if(u16Swing_Level<40) u16Swing_Level=40; u16ValidSwing = _MHal_PNL_MOD_Swing_Refactor_AfterCAL(pInstance, u16Swing_Level); } else { u16ValidSwing = u16Swing_Level; } // Disable HW calibration keep mode first, to make SW icon value can write into register. MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15)); // disable keep mode MOD_A_W2BYTE(REG_MOD_A_BK00_08_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch0/1 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_09_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch2/3 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch4/5 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch6/7 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch8/9 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch10/11 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L,u16ValidSwing |(u16ValidSwing <<8)); // refine ch12/13 calibration result bStatus = TRUE; return bStatus; } //////////////////////////////////////////////////////////////////////// // Turn Pre-Emphasis Current function //////////////////////////////////////////////////////////////////////// MS_BOOL MHal_PNL_MOD_Control_Out_PE_Current (void *pInstance, MS_U16 u16Current_Level) { MS_BOOL bStatus = FALSE; MS_U16 u16ValidCurrent = u16Current_Level & 0x0F; MOD_A_W2BYTE(REG_MOD_A_BK00_18_L, ( (u16ValidCurrent ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 ) |(u16ValidCurrent << 12 ))); MOD_A_W2BYTE(REG_MOD_A_BK00_19_L, ( (u16ValidCurrent ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 ) |(u16ValidCurrent << 12 ))); MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L, ( (u16ValidCurrent ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 ) |(u16ValidCurrent << 12 ))); MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L, ( (u16ValidCurrent ) |(u16ValidCurrent << 4 )|(u16ValidCurrent << 8 ) |(u16ValidCurrent << 12 ))); bStatus = TRUE; return bStatus; } void MHal_PNL_MOD_PECurrent_Setting(void *pInstance, MS_U16 u16Current_Level, MS_U16 u16Channel_Select) { MS_U16 u16ValidCurrent = u16Current_Level & 0x0F; MS_U16 u16Ch00_03_mask,u16Ch04_07_mask,u16Ch08_11_mask,u16Ch12_15_mask = 0; u16Ch00_03_mask = (((u16Channel_Select & BIT(0))? 0x000F:0x00)|((u16Channel_Select & BIT(1))? 0x00F0:0x00) |((u16Channel_Select & BIT(2))? 0x0F00:0x00)|((u16Channel_Select & BIT(3))? 0xF000:0x00)); u16Ch04_07_mask = (((u16Channel_Select & BIT(4))? 0x000F:0x00)|((u16Channel_Select & BIT(5))? 0x00F0:0x00) |((u16Channel_Select & BIT(6))? 0x0F00:0x00)|((u16Channel_Select & BIT(7))? 0xF000:0x00)); u16Ch08_11_mask = (((u16Channel_Select & BIT(8))? 0x000F:0x00)|((u16Channel_Select & BIT(9))? 0x00F0:0x00) |((u16Channel_Select & BIT(10))? 0x0F00:0x00)|((u16Channel_Select & BIT(11))? 0xF000:0x00)); u16Ch12_15_mask = (((u16Channel_Select & BIT(12))? 0x000F:0x00)|((u16Channel_Select & BIT(13))? 0x00F0:0x00) |((u16Channel_Select & BIT(14))? 0x0F00:0x00)|((u16Channel_Select & BIT(15))? 0xF000:0x00)); if(u16Ch00_03_mask) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_18_L, ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch00_03_mask); } else { MOD_A_W2BYTE(REG_MOD_A_BK00_18_L,0x00); } if(u16Ch04_07_mask) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_19_L, ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch04_07_mask); } else { MOD_A_W2BYTE(REG_MOD_A_BK00_19_L,0x00); } if(u16Ch08_11_mask) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1A_L, ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch08_11_mask); } else { MOD_A_W2BYTE(REG_MOD_A_BK00_1A_L,0x00); } if(u16Ch12_15_mask) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_1B_L, ((u16ValidCurrent)|(u16ValidCurrent << 4)|(u16ValidCurrent << 8)|(u16ValidCurrent << 12 )), u16Ch12_15_mask); } else { MOD_A_W2BYTE(REG_MOD_A_BK00_1B_L,0x00); } } //////////////////////////////////////////////////////////////////////// // 1.Turn TTL low-power mode function // 2.Turn internal termination function // 3.Turn DRIVER BIAS OP function //////////////////////////////////////////////////////////////////////// MS_BOOL MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (void *pInstance, MS_BOOL bEnble) { MS_BOOL bStatus = FALSE; if(bEnble) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0xFFFF, 0xFFFF); //Enable TTL low-power mode // MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x001E, 0x001E); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0xFFFF, 0xFFFF); //GCR_EN_RINT (internal termination open) MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x003F, 0x003F); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0xFFFF, 0xFFFF); //Disable DRIVER BIAS OP MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x003F, 0x003F); } else { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_34_L, 0x0000, 0xFFFF); //Disable TTL low-power mode // MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0x0000, 0x001E); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_32_L, 0x0000, 0xFFFF); //GCR_EN_RINT (internal termination close) MOD_W2BYTEMSK(REG_MOD_BK00_76_L, 0x0000, 0x003F); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3C_L, 0x0000, 0xFFFF); //Enable DRIVER BIAS OP MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x003F); } bStatus = TRUE; return bStatus; } void MHal_PNL_PreInit(void *pInstance, PNL_OUTPUT_MODE eParam) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions = eParam; } PNL_OUTPUT_MODE MHal_PNL_Get_Output_MODE(void *pInstance) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); PNL_OUTPUT_MODE eParam = pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions; return eParam; } MS_U32 msReadEfuse(void *pInstance, MS_U8 u8Bank, MS_U32 u32Mask) { MS_U32 u32Result = 0; MS_U8 u8Count = 0; W2BYTEMSK(0x2050, u8Bank<<2, BMASK(8:2)); /// reg28[8:2]Addr 6~0 W2BYTEMSK(0x2050, BIT(13), BIT(13)); /// Reg28[13] Margin Read while(R2BYTEMSK(0x2050, BIT(13)) == BIT(13)) { MsOS_DelayTask(1); u8Count ++; if (u8Count >10) break; } u32Result = (R4BYTE(0x2058)& u32Mask); /// reg2C,2D read value printf("[%s][%d]u32Result=%x, after mask u32Result=%x\n", __FUNCTION__, __LINE__, (unsigned int)R4BYTE(0x2058), (unsigned int)u32Result); return u32Result; } void msSetVBY1RconValue(void *pInstance) { MS_U16 u16DefaultICON_Max = 40, u16DefaultICON_Min = 7; MS_U16 u16DefaultICON = 18; MS_U32 u32Mask = 0x3F; MS_BOOL bEfuseMode = FALSE; MS_U16 u16SwingOffset = 0; // by HW RD request MS_U16 u16temp = 0; if (msReadEfuse(pInstance, 0x4E, BIT(6)) == BIT(6)) bEfuseMode = TRUE; // Disable HW calibration keep mode first, to make SW icon value can write into register. MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0, BIT(15)); if (bEfuseMode) { if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) > u16DefaultICON_Max) u16temp = u16DefaultICON; else if(((MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset) < u16DefaultICON_Min) u16temp = u16DefaultICON; else u16temp = (MS_U16)msReadEfuse(pInstance, 0x4E, u32Mask) + u16SwingOffset; } else { u16temp = u16DefaultICON; } //ch0~ch13 rcon setting u16temp &= (u16temp&(MS_U16)u32Mask); printf("[%s][%d]u16temp= %x\n", __FUNCTION__, __LINE__, u16temp); MOD_A_W2BYTE(REG_MOD_A_BK00_10_L, (u16temp<<8|u16temp)); MOD_A_W2BYTE(REG_MOD_A_BK00_11_L, (u16temp<<8|u16temp)); MOD_A_W2BYTE(REG_MOD_A_BK00_12_L, (u16temp<<8|u16temp)); MOD_A_W2BYTE(REG_MOD_A_BK00_13_L, (u16temp<<8|u16temp)); MOD_A_W2BYTE(REG_MOD_A_BK00_14_L, (u16temp<<8|u16temp)); MOD_A_W2BYTE(REG_MOD_A_BK00_15_L, (u16temp<<8|u16temp)); MOD_A_W2BYTE(REG_MOD_A_BK00_16_L, (u16temp<<8|u16temp)); } void MHal_PNL_SetOutputType(void *pInstance, PNL_OUTPUT_MODE eOutputMode, PNL_TYPE eLPLL_Type) { MS_U16 u16ValidSwing2 = 0; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); if( eLPLL_Type == E_PNL_TYPE_TTL) { // select pair output to be TTL MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020); MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020); MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0x0000, (BIT(7) | BIT(6))); // shift_lvds_pair // other TTL setting MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x0000); // TTL output enable MOD_A_W2BYTE(REG_MOD_A_BK00_40_L, 0x0000); MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000); MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0xE000); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x3FF, 0x3FF); // TTL skew // GPO gating MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, BIT(8), BIT(8)); // GPO gating } //// for osd dedicated output port, 1 port for video and 1 port for osd else if((eLPLL_Type == E_PNL_TYPE_HS_LVDS)&& (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Mode == E_PNL_MODE_SINGLE)) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_38_L, 0xC01F , 0xFFFF); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(3), 0xFFFF ); // enable osd lvds path MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, BIT(15), BIT(15)); //[15]sw_rst MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000 , 0xF000); // enable clk_dot_mini_pre_osd & clk_dot_mini_osd } else { switch(eOutputMode) { case E_PNL_OUTPUT_NO_OUTPUT: // if MOD_45[5:0] = 0x3F && XC_MOD_EXT_DATA_EN_L = 0x0, // then if XC_MOD_OUTPUT_CONF_L = 0x0 ---> output TTL as tri-state MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0020,0x0020); MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0x0000); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0000); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3B_L, 0x0000,0x0020); //---------------------------------- // Purpose: Set the output to be the GPO, and let it's level to Low // 1. External Enable, Pair 0~5 // 2. GPIO Enable, pair 0~5 // 3. GPIO Output data : All low, pair 0~5 // 4. GPIO OEZ: output piar 0~5 //---------------------------------- //1.External Enable, Pair 0~5 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0FFF, 0x0FFF); //2.GPIO Enable, pair 0~5 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0FFF, 0x0FFF); //3.GPIO Output data : All low, pair 0~5 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0x0FFF); //4.GPIO OEZ: output piar 0~5 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0x0FFF); //1.External Enable, Pair 6~15 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0xF000, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0xFFFF); //2.GPIO Enable, pair 6~15 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0xF000, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0xFFFF); //3.GPIO Output data : All low, pair 6~15 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_44_L, 0x0000, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_45_L, 0x0000); //4.GPIO OEZ: output piar 6~15 MOD_A_W2BYTEMSK(REG_MOD_A_BK00_42_L, 0x0000, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_43_L, 0x0000); //1234.External Enable, Pair 16~17 MOD_W2BYTE(REG_MOD_BK00_7E_L, 0xFF00); //1.External Enable, Pair 18~20, 2.GPIO Enable, pair 18~20 MOD_W2BYTEMSK(REG_MOD_BK00_7C_L, 0x3F3F, 0x3F3F); //3.GPIO Output data : All low, pair 18~20 MOD_W2BYTEMSK(REG_MOD_BK00_7A_L, 0x0000, 0x3F00); //4.GPIO OEZ: output piar 18~20 MOD_W2BYTEMSK(REG_MOD_BK00_7F_L, 0x0000, 0xFC00); break; case E_PNL_OUTPUT_CLK_ONLY: MOD_A_W2BYTEMSK(REG_MOD_A_BK00_00_L, 0, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x4004); break; case E_PNL_OUTPUT_DATA_ONLY: case E_PNL_OUTPUT_CLK_DATA: default: MOD_A_W2BYTEMSK(REG_MOD_A_BK00_48_L, 0x0000, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_49_L, 0x0000); //1. set GCR_PVDD_2P5=1¡¦b1; MOD PVDD power: 1: 2.5V //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_39_L, 0, BIT(6)); //2. set PD_IB_MOD=1¡¦b0; MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0x00 , BIT(0)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, BIT(8) , BIT(8)); // save ch6 init value u16ValidSwing2 = (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0B_L, 0x3F00)>>8); //3. set Desired Pairs: GCR_ICON[5:0]=6h3f (current all open); MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, 0x3F)); //4. set Desired Pairs: GCR_PE_ADJ[2:0]=3h7 (pre-emphasis current all open ) MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x07); //5. Enable low-power modeinternal termination Open, Enable OP MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 1); MsOS_DelayTask(1); //6. Enable low-power modeinternal termination Open, Enable OP MHal_Output_LVDS_Pair_Setting(pInstance, pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21); MHal_Shift_LVDS_Pair(pInstance, pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift); //7. set Desired Pairs: GCR_PE_ADJ[2:0]=3¡¦h0 (pre-emphasis current all Close) MHal_PNL_MOD_Control_Out_PE_Current (pInstance, 0x00); //8. set Desired Pairs: GCR_ICON[5:0] (current all init); MHal_PNL_MOD_Control_Out_Swing(pInstance, MHal_PNL_MODSwingRegToRealLevelValue(pInstance, u16ValidSwing2)); //9. Disable low-power modeinternal termination Close, Disable OP MHal_PNL_MOD_Control_Out_TTL_Resistor_OP (pInstance, 0); // other TTL setting MOD_A_W2BYTE(REG_MOD_A_BK00_68_L, 0x003F); // LVDS output enable, [5:4] Output enable: PANEL_LVDS/ PANEL_miniLVDS/ PANEL_RSDS MOD_A_W2BYTEMSK(REG_MOD_A_BK00_40_L, 0x0000, 0xF000); MOD_A_W2BYTE(REG_MOD_A_BK00_41_L, 0x0000); MOD_W2BYTEMSK(REG_MOD_BK00_7E_L, 0x0000, 0x000F); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_69_L, 0x000, 0x3FF); // TTL skew // GPO gating MOD_W2BYTEMSK(REG_MOD_BK00_4A_L, 0x0, BIT(8)); // GPO gating break; } } // MHal_PNL_Bringup(pInstance); } void Mhal_PNL_Flock_LPLLSet(void *pInstance, MS_U64 ldHz) { UNUSED(ldHz); } void MHal_PNL_MISC_Control(void *pInstance, MS_U32 u32PNL_MISC) { if(u32PNL_MISC & E_DRVPNL_MISC_MFC_ENABLE) { MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(7), BIT(7)); // shift LVDS pair } } void MHal_PNL_Init_XC_Clk(void *pInstance, PNL_InitData *pstPanelInitData) { PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__); // setup output dot clock #if 0 W2BYTEMSK(REG_CKG_ODCLK, CKG_ODCLK_CLK_LPLL, CKG_ODCLK_MASK); // select source tobe LPLL clock W2BYTEMSK(REG_CKG_ODCLK, DISABLE, CKG_ODCLK_INVERT); // clock not invert W2BYTEMSK(REG_CKG_ODCLK, DISABLE, CKG_ODCLK_GATED); // enable clock W2BYTEMSK(REG_CKG_BT656, CKG_BT656_CLK_LPLL, CKG_BT656_MASK); // select source tobe LPLL clock W2BYTEMSK(REG_CKG_BT656, DISABLE, CKG_ODCLK_INVERT); // clock not invert W2BYTEMSK(REG_CKG_BT656, DISABLE, CKG_ODCLK_GATED); // enable clock W2BYTE(REG_CLKGEN0_57_L,0x0000); //[15:12]ckg_bt656 [3:0]ckg_fifo W2BYTE(REG_CLKGEN0_58_L,0x0000); //[3:0]ckg_tx_mod W2BYTE(REG_CLKGEN0_63_L,0x0000); //[11:8]ckg_tx_mod [3:0]ckg_osd2mod W2BYTE(REG_CLKGEN1_31_L, 0x0000); //[11:8]ckg_odclk_frc #else W2BYTEMSK(L_CLKGEN0(0x53), CKG_ODCLK_CLK_LPLL, CKG_ODCLK_MASK); // select source tobe LPLL clock W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_INVERT); // clock not invert W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_GATED); // enable clock W2BYTEMSK(L_CLKGEN0(0x53), 0xC0, 0xF0); // reg_ckg_odclk_mft #if 0 W2BYTEMSK(L_CLKGEN0(0x53), CKG_BT656_CLK_LPLL, CKG_BT656_MASK); // select source tobe LPLL clock W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_INVERT); // clock not invert W2BYTEMSK(L_CLKGEN0(0x53), DISABLE, CKG_ODCLK_GATED); // enable clock #endif W2BYTE(L_CLKGEN0(0x57),0x0000); //[15:12]ckg_bt656 [3:0]ckg_fifo W2BYTE(L_CLKGEN0(0x58),0x0000); //[3:0]ckg_tx_mod W2BYTE(L_CLKGEN0(0x63),0x0000); //[11:8]ckg_tx_mod [3:0]ckg_osd2mod W2BYTE(L_CLKGEN1(0x31), 0x0000); //[11:8]ckg_odclk_frc #endif W2BYTE(REG_RVD_09_L, 0x0000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo W2BYTE(REG_CLKGEN0_57_L,0x0000); //[3:0]ckg_fifo if((pstPanelInitData->eLPLL_Type == E_PNL_TYPE_HS_LVDS)&&(pstPanelInitData->eLPLL_Mode == E_PNL_MODE_SINGLE)) { W2BYTE(L_CLKGEN0(0x63), 0x0410); //[11:8]ckg_tx_mod_osd[4:0]osd2mod W2BYTE(REG_RVD_09_L, 0x1000); //[12:8]ckg_vby1_fifo_osd [3:0]clk_vby1_fifo+ } } void MHal_PNL_Init_MOD(void *pInstance, PNL_InitData *pstPanelInitData) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__); //------------------------------------------------------------------------ PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL0 = %x\n", pstPanelInitData->u16MOD_CTRL0); PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRL9 = %x\n", pstPanelInitData->u16MOD_CTRL9); PNL_DBG(PNL_DBGLEVEL_INIT, "u16MOD_CTRLA = %x\n", pstPanelInitData->u16MOD_CTRLA); PNL_DBG(PNL_DBGLEVEL_INIT, "u8MOD_CTRLB = %x\n", pstPanelInitData->u8MOD_CTRLB); //------------------------------------------------------------------------- // Set MOD registers //------------------------------------------------------------------------- MOD_W2BYTEMSK(REG_MOD_BK00_40_L, pstPanelInitData->u16MOD_CTRL0, LBMASK); // GPIO is controlled in drvPadConf.c // MDrv_Write2Byte(L_BK_MOD(0x46), 0x0000); //EXT GPO disable // MDrv_Write2Byte(L_BK_MOD(0x47), 0x0000); //EXT GPO disable MOD_W2BYTE(REG_MOD_BK00_49_L, pstPanelInitData->u16MOD_CTRL9); //{L_BK_MOD(0x49), 0x00}, // [7,6] : output formate selction 10: 8bit, 01: 6bit :other 10bit, bit shift MHal_Output_Channel_Order(pInstance, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13); MOD_W2BYTE(REG_MOD_BK00_4A_L, pstPanelInitData->u16MOD_CTRLA); MOD_W2BYTE(REG_MOD_BK00_4B_L, pstPanelInitData->u8MOD_CTRLB); //[1:0]ti_bitmode 10:8bit 11:6bit 0x:10bit //dual port lvds _start_// // output configure for 26 pair output 00: TTL, 01: LVDS/RSDS/mini-LVDS data differential pair, 10: mini-LVDS clock output, 11: RSDS clock output _MHal_PNL_Set_Clk(pInstance, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u8OutputOrderType, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder0_3, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder4_7, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder8_11, pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputOrder12_13); //dual port lvds _end_// //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, (_u8PnlDiffSwingLevel << 1), 0xFE); //differential output swing level //if(((pstPanelInitData->eLPLL_Type_Ext>= E_PNL_LPLL_VBY1_10BIT_4LANE)&& // (pstPanelInitData->eLPLL_Type_Ext<= E_PNL_LPLL_VBY1_8BIT_8LANE))) // MOD_A_W2BYTEMSK(REG_MOD_A_BK00_3A_L, 0xC000, 0xF000); //bank selection for skew clock //if(!MHal_PNL_MOD_Control_Out_Swing(_u8PnlDiffSwingLevel)) // printf(">>Swing Level setting error!!\n"); if(pstPanelInitData->eLPLL_Type != E_PNL_TYPE_MINILVDS) { MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x7, 0x07); } //// Patch for Vx1 and it should be control by panel ini MOD_A_W2BYTE(REG_MOD_A_BK00_31_L, pstPanelInitData->u16LVDSTxSwapValue); // TODO: move from MDrv_Scaler_Init(), need to double check! MOD_W2BYTEMSK(REG_MOD_BK00_53_L, BIT(0), BIT(0)); //-------------------------------------------------------------- //Depend On Bitmode to set Dither //-------------------------------------------------------------- // always enable noise dither and disable TAILCUT SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, ((pstPanelInitData->u8PanelNoiseDith ? XC_PAFRC_DITH_NOISEDITH_EN : (1 - XC_PAFRC_DITH_NOISEDITH_EN)) <<3) , BIT(3)); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, XC_PAFRC_DITH_TAILCUT_DISABLE, BIT(4)); switch(pstPanelInitData->u8MOD_CTRLB & 0x03)//[1:0]ti_bitmode b'10:8bit 11:6bit 0x:10bit { case HAL_TI_6BIT_MODE: SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0)); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(2), BIT(2)); break; case HAL_TI_8BIT_MODE: SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, BIT(0), BIT(0)); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2)); break; case HAL_TI_10BIT_MODE: default: SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(0)); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK24_3F_L, 0x00, BIT(2)); break; } //-----depend on bitmode to set Dither------------------------------ MHal_PNL_SetOutputType(pInstance, pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type); // TTL to Ursa //MHal_PNL_Bringup(pInstance); MHal_PNL_MISC_Control(pInstance, pstPanelInitData->u32PNL_MISC); PNL_DBG(PNL_DBGLEVEL_INIT, "OutputType = %x, eLPLL_Type = %x\n", pPNLResourcePrivate->sthalPNL._eDrvPnlInitOptions, pstPanelInitData->eLPLL_Type); PNL_DBG(PNL_DBGLEVEL_INIT, "u32PNL_MISC = %x\n", (unsigned int)pstPanelInitData->u32PNL_MISC); } void MHal_PNL_DumpMODReg(void *pInstance, MS_U32 u32Addr, MS_U16 u16Value, MS_BOOL bHiByte, MS_U16 u16Mask) { if (bHiByte) { MOD_W2BYTEMSK(u32Addr, (u16Value << 8), (u16Mask << 8)); } else { MOD_W2BYTEMSK(u32Addr, u16Value, u16Mask); } } void MHal_MOD_Calibration_Init(void *pInstance, PNL_ModCali_InitData *pstModCaliInitData) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); // Setup the default swing level pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel = pstModCaliInitData->u16ExpectSwingLevel; //mv #if 0 // Pair setting // ========= // Select calibration source pair, 00: ch2, 01: ch6, 10:ch8, 11:ch12 //MOD_7D_L[3:2] // ========= //in msModCurrentCalibration, it will transfer to the real data switch(pstModCaliInitData->u8ModCaliPairSel) { default: case 0: //ch 2 pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x00; // ch2 break; case 1: //ch 6 pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x01; // ch6, calibration initialized value break; case 2: //ch 8 pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x02; break; case 3: //ch 12 pPNLResourcePrivate->sthalPNL._u8MOD_CALI_PAIR_SEL = 0x03; break; } #endif // Target setting // ========= // GCR_CAL_LEVEL[1:0] : REG_MOD_A_BK00_70_L => // ========= //in msModCurrentCalibration, it will transfer to the real data switch(pstModCaliInitData->u8ModCaliTarget) { default: case 0: pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 0; break; case 1: pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 1; break; case 2: pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 2; break; case 3: pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET = 3; break; } // Offset setting, for fine tune //_usMOD_CALI_OFFSET = pstModCaliInitData->s8ModCaliOffset; // _u8MOD_CALI_VALUE is a real value; the _u8MOD_CALI_VALUE is an idea value // Target value should be the same with _u8MOD_CALI_VALUE to be a default value pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE= pstModCaliInitData->u8ModCaliTarget; // PVDD setting pPNLResourcePrivate->sthalPNL._bPVDD_2V5 = pstModCaliInitData->bPVDD_2V5; PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__); PNL_DBG(PNL_DBGLEVEL_INIT, "u16ExpectSwingLevel = %u\n", pstModCaliInitData->u16ExpectSwingLevel); PNL_DBG(PNL_DBGLEVEL_INIT, "u8ModCaliTarget = %x\n", pstModCaliInitData->u8ModCaliTarget); PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_TARGET = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET); PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_CALI_VALUE = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_CALI_VALUE); PNL_DBG(PNL_DBGLEVEL_INIT, "bPVDD_2V5 = %x\n", pstModCaliInitData->bPVDD_2V5); } void MHal_BD_LVDS_Output_Type(void *pInstance, MS_U16 Type) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); if(Type == LVDS_DUAL_OUTPUT_SPECIAL ) { pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Shift = LVDS_DUAL_OUTPUT_SPECIAL; pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type = 1; } else { pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type = Type; } PNL_DBG(PNL_DBGLEVEL_INIT, "[%s][%d]\n", __FUNCTION__, __LINE__); PNL_DBG(PNL_DBGLEVEL_INIT, "_u8MOD_LVDS_Pair_Type = %u\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type); } MS_BOOL msModCalDDAOUT(void) { // W2BYTEMSK(BK_MOD(0x7D), ENABLE, 8:8); // MsOS_DelayTask(10); //10ms return (MS_BOOL)((MOD_R2BYTEMSK(REG_MOD_A_BK00_74_L, BIT(8))) >> 8); } MS_U8 msModCurrentCalibration(void *pInstance) { #if MOD_CAL_TIMER MS_U32 delay_start_time; delay_start_time=MsOS_GetSystemTime(); #endif #if (!ENABLE_Auto_ModCurrentCalibration) return 0x60; #else MS_U8 u8cur_ibcal=0; MS_U16 u16reg_32da = 0, u16reg_32dc = 0 , u16cur_ibcal = 0; MS_U16 u16DefaultICON_Max = 0x2E, u16DefaultICON_Min = 0x06; MS_U16 u16DefaultICON = 0x19; MS_U32 u32Mask = 0xFF; MS_U16 u16icon_ch0_1=0,u16icon_ch2_3=0,u16icon_ch4_5=0,u16icon_ch6_7=0, u16icon_ch8_9=0,u16icon_ch10_11=0,u16icon_ch12_13=0; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); u16reg_32da = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L); u16reg_32dc = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L); PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s][%d]\n", __FUNCTION__, __LINE__); // (1) Set keep mode to auto write calibration result into register. MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, BIT(15), BIT(15)); // (2) Set calibration step waiting time MOD_A_W2BYTE(REG_MOD_A_BK00_71_L, 0x0009); // reg_1ms_cnt MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0009, 0x00FF); // reg_hw_cal_wait // (3) Set calibration toggle time MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x0500, 0x0F00); // (4) Select calibration level (LVDS is 250mV) MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, pPNLResourcePrivate->sthalPNL._u8MOD_CALI_TARGET, BIT(2)|BIT(1)|BIT(0)); // Select calibration target voltage, 00: 250mV, 01:350mV, 10: 300mV, 11: 200mV // (5) Store output configuration value and Enable each pair test mode MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, 0xFFFF); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, 0x0FFF); // (6) Enable Calibration mode MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, BIT(7), BIT(7)); // Enable calibration function // (7) Calibration fire on MOD_A_W2BYTEMSK(REG_MOD_A_BK00_73_L, BIT(15), BIT(15)); // (8) Wait 3ms MsOS_DelayTask(3); // (9) Read Finish and Fail flagbit if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_73_L, 0x6000) == 0x4000) { //printf("\033[0;31m [%s][%d] cal ok, break \033[0m\n", __FUNCTION__, __LINE__); } else { //printf("\033[0;31m [%s][%d] cal ng, \033[0m\n", __FUNCTION__, __LINE__); } // (10) // store ICON for each channel to avoid read not correct value when toogle // REG_MOD_A_BK00_72[15] u16icon_ch0_1 = MOD_A_R2BYTE(REG_MOD_A_BK00_08_L); u16icon_ch2_3 = MOD_A_R2BYTE(REG_MOD_A_BK00_09_L); u16icon_ch4_5 = MOD_A_R2BYTE(REG_MOD_A_BK00_0A_L); u16icon_ch6_7 = MOD_A_R2BYTE(REG_MOD_A_BK00_0B_L); u16icon_ch8_9 = MOD_A_R2BYTE(REG_MOD_A_BK00_0C_L); u16icon_ch10_11 = MOD_A_R2BYTE(REG_MOD_A_BK00_0D_L); u16icon_ch12_13 = MOD_A_R2BYTE(REG_MOD_A_BK00_0E_L); if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_73_L, 0x6000) == 0x4000) // finsh= 1,fail= 0 { // Error handling for calibration fail or unexpected calibraiton result case // ch0 u8cur_ibcal = (u16icon_ch0_1&0x00FF); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15)); // disable keep mode if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { u16cur_ibcal = u8cur_ibcal; } // ch1 u8cur_ibcal = (u16icon_ch0_1&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch0/ch1 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_08_L, u16cur_ibcal); // ch2 u8cur_ibcal = (u16icon_ch2_3&0x00FF); if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { u16cur_ibcal = u8cur_ibcal; } // ch3 u8cur_ibcal = (u16icon_ch2_3&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch2/ch3 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_09_L, u16cur_ibcal); // ch4 u8cur_ibcal = (u16icon_ch4_5&0x00FF); if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { u16cur_ibcal = u8cur_ibcal; } // ch5 u8cur_ibcal = (u16icon_ch4_5&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch4/ch5 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L, u16cur_ibcal); // ch6 u8cur_ibcal = (u16icon_ch6_7&0x00FF); if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { u16cur_ibcal = u8cur_ibcal; } // ch7 u8cur_ibcal = (u16icon_ch6_7&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0B_L, u16DefaultICON <<8, (MS_U16)u32Mask<<8); // refine ch7 calibration result u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch6/ch7 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L, u16cur_ibcal); // ch8 u8cur_ibcal = (u16icon_ch8_9&0x00FF); if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0C_L, u8cur_ibcal, (MS_U16)u32Mask); // refine ch8 calibration result u16cur_ibcal = u8cur_ibcal; } // ch9 u8cur_ibcal = (u16icon_ch8_9&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0C_L, u8cur_ibcal <<8, (MS_U16)u32Mask<<8); // refine ch9 calibration result u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch8/ch9 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L, u16cur_ibcal); // ch10 u8cur_ibcal = (u16icon_ch10_11&0x00FF); if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { u16cur_ibcal = u8cur_ibcal; } // ch11 u8cur_ibcal = (u16icon_ch10_11&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0D_L, u8cur_ibcal <<8, (MS_U16)u32Mask<<8); // refine ch11 calibration result u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch10/ch11 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L, u16cur_ibcal); // ch12 u8cur_ibcal = (u16icon_ch12_13&0x00FF); if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = u16DefaultICON; } else { u16cur_ibcal = u8cur_ibcal; } // ch13 u8cur_ibcal = (u16icon_ch12_13&0xFF00)>>8; if ((u8cur_ibcal < u16DefaultICON_Min) || (u8cur_ibcal > u16DefaultICON_Max)) { u16cur_ibcal = (u16cur_ibcal&0xFF) |(u16DefaultICON <<8); } else { //MOD_A_W2BYTEMSK(REG_MOD_A_BK00_0E_L, u8cur_ibcal <<8, (MS_U16)u32Mask<<8); // refine ch13 calibration result u16cur_ibcal = (u16cur_ibcal&0xFF) |(u8cur_ibcal <<8); } //refine ch12/ch13 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L, u16cur_ibcal); } else // Fail = 1 { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_72_L, 0x00, BIT(15)); // disable keep mode MOD_A_W2BYTE(REG_MOD_A_BK00_08_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch0/1 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_09_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch2/3 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0A_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch4/5 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0B_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch6/7 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0C_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch8/9 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0D_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch10/11 calibration result MOD_A_W2BYTE(REG_MOD_A_BK00_0E_L,u16DefaultICON |(u16DefaultICON <<8)); // refine ch12/13 calibration result } // (11) Restore each pair output configuration MOD_A_W2BYTE(REG_MOD_A_BK00_00_L, u16reg_32da); MOD_A_W2BYTE(REG_MOD_A_BK00_01_L, u16reg_32dc); // (12) Disable calibration mode MOD_A_W2BYTEMSK(REG_MOD_A_BK00_70_L, 0x00, BIT(7)); // Diable Hardware calibration // With HW calibration mode, HW would cal for each channel, and each channel would get different value // Return channel 2 vaule u8cur_ibcal = MOD_A_R2BYTEMSK(REG_MOD_A_BK00_09_L, 0x00FF); // return ch2 calibration result #if MOD_CAL_TIMER PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "[%s] takes %ld ms\n", __FUNCTION__, (MsOS_GetSystemTime()-delay_start_time)); #endif PNL_DBG(PNL_DBGLEVEL_CALIBRATION, "\r\n Calibration result= %x\n", u8cur_ibcal); return (u8cur_ibcal&0xFF);//MOD_A_R2BYTEMSK(REG_MOD_A_BK00_0D_L, 0x003F); #endif } PNL_Result MHal_PNL_MOD_Calibration(void *pInstance) { MS_U8 u8Cab; MS_U8 u8BackUSBPwrStatus; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7)); W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7)); u8Cab = msModCurrentCalibration(pInstance); W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7)); if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type !=E_PNL_TYPE_MINILVDS) MOD_W2BYTEMSK(REG_MOD_A_BK00_70_L, u8Cab, 0x07); return E_PNL_OK; } static void MHal_PNL_PowerDownLPLL(void *pInstance, MS_BOOL bEnable) { if(bEnable) { W2BYTEMSK(L_BK_LPLL(0x03), BIT(5), BIT(5)); } else { W2BYTEMSK(L_BK_LPLL(0x03), FALSE, BIT(5)); } } PNL_Result MHal_PNL_En(void *pInstance, MS_BOOL bPanelOn, MS_BOOL bCalEn) { MS_U8 u8Cab; MS_U8 u8BackUSBPwrStatus; PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "[%s][%d]\n", __FUNCTION__, __LINE__); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u32PNL_MISC = %x\n", (unsigned int)pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "bPanelOn = %x\n", bPanelOn); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "eLPLL_Type = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "_u8MOD_LVDS_Pair_Type = %x\n", pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7 = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15 = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21 = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21); MS_U16 u16PortA = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L); MS_U16 u16PortB = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L); if(u16PortA!=0) pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7 = MOD_A_R2BYTE(REG_MOD_A_BK00_00_L); if(u16PortB!=0) pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15 = MOD_A_R2BYTE(REG_MOD_A_BK00_01_L); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "==========================\n\n"); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG0_7 = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG8_15 = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15); PNL_DBG(PNL_DBGLEVEL_PANEL_EN, "u16OutputCFG16_21 = %x\n", pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21); if(bPanelOn) { // The order is PanelVCC -> delay pnlGetOnTiming1() -> VOP -> MOD // VOP SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x4000, HBMASK); // For Napoli compatible // need to wait 1ms to wait LDO stable before MOD power on MsOS_DelayTask(1); // turn on LPLL MHal_PNL_PowerDownLPLL(pInstance, FALSE); // mod power on MHal_MOD_PowerOn(pInstance , ENABLE , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7 , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15 , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21); if(bCalEn) { u8BackUSBPwrStatus = R2BYTEMSK(L_BK_UTMI1(0x04), BIT(7)); W2BYTEMSK(L_BK_UTMI1(0x04), 0x00, BIT(7)); u8Cab = msModCurrentCalibration(pInstance); W2BYTEMSK(L_BK_UTMI1(0x04), u8BackUSBPwrStatus, BIT(7)); } else { if((pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type>=E_PNL_LPLL_VBY1_10BIT_4LANE)&& (pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type<=E_PNL_LPLL_VBY1_8BIT_8LANE) && ((pPNLResourcePrivate->stdrvPNL._stPnlInitData.u32PNL_MISC & (MS_U32)E_APIPNL_MISC_SKIP_ICONVALUE) == FALSE)) { HAL_MOD_CAL_DBG(printf("Use RCON value \n", __FUNCTION__, __LINE__)); msSetVBY1RconValue(pInstance); } else { HAL_MOD_CAL_DBG(printf("User define Swing Value=%u\n", __FUNCTION__, __LINE__, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel)); if(!MHal_PNL_MOD_Control_Out_Swing(pInstance, pPNLResourcePrivate->sthalPNL._u16PnlDefault_SwingLevel)) printf(">>Swing Level setting error!!\n"); } } if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.bVideo_HW_Training_En) MHal_PNL_VBY1_Hardware_TrainingMode_En(pInstance, TRUE, ENABLE); } else { // The order is LPLL -> MOD -> VOP -> delay for MOD power off -> turn off VCC // LPLL // MHal_PNL_PowerDownLPLL(TRUE); //Remove to keep op vsync if panel off MHal_MOD_PowerOn(pInstance , DISABLE , pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type , pPNLResourcePrivate->sthalPNL._u8MOD_LVDS_Pair_Type , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG0_7 , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG8_15 , pPNLResourcePrivate->stdrvPNL._stPnlInitData.u16OutputCFG16_21); // VOP if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS || pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_I || pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_DAC_P)//(bIsLVDS) SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0xFF, LBMASK); else SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_46_L, 0x00, 0xFF); } return E_PNL_OK; } void MHal_PNL_SetOutputPattern(void *pInstance, MS_BOOL bEnable, MS_U16 u16Red , MS_U16 u16Green, MS_U16 u16Blue) { if (bEnable) { MOD_W2BYTEMSK(REG_MOD_BK00_02_L, u16Red , 0x03FF); MOD_W2BYTEMSK(REG_MOD_BK00_03_L, u16Green , 0x03FF); MOD_W2BYTEMSK(REG_MOD_BK00_04_L, u16Blue , 0x03FF); MsOS_DelayTask(10); MOD_W2BYTEMSK(REG_MOD_BK00_01_L, BIT(15) , BIT(15)); } else { MOD_W2BYTEMSK(REG_MOD_BK00_01_L, DISABLE , BIT(15)); } } void MHal_PNL_Switch_LPLL_SubBank(void *pInstance, MS_U16 u16Bank) { UNUSED(u16Bank); } void MHal_PNL_Switch_TCON_SubBank(void *pInstance, MS_U16 u16Bank) { W2BYTEMSK(L_BK_TCON(0x00), u16Bank&0xff, 0xFF); } MS_U16 MHal_PNL_Read_TCON_SubBank(void *pInstance) { return (MS_U16)R2BYTEMSK(L_BK_TCON(0x00),0xFF); } MS_BOOL MHal_PNL_Is_VBY1_Locked(void *pInstance) { if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0300) == 0x00) { return TRUE; } else { return FALSE; } } MS_BOOL MHal_PNL_Is_VBY1_LockN_Locked(void *pInstance) { if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0100) == 0x00) { return TRUE; } else { return FALSE; } } MS_BOOL MHal_PNL_VBY1_Handshake(void *pInstance) { MS_BOOL bIsLock = FALSE; if (MHal_PNL_Is_VBY1_Locked(pInstance) == FALSE) { MS_U16 u16CheckTimes = 0; //MS_U16 u16DeboundTimes = 0; // need to toggle vby1 packer process start first MOD_W2BYTEMSK(REG_MOD_BK00_62_L, 0x00, BIT(11)); MOD_W2BYTEMSK(REG_MOD_BK00_62_L, BIT(11), BIT(11)); MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0F56); // set reg. initial value MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xD6, 0x00FF); // after power on go to stand-by MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0x96, 0x00FF); // connection is established, go to Acquisition MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training MOD_W2BYTEMSK(REG_MOD_BK00_60_L, 0xBE, 0x00FF); // enable encoder for DC blance while(u16CheckTimes < 10) { #if 0 u16DeboundTimes = 2; while ((!MHal_PNL_Is_VBY1_LockN_Locked()) && (u16DeboundTimes --)) { MsOS_DelayTask(1); // can't remove } #endif if(MHal_PNL_Is_VBY1_LockN_Locked(pInstance)) { //------------------------------------------------------------------- // step1. Toggle clock when training MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE); //-------------------------------------------------------------------- bIsLock = TRUE; // pass 2 times debound to make sure VBY1 is locked break; } u16CheckTimes++; MsOS_DelayTaskUs(40); } if(bIsLock) { // step3. Disable HW check when lock done, Enable when loss lock //MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15); /// Add the delay to increase time to send //MDrv_TIMER_Delayms(10); } } else { if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0x0FAE) { MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0FAE); } bIsLock = TRUE; } return bIsLock; } MS_BOOL MHal_PNL_Is_VBY1_OC_Locked(void *pInstance) { if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0C00) == 0x00) // MOD_BK00_56_L[11:10] for OSD { return TRUE; } else { return FALSE; } } MS_BOOL MHal_PNL_Is_VBY1_OC_LockN_Locked(void *pInstance) { if (MOD_A_R2BYTEMSK(REG_MOD_A_BK00_47_L, 0x0400) == 0x00) // MOD_BK00_56_L[11:10] for OSD { return TRUE; } else { return FALSE; } } MS_BOOL MHal_PNL_VBY1_OC_Handshake(void *pInstance) { MS_BOOL bIsLock = FALSE; if (MHal_PNL_Is_VBY1_OC_Locked(pInstance) == FALSE) { MS_U16 u16CheckTimes = 0; // MS_U16 u16DeboundTimes = 0; // need to toggle vby1 packer process start first MOD_W2BYTEMSK(REG_MOD_BK00_66_L, 0x00, BIT(11)); MOD_W2BYTEMSK(REG_MOD_BK00_66_L, BIT(11), BIT(11)); MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0F56); // set reg. initial value MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xD6, 0x00FF); // after power on go to stand-by MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0x96, 0x00FF); // connection is established, go to Acquisition MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xB6, 0x00FF); // when internal clock is stable, got to CDR training MOD_W2BYTEMSK(REG_MOD_BK00_64_L, 0xBE, 0x00FF); // enable encoder for DC blance while(u16CheckTimes < 10) { #if 0 u16DeboundTimes = 2; while ((!MHal_PNL_Is_VBY1_OC_LockN_Locked()) && (u16DeboundTimes --)) { MsOS_DelayTask(1); } #endif if(MHal_PNL_Is_VBY1_OC_LockN_Locked(pInstance)) { //------------------------------------------------------------------- // step1. Toggle clock when training MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE); bIsLock = TRUE; // pass 2 times debound to make sure VBY1 is locked break; } u16CheckTimes++; MsOS_DelayTaskUs(40); } if(bIsLock) { // step3. Disable HW check when lock done, Enable when loss lock // MOD_W2BYTEMSK(REG_MOD_BK00_33_L, 0x00, BIT15); } } else { if(MOD_R2BYTEMSK(REG_MOD_BK00_64_L, 0x0FFF) != 0x0FAE) { MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0FAE); } bIsLock = TRUE; } return bIsLock; } MS_BOOL MHal_PNL_IsYUVOutput(void *pInstance) { return FALSE; } MS_BOOL MHal_PNL_SetOutputInterlaceTiming(void *pInstance, MS_BOOL bEnable) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); if (bEnable == TRUE) { //interlace output vtotal modify SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9), BIT(9)); // two different interlace information through channel A reserved bit MOD_W2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7), BIT(4) | BIT(7)); // two different interlace information through channel B reserved bit MOD_W2BYTEMSK(REG_MOD_BK00_42_L, BIT(10)|BIT(11), BIT(10)|BIT(11)); } else { SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L , 0, BIT(9)); MOD_W2BYTEMSK(REG_MOD_BK00_40_L, 0, BIT(4) | BIT(7)); MOD_W2BYTEMSK(REG_MOD_BK00_42_L, 0, BIT(10)|BIT(11)); } return TRUE; } MS_BOOL MHal_PNL_GetOutputInterlaceTiming(void *pInstance) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); MS_BOOL bIsInterlaceOutput = FALSE; //interlace output vtotal modify if (SC_R2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK10_21_L, BIT(9)) == BIT(9)) { if ((MOD_R2BYTEMSK(REG_MOD_BK00_40_L, BIT(4) | BIT(7)) == (BIT(4) | BIT(7))) || (MOD_R2BYTEMSK(REG_MOD_BK00_42_L, BIT(10) | BIT(11)) == (BIT(10)|BIT(11)))) { bIsInterlaceOutput = TRUE; } } else { bIsInterlaceOutput = FALSE; } return bIsInterlaceOutput; } // Output Dclk void MHal_PNL_CalExtLPLLSETbyDClk(void *pInstance, MS_U8 u8LPLL_Mode, MS_U8 u8LPLL_Type, MS_U64 ldHz) { UNUSED(pInstance); UNUSED(u8LPLL_Mode); UNUSED(u8LPLL_Type); UNUSED(ldHz); } void MHal_PNL_SetOSDCOutputType(void *pInstance, PNL_TYPE eLPLL_Type, E_PNL_OSDC_OUTPUT_FORMAT eOC_OutputFormat) { UNUSED(pInstance); UNUSED(eLPLL_Type); UNUSED(eOC_OutputFormat); } MS_BOOL MHal_PNL_SetOSDSSC(void *pInstance, MS_U16 u16Fmodulation, MS_U16 u16Rdeviation, MS_BOOL bEnable) { MS_U16 u16Span; MS_U16 u16Step; MS_U32 u32PLL_SET;/// = MDrv_Read3Byte(L_BK_LPLL(0x0F)); MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00); u32PLL_SET = R4BYTE(L_BK_LPLL(0x48)); // Set SPAN if(u16Fmodulation < 200 || u16Fmodulation > 400) u16Fmodulation = 300; u16Span =( ( (((MS_U32)LVDS_MPLL_CLOCK_MHZ*LVDS_SPAN_FACTOR ) / (u16Fmodulation) ) * 10000) / ((MS_U32)u32PLL_SET) ) ; // Set STEP if(u16Rdeviation > 300) u16Rdeviation = 300; u16Step = ((MS_U32)u32PLL_SET*u16Rdeviation) / ((MS_U32)u16Span*10000); W2BYTE(L_BK_LPLL(0x4E), u16Step & 0x0FFF);// LPLL_STEP W2BYTE(L_BK_LPLL(0x4F), u16Span & 0x3FFF);// LPLL_SPAN W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc return TRUE; } void MHal_PNL_SetOSDSSC_En(void *pInstance, MS_BOOL bEnable) { //printf("bEnable = %d\n", bEnable); MHal_PNL_Switch_LPLL_SubBank(pInstance, 0x00); W2BYTEMSK((L_BK_LPLL(0x4E)), (bEnable << 15), BIT(15)); // Enable ssc } void MHal_PNL_Set_T3D_Setting(void *pInstance) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); SC_W2BYTEMSK(pPNLInstancePrivate->u32DeviceID, REG_SC_BK62_63_L, 0x00, BIT(0)); // default disable T3D SRAM } void MHal_PNL_Set_Device_Bank_Offset(void *pInstance) { UNUSED(pInstance); memset(u32PNL_XCDeviceBankOffset, 0, sizeof(MS_U32)*E_PNL_DEVICE_ID_NUM); u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_0] = E_HALPNL_DEVICE0_XC_BANK_OFFSET; // Set SC0 reg bank offset u32PNL_XCDeviceBankOffset[E_PNL_DEVICE_ID_1] = E_HALPNL_DEVICE1_XC_BANK_OFFSET; // Set SC2 reg bank offset } void MHal_PNL_Init(void *pInstance) { // Do nothing UNUSED(pInstance); } void MHal_PNL_Bringup(void *pInstance) { PNL_INSTANCE_PRIVATE *pPNLInstancePrivate = NULL; PNL_RESOURCE_PRIVATE* pPNLResourcePrivate = NULL; UtopiaInstanceGetPrivate(pInstance, (void**)&pPNLInstancePrivate); UtopiaResourceGetPrivate(g_pPNLResource[PNL_GET_INTERNAL_POOL_ID(pPNLInstancePrivate->u32DeviceID)],(void**)(&pPNLResourcePrivate)); ///patch for bring up if(pPNLResourcePrivate->stdrvPNL._stPnlInitData.eLPLL_Type == E_PNL_TYPE_LVDS) { //==================== MPLL ==================== //swch 4 W2BYTEMSK(0x00101e38, 0x00, 0xFF); W2BYTEMSK(0x00110c03, 0x00, 0xFF); W2BYTE(0x00111e74, 0x0100); //===== Setting LPLL (LVDS_2ch_150M) ======// W2BYTEMSK(0x0010311e, 0x440, 0xFF); W2BYTEMSK(0x0010311f, 0x7f, 0xFF); W2BYTEMSK(0x00103120, 0x27, 0xFF); W2BYTEMSK(0x00103121, 0x00, 0xFF); W2BYTEMSK(0x0010312a, 0x00, 0xFF); W2BYTEMSK(0x0010312b, 0x00, 0xFF); W2BYTEMSK(0x00103102, 0x02, 0xFF); W2BYTEMSK(0x00103103, 0x03, 0xFF); W2BYTEMSK(0x00103104, 0x00, 0xFF); W2BYTEMSK(0x00103105, 0x07, 0xFF); W2BYTEMSK(0x00103106, 0x04, 0xFF); W2BYTEMSK(0x00103107, 0x00, 0xFF); W2BYTEMSK(0x00103108, 0x00, 0xFF); W2BYTEMSK(0x00103109, 0x00, 0xFF); W2BYTEMSK(0x0010315c, 0x90, 0xFF); W2BYTEMSK(0x0010315d, 0x57, 0xFF); W2BYTEMSK(0x00103160, 0x00, 0xFF); W2BYTEMSK(0x00103161, 0x00, 0xFF); W2BYTEMSK(0x00103162, 0x00, 0xFF); W2BYTEMSK(0x00103163, 0x00, 0xFF); W2BYTEMSK(0x00103164, 0x00, 0xFF); W2BYTEMSK(0x00103165, 0x00, 0xFF); W2BYTEMSK(0x00103166, 0x20, 0xFF); W2BYTEMSK(0x00103167, 0x00, 0xFF); W2BYTEMSK(0x00103168, 0x00, 0xFF); W2BYTEMSK(0x00103169, 0x00, 0xFF); W2BYTEMSK(0x0010316a, 0x00, 0xFF); W2BYTEMSK(0x0010316b, 0x1f, 0xFF); W2BYTEMSK(0x0010316c, 0x00, 0xFF); W2BYTEMSK(0x0010316d, 0x00, 0xFF); W2BYTEMSK(0x0010316e, 0x00, 0xFF); W2BYTEMSK(0x0010316f, 0x00, 0xFF); W2BYTEMSK(0x00103172, 0x00, 0xFF); W2BYTEMSK(0x00103173, 0x00, 0xFF); W2BYTEMSK(0x001031c0, 0xf0, 0xFF); W2BYTEMSK(0x001031c1, 0x00, 0xFF); W2BYTEMSK(0x001031c2, 0x00, 0xFF); W2BYTEMSK(0x001031c3, 0x00, 0xFF); W2BYTEMSK(0x001031c4, 0xf0, 0xFF); W2BYTEMSK(0x001031c5, 0x00, 0xFF); W2BYTEMSK(0x001031c6, 0x00, 0xFF); W2BYTEMSK(0x001031c7, 0x00, 0xFF); W2BYTEMSK(0x001031c8, 0x00, 0xFF); W2BYTEMSK(0x001031c9, 0x00, 0xFF); W2BYTEMSK(0x001031ca, 0x00, 0xFF); W2BYTEMSK(0x001031cb, 0x00, 0xFF); W2BYTEMSK(0x001031cc, 0x00, 0xFF); W2BYTEMSK(0x001031cd, 0x00, 0xFF); W2BYTEMSK(0x001031e2, 0x00, 0xFF); W2BYTEMSK(0x001031e3, 0x00, 0xFF); //==================== CLKGEN ==================== W2BYTEMSK(0x00100bb0, 0x00, 0xFF); W2BYTEMSK(0x00100bb1, 0x00, 0xFF); W2BYTEMSK(0x00100bae, 0x00, 0xFF); W2BYTEMSK(0x00100baf, 0x01, 0xFF); W2BYTEMSK(0x00100ba6, 0x0c, 0xFF); W2BYTEMSK(0x00100ba7, 0x00, 0xFF); W2BYTEMSK(0x00100bc6, 0x01, 0xFF); W2BYTEMSK(0x00100bc7, 0x00, 0xFF); //==================== disp_misc_a ==================== W2BYTEMSK(0x00111e70, 0x1f, 0xFF); W2BYTEMSK(0x00111e71, 0x00, 0xFF); W2BYTEMSK(0x00111e00, 0x55, 0xFF); W2BYTEMSK(0x00111e01, 0x55, 0xFF); W2BYTEMSK(0x00111e02, 0x55, 0xFF); W2BYTEMSK(0x00111e03, 0x00, 0xFF); W2BYTEMSK(0x00111ed0, 0x3f, 0xFF); W2BYTEMSK(0x00111ed1, 0x00, 0xFF); W2BYTEMSK(0x00111eb2, 0x00, 0xFF); W2BYTEMSK(0x00111eb3, 0x00, 0xFF); W2BYTEMSK(0x00111eb0, 0x00, 0xFF); W2BYTEMSK(0x00111eb1, 0x00, 0xFF); //==================== disp_misc_a ==================== //==================== disp_misc_d ==================== W2BYTEMSK(0x00103294, 0x02, 0xFF); W2BYTEMSK(0x00103295, 0x00, 0xFF); W2BYTEMSK(0x00103266, 0x00, 0xFF); W2BYTEMSK(0x00103267, 0x80, 0xFF); //==================== disp_misc_d ==================== //==========================// //= DISP_TGEN GREY BOX =// //==========================// W2BYTE(0x102f00, 0x0010); W2BYTE(0x102f02, 0x0002); W2BYTE(0x102f08, 0x0070); W2BYTE(0x102f0a, 0x07ef); W2BYTE(0x102f0c, 0x0014); W2BYTE(0x102f0e, 0x044b); W2BYTE(0x102f10, 0x0071); W2BYTE(0x102f12, 0x07ee); W2BYTE(0x102f14, 0x0015); W2BYTE(0x102f16, 0x044a); W2BYTE(0x102f18, 0x0897); W2BYTE(0x102f1a, 0x0464); W2BYTE(0x102f32, 0xff03); W2BYTE(0x102f34, 0x0000); //*********** bring up for different setting *********// W2BYTE(0x111e62, 0x3fff); W2BYTEMSK(0x103280, 0x0C, 0xFF); W2BYTEMSK(0x103296, 0x00, 0xFF); } } MS_U16 MHal_PNL_GetPanelVStart(void) { return 6; } MS_BOOL MHal_PNL_Check_VBY1_Handshake_Status(void *pInstance) { if(MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF) != 0xFAE) { //printf("VBY1 handshake return because the reg value is 0x%u, not 0xFAE.\n", MOD_R2BYTEMSK(REG_MOD_BK00_60_L, 0x0FFF)); return FALSE; } else { //printf("VBY handshake check success.\n"); return TRUE; } } void MHal_PNL_ChannelFIFOPointerADjust(void *pInstance) { // 0 to 1 then will do write and read point capture to // Read : REG_MOD_BK00_5F_L[14:12] // write : REG_MOD_BK00_5F_L[10:8] // it takes 3 ticks to capture and riu takes 5 ticks to write // so we don't have to do any delay between rising capture and // read/write pointer recognition MsOS_DelayTaskUs(500); MOD_A_W2BYTE(REG_MOD_A_BK00_5C_L, 0x3300); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(0)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3)); MS_U16 u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L); MS_S8 u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8] MS_S8 u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12] //OSD part MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3)); MS_U16 OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L); MS_S8 OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8] MS_S8 OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12] MS_BOOL bOSDC = ((MOD_A_R2BYTE(REG_MOD_A_BK00_58_L)&0x00F0) == 0x0040)?TRUE:FALSE; while (((abs(u8WritePointer-u8ReadPointer) >4) && (abs(u8WritePointer-u8ReadPointer)<2)) ||(((abs(OSDu8WritePointer-OSDu8ReadPointer) >4) && (abs(OSDu8WritePointer-OSDu8ReadPointer)<2))&&bOSDC)) { MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(0)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(0), BIT(0)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0 , BIT(1)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(1), BIT(1)); MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, 0, BIT(2)|BIT(3)); u16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L); u8WritePointer = (u16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8] u8ReadPointer = (u16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12] MOD_A_W2BYTEMSK(REG_MOD_A_BK00_5D_L, BIT(2)|BIT(3), BIT(2)|BIT(3)); OSDu16name = MOD_A_R2BYTE(REG_MOD_A_BK00_5D_L); OSDu8WritePointer = (OSDu16name & 0x0700) >> 8; // REG_MOD_BK00_5F_L[10:8] OSDu8ReadPointer = (OSDu16name & 0x7000) >> 12; // REG_MOD_BK00_5F_L[14:12] printf("bOSDC [%d]\n",bOSDC); } } void MHal_PNL_VBY1_Hardware_TrainingMode_En(void *pInstance, MS_BOOL bIsVideoMode ,MS_BOOL bEnable) { if(bIsVideoMode) { if(bEnable) { MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AAE); } else { MOD_W2BYTE(REG_MOD_BK00_60_L, 0x0AA6); } } else { if(bEnable) { MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AAE); } else { MOD_W2BYTE(REG_MOD_BK00_64_L, 0x0AA6); } } } MS_BOOL MHal_PNL_VBY1_IsSupport_Hardware_TrainingMode(void *pInstance) { #ifdef SUPPORT_VBY1_HWTRAINING_MODE return TRUE; #else return FALSE; #endif } void MHal_PNL_TCON_Patch(void) { } #endif