// //****************************************************************************** // MStar Software // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved. // All software, firmware and related documentation herein ("MStar Software") are // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by // law, including, but not limited to, copyright law and international treaties. // Any use, modification, reproduction, retransmission, or republication of all // or part of MStar Software is expressly prohibited, unless prior written // permission has been granted by MStar. // // By accessing, browsing and/or using MStar Software, you acknowledge that you // have read, understood, and agree, to be bound by below terms ("Terms") and to // comply with all applicable laws and regulations: // // 1. MStar shall retain any and all right, ownership and interest to MStar // Software and any modification/derivatives thereof. // No right, ownership, or interest to MStar Software and any // modification/derivatives thereof is transferred to you under Terms. // // 2. You understand that MStar Software might include, incorporate or be // supplied together with third party`s software and the use of MStar // Software may require additional licenses from third parties. // Therefore, you hereby agree it is your sole responsibility to separately // obtain any and all third party right and license necessary for your use of // such third party`s software. // // 3. MStar Software and any modification/derivatives thereof shall be deemed as // MStar`s confidential information and you agree to keep MStar`s // confidential information in strictest confidence and not disclose to any // third party. // // 4. MStar Software is provided on an "AS IS" basis without warranties of any // kind. Any warranties are hereby expressly disclaimed by MStar, including // without limitation, any warranties of merchantability, non-infringement of // intellectual property rights, fitness for a particular purpose, error free // and in conformity with any international standard. You agree to waive any // claim against MStar for any loss, damage, cost or expense that you may // incur related to your use of MStar Software. // In no event shall MStar be liable for any direct, indirect, incidental or // consequential damages, including without limitation, lost of profit or // revenues, lost or damage of data, and unauthorized system use. // You agree that this Section 4 shall still apply without being affected // even if MStar Software has been modified by MStar in accordance with your // request or instruction for your use, except otherwise agreed by both // parties in writing. // // 5. If requested, MStar may from time to time provide technical supports or // services in relation with MStar Software to you for your use of // MStar Software in conjunction with your or your customer`s product // ("Services"). // You understand and agree that, except otherwise agreed by both parties in // writing, Services are provided on an "AS IS" basis and the warranty // disclaimer set forth in Section 4 above shall apply. // // 6. Nothing contained herein shall be construed as by implication, estoppels // or otherwise: // (a) conferring any license or right to use MStar name, trademark, service // mark, symbol or any other identification; // (b) obligating MStar or any of its affiliates to furnish any person, // including without limitation, you and your customers, any assistance // of any kind whatsoever, or any information; or // (c) conferring any license or right under any intellectual property right. // // 7. These terms shall be governed by and construed in accordance with the laws // of Taiwan, R.O.C., excluding its conflict of law rules. // Any and all dispute arising out hereof or related hereto shall be finally // settled by arbitration referred to the Chinese Arbitration Association, // Taipei in accordance with the ROC Arbitration Law and the Arbitration // Rules of the Association by three (3) arbitrators appointed in accordance // with the said Rules. // The place of arbitration shall be in Taipei, Taiwan and the language shall // be English. // The arbitration award shall be final and binding to both parties. // //****************************************************************************** // //////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2008-2009 MStar Semiconductor, Inc. // All rights reserved. // // Unless otherwise stipulated in writing, any and all information contained // herein regardless in any format shall remain the sole proprietary of // MStar Semiconductor Inc. and be kept in strict confidence // ("MStar Confidential Information") by the recipient. // Any unauthorized act including without limitation unauthorized disclosure, // copying, use, reproduction, sale, distribution, modification, disassembling, // reverse engineering and compiling of the contents of MStar Confidential // Information is unlawful and strictly prohibited. MStar hereby reserves the // rights to any and all damages, losses, costs and expenses resulting therefrom. // //////////////////////////////////////////////////////////////////////////////// //------------------------------------------------------------------------------------------------- // Include Files //------------------------------------------------------------------------------------------------- // Common Definition #include #include "drvHVD_Common.h" // Internal Definition #include "drvHVD_def.h" #include "fwHVD_if.h" #include "halVPU_EX.h" #include "halHVD_EX.h" #include "regHVD_EX.h" //------------------------------------------------------------------------------------------------- // Driver Compiler Options //------------------------------------------------------------------------------------------------- #if !defined(MSOS_TYPE_NUTTX) || defined(SUPPORT_X_MODEL_FEATURE) //------------------------------------------------------------------------------------------------- // Local Defines //------------------------------------------------------------------------------------------------- #define RV_VLC_TABLE_SIZE 0x20000 /* Add for Mobile Platform by Ted Sun */ //#define HVD_DISPQ_PREFETCH_COUNT 2 #define HVD_FW_MEM_OFFSET 0x100000UL // 1M #define VPU_QMEM_BASE 0x20000000UL #define HVD_HW_MAX_PIXEL (3840*2160*31000ULL) // 4kx2k@30p #if 0 static HVD_AVC_VUI_DISP_INFO g_hvd_VUIINFO; static MS_U8 g_hvd_nal_fill_pair[2][8] = { {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0} }; static MS_U32 u32RV_VLCTableAddr = 0; // offset from Frame buffer start address static MS_U16 _u16DispQPtr = 0; #endif //---------------------------------- Mutex settings ----------------------------------------- #if HAL_HVD_ENABLE_MUTEX_PROTECT #define _HAL_HVD_MutexCreate() \ do \ { \ if (s32HVDMutexID < 0) \ { \ s32HVDMutexID = OSAL_HVD_MutexCreate((MS_U8*)(_u8HVD_Mutex)); \ } \ } while (0) #define _HAL_HVD_MutexDelete() \ do \ { \ if (s32HVDMutexID >= 0) \ { \ OSAL_HVD_MutexDelete(s32HVDMutexID); \ s32HVDMutexID = -1; \ } \ } while (0) #define _HAL_HVD_Entry() \ do \ { \ if (s32HVDMutexID >= 0) \ { \ if (!OSAL_HVD_MutexObtain(s32HVDMutexID, OSAL_HVD_MUTEX_TIMEOUT)) \ { \ printf("[HAL HVD][%06d] Mutex taking timeout\n", __LINE__); \ } \ } \ } while (0) #define _HAL_HVD_Return(_ret_) \ do \ { \ if (s32HVDMutexID >= 0) \ { \ OSAL_HVD_MutexRelease(s32HVDMutexID); \ } \ return _ret_; \ } while(0) #define _HAL_HVD_Release() \ do \ { \ if (s32HVDMutexID >= 0) \ { \ OSAL_HVD_MutexRelease(s32HVDMutexID); \ } \ } while (0) #else // HAL_HVD_ENABLE_MUTEX_PROTECT #define _HAL_HVD_MutexCreate() #define _HAL_HVD_MutexDelete() #define _HAL_HVD_Entry() #define _HAL_HVD_Return(_ret) {return _ret;} #define _HAL_HVD_Release() #endif // HAL_HVD_ENABLE_MUTEX_PROTECT //------------------------------ MIU SETTINGS ---------------------------------- #define _MaskMiuReq_MVD_RW( m ) _HVD_WriteRegBit(MIU0_REG_RQ2_MASK, m, BIT(4)) #define _MaskMiuReq_MVD_BBU_R( m ) _HVD_WriteRegBit(MIU0_REG_RQ0_MASK+1, m, BIT(4)) #define _MaskMiuReq_HVD_RW( m ) _HVD_WriteRegBit(MIU0_REG_RQ2_MASK, m, BIT(2)) #define _MaskMiuReq_HVD_BBU_R( m ) _HVD_WriteRegBit(MIU0_REG_RQ2_MASK, m, BIT(1)) #define _MaskMiu1Req_MVD_RW( m ) _HVD_WriteRegBit(MIU1_REG_RQ2_MASK, m, BIT(4)) #define _MaskMiu1Req_MVD_BBU_R( m ) _HVD_WriteRegBit(MIU1_REG_RQ0_MASK+1, m, BIT(4)) #define _MaskMiu1Req_HVD_RW( m ) _HVD_WriteRegBit(MIU1_REG_RQ2_MASK, m, BIT(2)) #define _MaskMiu1Req_HVD_BBU_R( m ) _HVD_WriteRegBit(MIU1_REG_RQ2_MASK, m, BIT(1)) #define HVD_MVD_RW_ON_MIU1 ((_HVD_Read2Byte(MIU0_REG_SEL2) & BIT(4)) == BIT(4)) #define HVD_MVD_BBU_R_ON_MIU1 ((_HVD_Read2Byte(MIU0_REG_SEL0) & BIT(12)) == BIT(12)) #define HVD_HVD_RW_ON_MIU1 ((_HVD_Read2Byte(MIU0_REG_SEL2) & BIT(2)) == BIT(2)) #define HVD_HVD_BBU_R_ON_MIU1 ((_HVD_Read2Byte(MIU0_REG_SEL2) & BIT(1)) == BIT(1)) #if SUPPORT_EVD #define _MaskMiuReq_EVD_RW( m ) _HVD_WriteRegBit(MIU0_REG_RQ3_MASK+1, m, BIT(5)) #define _MaskMiuReq_EVD_BBU_R( m ) _HVD_WriteRegBit(MIU0_REG_RQ3_MASK+1, m, BIT(4)) #define _MaskMiu1Req_EVD_RW( m ) _HVD_WriteRegBit(MIU1_REG_RQ3_MASK+1, m, BIT(5)) #define _MaskMiu1Req_EVD_BBU_R( m ) _HVD_WriteRegBit(MIU1_REG_RQ3_MASK+1, m, BIT(4)) #define HVD_EVD_RW_ON_MIU1 ((_HVD_Read2Byte(MIU0_REG_SEL3) & BIT(13)) == BIT(13)) #define HVD_EVD_BBU_R_ON_MIU1 ((_HVD_Read2Byte(MIU0_REG_SEL3) & BIT(12)) == BIT(12)) #endif #define _HVD_MIU_SetReqMask(miu_clients, mask) \ do \ { \ if (HVD_##miu_clients##_ON_MIU1 == 0) \ { \ _MaskMiuReq_##miu_clients(mask); \ } \ else \ { \ _MaskMiu1Req_##miu_clients(mask); \ } \ } while (0) // check RM is supported or not #define HVD_HW_RUBBER3 (HAL_HVD_EX_GetHWVersionID()& BIT(14)) #define HAL_HVD_EX_MAX_SUPPORT_STREAM 3 //------------------------------------------------------------------------------------------------- // Local Structures //------------------------------------------------------------------------------------------------- //------------------------------------------------------------------------------------------------- // Local Functions Prototype //------------------------------------------------------------------------------------------------- static MS_U16 _HVD_EX_GetBBUReadptr(MS_U32 u32Id); static void _HVD_EX_SetBBUWriteptr(MS_U32 u32Id, MS_U16 u16BBUNewWptr); static MS_BOOL _HVD_EX_MBoxSend(MS_U32 u32Id, MS_U8 u8MBox, MS_U32 u32Msg); static MS_BOOL _HVD_EX_MBoxReady(MS_U32 u32Id, MS_U8 u8MBox); static MS_BOOL _HVD_EX_MBoxRead(MS_U32 u32Id, MS_U8 u8MBox, MS_U32 *u32Msg); //static void _HVD_EX_MBoxClear(MS_U8 u8MBox); static MS_U32 _HVD_EX_GetPC(void); static MS_U32 _HVD_EX_GetESWritePtr(MS_U32 u32Id); static MS_U32 _HVD_EX_GetESReadPtr(MS_U32 u32Id, MS_BOOL bDbug); static MS_BOOL _HVD_EX_SetCMDArg(MS_U32 u32Id, MS_U32 u32Arg); static MS_BOOL _HVD_EX_SetCMD(MS_U32 u32Id, MS_U32 u32Cmd); static HVD_Return _HVD_EX_SendCmd(MS_U32 u32Id, MS_U32 u32Cmd, MS_U32 u32CmdArg); static void _HVD_EX_SetMIUProtectMask(MS_BOOL bEnable); static void _HVD_EX_SetBufferAddr(MS_U32 u32Id); static MS_U32 _HVD_EX_GetESLevel(MS_U32 u32Id); static MS_U32 _HVD_EX_GetESQuantity(MS_U32 u32Id); static HVD_Return _HVD_EX_UpdatePTSTable(MS_U32 u32Id, HVD_BBU_Info *pInfo); static HVD_Return _HVD_EX_UpdateESWptr(MS_U32 u32Id, MS_U32 u32NalOffset, MS_U32 u32NalLen); static HVD_Return _HVD_EX_UpdateESWptr_VP8(MS_U32 u32Id, MS_U32 u32NalOffset, MS_U32 u32NalLen, MS_U32 u32NalOffset2, MS_U32 u32NalLen2); static MS_U32 _HVD_EX_GetVUIDispInfo(MS_U32 u32Id); static MS_U32 _HVD_EX_GetBBUQNumb(MS_U32 u32Id); static MS_U32 _HVD_EX_GetPTSQNumb(MS_U32 u32Id); static HVD_EX_Drv_Ctrl *_HVD_EX_GetDrvCtrl(MS_U32 u32Id); static MS_U8 _HVD_EX_GetStreamIdx(MS_U32 u32Id); static HVD_Frm_Information *_HVD_EX_GetNextDispFrame(MS_U32 u32Id); #if SUPPORT_EVD static void HAL_EVD_EX_PowerCtrl(MS_BOOL bEnable); static MS_BOOL HAL_EVD_EX_DeinitHW(void); #endif //------------------------------------------------------------------------------------------------- // Global Variables //------------------------------------------------------------------------------------------------- #if defined (__aeon__) static MS_U32 u32HVDRegOSBase = 0xA0200000; #else static MS_U32 u32HVDRegOSBase = 0xBF200000; #endif #if HAL_HVD_ENABLE_MUTEX_PROTECT MS_S32 s32HVDMutexID = -1; MS_U8 _u8HVD_Mutex[] = { "HVD_Mutex" }; #endif //------------------------------------------------------------------------------------------------- // Local Variables //------------------------------------------------------------------------------------------------- typedef struct { HVD_AVC_VUI_DISP_INFO g_hvd_VUIINFO; MS_U8 g_hvd_nal_fill_pair[2][8]; MS_U32 u32RV_VLCTableAddr; // offset from Frame buffer start address MS_U16 _u16DispQPtr; //HVD_EX_Drv_Ctrl *_pHVDCtrls; MS_U32 u32HVDCmdTimeout;//same as HVD_FW_CMD_TIMEOUT_DEFAULT MS_U32 u32VPUClockType; MS_U32 u32HVDClockType;//160 #if SUPPORT_EVD MS_U32 u32EVDClockType; #endif HVD_EX_Stream _stHVDStream[3]; volatile HVD_Frm_Information *pHvdFrm;//_HVD_EX_GetNextDispFrame() MS_BOOL g_RstFlag; MS_U64 u64pts_real; MS_U32 u32VP8BBUWptr; //pre_set HVD_Pre_Ctrl *pHVDPreCtrl_Hal[2]; } HVD_Hal_CTX; HVD_Hal_CTX* pHVDHalContext = NULL; HVD_Hal_CTX gHVDHalContext; HVD_EX_Drv_Ctrl *_pHVDCtrls = NULL; static HVD_EX_PreSet _stHVDPreSet[HAL_HVD_EX_MAX_SUPPORT_STREAM] = { {FALSE}, {FALSE}, {FALSE}, }; //------------------------------------------------------------------------------------------------- // Debug Functions //------------------------------------------------------------------------------------------------- #ifdef SUPPORT_X_MODEL_FEATURE //We using the common compile option to handle X model //static MS_BOOL g_RstFlag = FALSE; void HVD_EX_SetRstFlag(MS_BOOL bRst) { pHVDHalContext->g_RstFlag = bRst; } MS_BOOL HVD_EX_GetRstFlag(void) { return pHVDHalContext->g_RstFlag; } #endif //------------------------------------------------------------------------------------------------- // Local Functions //------------------------------------------------------------------------------------------------- static void _HVD_EX_Context_Init_HAL(void) { pHVDHalContext->u32HVDCmdTimeout = 100;//same as HVD_FW_CMD_TIMEOUT_DEFAULT pHVDHalContext->u32VPUClockType = 320; //it should same as:_VPU_EX_InitAll() eClkSpeed pHVDHalContext->u32HVDClockType = 345;//160; #if SUPPORT_EVD pHVDHalContext->u32EVDClockType = 345; #endif pHVDHalContext->_stHVDStream[0].eStreamId = E_HAL_HVD_MAIN_STREAM0; pHVDHalContext->_stHVDStream[1].eStreamId = E_HAL_HVD_SUB_STREAM0; pHVDHalContext->_stHVDStream[2].eStreamId = E_HAL_HVD_SUB_STREAM1; } static MS_U16 _HVD_EX_GetBBUReadptr(MS_U32 u32Id) { MS_U16 u16Ret = 0; MS_U8 u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); #if HVD_ENABLE_MVC if(HAL_HVD_EX_CheckMVCID(u32Id)) { u8TaskId = (MS_U8) HAL_HVD_EX_GetView(u32Id); } #endif /// HVD_ENABLE_MVC _HVD_WriteWordMask(HVD_REG_POLL_NAL_RPTR(u32RB), 0, HVD_REG_POLL_NAL_RPTR_BIT); _HVD_WriteWordMask(HVD_REG_POLL_NAL_RPTR(u32RB), HVD_REG_POLL_NAL_RPTR_BIT, HVD_REG_POLL_NAL_RPTR_BIT); if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) // VP8 { u16Ret = _HVD_Read2Byte(HVD_REG_NAL_RPTR_HI_BS4); u16Ret = _HVD_Read2Byte(HVD_REG_NAL_RPTR_HI_BS3); } else #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { //if(pCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) u16Ret = pShm->u32ColocateBBUReadPtr; else u16Ret = _HVD_Read2Byte(HVD_REG_NAL_RPTR_HI(u32RB)); } else { //if(pCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) u16Ret = pShm->u32ColocateBBUReadPtr; else u16Ret = _HVD_Read2Byte(HVD_REG_NAL_RPTR_HI_BS2); } HVD_EX_MSG_DBG("Task0=%d, Task1=%d\n", _HVD_Read2Byte(HVD_REG_NAL_RPTR_HI(u32RB)), _HVD_Read2Byte(HVD_REG_NAL_RPTR_HI_BS2)); return u16Ret; } static MS_U16 _HVD_EX_GetBBUWritedptr(MS_U32 u32Id) { MS_U16 u16Ret = 0; MS_U8 u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); HVD_EX_Drv_Ctrl *pDrvCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); #if HVD_ENABLE_MVC if (HAL_HVD_EX_CheckMVCID(u32Id)) { u8TaskId = (MS_U8) HAL_HVD_EX_GetView(u32Id); } #endif /// HVD_ENABLE_MVC _HVD_WriteWordMask(HVD_REG_POLL_NAL_RPTR(u32RB), 0, HVD_REG_POLL_NAL_RPTR_BIT); _HVD_WriteWordMask(HVD_REG_POLL_NAL_RPTR(u32RB), HVD_REG_POLL_NAL_RPTR_BIT, HVD_REG_POLL_NAL_RPTR_BIT); if ((pDrvCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_VP8) // VP8 { u16Ret = _HVD_Read2Byte(HVD_REG_NAL_WPTR_HI_BS4); u16Ret = _HVD_Read2Byte(HVD_REG_NAL_WPTR_HI_BS3); } else #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pDrvCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { //if(pDrvCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) u16Ret = pShm->u32ColocateBBUWritePtr; else u16Ret = _HVD_Read2Byte(HVD_REG_NAL_WPTR_HI(u32RB)); } else { //if(pDrvCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) u16Ret = pShm->u32ColocateBBUWritePtr; else u16Ret = _HVD_Read2Byte(HVD_REG_NAL_WPTR_HI_BS2); } return u16Ret; } static void _HVD_EX_ResetMainSubBBUWptr(MS_U32 u32Id) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI(u32RB), 0); _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_NAL_WPTR_SYNC, HVD_REG_NAL_WPTR_SYNC); // set bit 3 _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI_BS2, 0); _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_NAL_WPTR_SYNC, HVD_REG_NAL_WPTR_SYNC); // set bit 3 _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI_BS3, 0); _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_NAL_WPTR_SYNC, HVD_REG_NAL_WPTR_SYNC); // set bit 3 _HVD_Write2Byte(HVD_REG_NAL_RPTR_HI_BS4, 0); _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_NAL_WPTR_SYNC, HVD_REG_NAL_WPTR_SYNC); // set bit 3 } static void _HVD_EX_SetBBUWriteptr(MS_U32 u32Id, MS_U16 u16BBUNewWptr) { MS_U8 u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); #if HVD_ENABLE_MVC if (HAL_HVD_EX_CheckMVCID(u32Id)) { u8TaskId = (MS_U8) HAL_HVD_EX_GetView(u32Id); } #endif /// HVD_ENABLE_MVC if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) // VP8 { _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI_BS3, u16BBUNewWptr); _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI_BS4, u16BBUNewWptr); } else #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI(u32RB), u16BBUNewWptr); //if(pCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) pShm->u32ColocateBBUWritePtr = u16BBUNewWptr; } else { _HVD_Write2Byte(HVD_REG_NAL_WPTR_HI_BS2, u16BBUNewWptr); //if(pCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) pShm->u32ColocateBBUWritePtr = u16BBUNewWptr; } HVD_EX_MSG_DBG("Task0=%d, Task1=%d\n", _HVD_Read2Byte(HVD_REG_NAL_WPTR_HI(u32RB)), _HVD_Read2Byte(HVD_REG_NAL_WPTR_HI_BS2)); _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_NAL_WPTR_SYNC, HVD_REG_NAL_WPTR_SYNC); // set bit 3 } static MS_BOOL _HVD_EX_MBoxSend(MS_U32 u32Id, MS_U8 u8MBox, MS_U32 u32Msg) { MS_BOOL bResult = TRUE; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; switch (u8MBox) { case E_HVD_HI_0: { _HVD_Write4Byte(HVD_REG_HI_MBOX0_L(u32RB), u32Msg); _HVD_WriteWordMask(HVD_REG_HI_MBOX_SET(u32RB), HVD_REG_HI_MBOX0_SET, HVD_REG_HI_MBOX0_SET); break; } case E_HVD_HI_1: { _HVD_Write4Byte(HVD_REG_HI_MBOX1_L(u32RB), u32Msg); _HVD_WriteWordMask(HVD_REG_HI_MBOX_SET(u32RB), HVD_REG_HI_MBOX1_SET, HVD_REG_HI_MBOX1_SET); break; } case E_HVD_VPU_HI_0: { bResult = HAL_VPU_EX_MBoxSend(VPU_HI_MBOX0, u32Msg); break; } case E_HVD_VPU_HI_1: { bResult = HAL_VPU_EX_MBoxSend(VPU_HI_MBOX1, u32Msg); break; } default: { bResult = FALSE; break; } } return bResult; } static MS_BOOL _HVD_EX_MBoxReady(MS_U32 u32Id, MS_U8 u8MBox) { MS_BOOL bResult = TRUE; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; switch (u8MBox) { case E_HVD_HI_0: bResult = _HVD_ReadWordBit(HVD_REG_HI_MBOX_RDY(u32RB), HVD_REG_HI_MBOX0_RDY) ? FALSE : TRUE; break; case E_HVD_HI_1: bResult = _HVD_ReadWordBit(HVD_REG_HI_MBOX_RDY(u32RB), HVD_REG_HI_MBOX1_RDY) ? FALSE : TRUE; break; case E_HVD_RISC_0: bResult = _HVD_ReadWordBit(HVD_REG_RISC_MBOX_RDY(u32RB), HVD_REG_RISC_MBOX0_RDY) ? TRUE : FALSE; break; case E_HVD_RISC_1: bResult = _HVD_ReadWordBit(HVD_REG_RISC_MBOX_RDY(u32RB), HVD_REG_RISC_MBOX1_RDY) ? TRUE : FALSE; break; case E_HVD_VPU_HI_0: bResult = HAL_VPU_EX_MBoxRdy(VPU_HI_MBOX0); break; case E_HVD_VPU_HI_1: bResult = HAL_VPU_EX_MBoxRdy(VPU_HI_MBOX1); break; case E_HVD_VPU_RISC_0: bResult = HAL_VPU_EX_MBoxRdy(VPU_RISC_MBOX0); break; case E_HVD_VPU_RISC_1: bResult = HAL_VPU_EX_MBoxRdy(VPU_RISC_MBOX1); break; default: break; } return bResult; } static MS_BOOL _HVD_EX_MBoxRead(MS_U32 u32Id, MS_U8 u8MBox, MS_U32 *u32Msg) { MS_BOOL bResult = TRUE; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; switch (u8MBox) { case E_HVD_HI_0: { *u32Msg = _HVD_Read4Byte(HVD_REG_HI_MBOX0_L(u32RB)); break; } case E_HVD_HI_1: { *u32Msg = _HVD_Read4Byte(HVD_REG_HI_MBOX1_L(u32RB)); break; } case E_HVD_RISC_0: { *u32Msg = _HVD_Read4Byte(HVD_REG_RISC_MBOX0_L(u32RB)); break; } case E_HVD_RISC_1: { *u32Msg = _HVD_Read4Byte(HVD_REG_RISC_MBOX1_L(u32RB)); break; } case E_HVD_VPU_RISC_0: { bResult = HAL_VPU_EX_MBoxRead(VPU_RISC_MBOX0, u32Msg); break; } case E_HVD_VPU_RISC_1: { bResult = HAL_VPU_EX_MBoxRead(VPU_RISC_MBOX1, u32Msg); break; } default: { bResult = FALSE; break; } } return bResult; } #if 0 static void _HVD_EX_MBoxClear(MS_U8 u8MBox) { switch (u8MBox) { case E_HVD_RISC_0: _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR, HVD_REG_RISC_MBOX0_CLR, HVD_REG_RISC_MBOX0_CLR); break; case E_HVD_RISC_1: _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR, HVD_REG_RISC_MBOX1_CLR, HVD_REG_RISC_MBOX1_CLR); break; case E_HVD_VPU_RISC_0: HAL_VPU_EX_MBoxClear(VPU_RISC_MBOX0); break; case E_HVD_VPU_RISC_1: HAL_VPU_EX_MBoxClear(VPU_RISC_MBOX1); break; default: break; } } #endif static MS_U32 _HVD_EX_GetPC(void) { MS_U32 u32PC = 0; u32PC = HAL_VPU_EX_GetProgCnt(); // HVD_MSG_DBG("pc0 =0x%lx\n",u32PC); return u32PC; } static MS_U32 _HVD_EX_GetESWritePtr(MS_U32 u32Id) { MS_U32 u32Data = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) { u32Data = pCtrl->LastNal.u32NalAddr + pCtrl->LastNal.u32NalSize; if (u32Data > pCtrl->MemMap.u32BitstreamBufSize) { u32Data -= pCtrl->MemMap.u32BitstreamBufSize; HVD_EX_MSG_ERR("app should not put this kind of packet\n"); } } else { #if HVD_ENABLE_MVC MS_U8 u8ViewIdx = 0; if(HAL_HVD_EX_CheckMVCID(u32Id)) { u8ViewIdx = (MS_U8) HAL_HVD_EX_GetView(u32Id); } if(u8ViewIdx != 0) /// 2nd ES ptr. { u32Data = pShm->u32ES2WritePtr; } else { u32Data = pShm->u32ESWritePtr; } #else u32Data = pShm->u32ESWritePtr; #endif } return u32Data; } #define NAL_UNIT_LEN_BITS 21 #define NAL_UNIT_OFT_BITS 30 #define NAL_UNIT_OFT_LOW_BITS (32-NAL_UNIT_LEN_BITS) #define NAL_UNIT_OFT_HIGH_BITS (NAL_UNIT_OFT_BITS-NAL_UNIT_OFT_LOW_BITS) #define NAL_UNIT_OFT_LOW_MASK (((unsigned int)0xFFFFFFFF)>>(32-NAL_UNIT_OFT_LOW_BITS)) static MS_U32 _HVD_EX_GetESReadPtr(MS_U32 u32Id, MS_BOOL bDbug) { MS_U32 u32Data = 0; MS_U8 u8TaskId = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; MS_U32 u32VP8_BBU_DRAM_ST_ADDR_BS3 = pShm->u32HVD_BBU_DRAM_ST_ADDR; u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); #if HVD_ENABLE_MVC if(HAL_HVD_EX_CheckMVCID(u32Id)) { u8TaskId = (MS_U8) HAL_HVD_EX_GetView(u32Id); } #endif /// HVD_ENABLE_MVC if (((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) || (TRUE == bDbug)) { if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_VP8) { // MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U16 u16ReadPtr = _HVD_EX_GetBBUReadptr(u32Id); MS_U16 u16WritePtr = _HVD_EX_GetBBUWritedptr(u32Id); MS_U32 *u32Adr; MS_U32 u32Tmp; if (u16ReadPtr == u16WritePtr) { u32Data = _HVD_EX_GetESWritePtr(u32Id); } else { if (u16ReadPtr) u16ReadPtr--; else u16ReadPtr = VP8_BBU_DRAM_TBL_ENTRY - 1; u32Adr = (MS_U32 *)(MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + u32VP8_BBU_DRAM_ST_ADDR_BS3 + (u16ReadPtr << 3))); u32Data = (*u32Adr) >> NAL_UNIT_LEN_BITS; u32Tmp = (*(u32Adr+1)) & (0xffffffff>>(32-(NAL_UNIT_OFT_BITS-(32-NAL_UNIT_LEN_BITS)))); u32Tmp = u32Tmp << (32-NAL_UNIT_LEN_BITS); u32Data = u32Data | u32Tmp; //printf("[VP8] GetESRptr (%x,%x,%x,%x,%d,%d)\n", u32Adr, (*u32Adr), (*(u32Adr+1)) , u32Data, u16ReadPtr, u16WritePtr); //while(1); } goto EXIT; } // set reg_poll_nal_rptr 0 _HVD_WriteWordMask(HVD_REG_ESB_RPTR(u32RB), 0, HVD_REG_ESB_RPTR_POLL); // set reg_poll_nal_rptr 1 _HVD_WriteWordMask(HVD_REG_ESB_RPTR(u32RB), HVD_REG_ESB_RPTR_POLL, HVD_REG_ESB_RPTR_POLL); // read reg_nal_rptr_hi #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { u32Data = _HVD_Read2Byte(HVD_REG_ESB_RPTR(u32RB)) & 0xFFC0; u32Data >>= 6; u32Data |= _HVD_Read2Byte(HVD_REG_ESB_RPTR_H(u32RB)) << 10; } else { u32Data = _HVD_Read2Byte(HVD_REG_ESB_RPTR_L_BS2) & 0xFFC0; u32Data >>= 6; u32Data |= _HVD_Read2Byte(HVD_REG_ESB_RPTR_H_BS2) << 10; } u32Data <<= 3; // unit if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) { MS_U32 u32ESWptr = _HVD_EX_GetESWritePtr(u32Id); if ((pCtrl->u32LastESRptr < u32ESWptr) && (u32Data > u32ESWptr)) { //HVD_MSG_INFO("HVD Warn: ESRptr(%lx %lx) is running over ESWptr(%lx)\n" , u32Data , pCtrl->u32LastESRptr, u32ESWptr ); u32Data = u32ESWptr; } else if ((pCtrl->u32LastESRptr == u32ESWptr) && (u32Data > u32ESWptr)) { //HVD_MSG_INFO("HVD Warn: ESRptr(%lx %lx) is running over ESWptr(%lx)\n" , u32Data , pCtrl->u32LastESRptr, u32ESWptr ); u32Data = u32ESWptr; } else if ((_HVD_EX_GetBBUQNumb(u32Id) == 0) && ((u32Data - u32ESWptr) < 32) && ((pShm->u32FwState & E_HVD_FW_STATE_MASK) == E_HVD_FW_PLAY)) { //HVD_MSG_INFO("HVD Warn: ESRptr(%lx %lx) is running over ESWptr(%lx)\n" , u32Data , pCtrl->u32LastESRptr, u32ESWptr ); u32Data = u32ESWptr; } else if (((u32Data > u32ESWptr) && (pCtrl->u32LastESRptr > u32Data)) && ((u32Data - u32ESWptr) < 32) && (pCtrl->u32FlushRstPtr == 1)) { //HVD_MSG_INFO("444HVD Warn: ESRptr(%lx %lx) is running over ESWptr(%lx)\n" , u32Data , pCtrl->u32LastESRptr, u32ESWptr ); u32Data = u32ESWptr; } } // remove illegal pointer #if 1 if ((pCtrl->MemMap.u32DrvProcessBufSize != 0) && (pCtrl->MemMap.u32DrvProcessBufAddr != 0)) { MS_U32 u32PacketStaddr = u32Data + pCtrl->MemMap.u32BitstreamBufAddr; if (((pCtrl->MemMap.u32DrvProcessBufAddr <= u32PacketStaddr) && (u32PacketStaddr < (pCtrl->MemMap.u32DrvProcessBufAddr + pCtrl->MemMap.u32DrvProcessBufSize)))) { //HVD_MSG_INFO("HVD Warn: ESRptr(%lx %lx) is located in drv process buffer(%lx %lx)\n" , u32Data , pCtrl->u32LastESRptr, pCtrl->MemMap.u32DrvProcessBufAddr , pCtrl->MemMap.u32DrvProcessBufSize ); u32Data = pCtrl->u32LastESRptr; } } #endif } else { #if HVD_ENABLE_MVC MS_U8 u8ViewIdx = 0; if(HAL_HVD_EX_CheckMVCID(u32Id)) { u8ViewIdx = (MS_U8) HAL_HVD_EX_GetView(u32Id); } if(u8ViewIdx != 0) /// 2nd ES ptr. { u32Data = pShm->u32ES2ReadPtr; } else { u32Data = pShm->u32ESReadPtr; } #else u32Data = pShm->u32ESReadPtr; #endif } EXIT: pCtrl->u32LastESRptr = u32Data; return u32Data; } static MS_BOOL _HVD_EX_SetCMDArg(MS_U32 u32Id, MS_U32 u32Arg) { MS_U16 u16TimeOut = 0xFFFF; MS_BOOL bResult = FALSE; HVD_EX_MSG_DBG("Send ARG 0x%lx to HVD\n", u32Arg); while (--u16TimeOut) { if (_HVD_EX_MBoxReady(u32Id, HAL_HVD_CMD_MBOX) && _HVD_EX_MBoxReady(u32Id, HAL_HVD_CMD_ARG_MBOX)) { bResult = _HVD_EX_MBoxSend(u32Id, HAL_HVD_CMD_ARG_MBOX, u32Arg); break; } } return bResult; } static MS_BOOL _HVD_EX_SetCMD(MS_U32 u32Id, MS_U32 u32Cmd) { MS_U16 u16TimeOut = 0xFFFF; MS_BOOL bResult = FALSE; MS_U8 u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); HVD_EX_MSG_DBG("Send CMD 0x%lx to HVD \n", u32Cmd); #if HVD_ENABLE_MVC if(E_HAL_VPU_MVC_STREAM_BASE == u8TaskId) { u8TaskId = E_HAL_VPU_MAIN_STREAM_BASE; } #endif /// HVD_ENABLE_MVC while (--u16TimeOut) { if (_HVD_EX_MBoxReady(u32Id, HAL_HVD_CMD_MBOX)) { u32Cmd |= (u8TaskId << 24); bResult = _HVD_EX_MBoxSend(u32Id, HAL_HVD_CMD_MBOX, u32Cmd); break; } } return bResult; } static HVD_Return _HVD_EX_SendCmd(MS_U32 u32Id, MS_U32 u32Cmd, MS_U32 u32CmdArg) { MS_U32 u32timeout = HVD_GetSysTime_ms() + pHVDHalContext->u32HVDCmdTimeout; while (!_HVD_EX_SetCMDArg(u32Id, u32CmdArg)) { if (HVD_GetSysTime_ms() > u32timeout) { HVD_EX_MSG_ERR("Timeout: cmd=0x%lx arg=0x%lx\n", u32Cmd, u32CmdArg); return E_HVD_RETURN_TIMEOUT; } #if 0 if (u32Cmd == E_HVD_CMD_STOP) { MS_U8 u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); #if HVD_ENABLE_MVC if(E_HAL_VPU_MVC_STREAM_BASE == u8TaskId) { u8TaskId = E_HAL_VPU_MAIN_STREAM_BASE; } #endif /// HVD_ENABLE_MVC MS_U32 u32Cmdtmp = (u8TaskId << 24) | E_HVD_CMD_STOP; _HVD_EX_MBoxSend(u32Id, HAL_HVD_CMD_MBOX, u32Cmdtmp); _HVD_EX_MBoxSend(u32Id, HAL_HVD_CMD_ARG_MBOX, 0); return E_HVD_RETURN_SUCCESS; } #endif if(u32Cmd < E_DUAL_CMD_BASE) { //_HVD_EX_GetPC(); HAL_HVD_EX_Dump_FW_Status(u32Id); HAL_HVD_EX_Dump_HW_Status(HVD_U32_MAX); } } u32timeout = HVD_GetSysTime_ms() + pHVDHalContext->u32HVDCmdTimeout; while (!_HVD_EX_SetCMD(u32Id, u32Cmd)) { if (HVD_GetSysTime_ms() > u32timeout) { HVD_EX_MSG_ERR("cmd timeout: %lx\n", u32Cmd); return E_HVD_RETURN_TIMEOUT; } if(u32Cmd < E_DUAL_CMD_BASE) { //_HVD_EX_GetPC(); HAL_HVD_EX_Dump_FW_Status(u32Id); HAL_HVD_EX_Dump_HW_Status(HVD_U32_MAX); } } return E_HVD_RETURN_SUCCESS; } static void _HVD_EX_SetMIUProtectMask(MS_BOOL bEnable) { #if HAL_HVD_ENABLE_MIU_PROTECT _HVD_MIU_SetReqMask(MVD_RW, bEnable); _HVD_MIU_SetReqMask(MVD_BBU_R, bEnable); #if SUPPORT_EVD _HVD_MIU_SetReqMask(EVD_RW, bEnable); _HVD_MIU_SetReqMask(EVD_BBU_R, bEnable); #endif _HVD_MIU_SetReqMask(HVD_RW, bEnable); _HVD_MIU_SetReqMask(HVD_BBU_R, bEnable); HAL_VPU_EX_MIU_RW_Protect(bEnable); //HVD_Delay_ms(1); #endif return; } static void _HVD_EX_SetBufferAddr(MS_U32 u32Id) { MS_U16 u16Reg = 0; MS_U32 u32StAddr = 0; MS_BOOL bBitMIU1 = FALSE; MS_BOOL bCodeMIU1 = FALSE; MS_U8 u8TaskId = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if(pCtrl == NULL) return; // nal table settngs if (pCtrl->MemMap.u32CodeBufAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { bCodeMIU1 = TRUE; } if (pCtrl->MemMap.u32BitstreamBufAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { bBitMIU1 = TRUE; } if (bBitMIU1 != bCodeMIU1) { u32StAddr = pCtrl->MemMap.u32BitstreamBufAddr + pCtrl->u32BBUTblInBitstreamBufAddr; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } } else { u32StAddr = pCtrl->MemMap.u32CodeBufAddr + pShm->u32HVD_BBU_DRAM_ST_ADDR; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } } if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_Write2Byte(HVD_REG_HK_VP8, HVD_REG_HK_PLAYER_FM); _HVD_Write2Byte(HVD_REG_NAL_TAB_ST_L_BS3, (MS_U16)(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_NAL_TAB_ST_H_BS3, (MS_U16)(u32StAddr >> 19)); _HVD_Write2Byte(HVD_REG_NAL_TAB_LEN_BS3, (MS_U16)(pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum - 1)); u32StAddr += 0x2000; _HVD_Write2Byte(HVD_REG_NAL_TAB_ST_L_BS4, (MS_U16)(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_NAL_TAB_ST_H_BS4, (MS_U16)(u32StAddr >> 19)); _HVD_Write2Byte(HVD_REG_NAL_TAB_LEN_BS4, (MS_U16)(pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum - 1)); // ES buffer u32StAddr = pCtrl->MemMap.u32BitstreamBufAddr; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } HVD_EX_MSG_DBG("ESB start addr=%lx\n", u32StAddr); _HVD_Write2Byte(HVD_REG_ESB_ST_ADR_L_BS34, HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADR_H_BS34, HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L_BS34, HVD_LWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H_BS34, HVD_HWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); u16Reg = _HVD_Read2Byte(HVD_REG_MIF_BS34); u16Reg &= ~HVD_REG_BS34_TSP_INPUT; u16Reg &= ~HVD_REG_BS34_PASER_MASK; u16Reg |= HVD_REG_BS34_PASER_DISABLE; u16Reg |= HVD_REG_BS34_AUTO_NAL_TAB; _HVD_Write2Byte(HVD_REG_MIF_BS34, u16Reg); return; } u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); HVD_EX_MSG_DBG("NAL start addr=%lx\n", u32StAddr); #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { _HVD_Write2Byte(HVD_REG_NAL_TBL_ST_ADDR_L(u32RB), (MS_U16) (u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_NAL_TBL_ST_ADDR_H(u32RB), (MS_U16) (u32StAddr >> 19)); // -1 is for NAL_TAB_LEN counts from zero. _HVD_Write2Byte(HVD_REG_NAL_TAB_LEN(u32RB), (MS_U16) (pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum - 1)); } else { _HVD_Write2Byte(HVD_REG_NAL_TBL_ST_ADDR_L_BS2, (MS_U16) (u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_NAL_TBL_ST_ADDR_H_BS2, (MS_U16) (u32StAddr >> 19)); // -1 is for NAL_TAB_LEN counts from zero. _HVD_Write2Byte(HVD_REG_NAL_TAB_LEN_BS2, (MS_U16) (pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum - 1)); } // ES buffer u32StAddr = pCtrl->MemMap.u32BitstreamBufAddr; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } HVD_EX_MSG_DBG("ESB start addr=%lx, len=%lx\n", u32StAddr, pCtrl->MemMap.u32BitstreamBufSize); #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_L(u32RB), HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_H(u32RB), HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L(u32RB), HVD_LWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H(u32RB), HVD_HWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); } else { _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_L_BS2, HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_H_BS2, HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L_BS2, HVD_LWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H_BS2, HVD_HWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); } // others #ifdef SUPPORT_EVD if ((0 == u8TaskId) || (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))) #else if (0 == u8TaskId) #endif { u16Reg = _HVD_Read2Byte(HVD_REG_MIF_BBU(u32RB)); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_TSP) { u16Reg |= HVD_REG_BBU_TSP_INPUT; } else { u16Reg &= ~HVD_REG_BBU_TSP_INPUT; } u16Reg &= ~HVD_REG_BBU_PASER_MASK; if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_RM) // RM { u16Reg |= HVD_REG_BBU_PASER_DISABLE; // force BBU to remove nothing, RM only } else // AVS or AVC { if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_START_CODE_MASK) == E_HVD_INIT_START_CODE_REMOVED) { u16Reg |= HVD_REG_BBU_PASER_ENABLE_03; } else // start code remained { u16Reg |= HVD_REG_BBU_PASER_ENABLE_ALL; } } u16Reg |= HVD_REG_BBU_AUTO_NAL_TAB; _HVD_Write2Byte(HVD_REG_MIF_BBU(u32RB), u16Reg); } else { u16Reg = _HVD_Read2Byte(HVD_REG_MIF_BBU_BS2); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_TSP) { u16Reg |= HVD_REG_BBU_TSP_INPUT_BS2; } else { u16Reg &= ~HVD_REG_BBU_TSP_INPUT_BS2; } u16Reg &= ~HVD_REG_BBU_PASER_MASK_BS2; if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_RM) // RM { u16Reg |= HVD_REG_BBU_PASER_DISABLE_BS2; // force BBU to remove nothing, RM only } else // AVS or AVC { if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_START_CODE_MASK) == E_HVD_INIT_START_CODE_REMOVED) { u16Reg |= HVD_REG_BBU_PASER_ENABLE_03_BS2; } else // start code remained { u16Reg |= HVD_REG_BBU_PASER_ENABLE_ALL_BS2; } } u16Reg |= HVD_REG_BBU_AUTO_NAL_TAB_BS2; _HVD_Write2Byte(HVD_REG_MIF_BBU_BS2, u16Reg); } #if (HVD_ENABLE_MVC) if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_MVC) { /// Used sub stream to record sub view data. HVD_EX_Drv_Ctrl *pDrvCtrl_Sub = _HVD_EX_GetDrvCtrl((u32Id+0x00011000)); //printf("**************** Buffer setting for MVC dual-BBU *************\n"); if (bBitMIU1 != bCodeMIU1) { u32StAddr = pDrvCtrl_Sub->MemMap.u32BitstreamBufAddr + pDrvCtrl_Sub->u32BBUTblInBitstreamBufAddr; if (u32StAddr >= pDrvCtrl_Sub->MemMap.u32MIU1BaseAddr) { u32StAddr -= pDrvCtrl_Sub->MemMap.u32MIU1BaseAddr; } } else { u32StAddr = pDrvCtrl_Sub->MemMap.u32CodeBufAddr + pShm->u32HVD_BBU2_DRAM_ST_ADDR; if (u32StAddr >= pDrvCtrl_Sub->MemMap.u32MIU1BaseAddr) { u32StAddr -= pDrvCtrl_Sub->MemMap.u32MIU1BaseAddr; } } HVD_EX_MSG_DBG("[MVC] _HAL_HVD_SetBuffer2Addr: nal StAddr:%lx \n", u32StAddr); _HVD_Write2Byte(HVD_REG_NAL_TBL_ST_ADDR_L_BS2, (MS_U16)(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_NAL_TBL_ST_ADDR_H_BS2, (MS_U16)(u32StAddr >> 19)); // -1 is for NAL_TAB_LEN counts from zero. _HVD_Write2Byte(HVD_REG_NAL_TAB_LEN_BS2, (MS_U16)(pHVDHalContext->_stHVDStream[u8Idx+1].u32BBUEntryNum - 1)); // ES buffer u32StAddr = pDrvCtrl_Sub->MemMap.u32BitstreamBufAddr; if(u32StAddr >= pDrvCtrl_Sub->MemMap.u32MIU1BaseAddr) { u32StAddr -= pDrvCtrl_Sub->MemMap.u32MIU1BaseAddr; } HVD_EX_MSG_DBG("[MVC] 2nd ES _HAL_HVD_SetBuffer2Addr: ESb StAddr:%lx, len:%lx.\n", u32StAddr, pDrvCtrl_Sub->MemMap.u32BitstreamBufSize); _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_L_BS2, HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_H_BS2, HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L_BS2, HVD_LWORD(pDrvCtrl_Sub->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H_BS2, HVD_HWORD(pDrvCtrl_Sub->MemMap.u32BitstreamBufSize >> 3)); u16Reg = _HVD_Read2Byte(HVD_REG_MIF_BBU_BS2); if((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_TSP) { u16Reg |= HVD_REG_BBU_TSP_INPUT_BS2; HVD_EX_MSG_DBG("[MVC] 2nd ES, TSP mode.\n"); } else { u16Reg &= ~HVD_REG_BBU_TSP_INPUT_BS2; HVD_EX_MSG_DBG("[MVC] 2nd ES, BBU mode.\n"); } u16Reg &= ~HVD_REG_BBU_PASER_MASK_BS2; if((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_RM) // RM { u16Reg |= HVD_REG_BBU_PASER_DISABLE_BS2; // force BBU to remove nothing, RM only } else // AVS or AVC { if((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_START_CODE_MASK) == E_HVD_INIT_START_CODE_REMOVED) { u16Reg |= HVD_REG_BBU_PASER_ENABLE_03_BS2; } else // start code remained { u16Reg |= HVD_REG_BBU_PASER_ENABLE_ALL_BS2; ///HVD_MSG_DBG("[MVC] BBU Paser all.\n"); } } u16Reg |= HVD_REG_BBU_AUTO_NAL_TAB_BS2; ///HVD_MSG_DBG("[MVC] 2nd MIF BBU 0x%lx.\n",(MS_U32)u16Reg); _HVD_Write2Byte(HVD_REG_MIF_BBU_BS2, u16Reg); } #endif // MIF offset #if 0 { MS_U16 offaddr = 0; u32StAddr = pCtrl->MemMap.u32CodeBufAddr; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } HVD_EX_MSG_DBG("MIF offset:%lx \n", u32StAddr); offaddr = (MS_U16) ((u32StAddr) >> 20); offaddr &= BMASK(HVD_REG_MIF_OFFSET_L_BITS:0); //0x1FF; // 9 bits(L + H) u16Reg = _HVD_Read2Byte(HVD_REG_MIF_BBU); u16Reg &= ~HVD_REG_MIF_OFFSET_H; u16Reg &= ~(BMASK(HVD_REG_MIF_OFFSET_L_BITS:0)); if (offaddr & BIT(HVD_REG_MIF_OFFSET_L_BITS)) { u16Reg |= HVD_REG_MIF_OFFSET_H; } _HVD_Write2Byte(HVD_REG_MIF_BBU, (u16Reg | (offaddr & BMASK(HVD_REG_MIF_OFFSET_L_BITS:0)))); } #endif } #if defined(SUPPORT_NEW_MEM_LAYOUT) || defined(SUPPORT_NEW_VDEC_FLOW) // Note: For VP8 only. MVC ES buffer address will be set when _HVD_EX_SetBufferAddr() is called static void _HVD_EX_SetESBufferAddr(MS_U32 u32Id) { MS_U16 u16Reg = 0; MS_U32 u32StAddr = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; if(pCtrl == NULL) return; if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_Write2Byte(HVD_REG_HK_VP8, HVD_REG_HK_PLAYER_FM); // ES buffer u32StAddr = pCtrl->MemMap.u32BitstreamBufAddr; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } _HVD_Write2Byte(HVD_REG_ESB_ST_ADR_L_BS34, HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADR_H_BS34, HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L_BS34, HVD_LWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H_BS34, HVD_HWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); u16Reg = _HVD_Read2Byte(HVD_REG_MIF_BS34); u16Reg &= ~HVD_REG_BS34_TSP_INPUT; u16Reg &= ~HVD_REG_BS34_PASER_MASK; u16Reg |= HVD_REG_BS34_PASER_DISABLE; u16Reg |= HVD_REG_BS34_AUTO_NAL_TAB; _HVD_Write2Byte(HVD_REG_MIF_BS34, u16Reg); return; } // ES buffer u32StAddr = pCtrl->MemMap.u32BitstreamBufAddr; if (u32StAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32StAddr -= pCtrl->MemMap.u32MIU1BaseAddr; } HVD_EX_MSG_DBG("ESB start addr=%lx, len=%lx\n", u32StAddr, pCtrl->MemMap.u32BitstreamBufSize); if (0 == HAL_VPU_EX_GetTaskId(u32Id)) { _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_L(u32RB), HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_H(u32RB), HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L(u32RB), HVD_LWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H(u32RB), HVD_HWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); } else { _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_L_BS2, HVD_LWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_ST_ADDR_H_BS2, HVD_HWORD(u32StAddr >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_L_BS2, HVD_LWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); _HVD_Write2Byte(HVD_REG_ESB_LENGTH_H_BS2, HVD_HWORD(pCtrl->MemMap.u32BitstreamBufSize >> 3)); } } #endif static MS_U32 _HVD_EX_GetESLevel(MS_U32 u32Id) { MS_U32 u32Wptr = 0; MS_U32 u32Rptr = 0; MS_U32 u32CurMBX = 0; MS_U32 u32ESsize = 0; MS_U32 u32Ret = E_HVD_ESB_LEVEL_NORMAL; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); u32Wptr = _HVD_EX_GetESWritePtr(u32Id); u32Rptr = _HVD_EX_GetESReadPtr(u32Id, FALSE); u32ESsize = pCtrl->MemMap.u32BitstreamBufSize; if (u32Rptr >= u32Wptr) { u32CurMBX = u32Rptr - u32Wptr; } else { u32CurMBX = u32ESsize - (u32Wptr - u32Rptr); } if (u32CurMBX == 0) { u32Ret = E_HVD_ESB_LEVEL_UNDER; } else if (u32CurMBX < HVD_FW_AVC_ES_OVER_THRESHOLD) { u32Ret = E_HVD_ESB_LEVEL_OVER; } else { u32CurMBX = u32ESsize - u32CurMBX; if (u32CurMBX < HVD_FW_AVC_ES_UNDER_THRESHOLD) { u32Ret = E_HVD_ESB_LEVEL_UNDER; } } return u32Ret; } static MS_U32 _HVD_EX_GetESQuantity(MS_U32 u32Id) { MS_U32 u32Wptr = 0; MS_U32 u32Rptr = 0; MS_U32 u32ESsize = 0; MS_U32 u32Ret = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); u32Wptr = _HVD_EX_GetESWritePtr(u32Id); u32Rptr = _HVD_EX_GetESReadPtr(u32Id, FALSE); u32ESsize = pCtrl->MemMap.u32BitstreamBufSize; if(u32Wptr >= u32Rptr) { u32Ret = u32Wptr - u32Rptr; } else { u32Ret = u32ESsize - u32Rptr + u32Wptr; } //printf("ES Quantity <0x%lx> W:0x%lx, R:0x%lx, Q:0x%lx.\n",u32Id,u32Wptr,u32Rptr,u32Ret); return u32Ret; } static MS_BOOL _HVD_EX_SetRegCPU(MS_U32 u32Id) { MS_U32 u32FirmVer = 0; MS_U32 u32Timeout = 20000; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_EX_MSG_DBG("HVD HW ver id: 0x%04lx\n", HAL_HVD_EX_GetHWVersionID()); #if HVD_ENABLE_TIME_MEASURE HVD_EX_MSG_MUST("HVD Time Measure:%d (%s %d) \n", HVD_GetSysTime_ms() - pHVDDrvContext->u32InitSysTimeBase, __FUNCTION__, __LINE__); #endif HAL_VPU_EX_SetFWReload(!pCtrl->bTurboFWMode); VPU_EX_FWCodeCfg fwCfg; VPU_EX_TaskInfo taskInfo; VPU_EX_VLCTblCfg vlcCfg; VPU_EX_NDecInitPara nDecInitPara; memset(&fwCfg, 0, sizeof(VPU_EX_FWCodeCfg)); memset(&taskInfo, 0, sizeof(VPU_EX_TaskInfo)); memset(&vlcCfg, 0, sizeof(VPU_EX_VLCTblCfg)); memset(&nDecInitPara, 0, sizeof(VPU_EX_NDecInitPara)); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_RM) //rm { vlcCfg.u32DstAddr = MsOS_PA2KSEG1(pCtrl->MemMap.u32FrameBufAddr + pHVDHalContext->u32RV_VLCTableAddr); vlcCfg.u32BinAddr = pCtrl->MemMap.u32VLCBinaryVAddr; vlcCfg.u32BinSize = pCtrl->MemMap.u32VLCBinarySize; vlcCfg.u32FrameBufAddr = pCtrl->MemMap.u32FrameBufVAddr; vlcCfg.u32VLCTableOffset = pHVDHalContext->u32RV_VLCTableAddr; nDecInitPara.pVLCCfg = &vlcCfg; } nDecInitPara.pFWCodeCfg = &fwCfg; nDecInitPara.pTaskInfo = &taskInfo; fwCfg.u8SrcType = pCtrl->MemMap.eFWSourceType; fwCfg.u32DstAddr = pCtrl->MemMap.u32CodeBufVAddr; fwCfg.u32DstSize = pCtrl->MemMap.u32CodeBufSize; fwCfg.u32BinAddr = pCtrl->MemMap.u32FWBinaryVAddr; fwCfg.u32BinSize = pCtrl->MemMap.u32FWBinarySize; taskInfo.u32Id = u32Id; if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_MVC) { taskInfo.eDecType = E_VPU_EX_DECODER_HVD; //E_VPU_EX_DECODER_MVC; } else { taskInfo.eDecType = E_VPU_EX_DECODER_HVD; } taskInfo.eVpuId = (HAL_VPU_StreamId) (0xFF & u32Id); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) { taskInfo.eSrcType = E_VPU_EX_INPUT_FILE; } else { taskInfo.eSrcType = E_VPU_EX_INPUT_TSP; } taskInfo.u32HeapSize = HVD_DRAM_SIZE; #ifdef SUPPORT_EVD if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_HEVC) taskInfo.u32HeapSize = EVD_DRAM_SIZE; #endif #ifdef SUPPORT_X_MODEL_FEATURE //We using the common compile option to handle X model if(TRUE == HVD_EX_GetRstFlag()) { //Delete task for Rst if(!HAL_VPU_EX_TaskDelete(u32Id, &nDecInitPara)) { HVD_EX_MSG_ERR("HAL_VPU_EX_TaskDelete fail\n"); } HVD_EX_SetRstFlag(FALSE); } #endif if (!HAL_VPU_EX_TaskCreate(u32Id, &nDecInitPara)) { HVD_EX_MSG_ERR("Task create fail!\n"); return FALSE; } while (u32Timeout) { u32FirmVer = HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_FW_INIT_DONE); if (u32FirmVer != 0) { u32FirmVer = HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_FW_VERSION_ID); break; } u32Timeout--; HVD_Delay_ms(1); } if (u32Timeout > 0) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); pHVDHalContext->_stHVDStream[u8Idx].bUsed = TRUE; HVD_EX_MSG_INF("FW version binary=0x%lx, if=0x%lx\n", u32FirmVer, (MS_U32) HVD_FW_VERSION); } else { HVD_EX_MSG_ERR("Cannot get FW version !!0x%x 0x%lx \n", (MS_S16) _HVD_Read2Byte(HVD_REG_RESET), HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_FW_VERSION_ID)); if (TRUE != HAL_VPU_EX_TaskDelete(u32Id, &nDecInitPara)) { HVD_EX_MSG_ERR("Task delete fail!\n"); } return FALSE; } #if HVD_ENABLE_TIME_MEASURE HVD_EX_MSG_MUST("HVD Time Measure:%d (%s %d) \n", HVD_GetSysTime_ms() - pHVDDrvContext->u32InitSysTimeBase, __FUNCTION__, __LINE__); #endif return TRUE; } static MS_U32 _HVD_EX_GetPTSTableRptr(MS_U32 u32Id) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if (pShm->u32PTStableRptrAddr & VPU_QMEM_BASE) { return HAL_VPU_EX_MemRead(pShm->u32PTStableRptrAddr); } else { return *((MS_U32 *) MsOS_PA2KSEG1(pShm->u32PTStableRptrAddr + pCtrl->MemMap.u32CodeBufAddr)); } } static MS_U32 _HVD_EX_GetPTSTableWptr(MS_U32 u32Id) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if (pShm->u32PTStableWptrAddr & VPU_QMEM_BASE) { return HAL_VPU_EX_MemRead(pShm->u32PTStableWptrAddr); } else { return *((MS_U32 *) MsOS_PA2KSEG1(pShm->u32PTStableWptrAddr + pCtrl->MemMap.u32CodeBufAddr)); } } static void _HVD_EX_SetPTSTableWptr(MS_U32 u32Id, MS_U32 u32Value) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if (pShm->u32PTStableWptrAddr & VPU_QMEM_BASE) { if (!HAL_VPU_EX_MemWrite(pShm->u32PTStableWptrAddr, u32Value)) { HVD_EX_MSG_ERR("PTS table SRAM write failed\n"); } } else { *((MS_U32 *) MsOS_PA2KSEG1(pShm->u32PTStableWptrAddr + pCtrl->MemMap.u32CodeBufAddr)) = u32Value; } } static HVD_Return _HVD_EX_UpdatePTSTable(MS_U32 u32Id, HVD_BBU_Info *pInfo) { MS_U32 u32PTSWptr = HVD_U32_MAX; MS_U32 u32PTSRptr = HVD_U32_MAX; MS_U32 u32DestAddr = 0; HVD_PTS_Entry PTSEntry; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); // update R & W ptr u32PTSRptr = _HVD_EX_GetPTSTableRptr(u32Id); HVD_EX_MSG_DBG("PTS table rptr:0x%lx, wptr=0x%lx\n", u32PTSRptr, _HVD_EX_GetPTSTableWptr(u32Id)); if (u32PTSRptr >= MAX_PTS_TABLE_SIZE) { HVD_EX_MSG_ERR("PTS table Read Ptr(%lx) > max table size(%lx) \n", u32PTSRptr, (MS_U32) MAX_PTS_TABLE_SIZE); return E_HVD_RETURN_FAIL; } // check queue is full or not u32PTSWptr = pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr + 1; u32PTSWptr %= MAX_PTS_TABLE_SIZE; if (u32PTSWptr == u32PTSRptr) { HVD_EX_MSG_ERR("PTS table full. Read Ptr(%lx) == new Write ptr(%lx) ,Pre Wptr(%lx) \n", u32PTSRptr, u32PTSWptr, pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr); return E_HVD_RETURN_FAIL; } // add one PTS entry PTSEntry.u32ByteCnt = pHVDHalContext->_stHVDStream[u8Idx].u32PTSByteCnt & HVD_BYTE_COUNT_MASK; PTSEntry.u32ID_L = pInfo->u32ID_L; PTSEntry.u32ID_H = pInfo->u32ID_H; PTSEntry.u32PTS = pInfo->u32TimeStamp; u32DestAddr = MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + pShm->u32HVD_PTS_TABLE_ST_OFFSET + (pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr * sizeof(HVD_PTS_Entry))); HVD_EX_MSG_DBG("PTS entry dst addr=0x%lx\n", MsOS_VA2PA(u32DestAddr)); HVD_memcpy((void *) u32DestAddr, &PTSEntry, sizeof(HVD_PTS_Entry)); HAL_HVD_EX_FlushMemory(); // update Write ptr _HVD_EX_SetPTSTableWptr(u32Id, u32PTSWptr); pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr = u32PTSWptr; return E_HVD_RETURN_SUCCESS; } static HVD_Return _HVD_EX_UpdateESWptr(MS_U32 u32Id, MS_U32 u32NalOffset, MS_U32 u32NalLen) { //--------------------------------------------------- // item format in nal table: // reserved |borken| u32NalOffset | u32NalLen // 13 bits |1bit | 29 bits | 21 bits (total 8 bytes) //--------------------------------------------------- MS_U32 u32Adr = 0; MS_U32 u32BBUNewWptr = 0; MS_U8 item[8]; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U32 u32BBU_DRAM_ST_ADDR = pShm->u32HVD_BBU_DRAM_ST_ADDR; #if HVD_ENABLE_MVC if(HAL_HVD_EX_CheckMVCID(u32Id)) { // if MVC_BBU_ADDR and HVD_BBU_ADDR are different, we need to add MVC_BBU_DRAM_ST_ADDR and MVC_BBU2_DRAM_ST_ADDR in share memory u32BBU_DRAM_ST_ADDR = pShm->u32HVD_BBU_DRAM_ST_ADDR; //pShm->u32MVC_BBU_DRAM_ST_ADDR; if(E_VDEC_EX_SUB_VIEW == HAL_HVD_EX_GetView(u32Id)) { u32BBU_DRAM_ST_ADDR = pShm->u32HVD_BBU2_DRAM_ST_ADDR; //pShm->u32MVC_BBU2_DRAM_ST_ADDR; } } #endif /// HVD_ENABLE_MVC if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { u32BBUNewWptr = pHVDHalContext->u32VP8BBUWptr; } else { u32BBUNewWptr = pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr; } u32BBUNewWptr++; u32BBUNewWptr %= pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum; // prepare nal entry item[0] = u32NalLen & 0xff; item[1] = (u32NalLen >> 8) & 0xff; item[2] = ((u32NalLen >> 16) & 0x1f) | ((u32NalOffset << 5) & 0xe0); item[3] = (u32NalOffset >> 3) & 0xff; item[4] = (u32NalOffset >> 11) & 0xff; item[5] = (u32NalOffset >> 19) & 0xff; item[6] = (u32NalOffset >> 27) & 0x07; //including broken bit item[7] = 0; if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { u32Adr = MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + u32BBU_DRAM_ST_ADDR + (pHVDHalContext->u32VP8BBUWptr << 3)); } else { // add nal entry u32Adr = MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + u32BBU_DRAM_ST_ADDR + (pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr << 3)); } HVD_memcpy((void *) u32Adr, (void *) item, 8); HAL_HVD_EX_FlushMemory(); HVD_EX_MSG_DBG("addr=0x%lx, bbu wptr=0x%lx\n", MsOS_VA2PA(u32Adr), pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr); if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { pHVDHalContext->u32VP8BBUWptr = u32BBUNewWptr; } else { pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr = u32BBUNewWptr; } return E_HVD_RETURN_SUCCESS; } static HVD_Return _HVD_EX_UpdateESWptr_VP8(MS_U32 u32Id, MS_U32 u32NalOffset, MS_U32 u32NalLen, MS_U32 u32NalOffset2, MS_U32 u32NalLen2) { MS_U8 item[8]; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32Adr = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U32 u32VP8_BBU_DRAM_ST_ADDR_BS4 = pShm->u32HVD_BBU2_DRAM_ST_ADDR; /* printf("nal2 offset=0x%x, len=0x%x\n", u32NalOffset2, u32NalLen2); */ item[0] = u32NalLen2 & 0xff; item[1] = (u32NalLen2 >> 8) & 0xff; item[2] = ((u32NalLen2 >> 16) & 0x1f) | ((u32NalOffset2 << 5) & 0xe0); item[3] = (u32NalOffset2 >> 3) & 0xff; item[4] = (u32NalOffset2 >> 11) & 0xff; item[5] = (u32NalOffset2 >> 19) & 0xff; item[6] = (u32NalOffset2 >> 27) & 0x07; item[7] = 0; if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { u32Adr = MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + u32VP8_BBU_DRAM_ST_ADDR_BS4 + (pHVDHalContext->u32VP8BBUWptr << 3)); } else { u32Adr = MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + u32VP8_BBU_DRAM_ST_ADDR_BS4 + (pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr << 3)); } HVD_memcpy((void *) u32Adr, (void *) item, 8); HAL_HVD_EX_FlushMemory(); return _HVD_EX_UpdateESWptr(u32Id, u32NalOffset, u32NalLen); } static MS_U32 _HVD_EX_GetVUIDispInfo(MS_U32 u32Id) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if( ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_AVC) || ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_MVC) ) { MS_U16 i; MS_U32 u32VUIAddr; MS_U32 *pData = (MS_U32 *) &(pHVDHalContext->g_hvd_VUIINFO); HAL_HVD_EX_ReadMemory(); u32VUIAddr = pShm->u32AVC_VUIDispInfo_Addr; for (i = 0; i < sizeof(HVD_AVC_VUI_DISP_INFO); i += 4) { if (pShm->u32AVC_VUIDispInfo_Addr & VPU_QMEM_BASE) { *pData = HAL_VPU_EX_MemRead(u32VUIAddr + i); } else { *pData = *((MS_U32 *) MsOS_PA2KSEG1(u32VUIAddr + i + pCtrl->MemMap.u32CodeBufAddr)); } pData++; } } else { memset(&(pHVDHalContext->g_hvd_VUIINFO), 0, sizeof(HVD_AVC_VUI_DISP_INFO)); } return (MS_U32) &(pHVDHalContext->g_hvd_VUIINFO); } static MS_U32 _HVD_EX_GetBBUQNumb(MS_U32 u32Id) { MS_U32 u32ReadPtr = 0; MS_U32 eRet = 0; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); u32ReadPtr = _HVD_EX_GetBBUReadptr(u32Id); MS_U32 u32WritePtr = 0; if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { u32WritePtr = pHVDHalContext->u32VP8BBUWptr; } else { u32WritePtr = pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr; } HVD_EX_MSG_DBG("idx=%x, bbu rptr=%lx, bbu wptr=%lx\n", u8Idx, u32ReadPtr, u32WritePtr); if (u32WritePtr >= u32ReadPtr) { eRet = u32WritePtr - u32ReadPtr; } else { eRet = pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum - (u32ReadPtr - u32WritePtr); } #if 0 if (pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr >= u32ReadPtr) { eRet = pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr - u32ReadPtr; } else { eRet = pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum - (u32ReadPtr - pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr); } #endif return eRet; } static MS_U32 _HVD_EX_GetPTSQNumb(MS_U32 u32Id) { MS_U32 u32ReadPtr = 0; MS_U32 eRet = 0; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); u32ReadPtr = _HVD_EX_GetPTSTableRptr(u32Id); if (u32ReadPtr >= MAX_PTS_TABLE_SIZE) { HVD_EX_MSG_ERR("PTS table Read Ptr(%lx) > max table size(%lx) \n", u32ReadPtr, (MS_U32) MAX_PTS_TABLE_SIZE); return 0; } u8Idx = _HVD_EX_GetStreamIdx(u32Id); if (pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr >= u32ReadPtr) { eRet = pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr - u32ReadPtr; } else { eRet = MAX_PTS_TABLE_SIZE - (u32ReadPtr - pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr); } return eRet; } static HVD_Frm_Information *_HVD_EX_GetNextDispFrame(MS_U32 u32Id) { HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U16 u16QNum = pShm->u16DispQNumb; MS_U16 u16QPtr = pShm->u16DispQPtr; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); //static volatile HVD_Frm_Information *pHvdFrm = NULL; #if (HVD_ENABLE_MVC) MS_BOOL bMVC = HAL_HVD_EX_CheckMVCID(u32Id); if(bMVC) { if (pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide) { MS_U16 u16RealQPtr = pHVDHalContext->_stHVDStream[u8Idx].u32DispQIndex; MS_U16 u16UsedFrm = 0; if (u16RealQPtr != u16QPtr) { if (u16RealQPtr > u16QPtr) { u16UsedFrm = u16RealQPtr - u16QPtr; } else { u16UsedFrm = pShm->u16DispQSize - (u16QPtr - u16RealQPtr); } } if (u16QNum > u16UsedFrm) { volatile HVD_Frm_Information *pHvdFrm; u16QNum -= u16UsedFrm; u16QPtr = u16RealQPtr; pHvdFrm = (volatile HVD_Frm_Information*)&pShm->DispQueue[u16QPtr]; if ((u16QPtr%2) == 0) //For MVC mode, we must check the pair of display entry is ready or not { volatile HVD_Frm_Information *pHvdFrmNext = (volatile HVD_Frm_Information*)&pShm->DispQueue[u16QPtr+1]; if (pHvdFrmNext->u32Status != E_HVD_DISPQ_STATUS_INIT) { return NULL; } } if (pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) // Must Be { pHvdFrm->u32Status = E_HVD_DISPQ_STATUS_VIEW; if ((u16QPtr%2) == 0) { //ALOGE("G1: %x", pHvdFrm->u32PrivateData); pHVDHalContext->_stHVDStream[u8Idx].u32PrivateData = pHvdFrm->u32PrivateData; } else { //ALOGE("G2: %x", (pHvdFrm->u32PrivateData << 16) | pHVDHalContext->_stHVDStream[u8Idx].u32PrivateData); //pShm->UpdateQueue[pShm->u16UpdateQWtPtr] = (pHvdFrm->u32PrivateData << 16) | pHVDHalContext->_stHVDStream[u8Idx].u32PrivateData; //pShm->u16UpdateQWtPtr = (pShm->u16UpdateQWtPtr + 1) % HVD_DISP_QUEUE_MAX_SIZE; HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_UPDATE_DISPQ, (pHvdFrm->u32PrivateData << 16) | pHVDHalContext->_stHVDStream[u8Idx].u32PrivateData); } u16QPtr++; if (u16QPtr == pShm->u16DispQSize) u16QPtr = 0; pHVDHalContext->_stHVDStream[u8Idx].u32DispQIndex = u16QPtr; return (HVD_Frm_Information*)(MS_U32)pHvdFrm; } } return NULL; } /* Add for Mobile Platform by Ted Sun */ #if 0 if (u16QNum > HVD_DISPQ_PREFETCH_COUNT*3) { u16QNum = HVD_DISPQ_PREFETCH_COUNT*3; } #endif //printf("OQ:%d,DQ:%d.\n",pShm->u16DispQNumb,pShm->u16DecQNumb); //search the next frame to display while (u16QNum > 0) { //printf("Pr:%d,%d.[%ld,%ld,%ld,%ld].\n",u16QPtr,u16QNum,pShm->DispQueue[u16QPtr].u32Status,pShm->DispQueue[u16QPtr+1].u32Status, // pShm->DispQueue[u16QPtr+2].u32Status,pShm->DispQueue[u16QPtr+3].u32Status); pHVDHalContext->pHvdFrm = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr]; //printf("Q2: %ld\n", pHVDShareMem->DispQueue[u16QPtr].u32Status); if (pHVDHalContext->pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) { /// For MVC. Output views after the pair of (base and depend) views were decoded. /// Check the depned view was initial when Output the base view. if((u16QPtr%2) == 0) { volatile HVD_Frm_Information *pHvdFrm_sub = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr+1]; //if(pHvdFrm_sub->u32Status != E_HVD_DISPQ_STATUS_INIT) if(pHvdFrm_sub->u32Status == E_HVD_DISPQ_STATUS_NONE) { ///printf("[MVC] %d is not E_HVD_DISPQ_STATUS_INIT (%ld).\n",u16QPtr+1,pHvdFrm_sub->u32Status); ///printf("Return NULL.\n"); return NULL; } } //printf("V:%d.\n",u16QPtr); pHVDHalContext->_u16DispQPtr = u16QPtr; pHVDHalContext->pHvdFrm->u32Status = E_HVD_DISPQ_STATUS_VIEW; /////Change its state!! HVD_EX_MSG_DBG("FrameDone: %d, pHvdFrm=0x%lx, timestamp=%ld\n", u16QPtr, (MS_U32) pHVDHalContext->pHvdFrm, pShm->DispQueue[u16QPtr].u32TimeStamp); HVD_EX_MSG_INF("<<< halHVD pts,idH = %lu, %lu [%x]\n", pHVDHalContext->pHvdFrm->u32TimeStamp, pHVDHalContext->pHvdFrm->u32ID_H, u16QPtr); //STS output return (HVD_Frm_Information *)(MS_U32) pHVDHalContext->pHvdFrm; } u16QNum--; //go to next frame in the dispQ u16QPtr++; if (u16QPtr >= pShm->u16DispQSize) { u16QPtr -= pShm->u16DispQSize; //wrap to the begin } } } else #endif ///HVD_ENABLE_MVC { volatile HVD_Frm_Information *pHvdFrm = (volatile HVD_Frm_Information*)&pShm->DispQueue[u16QPtr]; if (pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide) { while (u16QNum != 0) { pHvdFrm = (volatile HVD_Frm_Information*)&pShm->DispQueue[u16QPtr]; if (pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) // Must Be { pHvdFrm->u32Status = E_HVD_DISPQ_STATUS_VIEW; HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_UPDATE_DISPQ, pHvdFrm->u32PrivateData); return (HVD_Frm_Information*)(MS_U32)pHvdFrm; } u16QNum--; //go to next frame in the dispQ u16QPtr++; if (u16QPtr == pShm->u16DispQSize) { u16QPtr = 0; //wrap to the begin } } return NULL; } /* Add for Mobile Platform by Ted Sun */ #if 0 if (u16QNum > HVD_DISPQ_PREFETCH_COUNT) { u16QNum = HVD_DISPQ_PREFETCH_COUNT; } #endif //printf("Q: %d %d\n", u16QNum, u16QPtr); //search the next frame to display while (u16QNum != 0) { pHVDHalContext->pHvdFrm = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr]; //printf("Q2: %ld\n", pHVDShareMem->DispQueue[u16QPtr].u32Status); if (pHVDHalContext->pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) { pHVDHalContext->_u16DispQPtr = u16QPtr; pHVDHalContext->pHvdFrm->u32Status = E_HVD_DISPQ_STATUS_VIEW; /////Change its state!! HVD_EX_MSG_DBG("FrameDone: %d, pHvdFrm=0x%lx, timestamp=%ld\n", u16QPtr, (MS_U32) pHVDHalContext->pHvdFrm, pShm->DispQueue[u16QPtr].u32TimeStamp); HVD_EX_MSG_INF("<<< halHVD pts,idH = %lu, %lu [%x]\n", pHVDHalContext->pHvdFrm->u32TimeStamp, pHVDHalContext->pHvdFrm->u32ID_H, u16QPtr); //STS output return (HVD_Frm_Information *)(MS_U32) pHVDHalContext->pHvdFrm; } u16QNum--; //go to next frame in the dispQ u16QPtr++; if (u16QPtr == pShm->u16DispQSize) { u16QPtr = 0; //wrap to the begin } } } return NULL; } MS_BOOL HAL_HVD_EX_DispFrameAllViewed(MS_U32 u32Id) { HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U16 u16QNum = pShm->u16DispQNumb; MS_U16 u16QPtr = pShm->u16DispQPtr; static volatile HVD_Frm_Information *pHvdFrm = NULL; #if (HVD_ENABLE_MVC) if (HAL_HVD_EX_CheckMVCID(u32Id)) { if (u16QNum == 1) return TRUE; } #endif while (u16QNum != 0) { pHvdFrm = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr]; if (pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) { return FALSE; } u16QNum--; u16QPtr++; if (u16QPtr == pShm->u16DispQSize) { u16QPtr = 0; //wrap to the begin } } return TRUE; } static HVD_EX_Drv_Ctrl *_HVD_EX_GetDrvCtrl(MS_U32 u32Id) { MS_U8 u8DrvId = (0xFF & (u32Id >> 16)); return &(_pHVDCtrls[u8DrvId]); } static MS_U8 _HVD_EX_GetStreamIdx(MS_U32 u32Id) { MS_U8 u8OffsetIdx = 0; MS_U8 u8SidBaseMask = 0xF0; HAL_HVD_StreamId eSidBase = (HAL_HVD_StreamId) (u32Id >> 8 & u8SidBaseMask); switch (eSidBase) { case E_HAL_HVD_MAIN_STREAM_BASE: { u8OffsetIdx = 0; break; } case E_HAL_VPU_SUB_STREAM_BASE: { u8OffsetIdx = 1; break; } case E_HAL_VPU_MVC_STREAM_BASE: { u8OffsetIdx = 0; break; } default: { u8OffsetIdx = 0; break; } } return u8OffsetIdx; } /* static MS_BOOL _HAL_HVD_EX_HVDInUsed(void) { MS_U32 i = 0; for(i = 0; i < HAL_HVD_EX_MAX_SUPPORT_STREAM; i++) { if(TRUE == pHVDHalContext->_stHVDStream[i].bUsed) { return TRUE; } } return FALSE; } */ MS_U32 HAL_HVD_EX_GetShmAddr(MS_U32 u32Id) { MS_U32 u32PhyAddr = 0x0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); if (pCtrl->MemMap.u32CodeBufAddr == 0) { return 0; } u32PhyAddr = HAL_VPU_EX_GetShareInfoAddr(u32Id); if (u32PhyAddr == 0xFFFFFFFF) { u32PhyAddr = pCtrl->MemMap.u32CodeBufAddr + (HAL_VPU_EX_GetTaskId(u32Id) * HVD_FW_MEM_OFFSET) + HVD_SHARE_MEM_ST_OFFSET; } else { #if defined(SUPPORT_NEW_MEM_LAYOUT) || defined(SUPPORT_NEW_VDEC_FLOW) //u32PhyAddr += 0; // if define HVD_OLD_LAYOUT_SHARE_MEM_BIAS under SUPPORT_NEW_MEM_LAYOUT, then we could refine the codes here #else u32PhyAddr += HVD_OLD_LAYOUT_SHARE_MEM_BIAS; #endif } return MsOS_PA2KSEG1(u32PhyAddr); } MS_BOOL HAL_HVD_EX_InitHW(MS_U32 u32Id,VPU_EX_DecoderType DecoderType) { MS_U8 u8TaskId = HAL_VPU_EX_GetTaskId(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); // power on / reset HVD; set nal, es rw, bbu parser, release HVD engine // re-setup clock. if (!HAL_VPU_EX_HVDInUsed()) { printf("HVD power on\n"); HAL_HVD_EX_PowerCtrl(TRUE); } #if SUPPORT_EVD if (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { printf("EVD power on\n"); HAL_EVD_EX_PowerCtrl(TRUE); } #endif if (!HAL_VPU_EX_HVDInUsed()) { pHVDHalContext->_stHVDStream[0].u32BBUWptr = 0; //main pHVDHalContext->_stHVDStream[1].u32BBUWptr = 0; //sub pHVDHalContext->u32VP8BBUWptr = 0; //VP8 _HVD_EX_ResetMainSubBBUWptr(u32Id); _HVD_WriteWordMask(HVD_REG_RESET, HVD_REG_RESET_SWRST, HVD_REG_RESET_SWRST); } #if SUPPORT_EVD if (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_WriteWordMask(EVD_REG_RESET, EVD_REG_RESET_SWRST, EVD_REG_RESET_SWRST); } #endif if(pCtrl == NULL) { HVD_EX_MSG_ERR("HAL_HVD_EX_InitHW Ctrl is NULL.\n"); //return FALSE; goto RESET; } #if SUPPORT_EVD if (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_WriteWordMask(EVD_REG_RESET, 1, EVD_REG_RESET_HK_HEVC_MODE); if (E_HVD_INIT_MAIN_LIVE_STREAM == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_WriteWordMask(EVD_REG_RESET, 1, EVD_REG_RESET_HK_TSP2EVD_EN); } goto RESET; } #endif // HVD4, from JANUS and later chip switch ((pCtrl->InitParams.u32ModeFlag) & E_HVD_INIT_HW_MASK) { case E_HVD_INIT_HW_AVS: { if (0 == u8TaskId) { _HVD_WriteWordMask(HVD_REG_RESET, 0, HVD_REG_RESET_HK_AVS_MODE | HVD_REG_RESET_HK_RM_MODE); } else { _HVD_WriteWordMask(HVD_REG_MODE_BS2, 0, HVD_REG_MODE_HK_AVS_MODE_BS2 | HVD_REG_MODE_HK_RM_MODE_BS2); } break; } case E_HVD_INIT_HW_RM: { if (0 == u8TaskId) { _HVD_WriteWordMask(HVD_REG_RESET, 0, HVD_REG_RESET_HK_AVS_MODE | HVD_REG_RESET_HK_RM_MODE); if (pCtrl->InitParams.pRVFileInfo->RV_Version) // RV 9,10 { _HVD_WriteWordMask(HVD_REG_RESET, 0, HVD_REG_RESET_HK_RV9_DEC_MODE); } else // RV 8 { _HVD_WriteWordMask(HVD_REG_RESET, 0, HVD_REG_RESET_HK_RV9_DEC_MODE); } } else { _HVD_WriteWordMask(HVD_REG_MODE_BS2, 0, HVD_REG_MODE_HK_AVS_MODE_BS2 | HVD_REG_MODE_HK_RM_MODE_BS2); if (pCtrl->InitParams.pRVFileInfo->RV_Version) // RV 9,10 { _HVD_WriteWordMask(HVD_REG_MODE_BS2, 0, HVD_REG_MODE_HK_RV9_DEC_MODE_BS2); } else // RV 8 { _HVD_WriteWordMask(HVD_REG_MODE_BS2, 0, HVD_REG_MODE_HK_RV9_DEC_MODE_BS2); } } break; } default: { if (0 == u8TaskId) { _HVD_WriteWordMask(HVD_REG_RESET, 0, HVD_REG_RESET_HK_AVS_MODE | HVD_REG_RESET_HK_RM_MODE); } else { _HVD_WriteWordMask(HVD_REG_MODE_BS2, 0, HVD_REG_MODE_HK_AVS_MODE_BS2 | HVD_REG_MODE_HK_RM_MODE_BS2); } break; } } RESET: //T9: use miu128bit HVD_EX_MSG_DBG("(be)Miu128 bits Status = %x <<<<<<<\n", _HVD_Read2Byte(HVD_REG_RESET)); if (!HAL_VPU_EX_HVDInUsed()) { _HVD_Write2Byte(HVD_REG_RESET, (_HVD_Read2Byte(HVD_REG_RESET) | HVD_REG_RESET_MIU_128)); } HVD_EX_MSG_DBG("(af)Miu128 bits Status = %x <<<<<<<\n", _HVD_Read2Byte(HVD_REG_RESET)); #if SUPPORT_EVD if (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { printf("EVD miu 256 bits\n"); _HVD_Write2Byte(EVD_REG_RESET, (_HVD_Read2Byte(EVD_REG_RESET) | EVD_REG_RESET_MIU_256)); } #endif #if defined(SUPPORT_NEW_MEM_LAYOUT) || defined(SUPPORT_NEW_VDEC_FLOW) // Only ES buffer addrress needs to be set for VP8 _HVD_EX_SetESBufferAddr(u32Id); #else if(DecoderType != E_VPU_EX_DECODER_MVD) { _HVD_EX_SetBufferAddr(u32Id); } #endif if (!HAL_VPU_EX_HVDInUsed()) { _HVD_WriteWordMask(HVD_REG_RESET, 0, HVD_REG_RESET_SWRST); } #if SUPPORT_EVD if (E_HVD_INIT_HW_HEVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_WriteWordMask(EVD_REG_RESET, 0, EVD_REG_RESET_SWRST); } #endif return TRUE; } MS_BOOL HAL_HVD_EX_DeinitHW(void) { MS_U16 u16Timeout = 1000; _HVD_EX_SetMIUProtectMask(TRUE); #if SUPPORT_EVD //EVD using HVD DIU, it should be turn off EVD first HAL_EVD_EX_DeinitHW(); #endif _HVD_WriteWordMask(HVD_REG_RESET, HVD_REG_RESET_SWRST, HVD_REG_RESET_SWRST); while (u16Timeout) { if ((_HVD_Read2Byte(HVD_REG_RESET) & (HVD_REG_RESET_SWRST_FIN)) == (HVD_REG_RESET_SWRST_FIN)) { break; } u16Timeout--; } HAL_HVD_EX_PowerCtrl(FALSE); _HVD_EX_SetMIUProtectMask(FALSE); return TRUE; } void HAL_HVD_EX_FlushMemory(void) { MsOS_FlushMemory(); } void HAL_HVD_EX_ReadMemory(void) { MsOS_ReadMemory(); } void HAL_HVD_EX_SetDrvCtrlsBase(HVD_EX_Drv_Ctrl *pHVDCtrlsBase) { _pHVDCtrls = pHVDCtrlsBase; } void HAL_HVD_EX_CheckMIUSel(MS_BOOL bChange) { return; } MS_U32 HAL_HVD_EX_GetHWVersionID(void) { return _HVD_Read2Byte(HVD_REG_REV_ID); } MS_BOOL HAL_HVD_EX_Init_Share_Mem(void) { #if (defined(MSOS_TYPE_LINUX) || defined(MSOS_TYPE_ECOS)) #if !defined(SUPPORT_X_MODEL_FEATURE) MS_U32 u32ShmId; MS_VIRT u32Addr; MS_U32 u32BufSize; if (FALSE == MsOS_SHM_GetId( (MS_U8*)"Linux HVD HAL", sizeof(HVD_Hal_CTX), &u32ShmId, &u32Addr, &u32BufSize, MSOS_SHM_QUERY)) { if (FALSE == MsOS_SHM_GetId((MS_U8*)"Linux HVD HAL", sizeof(HVD_Hal_CTX), &u32ShmId, &u32Addr, &u32BufSize, MSOS_SHM_CREATE)) { HVD_EX_MSG_ERR("[%s]SHM allocation failed!!!use global structure instead!!!\n",__FUNCTION__); if(pHVDHalContext == NULL) { pHVDHalContext = &gHVDHalContext; memset(pHVDHalContext,0,sizeof(HVD_Hal_CTX)); _HVD_EX_Context_Init_HAL(); HVD_PRINT("[%s]Global structure init Success!!!\n",__FUNCTION__); } else { HVD_PRINT("[%s]Global structure exists!!!\n",__FUNCTION__); } //return FALSE; } else { memset((MS_U8*)u32Addr,0,sizeof(HVD_Hal_CTX)); pHVDHalContext = (HVD_Hal_CTX*)u32Addr; // for one process _HVD_EX_Context_Init_HAL(); } } else { pHVDHalContext = (HVD_Hal_CTX*)u32Addr; // for another process } #else if(pHVDHalContext == NULL) { pHVDHalContext = &gHVDHalContext; memset(pHVDHalContext,0,sizeof(HVD_Hal_CTX)); _HVD_EX_Context_Init_HAL(); } #endif _HAL_HVD_MutexCreate(); #else if(pHVDHalContext == NULL) { pHVDHalContext = &gHVDHalContext; memset(pHVDHalContext,0,sizeof(HVD_Hal_CTX)); _HVD_EX_Context_Init_HAL(); } #endif return TRUE; } HAL_HVD_StreamId HAL_HVD_EX_GetFreeStream(HAL_HVD_StreamType eStreamType) { MS_U32 i = 0; if (eStreamType == E_HAL_HVD_MVC_STREAM) { if ((FALSE == pHVDHalContext->_stHVDStream[0].bUsed) && (FALSE == pHVDHalContext->_stHVDStream[1].bUsed)) return pHVDHalContext->_stHVDStream[0].eStreamId; } else if (eStreamType == E_HAL_HVD_MAIN_STREAM) { for (i = 0; i < ((E_HAL_HVD_MAIN_STREAM_MAX - E_HAL_HVD_MAIN_STREAM_BASE) + (E_HAL_HVD_SUB_STREAM_MAX - E_HAL_HVD_SUB_STREAM_BASE)); i++) { if ((E_HAL_HVD_MAIN_STREAM_BASE & pHVDHalContext->_stHVDStream[i].eStreamId) && (FALSE == pHVDHalContext->_stHVDStream[i].bUsed)) { return pHVDHalContext->_stHVDStream[i].eStreamId; } } } else if (eStreamType == E_HAL_HVD_SUB_STREAM) { for (i = 0; i < ((E_HAL_HVD_MAIN_STREAM_MAX - E_HAL_HVD_MAIN_STREAM_BASE) + (E_HAL_HVD_SUB_STREAM_MAX - E_HAL_HVD_SUB_STREAM_BASE)); i++) { if ((E_HAL_HVD_SUB_STREAM_BASE & pHVDHalContext->_stHVDStream[i].eStreamId) && (FALSE == pHVDHalContext->_stHVDStream[i].bUsed)) { return pHVDHalContext->_stHVDStream[i].eStreamId; } } } return E_HAL_HVD_STREAM_NONE; } void HAL_HVD_EX_PowerCtrl(MS_BOOL bEnable) { if (bEnable) { _HVD_WriteByteMask(REG_TOP_HVD, ~TOP_CKG_HVD_DIS, TOP_CKG_HVD_DIS); _HVD_WriteWordMask(REG_TOP_HVD, ~TOP_CKG_VP8_DIS, TOP_CKG_VP8_DIS); _HVD_WriteWordMask(REG_TOP_HVD_CLK, ~TOP_CLK_HVD_VP8_DIS, TOP_CLK_HVD_VP8_DIS); _HVD_WriteWordMask(REG_TOP_HVD_CLK, ~TOP_CLK_MIU_HVD_MASK, TOP_CLK_MIU_HVD_MASK); _HVD_WriteWordMask(REG_TOP_HVD_CLK, ~TOP_CLK_RM_MIU_HVD_MASK, TOP_CLK_RM_MIU_HVD_MASK); _HVD_WriteWordMask(REG_TOP_HVD_CLK, ~TOP_CLK_MIU_HVD_VP8_MASK, TOP_CLK_MIU_HVD_VP8_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, ~TOP_CKG_HVD_IDB_DIS, TOP_CKG_HVD_IDB_DIS); } else { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_DIS, TOP_CKG_HVD_DIS); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_DIS, TOP_CKG_VP8_DIS); _HVD_WriteWordMask(REG_TOP_HVD_CLK, TOP_CLK_HVD_VP8_DIS, TOP_CLK_HVD_VP8_DIS); _HVD_WriteWordMask(REG_TOP_HVD_CLK, TOP_CLK_MIU_HVD_MASK, TOP_CLK_MIU_HVD_MASK); _HVD_WriteWordMask(REG_TOP_HVD_CLK, TOP_CLK_RM_MIU_HVD_MASK, TOP_CLK_RM_MIU_HVD_MASK); _HVD_WriteWordMask(REG_TOP_HVD_CLK, TOP_CLK_MIU_HVD_VP8_MASK, TOP_CLK_MIU_HVD_VP8_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, TOP_CKG_HVD_IDB_DIS, TOP_CKG_HVD_IDB_DIS); } // fix to not inverse _HVD_WriteByteMask(REG_TOP_HVD, ~TOP_CKG_HVD_INV, TOP_CKG_HVD_INV); switch (pHVDHalContext->u32HVDClockType) { case 345: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_345MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_240MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_192MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, ~TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } case 320: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_320MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_240MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_192MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, ~TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } case 288: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_288MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_240MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_192MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } case 240: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_240MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_240MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_192MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } case 216: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_216MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_172MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_172MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } case 172: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_172MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_172MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_172MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } case 144: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_144MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_144MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_144MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } default: { _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_HVD_345MHZ, TOP_CKG_HVD_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD, TOP_CKG_VP8_240MHZ, TOP_CKG_VP8_MASK); _HVD_WriteByteMask(REG_TOP_HVD, TOP_CKG_VP6_192MHZ, TOP_CKG_VP6_CLK_MASK); _HVD_WriteWordMask(REG_TOP_HVD_IDB, ~TOP_CKG_HVD_IDB_CLK_HVD_MIU, TOP_CKG_HVD_IDB_CLK_HVD_MIU); // TODO://FIXME: need to check miu clk, // TODO://if(hvd_clk > miu_clk) set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 0 // TODO://else set to TOP_CKG_HVD_IDB_CLK_HVD_MIU = 1 break; } } return; } void HAL_HVD_EX_InitRegBase(MS_U32 u32RegBase) { u32HVDRegOSBase = u32RegBase; HAL_VPU_EX_InitRegBase(u32RegBase); } void HAL_HVD_EX_SetPreCtrlVariables(MS_U32 u32Id,MS_U32 drvprectrl) { HVD_Pre_Ctrl *pHVDPreCtrl_in = (HVD_Pre_Ctrl*)drvprectrl; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); pHVDHalContext->pHVDPreCtrl_Hal[u8Idx] = pHVDPreCtrl_in; } HVD_Return HAL_HVD_EX_InitVariables(MS_U32 u32Id) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = NULL; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); #if HVD_ENABLE_MVC MS_BOOL bMVC = HAL_HVD_EX_CheckMVCID(u32Id); #endif ///HVD_ENABLE_MVC pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr = 0; pHVDHalContext->_stHVDStream[u8Idx].u32PTSByteCnt = 0; pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum = 0; pHVDHalContext->_stHVDStream[u8Idx].u32DispQIndex = 0; pHVDHalContext->_stHVDStream[u8Idx].u32FreeData = 0xFFFF; #if HVD_ENABLE_MVC if(bMVC) { pHVDHalContext->_stHVDStream[u8Idx+1].u32PTSPreWptr = 0; pHVDHalContext->_stHVDStream[u8Idx+1].u32PTSByteCnt = 0; pHVDHalContext->_stHVDStream[u8Idx+1].u32BBUWptr = 0; pHVDHalContext->_stHVDStream[u8Idx+1].u32BBUEntryNum = 0; } #endif ///HVD_ENABLE_MVC // set a local copy of FW code address; assuming there is only one copy of FW, // no matter how many task will be created. pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); memset((void *) (pHVDHalContext->g_hvd_nal_fill_pair), 0, 16); // global variables pHVDHalContext->u32HVDCmdTimeout = pCtrl->u32CmdTimeout; if(((pCtrl->InitParams.u32ModeFlag) & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_AVS) { if(pHVDHalContext->u32HVDClockType > 288) pHVDHalContext->u32HVDClockType = 288; } // pHVDHalContext->u32VPUClockType = (MS_U32) pCtrl->InitParams.u16DecoderClock; // pHVDHalContext->u32HVDClockType = (MS_U32) pCtrl->InitParams.u16DecoderClock; // Create mutex //_HAL_HVD_MutexCreate(); // fill HVD init variables if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum = VP8_BBU_DRAM_TBL_ENTRY; pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNumTH = VP8_BBU_DRAM_TBL_ENTRY_TH; } else #if HVD_ENABLE_RV_FEATURE if (((pCtrl->InitParams.u32ModeFlag) & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_RM) { pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum = RVD_BBU_DRAM_TBL_ENTRY; pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNumTH = RVD_BBU_DRAM_TBL_ENTRY_TH; if (pCtrl->MemMap.u32FrameBufSize > RV_VLC_TABLE_SIZE) { pHVDHalContext->u32RV_VLCTableAddr = pCtrl->MemMap.u32FrameBufSize - RV_VLC_TABLE_SIZE; pCtrl->MemMap.u32FrameBufSize -= RV_VLC_TABLE_SIZE; } else { HVD_EX_MSG_ERR("HAL_HVD_EX_InitVariables failed: frame buffer size too small. FB:%lx min:%lx\n", (MS_U32) pCtrl->MemMap.u32FrameBufSize, (MS_U32) RV_VLC_TABLE_SIZE); return E_HVD_RETURN_INVALID_PARAMETER; } } else #endif { pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum = HVD_BBU_DRAM_TBL_ENTRY; pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNumTH = HVD_BBU_DRAM_TBL_ENTRY_TH; #if HVD_ENABLE_MVC if(bMVC) { pHVDHalContext->_stHVDStream[u8Idx+1].u32BBUEntryNum = MVC_BBU_DRAM_TBL_ENTRY; pHVDHalContext->_stHVDStream[u8Idx+1].u32BBUEntryNumTH = MVC_BBU_DRAM_TBL_ENTRY_TH; } #endif /// HVD_ENABLE_MVC pHVDHalContext->u32RV_VLCTableAddr = 0; } if ((HAL_VPU_EX_GetShareInfoAddr(u32Id) != 0xFFFFFFFF) || ((pCtrl->MemMap.u32CodeBufVAddr <= (MS_U32) pShm) && ((MS_U32) pShm <= (pCtrl->MemMap.u32CodeBufVAddr + pCtrl->MemMap.u32CodeBufSize))) || ((pCtrl->MemMap.u32BitstreamBufVAddr <= (MS_U32) pShm) && ((MS_U32) pShm <= (pCtrl->MemMap.u32BitstreamBufVAddr + pCtrl->MemMap.u32BitstreamBufSize))) || ((pCtrl->MemMap.u32FrameBufVAddr <= (MS_U32) pShm) && ((MS_U32) pShm <= (pCtrl->MemMap.u32FrameBufVAddr + pCtrl->MemMap.u32FrameBufSize)))) { HVD_EX_MSG_DBG("input memory: Code addr=0x%lx, Bits addr=0x%lx, FB addr=0x%lx, Miubase=0x%lx\n", pCtrl->MemMap.u32CodeBufAddr, pCtrl->MemMap.u32FrameBufAddr, pCtrl->MemMap.u32BitstreamBufAddr, pCtrl->MemMap.u32MIU1BaseAddr); #if HVD_ENABLE_MVC if(bMVC) { HVD_EX_Drv_Ctrl *pHVDCtrl_in_sub = _HVD_EX_GetDrvCtrl(u32Id+0x00011000); if (( (pHVDCtrl_in_sub->MemMap.u32BitstreamBufVAddr)<= (MS_U32)pShm)&& ( (MS_U32)pShm <= ((pHVDCtrl_in_sub->MemMap.u32BitstreamBufVAddr )+ pHVDCtrl_in_sub->MemMap.u32BitstreamBufSize))) { HVD_EX_MSG_DBG("[MVC] Bitstream2: 0x%lx.\n", pCtrl->MemMap.u32BitstreamBufAddr); } } #endif /// HVD_ENABLE_MVC return E_HVD_RETURN_SUCCESS; } else { HVD_EX_MSG_ERR("failed: Shm addr=0x%lx, Code addr=0x%lx, Bits addr=0x%lx, FB addr=0x%lx, Miubase=0x%lx\n", MS_PA2KSEG1((MS_U32) pShm), pCtrl->MemMap.u32CodeBufAddr, pCtrl->MemMap.u32FrameBufAddr, pCtrl->MemMap.u32BitstreamBufAddr, pCtrl->MemMap.u32MIU1BaseAddr); return E_HVD_RETURN_INVALID_PARAMETER; } } HVD_Return HAL_HVD_EX_InitShareMem(MS_U32 u32Id) { MS_U32 u32Addr = 0; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); memset(pShm, 0, sizeof(HVD_ShareMem)); u32Addr = pCtrl->MemMap.u32FrameBufAddr; if (u32Addr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32Addr -= pCtrl->MemMap.u32MIU1BaseAddr; } pShm->u32FrameRate = pCtrl->InitParams.u32FrameRate; pShm->u32FrameRateBase = pCtrl->InitParams.u32FrameRateBase; pShm->u32FrameBufAddr = u32Addr; pShm->u32FrameBufSize = pCtrl->MemMap.u32FrameBufSize; pShm->DispInfo.u16DispWidth = 1; pShm->DispInfo.u16DispHeight = 1; pShm->u32CodecType = pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK; pShm->u32CPUClock = pHVDHalContext->u32VPUClockType; pShm->u32UserCCIdxWrtPtr = 0xFFFFFFFF; pShm->DispFrmInfo.u32TimeStamp = 0xFFFFFFFF; //Chip info pShm->u16ChipID = E_MSTAR_CHIP_MUJI; pShm->u16ChipECONum = pCtrl->InitParams.u16ChipECONum; // PreSetControl if (pHVDHalContext->pHVDPreCtrl_Hal[_HVD_EX_GetStreamIdx(u32Id)]->bOnePendingBuffer) { pShm->u32PreSetControl |= PRESET_ONE_PENDING_BUFFER; } //pShm->bColocateBBUMode = pCtrl->InitParams.bColocateBBUMode;//johnny.ko //pShm->bColocateBBUMode = _stHVDPreSet[u8Idx].bColocateBBUMode;//johnny.ko if(_stHVDPreSet[u8Idx].bColocateBBUMode) pShm->u8BBUMode = E_HVD_FW_AUTO_BBU_MODE; else pShm->u8BBUMode = E_HVD_DRV_AUTO_BBU_MODE; if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_MAIN_MASK) == E_HVD_INIT_MAIN_FILE_RAW) { if((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_DUAL_ES_MASK) == E_HVD_INIT_DUAL_ES_ENABLE) { pShm->u8SrcMode = E_HVD_SRC_MODE_FILE_DUAL_ES; } else { pShm->u8SrcMode = E_HVD_SRC_MODE_FILE; } } else if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_MAIN_MASK) == E_HVD_INIT_MAIN_FILE_TS) { if((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_DUAL_ES_MASK) == E_HVD_INIT_DUAL_ES_ENABLE) { pShm->u8SrcMode = E_HVD_SRC_MODE_TS_FILE_DUAL_ES; } else { pShm->u8SrcMode = E_HVD_SRC_MODE_TS_FILE; } } else { pShm->u8SrcMode = E_HVD_SRC_MODE_DTV; } #if 1//From T4 and the later chips, QDMA can support the address more than MIU1 base. if(pCtrl->MemMap.u32CodeBufAddr >= HAL_MIU1_BASE) { pShm->u32FWBaseAddr = (pCtrl->MemMap.u32CodeBufAddr-HAL_MIU1_BASE) | 0x40000000; //Bit30 sel miu0/1 } else { pShm->u32FWBaseAddr = pCtrl->MemMap.u32CodeBufAddr; } //printf("QDMA Addr = %lx <<<<<<<<<<<<<<<<<<<<<<<<\n",pShm->u32FWBaseAddr); #else u32Addr = pCtrl->MemMap.u32CodeBufAddr; if (u32Addr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32Addr -= pCtrl->MemMap.u32MIU1BaseAddr; } pShm->u32FWBaseAddr = u32Addr; #endif // RM only #if HVD_ENABLE_RV_FEATURE if ((((pCtrl->InitParams.u32ModeFlag) & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_RM) && (pCtrl->InitParams.pRVFileInfo != NULL)) { MS_U32 i = 0; for (i = 0; i < HVD_RM_INIT_PICTURE_SIZE_NUMBER; i++) { pShm->pRM_PictureSize[i].u16Width = pCtrl->InitParams.pRVFileInfo->ulPicSizes_w[i]; pShm->pRM_PictureSize[i].u16Height = pCtrl->InitParams.pRVFileInfo->ulPicSizes_h[i]; } pShm->u8RM_Version = (MS_U8) pCtrl->InitParams.pRVFileInfo->RV_Version; pShm->u8RM_NumSizes = (MS_U8) pCtrl->InitParams.pRVFileInfo->ulNumSizes; u32Addr = pCtrl->MemMap.u32FrameBufAddr + pHVDHalContext->u32RV_VLCTableAddr; if (u32Addr >= pCtrl->MemMap.u32MIU1BaseAddr) { u32Addr -= pCtrl->MemMap.u32MIU1BaseAddr; } pShm->u32RM_VLCTableAddr = u32Addr; } #endif if ((E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) && (pCtrl->InitParams.pRVFileInfo != NULL)) { pShm->pRM_PictureSize[0].u16Width = pCtrl->InitParams.pRVFileInfo->ulPicSizes_w[0]; pShm->pRM_PictureSize[0].u16Height = pCtrl->InitParams.pRVFileInfo->ulPicSizes_h[0]; } //if(pCtrl->InitParams.bColocateBBUMode) if(_stHVDPreSet[u8Idx].bColocateBBUMode) { pShm->u32ColocateBBUWritePtr = pShm->u32ColocateBBUReadPtr = pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr; } HAL_HVD_EX_FlushMemory(); return E_HVD_RETURN_SUCCESS; } HVD_Return HAL_HVD_EX_InitRegCPU(MS_U32 u32Id) { MS_BOOL bInitRet = FALSE; #if 0 // check MVD power on if (_HVD_Read2Byte(REG_TOP_MVD) & (TOP_CKG_MHVD_DIS)) { HVD_EX_MSG_INF("HVD warning: MVD is not power on before HVD init.\n"); _HVD_WriteWordMask(REG_TOP_MVD, 0, TOP_CKG_MHVD_DIS); HVD_Delay_ms(1); } // Check VPU power on if (_HVD_Read2Byte(REG_TOP_VPU) & (TOP_CKG_VPU_DIS)) { HVD_EX_MSG_INF("HVD warning: VPU is not power on before HVD init.\n"); _HVD_WriteWordMask(REG_TOP_VPU, 0, TOP_CKG_VPU_DIS); HVD_Delay_ms(1); } // check HVD power on if (_HVD_Read2Byte(REG_TOP_HVD) & (TOP_CKG_HVD_DIS)) { HVD_EX_MSG_INF("HVD warning: HVD is not power on before HVD init.\n"); HAL_HVD_EX_PowerCtrl(TRUE); HVD_Delay_ms(1); } #endif bInitRet = _HVD_EX_SetRegCPU(u32Id); if (!bInitRet) { return E_HVD_RETURN_FAIL; } bInitRet = HAL_HVD_EX_RstPTSCtrlVariable(u32Id); if (!bInitRet) { return E_HVD_RETURN_FAIL; } return E_HVD_RETURN_SUCCESS; } HVD_Return HAL_HVD_EX_SetHVDColBBUMode(MS_U32 u32Id, MS_BOOL bEnable) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); _stHVDPreSet[u8Idx].bColocateBBUMode = bEnable; return E_HVD_RETURN_SUCCESS; } HVD_Return HAL_HVD_EX_SetData(MS_U32 u32Id, HVD_SetData u32type, MS_U32 u32Data) { HVD_Return eRet = E_HVD_RETURN_SUCCESS; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_BOOL bMVC = FALSE; #if HVD_ENABLE_MVC bMVC = HAL_HVD_EX_CheckMVCID(u32Id); #endif switch (u32type) { // share memory // switch case E_HVD_SDATA_FRAMEBUF_ADDR: { pShm->u32FrameBufAddr = u32Data; break; } case E_HVD_SDATA_FRAMEBUF_SIZE: { pShm->u32FrameBufSize = u32Data; break; } case E_HVD_SDATA_RM_PICTURE_SIZES: { HVD_memcpy((volatile void *) pShm->pRM_PictureSize, (void *) ((HVD_PictureSize *) u32Data), HVD_RM_INIT_PICTURE_SIZE_NUMBER * sizeof(HVD_PictureSize)); break; } case E_HVD_SDATA_ERROR_CODE: { pShm->u16ErrCode = (MS_U16) u32Data; break; } case E_HVD_SDATA_DISP_INFO_TH: { HVD_memcpy((volatile void *) &(pShm->DispThreshold), (void *) ((HVD_DISP_THRESHOLD *) u32Data), sizeof(HVD_DISP_THRESHOLD)); break; } case E_HVD_SDATA_FW_FLUSH_STATUS: { pShm->u8FlushStatus = (MS_U8)u32Data; break; } case E_HVD_SDATA_DMX_FRAMERATE: { pShm->u32DmxFrameRate = u32Data; break; } case E_HVD_SDATA_DMX_FRAMERATEBASE: { pShm->u32DmxFrameRateBase = u32Data; break; } // SRAM // Mailbox case E_HVD_SDATA_TRIGGER_DISP: // HVD HI mbox 0 { if (u32Data != 0) { pShm->bEnableDispCtrl = TRUE; pShm->bIsTrigDisp = TRUE; } else { pShm->bEnableDispCtrl = FALSE; } break; } case E_HVD_SDATA_GET_DISP_INFO_START: { pShm->bSpsChange = FALSE; break; } case E_HVD_SDATA_VIRTUAL_BOX_WIDTH: { pShm->u32VirtualBoxWidth = u32Data; break; } case E_HVD_SDATA_VIRTUAL_BOX_HEIGHT: { pShm->u32VirtualBoxHeight = u32Data; break; } case E_HVD_SDATA_DISPQ_STATUS_VIEW: { if (pShm->DispQueue[u32Data].u32Status == E_HVD_DISPQ_STATUS_INIT) { //printf("DispFrame DqPtr: %d\n", u32Data); pShm->DispQueue[u32Data].u32Status = E_HVD_DISPQ_STATUS_VIEW; } break; } case E_HVD_SDATA_DISPQ_STATUS_DISP: { if(!(pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide)) { if (pShm->DispQueue[u32Data].u32Status == E_HVD_DISPQ_STATUS_VIEW) { //printf("DispFrame DqPtr: %ld\n", u32Data); pShm->DispQueue[u32Data].u32Status = E_HVD_DISPQ_STATUS_DISP; } } break; } case E_HVD_SDATA_DISPQ_STATUS_FREE: { if(pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide) { if (bMVC) { if (pHVDHalContext->_stHVDStream[u8Idx].u32FreeData == 0xFFFF) { //ALOGE("R1: %x", u32Data); pHVDHalContext->_stHVDStream[u8Idx].u32FreeData = u32Data; } else { //ALOGE("R2: %x", (u32Data << 16) | pHVDHalContext->_stHVDStream[u8Idx].u32FreeData); HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_RELEASE_DISPQ, (u32Data << 16) | pHVDHalContext->_stHVDStream[u8Idx].u32FreeData); //pShm->FreeQueue[pShm->u16FreeQWtPtr] = (u32Data << 16) | pHVDHalContext->_stHVDStream[u8Idx].u32FreeData; //pShm->u16FreeQWtPtr = (pShm->u16FreeQWtPtr + 1) % HVD_DISP_QUEUE_MAX_SIZE; pHVDHalContext->_stHVDStream[u8Idx].u32FreeData = 0xFFFF; } } else { HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_RELEASE_DISPQ, u32Data); } } else { if (pShm->DispQueue[u32Data].u32Status == E_HVD_DISPQ_STATUS_VIEW) { pShm->DispQueue[u32Data].u32Status = E_HVD_DISPQ_STATUS_FREE; } } break; } default: break; } HAL_HVD_EX_FlushMemory(); return eRet; } MS_S64 HAL_HVD_EX_GetData_EX(MS_U32 u32Id, HVD_GetData eType) { MS_S64 s64Ret = 0; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); HAL_HVD_EX_ReadMemory(); switch (eType) { case E_HVD_GDATA_PTS_STC_DIFF: s64Ret = pShm->s64PtsStcDiff; break; default: break; } return s64Ret; } MS_U32 HAL_HVD_EX_GetData(MS_U32 u32Id, HVD_GetData eType) { MS_U32 u32Ret = 0; //static MS_U64 u64pts_real = 0; MS_U64 u64pts_low = 0; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); HAL_HVD_EX_ReadMemory(); if(pShm == NULL) { printf("########## VDEC patch for Debug ###########\n"); return 0x0; } switch (eType) { // share memory // switch case E_HVD_GDATA_DISP_INFO_ADDR: { u32Ret = (MS_U32) (&pShm->DispInfo); break; } // report case E_HVD_GDATA_PTS: { u32Ret = pShm->DispFrmInfo.u32TimeStamp; break; } case E_HVD_GDATA_U64PTS: { u64pts_low = (MS_U64)(pShm->DispFrmInfo.u32TimeStamp); pHVDHalContext->u64pts_real = (MS_U64)(pShm->DispFrmInfo.u32ID_H); pHVDHalContext->u64pts_real = (pHVDHalContext->u64pts_real<<32)|u64pts_low; u32Ret = (MS_U32)(&(pHVDHalContext->u64pts_real)); break; } case E_HVD_GDATA_DECODE_CNT: { u32Ret = pShm->u32DecodeCnt; break; } case E_HVD_GDATA_DATA_ERROR_CNT: { u32Ret = pShm->u32DataErrCnt; break; } case E_HVD_GDATA_DEC_ERROR_CNT: { u32Ret = pShm->u32DecErrCnt; break; } case E_HVD_GDATA_ERROR_CODE: { u32Ret = (MS_U32) (pShm->u16ErrCode); break; } case E_HVD_GDATA_VPU_IDLE_CNT: { u32Ret = pShm->u32VPUIdleCnt; break; } case E_HVD_GDATA_DISP_FRM_INFO: { u32Ret = (MS_U32) (&pShm->DispFrmInfo); break; } case E_HVD_GDATA_DEC_FRM_INFO: { u32Ret = (MS_U32) (&pShm->DecoFrmInfo); break; } case E_HVD_GDATA_ES_LEVEL: { u32Ret = (MS_U32) (_HVD_EX_GetESLevel(u32Id)); break; } #if HVD_ENABLE_MVC case E_HVD_GDATA_DISP_FRM_INFO_SUB: { u32Ret= (MS_U32) (&(pShm->DispFrmInfo_Sub)); break; } case E_HVD_GDATA_DEC_FRM_INFO_SUB: { u32Ret= (MS_U32) (&(pShm->DecoFrmInfo_Sub)); break; } #endif // user data case E_HVD_GDATA_USERDATA_WPTR: { u32Ret = (MS_U32) (pShm->u32UserCCIdxWrtPtr); break; } case E_HVD_GDATA_USERDATA_IDX_TBL_ADDR: { u32Ret = (MS_U32) (pShm->u8UserCCIdx); break; } case E_HVD_GDATA_USERDATA_PACKET_TBL_ADDR: { u32Ret = (MS_U32) (pShm->u32UserCCBase); break; } case E_HVD_GDATA_USERDATA_PACKET_SIZE: { u32Ret = (MS_U32) (sizeof(DTV_BUF_type)); break; } case E_HVD_GDATA_USERDATA_IDX_TBL_SIZE: { u32Ret = (MS_U32) (USER_CC_IDX_SIZE); break; } case E_HVD_GDATA_USERDATA_PACKET_TBL_SIZE: { u32Ret = (MS_U32) (USER_CC_DATA_SIZE); break; } // report - modes case E_HVD_GDATA_IS_SHOW_ERR_FRM: { u32Ret = pShm->ModeStatus.bIsShowErrFrm; break; } case E_HVD_GDATA_IS_REPEAT_LAST_FIELD: { u32Ret = pShm->ModeStatus.bIsRepeatLastField; break; } case E_HVD_GDATA_IS_ERR_CONCEAL: { u32Ret = pShm->ModeStatus.bIsErrConceal; break; } case E_HVD_GDATA_IS_SYNC_ON: { u32Ret = pShm->ModeStatus.bIsSyncOn; break; } case E_HVD_GDATA_IS_PLAYBACK_FINISH: { u32Ret = pShm->ModeStatus.bIsPlaybackFinish; break; } case E_HVD_GDATA_SYNC_MODE: { u32Ret = pShm->ModeStatus.u8SyncType; break; } case E_HVD_GDATA_SKIP_MODE: { u32Ret = pShm->ModeStatus.u8SkipMode; break; } case E_HVD_GDATA_DROP_MODE: { u32Ret = pShm->ModeStatus.u8DropMode; break; } case E_HVD_GDATA_DISPLAY_DURATION: { u32Ret = pShm->ModeStatus.s8DisplaySpeed; break; } case E_HVD_GDATA_FRC_MODE: { u32Ret = pShm->ModeStatus.u8FrcMode; break; } case E_HVD_GDATA_NEXT_PTS: { u32Ret = pShm->u32NextPTS; break; } case E_HVD_GDATA_DISP_Q_SIZE: { u32Ret = pShm->u16DispQSize; break; } case E_HVD_GDATA_DISP_Q_PTR: { u32Ret = (MS_U32) pHVDHalContext->_u16DispQPtr; break; } case E_HVD_GDATA_NEXT_DISP_FRM_INFO: { u32Ret = (MS_U32) _HVD_EX_GetNextDispFrame(u32Id); break; } case E_HVD_GDATA_REAL_FRAMERATE: { /// TODO: u32Ret=0; //pShm->u32RealFrameRate; break; } case E_HVD_GDATA_IS_ORI_INTERLACE_MODE: u32Ret=(MS_U32)pShm->DispInfo.u8IsOriginInterlace; break; case E_HVD_GDATA_FRM_PACKING_SEI_DATA: u32Ret=((MS_U32)(pShm->u32Frm_packing_arr_data_addr)); break; case E_HVD_GDATA_TYPE_FRAME_MBS_ONLY_FLAG: u32Ret=((MS_U32)(pShm->u8FrameMbsOnlyFlag)); break; case E_HVD_GDATA_FW_STATUS_FLAG: u32Ret=((MS_U32)(pShm->u32FWStatusFlag)); break; // internal control case E_HVD_GDATA_IS_1ST_FRM_RDY: { u32Ret = pShm->bIs1stFrameRdy; break; } case E_HVD_GDATA_IS_I_FRM_FOUND: { u32Ret = pShm->bIsIFrmFound; break; } case E_HVD_GDATA_IS_SYNC_START: { u32Ret = pShm->bIsSyncStart; break; } case E_HVD_GDATA_IS_SYNC_REACH: { u32Ret = pShm->bIsSyncReach; break; } case E_HVD_GDATA_FW_VERSION_ID: { u32Ret = pShm->u32FWVersionID; break; } case E_HVD_GDATA_FW_IF_VERSION_ID: { u32Ret = pShm->u32FWIfVersionID; break; } case E_HVD_GDATA_BBU_Q_NUMB: { u32Ret = _HVD_EX_GetBBUQNumb(u32Id); break; } case E_HVD_GDATA_DEC_Q_NUMB: { u32Ret = pShm->u16DecQNumb; break; } case E_HVD_GDATA_DISP_Q_NUMB: { u32Ret = pShm->u16DispQNumb; break; } case E_HVD_GDATA_PTS_Q_NUMB: { u32Ret = _HVD_EX_GetPTSQNumb(u32Id); break; } case E_HVD_GDATA_FW_INIT_DONE: { u32Ret = pShm->bInitDone; break; } // debug case E_HVD_GDATA_SKIP_CNT: { u32Ret = pShm->u32SkipCnt; break; } case E_HVD_GDATA_GOP_CNT: { u32Ret = pShm->u32DropCnt; break; } case E_HVD_GDATA_DISP_CNT: { u32Ret = pShm->u32DispCnt; break; } case E_HVD_GDATA_DROP_CNT: { u32Ret = pShm->u32DropCnt; break; } case E_HVD_GDATA_DISP_STC: { u32Ret = pShm->u32DispSTC; break; } case E_HVD_GDATA_VSYNC_CNT: { u32Ret = pShm->u32VsyncCnt; break; } case E_HVD_GDATA_MAIN_LOOP_CNT: { u32Ret = pShm->u32MainLoopCnt; break; } // AVC case E_HVD_GDATA_AVC_LEVEL_IDC: { u32Ret = pShm->u16AVC_SPS_LevelIDC; break; } case E_HVD_GDATA_AVC_LOW_DELAY: { u32Ret = pShm->u8AVC_SPS_LowDelayHrdFlag; break; } case E_HVD_GDATA_AVC_VUI_DISP_INFO: { u32Ret = _HVD_EX_GetVUIDispInfo(u32Id); break; } case E_HVD_GDATA_FW_FLUSH_STATUS: { u32Ret = (MS_U32) (pShm->u8FlushStatus); break; } case E_HVD_GDATA_FW_CODEC_TYPE: { u32Ret = pShm->u32CodecType; break; } case E_HVD_GDATA_FW_ES_BUF_STATUS: { u32Ret = (MS_U32)pShm->u8ESBufStatus; break; } // SRAM // Mailbox case E_HVD_GDATA_FW_STATE: // HVD RISC MBOX 0 (esp. FW init done) { u32Ret = pShm->u32FwState; break; } case E_HVD_GDATA_IS_DISP_INFO_UNCOPYED: { u32Ret = pShm->bSpsChange; break; } case E_HVD_GDATA_IS_DISP_INFO_CHANGE: // HVD RISC MBOX 1 (rdy only) { u32Ret = pShm->bSpsChange; break; } case E_HVD_GDATA_HVD_ISR_STATUS: // HVD RISC MBOX 1 (value only) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); if ((pCtrl->HVDISRCtrl.u32IntCount != pShm->u32IntCount) && pShm->u32FwInfo) // fetch ISR status { u32Ret = pShm->u32FwInfo; pCtrl->HVDISRCtrl.u32IntCount = pShm->u32IntCount; } break; } case E_HVD_GDATA_IS_FRAME_SHOWED: // HVD HI mbox 0 ( showed: rdy cleared ; not show: rdy enable ) { if (pShm->bIsTrigDisp) // not clear yet { u32Ret = FALSE; } else { u32Ret = TRUE; } break; } case E_HVD_GDATA_ES_READ_PTR: { u32Ret = _HVD_EX_GetESReadPtr(u32Id, FALSE); break; } case E_HVD_GDATA_ES_WRITE_PTR: { u32Ret = _HVD_EX_GetESWritePtr(u32Id); break; } case E_HVD_GDATA_BBU_READ_PTR: { u32Ret = _HVD_EX_GetBBUReadptr(u32Id); break; } case E_HVD_GDATA_BBU_WRITE_PTR: { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { u32Ret = pHVDHalContext->u32VP8BBUWptr; } else { u32Ret = pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr; } break; } case E_HVD_GDATA_BBU_WRITE_PTR_FIRED: { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); u32Ret = pCtrl->u32BBUWptr_Fired; break; } case E_HVD_GDATA_VPU_PC_CNT: { u32Ret = _HVD_EX_GetPC(); break; } case E_HVD_GDATA_ES_QUANTITY: { u32Ret=_HVD_EX_GetESQuantity(u32Id); break; } // FW def case E_HVD_GDATA_FW_MAX_DUMMY_FIFO: // AVC: 256Bytes AVS: 2kB RM:??? u32Ret = HVD_MAX3(HVD_FW_AVC_DUMMY_FIFO, HVD_FW_AVS_DUMMY_FIFO, HVD_FW_RM_DUMMY_FIFO); break; case E_HVD_GDATA_FW_AVC_MAX_VIDEO_DELAY: u32Ret = HVD_FW_AVC_MAX_VIDEO_DELAY; break; case E_HVD_GDATA_FW_BBU_TOTAL_TBL_ENTRY: u32Ret = pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNumTH; break; case E_HVD_GDATA_FW_BBU_TBL_ENTRY_NUMB: u32Ret = pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum; break; case E_HVD_GDATA_FW_PTS_TOTAL_ENTRY_NUMB: u32Ret = MAX_PTS_TABLE_SIZE; break; case E_HVD_GDATA_FW_DUMMY_WRITE_ADDR: u32Ret = pShm->u32HVD_DUMMY_WRITE_ADDR; break; case E_HVD_GDATA_FW_DS_BUF_ADDR: u32Ret = pShm->u32HVD_DYNAMIC_SCALING_ADDR; break; case E_HVD_GDATA_FW_DS_BUF_SIZE: //u32Ret = HVD_DYNAMIC_SCALING_SIZE; // ----------------------- yi-chun.pan: for Dynamic Scaling 3k/6k issue ----------20111213--- // ----------------------- modify DRV and AP(SN/MM) first, and then update fw -------------- u32Ret = (1024 * 3); break; case E_HVD_GDATA_FW_DS_VECTOR_DEPTH: u32Ret = HVD_DYNAMIC_SCALING_DEPTH; break; case E_HVD_GDATA_FW_DS_INFO_ADDR: u32Ret = pShm->u32HVD_SCALER_INFO_ADDR; break; case E_HVD_GDATA_FW_DS_IS_ENABLED: { if (pShm->bDSIsRunning) { u32Ret = TRUE; } else { u32Ret = FALSE; } break; } case E_HVD_GDATA_TYPE_IS_LEAST_DISPQ_SIZE: u32Ret = ((MS_U32)(pShm->bIsLeastDispQSize)); break; case E_HVD_GDATA_FIELD_PIC_FLAG: u32Ret = ((MS_U32)(pShm->u8FieldPicFlag)); break; case E_HVD_GDATA_FW_VSYNC_BRIDGE_ADDR: u32Ret = pShm->u32VSYNC_BRIGE_SHM_ADDR; break; case E_HVD_GDATA_TS_SEAMLESS_STATUS: u32Ret = pShm->u32SeamlessTSStatus; break; case E_HVD_GDATA_HVD_HW_MAX_PIXEL: u32Ret = (MS_U32)(((MS_U64)HVD_HW_MAX_PIXEL)/1000); break; default: break; } return u32Ret; } HVD_Return HAL_HVD_EX_SetCmd(MS_U32 u32Id, HVD_User_Cmd eUsrCmd, MS_U32 u32CmdArg) { HVD_Return eRet = E_HVD_RETURN_SUCCESS; MS_U32 u32Cmd = (MS_U32) eUsrCmd; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); _HAL_HVD_Entry(); // check if old SVD cmds if (u32Cmd < E_HVD_CMD_SVD_BASE) { HVD_EX_MSG_ERR("Old SVD FW cmd(%lx %lx) used in HVD.\n", u32Cmd, u32CmdArg); _HAL_HVD_Return(E_HVD_RETURN_INVALID_PARAMETER); } if(u32Cmd == E_HVD_CMD_ENABLE_DISP_OUTSIDE) { pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide = (MS_BOOL)u32CmdArg; } #if HVD_ENABLE_MVC if (pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide) { if (HAL_HVD_EX_CheckMVCID(u32Id) && u32Cmd == E_HVD_CMD_FLUSH) { pHVDHalContext->_stHVDStream[u8Idx].u32DispQIndex = 0; } } #endif HVD_EX_MSG_DBG("cmd=0x%lx, arg=0x%lx\n", u32Cmd, u32CmdArg); eRet = _HVD_EX_SendCmd(u32Id, u32Cmd, u32CmdArg); _HAL_HVD_Return(eRet); } HVD_Return HAL_HVD_EX_DeInit(MS_U32 u32Id) { HVD_Return eRet = E_HVD_RETURN_FAIL; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U32 u32Timeout = HVD_GetSysTime_ms() + 3000; #if HVD_ENABLE_TIME_MEASURE MS_U32 ExitTimeCnt = 0; ExitTimeCnt = HVD_GetSysTime_ms(); #endif pCtrl->MemMap.u32CodeBufVAddr = MS_PA2KSEG1((MS_U32)pCtrl->MemMap.u32CodeBufAddr); eRet = HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_PAUSE, 0); if (E_HVD_RETURN_SUCCESS != eRet) { HVD_EX_MSG_ERR("HVD fail to PAUSE %d\n", eRet); } eRet = HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_STOP, 0); if (E_HVD_RETURN_SUCCESS != eRet) { HVD_EX_MSG_ERR("HVD fail to STOP %d\n", eRet); } // check FW state to make sure it's STOP DONE while (E_HVD_FW_STOP_DONE != (HVD_FW_State) HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_FW_STATE)) { if (HVD_GetSysTime_ms() > u32Timeout) { HVD_EX_MSG_ERR("FW stop timeout, pc = 0x%lx\n", HAL_VPU_EX_GetProgCnt()); //return E_HVD_RETURN_TIMEOUT; eRet = E_HVD_RETURN_TIMEOUT; break; } } VPU_EX_FWCodeCfg fwCfg; VPU_EX_TaskInfo taskInfo; VPU_EX_NDecInitPara nDecInitPara; nDecInitPara.pFWCodeCfg = &fwCfg; nDecInitPara.pTaskInfo = &taskInfo; fwCfg.u32DstAddr = pCtrl->MemMap.u32CodeBufVAddr; fwCfg.u8SrcType = E_HVD_FW_INPUT_SOURCE_NONE; taskInfo.u32Id = u32Id; taskInfo.eDecType = E_VPU_EX_DECODER_HVD; taskInfo.eVpuId = (HAL_VPU_StreamId) (0xFF & u32Id); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) { taskInfo.eSrcType = E_VPU_EX_INPUT_FILE; } else { taskInfo.eSrcType = E_VPU_EX_INPUT_TSP; } if(HAL_VPU_EX_TaskDelete(u32Id, &nDecInitPara) != TRUE) { HVD_EX_MSG_ERR("HAL_VPU_EX_TaskDelete fail\n"); } /* clear es buffer */ if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_TSP) { //printf("Clear ES buffer\n"); memset((void *) pCtrl->MemMap.u32BitstreamBufVAddr, 0, MIN(128, pCtrl->MemMap.u32BitstreamBufSize)); } //_HAL_HVD_MutexDelete(); #if HVD_ENABLE_TIME_MEASURE HVD_EX_MSG_DBG("HVD Stop Time(Wait FW):%d\n", HVD_GetSysTime_ms() - ExitTimeCnt); #endif pHVDHalContext->_stHVDStream[u8Idx].bUsed = FALSE; // reset bbu wptr if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) { if(TRUE == HAL_VPU_EX_HVDInUsed()) { if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK))//apple { _HVD_EX_SetBBUWriteptr(u32Id, _HVD_EX_GetBBUReadptr(u32Id)); pHVDHalContext->u32VP8BBUWptr = _HVD_EX_GetBBUReadptr(u32Id); } else { if(!_stHVDPreSet[u8Idx].bColocateBBUMode) { _HVD_EX_SetBBUWriteptr(u32Id, _HVD_EX_GetBBUReadptr(u32Id)); } pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr = _HVD_EX_GetBBUReadptr(u32Id); } } else { pHVDHalContext->_stHVDStream[0].u32BBUWptr = 0; //main pHVDHalContext->_stHVDStream[1].u32BBUWptr = 0; //sub pHVDHalContext->u32VP8BBUWptr = 0; //VP8 if (E_HVD_INIT_HW_AVC == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { if(!_stHVDPreSet[u8Idx].bColocateBBUMode) { _HVD_EX_ResetMainSubBBUWptr(u32Id); } } else { _HVD_EX_ResetMainSubBBUWptr(u32Id); } } } _stHVDPreSet[u8Idx].bColocateBBUMode = FALSE; HVD_EX_MSG_DBG("success\n"); return eRet; } HVD_Return HAL_HVD_EX_PushPacket(MS_U32 u32Id, HVD_BBU_Info *pInfo) { HVD_Return eRet = E_HVD_RETURN_UNSUPPORTED; MS_U32 u32Addr = 0; HVD_EX_Drv_Ctrl *pCtrl = NULL; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); pCtrl = _HVD_EX_GetDrvCtrl(u32Id); //if (E_HVD_INIT_HW_VP8 != (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) // VP8 PTS table is not ready yet { eRet = _HVD_EX_UpdatePTSTable(u32Id, pInfo); if (E_HVD_RETURN_SUCCESS != eRet) { return eRet; } } //printf(">>> halHVD pts,idH = %lu, %lu\n", pInfo->u32TimeStamp, pInfo->u32ID_H); //STS input //T9: for 128 bit memory. BBU need to get 2 entry at a time. if (E_HVD_INIT_HW_VP8 != (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { eRet = _HVD_EX_UpdateESWptr(u32Id, 0, 0); if (E_HVD_RETURN_SUCCESS != eRet) { return eRet; } } u32Addr = pInfo->u32Staddr; if (pInfo->bRVBrokenPacket) { u32Addr = pInfo->u32Staddr | BIT(HVD_RV_BROKENBYUS_BIT); } if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) // VP8 { eRet = _HVD_EX_UpdateESWptr_VP8(u32Id, pInfo->u32Staddr, pInfo->u32Length, pInfo->u32Staddr2, pInfo->u32Length2); } else { eRet = _HVD_EX_UpdateESWptr(u32Id, u32Addr, pInfo->u32Length); } if (E_HVD_RETURN_SUCCESS != eRet) { return eRet; } if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { //eRet = _HVD_EX_UpdateESWptr_VP8(u32Id, 0, 0, 0, 0); eRet = _HVD_EX_UpdateESWptr_VP8(u32Id, pInfo->u32Staddr, 0, pInfo->u32Staddr2, 0); if (E_HVD_RETURN_SUCCESS != eRet) { return eRet; } } pHVDHalContext->_stHVDStream[u8Idx].u32PTSByteCnt += pInfo->u32Length; // do not add local pointer if ((pCtrl->MemMap.u32DrvProcessBufSize != 0) && (pCtrl->MemMap.u32DrvProcessBufAddr != 0)) { MS_U32 u32PacketStAddr = pInfo->u32Staddr + pCtrl->MemMap.u32BitstreamBufAddr; if (!((pCtrl->MemMap.u32DrvProcessBufAddr <= u32PacketStAddr) && (u32PacketStAddr < (pCtrl->MemMap.u32DrvProcessBufAddr + pCtrl->MemMap.u32DrvProcessBufSize)))) { pCtrl->LastNal.u32NalAddr = pInfo->u32Staddr; pCtrl->LastNal.u32NalSize = pInfo->u32AllocLength; } else { //null packet pCtrl->LastNal.u32NalAddr = pInfo->u32OriPktAddr; pCtrl->LastNal.u32NalSize = 0; } } else { pCtrl->LastNal.u32NalAddr = pInfo->u32Staddr; pCtrl->LastNal.u32NalSize = pInfo->u32AllocLength; } pCtrl->LastNal.bRVBrokenPacket = pInfo->bRVBrokenPacket; pCtrl->u32BBUPacketCnt++; return eRet; } void HAL_HVD_EX_EnableISR(MS_U32 u32Id, MS_BOOL bEnable) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; if (bEnable) { _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), 0, HVD_REG_RISC_ISR_MSK); } else { _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_RISC_ISR_MSK, HVD_REG_RISC_ISR_MSK); } } void HAL_HVD_EX_SetForceISR(MS_U32 u32Id, MS_BOOL bEnable) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; if (bEnable) { _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_RISC_ISR_FORCE, HVD_REG_RISC_ISR_FORCE); } else { _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), 0, HVD_REG_RISC_ISR_FORCE); } } void HAL_HVD_EX_SetClearISR(MS_U32 u32Id) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; _HVD_WriteWordMask(HVD_REG_RISC_MBOX_CLR(u32RB), HVD_REG_RISC_ISR_CLR, HVD_REG_RISC_ISR_CLR); } MS_BOOL HAL_HVD_EX_IsISROccured(MS_U32 u32Id) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; return (MS_BOOL) (_HVD_Read2Byte(HVD_REG_RISC_MBOX_RDY(u32RB)) & HVD_REG_RISC_ISR_VALID); } MS_BOOL HAL_HVD_EX_IsEnableISR(MS_U32 u32Id) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32RB = pHVDHalContext->_stHVDStream[u8Idx].u32RegBase; if (_HVD_Read2Byte(HVD_REG_RISC_MBOX_CLR(u32RB)) & HVD_REG_RISC_ISR_MSK) { return FALSE; } else { return TRUE; } } MS_BOOL HAL_HVD_EX_IsAlive(MS_U32 u32Id) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); if (pCtrl) { if ((pCtrl->LivingStatus.u32DecCnt == HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_DECODE_CNT)) && (pCtrl->LivingStatus.u32SkipCnt == HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_SKIP_CNT)) && (pCtrl->LivingStatus.u32IdleCnt == HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_VPU_IDLE_CNT)) && (pCtrl->LivingStatus.u32MainLoopCnt == HAL_HVD_EX_GetData(u32Id, E_HVD_GDATA_MAIN_LOOP_CNT))) { return FALSE; } else { return TRUE; } } else { return FALSE; } } MS_BOOL HAL_HVD_EX_RstPTSCtrlVariable(MS_U32 u32Id) { HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); if ((pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_INPUT_MASK) == E_HVD_INIT_INPUT_DRV) { HAL_HVD_EX_ReadMemory(); pHVDHalContext->_stHVDStream[u8Idx].u32PTSByteCnt = pShm->u32PTStableByteCnt; pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr = _HVD_EX_GetPTSTableWptr(u32Id); HVD_EX_MSG_DBG("PTS table: WptrAddr:%lx RptrAddr:%lx ByteCnt:%lx PreWptr:%lx\n", pShm->u32PTStableWptrAddr, pShm->u32PTStableRptrAddr, pHVDHalContext->_stHVDStream[u8Idx].u32PTSByteCnt, pHVDHalContext->_stHVDStream[u8Idx].u32PTSPreWptr); } return TRUE; } MS_BOOL HAL_HVD_EX_FlushRstShareMem(MS_U32 u32Id) { HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); HVD_EX_Drv_Ctrl *pCtrl = NULL; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); MS_U32 u32Data; pCtrl = _HVD_EX_GetDrvCtrl(u32Id); memset(&pShm->DecoFrmInfo, 0, sizeof(HVD_Frm_Information)); HAL_HVD_EX_FlushMemory(); if (pHVDHalContext->_stHVDStream[u8Idx].bDispOutSide) { u32Data = _HVD_EX_GetESReadPtr(u32Id, FALSE); pCtrl->LastNal.u32NalAddr = u32Data; pCtrl->LastNal.u32NalSize = 0; } return TRUE; } void HAL_HVD_EX_UartSwitch2FW(MS_BOOL bEnable) { if (bEnable) { _HVD_WriteWordMask(REG_TOP_UART_SEL0, REG_TOP_UART_SEL_VD_MHEG5, REG_TOP_UART_SEL_0_MASK); } else { #if defined (__aeon__) _HVD_WriteWordMask(REG_TOP_UART_SEL0, REG_TOP_UART_SEL_MHEG5, REG_TOP_UART_SEL_0_MASK); #else // defined (__mips__) _HVD_WriteWordMask(REG_TOP_UART_SEL0, REG_TOP_UART_SEL_PIU_0, REG_TOP_UART_SEL_0_MASK); #endif } } MS_U32 HAL_HVD_EX_GetData_Dbg(MS_VIRT u32Addr) { return 0; } void HAL_HVD_EX_SetData_Dbg(MS_VIRT u32Addr, MS_U32 u32Data) { return; } MS_U16 HAL_HVD_EX_GetCorretClock(MS_U16 u16Clock) { //if( u16Clock == 0 ) return 216; //140; //if( ) } void HAL_HVD_EX_UpdateESWptr_Fire(MS_U32 u32Id) { MS_BOOL bBitMIU1 = FALSE; MS_BOOL bCodeMIU1 = FALSE; HVD_EX_Drv_Ctrl *pCtrl = _HVD_EX_GetDrvCtrl(u32Id); MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U32 u32BBU_DRAM_ST_ADDR = pShm->u32HVD_BBU_DRAM_ST_ADDR; #if HVD_ENABLE_MVC if(HAL_HVD_EX_CheckMVCID(u32Id)) { // if MVC_BBU_ADDR and HVD_BBU_ADDR are different, we need to add MVC_BBU_DRAM_ST_ADDR and MVC_BBU2_DRAM_ST_ADDR in share memory u32BBU_DRAM_ST_ADDR = pShm->u32HVD_BBU_DRAM_ST_ADDR; //pShm->u32MVC_BBU_DRAM_ST_ADDR; if(E_VDEC_EX_SUB_VIEW == HAL_HVD_EX_GetView(u32Id)) { u32BBU_DRAM_ST_ADDR = pShm->u32HVD_BBU2_DRAM_ST_ADDR; //pShm->u32MVC_BBU2_DRAM_ST_ADDR; } } #endif /// HVD_ENABLE_MVC if (pCtrl->MemMap.u32CodeBufAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { bCodeMIU1 = TRUE; } if (pCtrl->MemMap.u32BitstreamBufAddr >= pCtrl->MemMap.u32MIU1BaseAddr) { bBitMIU1 = TRUE; } if (bBitMIU1 != bCodeMIU1) { #if HVD_ENABLE_BDMA_2_BITSTREAMBUF BDMA_Result bdmaRlt; MS_U32 u32DstAdd = 0, u32SrcAdd = 0, u32tabsize = 0; u32DstAdd = pCtrl->MemMap.u32BitstreamBufAddr + pCtrl->u32BBUTblInBitstreamBufAddr; u32SrcAdd = pCtrl->MemMap.u32CodeBufAddr + u32BBU_DRAM_ST_ADDR; u32tabsize = pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum << 3; bdmaRlt = HVD_dmacpy(u32DstAdd, u32SrcAdd, u32tabsize); if (E_BDMA_OK != bdmaRlt) { HVD_EX_MSG_ERR("MDrv_BDMA_MemCopy fail ret=%x!\n", bdmaRlt); } #else MS_U32 u32DstAdd = 0, u32SrcAdd = 0, u32tabsize = 0; u32DstAdd = pCtrl->MemMap.u32BitstreamBufVAddr + pCtrl->u32BBUTblInBitstreamBufAddr; u32SrcAdd = MsOS_PA2KSEG1(pCtrl->MemMap.u32CodeBufAddr + u32BBU_DRAM_ST_ADDR); u32tabsize = pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum << 3; HVD_memcpy(u32DstAdd, u32SrcAdd, u32tabsize); #endif } //HVD_EX_MSG_DBG("%lu st:%lx size:%lx BBU: %lu\n", pCtrl->u32BBUPacketCnt, pCtrl->LastNal.u32NalAddr, pCtrl->LastNal.u32NalSize, _stHVDStream[u8Idx].u32BBUWptr); HAL_HVD_EX_FlushMemory(); if (E_HVD_INIT_HW_VP8 == (pCtrl->InitParams.u32ModeFlag & E_HVD_INIT_HW_MASK)) { _HVD_EX_SetBBUWriteptr(u32Id, HVD_LWORD(pHVDHalContext->u32VP8BBUWptr)); pCtrl->u32BBUWptr_Fired = pHVDHalContext->u32VP8BBUWptr; } else { _HVD_EX_SetBBUWriteptr(u32Id, HVD_LWORD(pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr)); pCtrl->u32BBUWptr_Fired = pHVDHalContext->_stHVDStream[u8Idx].u32BBUWptr; } } void HAL_HVD_EX_MVD_PowerCtrl(MS_BOOL bEnable) { if (bEnable) { _HVD_WriteWordMask(REG_TOP_MVD, 0, TOP_CKG_MHVD_DIS); _HVD_WriteWordMask(REG_TOP_MVD2, 0, TOP_CKG_MHVD2_DIS); } else { _HVD_WriteWordMask(REG_TOP_MVD, TOP_CKG_MHVD_DIS, TOP_CKG_MHVD_DIS); _HVD_WriteWordMask(REG_TOP_MVD2, TOP_CKG_MHVD2_DIS, TOP_CKG_MHVD2_DIS); } } void HAL_HVD_EX_Dump_FW_Status(MS_U32 u32Id) { MS_U32 tmp1 = 0; MS_U32 tmp2 = 0; HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); HAL_HVD_EX_ReadMemory(); _HVD_EX_MBoxRead(u32Id, HAL_HVD_CMD_MBOX, &tmp1); _HVD_EX_MBoxRead(u32Id, HAL_HVD_CMD_ARG_MBOX, &tmp2); if (u32UartCtrl & E_HVD_UART_CTRL_DBG) { MS_U32 u32Tmp = u32UartCtrl; HVD_EX_MSG_DBG("\n"); u32UartCtrl = 0; // turn off debug message to prevent other function prints printf("\tSystime=%lu, FWVersionID=0x%lx, FwState=0x%lx, ErrCode=0x%lx, ProgCnt=0x%lx\n", HVD_GetSysTime_ms(), pShm->u32FWVersionID, pShm->u32FwState, (MS_U32) pShm->u16ErrCode, HAL_VPU_EX_GetProgCnt()); printf("\tTime: DispSTC=%lu, DispT=%lu, DecT=%lu, CurrentPts=%lu, Last Cmd=0x%lx, Arg=0x%lx, Rdy1=0x%lx, Rdy2=0x%lx\n", pShm->u32DispSTC, pShm->DispFrmInfo.u32TimeStamp, pShm->DecoFrmInfo.u32TimeStamp, pShm->u32CurrentPts, tmp1, tmp2, (MS_U32) _HVD_EX_MBoxReady(u32Id, HAL_HVD_CMD_MBOX), (MS_U32) _HVD_EX_MBoxReady(u32Id, HAL_HVD_CMD_ARG_MBOX)); printf("\tFlag: InitDone=%d, SpsChange=%d, IsIFrmFound=%d, 1stFrmRdy=%d, SyncStart=%d, SyncReach=%d\n", pShm->bInitDone, pShm->bSpsChange, pShm->bIsIFrmFound, pShm->bIs1stFrameRdy, pShm->bIsSyncStart, pShm->bIsSyncReach); printf("\tQueue: BBUQNumb=%lu, DecQNumb=%d, DispQNumb=%d, ESR=%lu, ESRfromFW=%lu, ESW=%lu, ESLevel=%lu\n", _HVD_EX_GetBBUQNumb(u32Id), pShm->u16DecQNumb, pShm->u16DispQNumb, _HVD_EX_GetESReadPtr(u32Id, TRUE), pShm->u32ESReadPtr, _HVD_EX_GetESWritePtr(u32Id), _HVD_EX_GetESLevel(u32Id)); printf("\tCounter: DecodeCnt=%lu, DispCnt=%lu, DataErrCnt=%lu, DecErrCnt=%lu, SkipCnt=%lu, DropCnt=%lu, idle=%lu, MainLoopCnt=%lu, VsyncCnt=%lu\n", pShm->u32DecodeCnt, pShm->u32DispCnt, pShm->u32DataErrCnt, pShm->u32DecErrCnt, pShm->u32SkipCnt, pShm->u32DropCnt, pShm->u32VPUIdleCnt, pShm->u32MainLoopCnt, pShm->u32VsyncCnt); printf ("\tMode: ShowErr=%d, RepLastField=%d, SyncOn=%d, FileEnd=%d, Skip=%d, Drop=%d, DispSpeed=%d, FRC=%d, BlueScreen=%d, FreezeImg=%d, 1Field=%d\n", pShm->ModeStatus.bIsShowErrFrm, pShm->ModeStatus.bIsRepeatLastField, pShm->ModeStatus.bIsSyncOn, pShm->ModeStatus.bIsPlaybackFinish, pShm->ModeStatus.u8SkipMode, pShm->ModeStatus.u8DropMode, pShm->ModeStatus.s8DisplaySpeed, pShm->ModeStatus.u8FrcMode, pShm->ModeStatus.bIsBlueScreen, pShm->ModeStatus.bIsFreezeImg, pShm->ModeStatus.bShowOneField); u32UartCtrl = u32Tmp; // recover debug level } } void HAL_HVD_EX_GetBBUEntry(MS_U32 u32Id, HVD_EX_Drv_Ctrl *pDrvCtrl, MS_U32 u32Idx, MS_U32 *u32NalOffset, MS_U32 *u32NalSize) { MS_U8 *u32Addr = NULL; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); if (u32Idx >= pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum) { return; } u32Addr = (MS_U8 *)(MsOS_PA2KSEG1(pDrvCtrl->MemMap.u32CodeBufAddr + pShm->u32HVD_BBU_DRAM_ST_ADDR + (u32Idx << 3))); *u32NalSize = *(u32Addr + 2) & 0x1f; *u32NalSize <<= 8; *u32NalSize |= *(u32Addr + 1) & 0xff; *u32NalSize <<= 8; *u32NalSize |= *(u32Addr) & 0xff; *u32NalOffset = ((MS_U32) (*(u32Addr + 2) & 0xe0)) >> 5; *u32NalOffset |= ((MS_U32) (*(u32Addr + 3) & 0xff)) << 3; *u32NalOffset |= ((MS_U32) (*(u32Addr + 4) & 0xff)) << 11; *u32NalOffset |= ((MS_U32) (*(u32Addr + 5) & 0xff)) << 19; } void HAL_HVD_EX_Dump_BBUs(MS_U32 u32Id, HVD_EX_Drv_Ctrl *pDrvCtrl, MS_U32 u32StartIdx, MS_U32 u32EndIdx, MS_BOOL bShowEmptyEntry) { MS_U32 u32CurIdx = 0; MS_BOOL bFinished = FALSE; MS_U32 u32NalOffset = 0; MS_U32 u32NalSize = 0; MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); if ((u32StartIdx >= pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum) || (u32EndIdx >= pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum)) { return; } u32CurIdx = u32StartIdx; do { if (u32CurIdx == u32EndIdx) { bFinished = TRUE; } HAL_HVD_EX_GetBBUEntry(u32Id, pDrvCtrl, u32CurIdx, &u32NalOffset, &u32NalSize); if ((bShowEmptyEntry == FALSE) || (bShowEmptyEntry && (u32NalOffset == 0) && (u32NalSize == 0))) { HVD_EX_MSG_DBG("HVD BBU Entry: Idx:%lu Offset:%lx Size:%lx\n", u32CurIdx, u32NalOffset, u32NalSize); } u32CurIdx++; if (u32CurIdx >= pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum) { u32CurIdx %= pHVDHalContext->_stHVDStream[u8Idx].u32BBUEntryNum; } } while (bFinished == TRUE); } void HAL_HVD_EX_Dump_HW_Status(MS_U32 u32Num) { MS_U32 i = 0; MS_U32 value = 0; if (u32UartCtrl & E_HVD_UART_CTRL_DBG) { HVD_EX_MSG_DBG("\n"); for (i = 0; i <= u32Num; i++) { _HVD_Write2Byte(HVD_REG_DEBUG_SEL, i); value = _HVD_Read2Byte(HVD_REG_DEBUG_DAT_L); value |= ((MS_U32) _HVD_Read2Byte(HVD_REG_DEBUG_DAT_H)) << 16; if (value == 0) { break; } printf(" %08lx", value); if (((i % 8) + 1) == 8) { printf(" |%lu\n", i + 1); } } printf("\nHVD Dump HW status End: total number:%lu\n", i); } } void HAL_HVD_EX_SetMiuBurstLevel(HVD_EX_Drv_Ctrl *pDrvCtrl, HVD_MIU_Burst_Cnt_Ctrl eMiuBurstCntCtrl) { if (pDrvCtrl) { pDrvCtrl->Settings.u32MiuBurstLevel = (MS_U32) eMiuBurstCntCtrl; } } #if HVD_ENABLE_MVC MS_BOOL HAL_HVD_EX_CheckMVCID(MS_U32 u32Id) { return ( E_HAL_VPU_MVC_STREAM_BASE == (0xFF & u32Id) ); } VDEC_EX_View HAL_HVD_EX_GetView(MS_U32 u32Id) { if( (0xFF & (u32Id >> 8)) == 0x10) return E_VDEC_EX_MAIN_VIEW; else return E_VDEC_EX_SUB_VIEW; } #endif ///HVD_ENABLE_MVC void HAL_HVD_EX_SpareBandwidth(MS_U32 u32Id) //// For MVC { //HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_DIS_QUART_PIXEL, TRUE); //HAL_HVD_EX_SetCmd(u32Id, E_HVD_CMD_DIS_DBF, TRUE); return; } MS_BOOL HAL_HVD_EX_GetFrmRateIsSupported(MS_U32 u32Id, MS_U16 u16HSize, MS_U16 u16VSize, MS_U32 u32FrmRate) { HVD_EX_MSG_DBG("%s w:%d, h:%d, fr:%ld, MAX:%lld\n", __FUNCTION__, u16HSize, u16VSize, u32FrmRate, HVD_HW_MAX_PIXEL); return (((MS_U64)u16HSize*(MS_U64)u16VSize*(MS_U64)u32FrmRate) <= HVD_HW_MAX_PIXEL); } MS_U32 HAL_HVD_EX_GetDispFrmNum(MS_U32 u32Id) { #if 1 HVD_ShareMem *pShm = (HVD_ShareMem *) HAL_HVD_EX_GetShmAddr(u32Id); MS_U16 u16QNum = pShm->u16DispQNumb; MS_U16 u16QPtr = pShm->u16DispQPtr; // MS_U16 u16QSize = pShm->u16DispQSize; //static volatile HVD_Frm_Information *pHvdFrm = NULL; MS_U32 u32DispQNum = 0; #if HVD_ENABLE_MVC MS_BOOL bMVC = HAL_HVD_EX_CheckMVCID(u32Id); if(bMVC) { #if 0 if (u16QNum > HVD_DISPQ_PREFETCH_COUNT*3) { u16QNum = HVD_DISPQ_PREFETCH_COUNT*3; } #endif //printf("OQ:%d,DQ:%d.\n",pShm->u16DispQNumb,pShm->u16DecQNumb); //search the next frame to display while (u16QNum > 0) { //printf("Pr:%d,%d.[%ld,%ld,%ld,%ld].\n",u16QPtr,u16QNum,pShm->DispQueue[u16QPtr].u32Status,pShm->DispQueue[u16QPtr+1].u32Status, // pShm->DispQueue[u16QPtr+2].u32Status,pShm->DispQueue[u16QPtr+3].u32Status); pHVDHalContext->pHvdFrm = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr]; //printf("Q2: %ld\n", pHVDShareMem->DispQueue[u16QPtr].u32Status); if (pHVDHalContext->pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) { /// For MVC. Output views after the pair of (base and depend) views were decoded. /// Check the depned view was initial when Output the base view. if((u16QPtr%2) == 0) { volatile HVD_Frm_Information *pHvdFrm_sub = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr+1]; //if(pHvdFrm_sub->u32Status != E_HVD_DISPQ_STATUS_INIT) if(pHvdFrm_sub->u32Status == E_HVD_DISPQ_STATUS_NONE) { ///printf("[MVC] %d is not E_HVD_DISPQ_STATUS_INIT (%ld).\n",u16QPtr+1,pHvdFrm_sub->u32Status); ///printf("Return NULL.\n"); continue; } } u32DispQNum++; } u16QNum--; //go to next frame in the dispQ u16QPtr++; if (u16QPtr >= pShm->u16DispQSize) { u16QPtr -= pShm->u16DispQSize; //wrap to the begin } } } else #endif ///HVD_ENABLE_MVC { #if 0 if (u16QNum > HVD_DISPQ_PREFETCH_COUNT) { u16QNum = HVD_DISPQ_PREFETCH_COUNT; } #endif // printf("Q: %d %d %d\n", u16QNum, u16QPtr, u16QSize); //search the next frame to display while (u16QNum != 0) { pHVDHalContext->pHvdFrm = (volatile HVD_Frm_Information *) &pShm->DispQueue[u16QPtr]; // printf("Q2[%d]: %ld\n", u16QPtr, pShm->DispQueue[u16QPtr].u32Status); if (pHVDHalContext->pHvdFrm->u32Status == E_HVD_DISPQ_STATUS_INIT) { u32DispQNum++; } u16QNum--; //go to next frame in the dispQ u16QPtr++; if (u16QPtr == pShm->u16DispQSize) { u16QPtr = 0; //wrap to the begin } } } //printf("dispQnum = %ld, pShm->u16DispQNumb = %d\n", u32DispQNum, pShm->u16DispQNumb); return u32DispQNum; #else HVD_ShareMem *pShm = (HVD_ShareMem *) _HVD_EX_GetShmAddr(u32Id); return pShm->u16DispQNumb; #endif } void HAL_HVD_EX_SetHwRegBase(MS_U32 u32Id, MS_U32 u32ModeFlag) { MS_U8 u8Idx = _HVD_EX_GetStreamIdx(u32Id); pHVDHalContext->_stHVDStream[u8Idx].u32RegBase = ((u32ModeFlag & E_HVD_INIT_HW_MASK) == E_HVD_INIT_HW_HEVC) ? REG_EVD_BASE : REG_HVD_BASE; } #if SUPPORT_EVD void HAL_EVD_EX_PowerCtrl(MS_BOOL bEnable) { if (bEnable) { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, ~TOP_CKG_EVD_PPU_DIS, TOP_CKG_EVD_PPU_DIS); _HVD_WriteWordMask(REG_TOP_CKG_EVD, ~TOP_CKG_EVD_DIS, TOP_CKG_EVD_DIS); } else { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_DIS, TOP_CKG_EVD_PPU_DIS); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_DIS, TOP_CKG_EVD_DIS); } switch (pHVDHalContext->u32EVDClockType) { case 345: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_345MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_345MHZ, TOP_CKG_EVD_MASK); break; } case 320: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_320MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_320MHZ, TOP_CKG_EVD_MASK); break; } case 288: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_288MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_288MHZ, TOP_CKG_EVD_MASK); break; } case 240: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_240MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_240MHZ, TOP_CKG_EVD_MASK); break; } case 216: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_216MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_216MHZ, TOP_CKG_EVD_MASK); break; } case 192: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_192MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_192MHZ, TOP_CKG_EVD_MASK); break; } case 160: { _HVD_WriteWordMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_160MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteWordMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_160MHZ, TOP_CKG_EVD_MASK); break; } default: { _HVD_WriteByteMask(REG_TOP_CKG_EVD_PPU, TOP_CKG_EVD_PPU_345MHZ, TOP_CKG_EVD_PPU_MASK); _HVD_WriteByteMask(REG_TOP_CKG_EVD, TOP_CKG_EVD_345MHZ, TOP_CKG_EVD_MASK); break; } } return; } static MS_BOOL HAL_EVD_EX_DeinitHW(void) { MS_U16 u16Timeout = 1000; _HVD_WriteWordMask(EVD_REG_RESET, EVD_REG_RESET_SWRST, EVD_REG_RESET_SWRST); while (u16Timeout) { if ((_HVD_Read2Byte(EVD_REG_RESET) & (EVD_REG_RESET_SWRST_FIN)) == (EVD_REG_RESET_SWRST_FIN)) { break; } u16Timeout--; } HAL_EVD_EX_PowerCtrl(FALSE); return TRUE; } #endif MS_BOOL HAL_HVD_EX_GetSupport2ndMVOPInterface(void) { return TRUE; } void HAL_HVD_EX_SetBufferAddr(MS_U32 u32Id) { _HVD_EX_SetBufferAddr(u32Id); } void HAL_HVD_EX_BBU_Proc(MS_U32 u32Id) { } void HAL_HVD_EX_BBU_StopProc(MS_U32 u32Id) { } #endif