// //****************************************************************************** // MStar Software // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved. // All software, firmware and related documentation herein ("MStar Software") are // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by // law, including, but not limited to, copyright law and international treaties. // Any use, modification, reproduction, retransmission, or republication of all // or part of MStar Software is expressly prohibited, unless prior written // permission has been granted by MStar. // // By accessing, browsing and/or using MStar Software, you acknowledge that you // have read, understood, and agree, to be bound by below terms ("Terms") and to // comply with all applicable laws and regulations: // // 1. MStar shall retain any and all right, ownership and interest to MStar // Software and any modification/derivatives thereof. // No right, ownership, or interest to MStar Software and any // modification/derivatives thereof is transferred to you under Terms. // // 2. You understand that MStar Software might include, incorporate or be // supplied together with third party`s software and the use of MStar // Software may require additional licenses from third parties. // Therefore, you hereby agree it is your sole responsibility to separately // obtain any and all third party right and license necessary for your use of // such third party`s software. // // 3. MStar Software and any modification/derivatives thereof shall be deemed as // MStar`s confidential information and you agree to keep MStar`s // confidential information in strictest confidence and not disclose to any // third party. // // 4. MStar Software is provided on an "AS IS" basis without warranties of any // kind. Any warranties are hereby expressly disclaimed by MStar, including // without limitation, any warranties of merchantability, non-infringement of // intellectual property rights, fitness for a particular purpose, error free // and in conformity with any international standard. You agree to waive any // claim against MStar for any loss, damage, cost or expense that you may // incur related to your use of MStar Software. // In no event shall MStar be liable for any direct, indirect, incidental or // consequential damages, including without limitation, lost of profit or // revenues, lost or damage of data, and unauthorized system use. // You agree that this Section 4 shall still apply without being affected // even if MStar Software has been modified by MStar in accordance with your // request or instruction for your use, except otherwise agreed by both // parties in writing. // // 5. If requested, MStar may from time to time provide technical supports or // services in relation with MStar Software to you for your use of // MStar Software in conjunction with your or your customer`s product // ("Services"). // You understand and agree that, except otherwise agreed by both parties in // writing, Services are provided on an "AS IS" basis and the warranty // disclaimer set forth in Section 4 above shall apply. // // 6. Nothing contained herein shall be construed as by implication, estoppels // or otherwise: // (a) conferring any license or right to use MStar name, trademark, service // mark, symbol or any other identification; // (b) obligating MStar or any of its affiliates to furnish any person, // including without limitation, you and your customers, any assistance // of any kind whatsoever, or any information; or // (c) conferring any license or right under any intellectual property right. // // 7. These terms shall be governed by and construed in accordance with the laws // of Taiwan, R.O.C., excluding its conflict of law rules. // Any and all dispute arising out hereof or related hereto shall be finally // settled by arbitration referred to the Chinese Arbitration Association, // Taipei in accordance with the ROC Arbitration Law and the Arbitration // Rules of the Association by three (3) arbitrators appointed in accordance // with the said Rules. // The place of arbitration shall be in Taipei, Taiwan and the language shall // be English. // The arbitration award shall be final and binding to both parties. // //****************************************************************************** // /* * jidctint.c * * Copyright (C) 1991-1998, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */ #include "jpegmain.h" #include "apiJPEG.h" ///#define JPEG_INTERNALS ///#include "jinclude.h" ///#include "jpeglib.h" ///#include "jdct.h" /* Private declarations for DCT subsystem */ #if 1///def DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #define DCTSIZE 8 #define BITS_IN_JSAMPLE 8 #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ /* #if 0 ///BITS_IN_JSAMPLE == 8 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) #else #define MULTIPLY(var,const) ((var) * (const)) #endif */ #define MULTIPLY(var,cnst) ((var) * (cnst)) /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define ISLOW_MULT_TYPE int #define DEQUANTIZE(coef,quantval) (coef) //(((ISLOW_MULT_TYPE) (coef)) ) ///(((ISLOW_MULT_TYPE) (coef)) * (quantval)) //#define DESCALE(x,n) ( ( (x) + (1 << ((n)-1)) ) >> n) #define SCALEDONE ((int32) 1) #define DESCALE(x,n) (((x) + (SCALEDONE << ((n)-1))) >> (n)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ ///GLOBAL(void) ///jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, /// JCOEFPTR coef_block, /// JSAMPARRAY output_buf, JDIMENSION output_col) #define clamp(i) if (i & 0xFF00) i = (((~i) >> 15) & 0xFF); void jpeg_idct_islow( JPEG_BLOCK_TYPE *data, U8 *Pdst_ptr ) { #define INT32 S32 #define DCTSIZE2 64 #define DCTSIZE 8 INT32 tmp0, tmp1, tmp2, tmp3; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; ///JCOEFPTR inptr; register JPEG_BLOCK_TYPE *inptr; ///ISLOW_MULT_TYPE *quantptr; U8 *outptr = Pdst_ptr; ///JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; JPEG_BLOCK_TYPE workspace[DCTSIZE2]; /* buffers data between passes */ JPEG_BLOCK_TYPE *wsptr; ///SHIFT_TEMPS S16 i; //printf("Jidctint::jpeg_idct_islow\n"); /* Pass 1: process columns from input, store into work array. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ inptr = data; ///quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for ( ctr = DCTSIZE; ctr > 0; ctr-- ) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if ( ( inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] | inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] | inptr[DCTSIZE * 7] ) == 0 ) { /* AC terms all zero */ int dcval = DEQUANTIZE( inptr[DCTSIZE*0], quantptr[DCTSIZE*0] ) << PASS1_BITS; wsptr[DCTSIZE * 0] = dcval; wsptr[DCTSIZE * 1] = dcval; wsptr[DCTSIZE * 2] = dcval; wsptr[DCTSIZE * 3] = dcval; wsptr[DCTSIZE * 4] = dcval; wsptr[DCTSIZE * 5] = dcval; wsptr[DCTSIZE * 6] = dcval; wsptr[DCTSIZE * 7] = dcval; inptr++; /* advance pointers to next column */ //quantptr++; wsptr++; continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = DEQUANTIZE( inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] ); z3 = DEQUANTIZE( inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] ); z1 = MULTIPLY( z2 + z3, FIX_0_541196100 ); tmp2 = z1 + MULTIPLY( z3, -FIX_1_847759065 ); tmp3 = z1 + MULTIPLY( z2, FIX_0_765366865 ); z2 = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] ); z3 = DEQUANTIZE( inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] ); tmp0 = ( z2 + z3 ) << CONST_BITS; tmp1 = ( z2 - z3 ) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = DEQUANTIZE( inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] ); tmp1 = DEQUANTIZE( inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] ); tmp2 = DEQUANTIZE( inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] ); tmp3 = DEQUANTIZE( inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] ); z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY( z3 + z4, FIX_1_175875602 ); /* sqrt(2) * c3 */ tmp0 = MULTIPLY( tmp0, FIX_0_298631336 ); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY( tmp1, FIX_2_053119869 ); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY( tmp2, FIX_3_072711026 ); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY( tmp3, FIX_1_501321110 ); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY( z1, -FIX_0_899976223 ); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY( z2, -FIX_2_562915447 ); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY( z3, -FIX_1_961570560 ); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY( z4, -FIX_0_390180644 ); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ wsptr[DCTSIZE * 0] = ( int )DESCALE( tmp10 + tmp3, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 7] = ( int )DESCALE( tmp10 - tmp3, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 1] = ( int )DESCALE( tmp11 + tmp2, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 6] = ( int )DESCALE( tmp11 - tmp2, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 2] = ( int )DESCALE( tmp12 + tmp1, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 5] = ( int )DESCALE( tmp12 - tmp1, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 3] = ( int )DESCALE( tmp13 + tmp0, CONST_BITS - PASS1_BITS ); wsptr[DCTSIZE * 4] = ( int )DESCALE( tmp13 - tmp0, CONST_BITS - PASS1_BITS ); inptr++; /* advance pointers to next column */ //quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for ( ctr = 0; ctr < DCTSIZE; ctr++ ) { ///outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #if 1///ndef NO_ZERO_ROW_TEST if ( ( wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] | wsptr[7] ) == 0 ) { /* AC terms all zero */ int dcval = ( int )DESCALE( ( INT32 )wsptr[DCTSIZE*0], PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; clamp( dcval ) outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ outptr += DCTSIZE; continue; } #endif /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = ( INT32 )wsptr[2]; z3 = ( INT32 )wsptr[6]; z1 = MULTIPLY( z2 + z3, FIX_0_541196100 ); tmp2 = z1 + MULTIPLY( z3, -FIX_1_847759065 ); tmp3 = z1 + MULTIPLY( z2, FIX_0_765366865 ); tmp0 = ( ( INT32 )wsptr[0] + ( INT32 )wsptr[4] ) << CONST_BITS; tmp1 = ( ( INT32 )wsptr[0] - ( INT32 )wsptr[4] ) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = ( INT32 )wsptr[7]; tmp1 = ( INT32 )wsptr[5]; tmp2 = ( INT32 )wsptr[3]; tmp3 = ( INT32 )wsptr[1]; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY( z3 + z4, FIX_1_175875602 ); /* sqrt(2) * c3 */ tmp0 = MULTIPLY( tmp0, FIX_0_298631336 ); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY( tmp1, FIX_2_053119869 ); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY( tmp2, FIX_3_072711026 ); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY( tmp3, FIX_1_501321110 ); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY( z1, -FIX_0_899976223 ); /* sqrt(2) * (c7-c3) */ z2 = MULTIPLY( z2, -FIX_2_562915447 ); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY( z3, -FIX_1_961570560 ); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY( z4, -FIX_0_390180644 ); /* sqrt(2) * (c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ i = ( int )DESCALE( tmp10 + tmp3, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[0] = ( U8 )i; i = ( int )DESCALE( tmp10 - tmp3, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[7] = ( U8 )i; i = ( int )DESCALE( tmp11 + tmp2, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[1] = ( U8 )i; i = ( int )DESCALE( tmp11 - tmp2, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[6] = ( U8 )i; i = ( int )DESCALE( tmp12 + tmp1, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[2] = ( U8 )i; i = ( int )DESCALE( tmp12 - tmp1, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[5] = ( U8 )i; i = ( int )DESCALE( tmp13 + tmp0, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[3] = ( U8 )i; i = ( int )DESCALE( tmp13 - tmp0, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; clamp( i ) outptr[4] = ( U8 )i; wsptr += DCTSIZE; /* advance pointer to next row */ outptr += DCTSIZE; } } #endif /* DCT_ISLOW_SUPPORTED */