// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd */ #include #include static const u8 null_hash_sha1_value[] = { 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09 }; static const u8 null_hash_md5_value[] = { 0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e }; static const u8 null_hash_sha256_value[] = { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 }; static const u8 null_hash_sha512_value[] = { 0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e }; const static u8 null_hash_sm3_value[] = { 0x1a, 0xb2, 0x1d, 0x83, 0x55, 0xcf, 0xa1, 0x7f, 0x8e, 0x61, 0x19, 0x48, 0x31, 0xe8, 0x1a, 0x8f, 0x22, 0xbe, 0xc8, 0xc7, 0x28, 0xfe, 0xfb, 0x74, 0x7e, 0xd0, 0x35, 0xeb, 0x50, 0x82, 0xaa, 0x2b }; u32 crypto_algo_nbits(u32 algo) { switch (algo) { case CRYPTO_MD5: case CRYPTO_HMAC_MD5: return 128; case CRYPTO_SHA1: case CRYPTO_HMAC_SHA1: return 160; case CRYPTO_SHA256: case CRYPTO_HMAC_SHA256: return 256; case CRYPTO_SHA512: case CRYPTO_HMAC_SHA512: return 512; case CRYPTO_SM3: case CRYPTO_HMAC_SM3: return 256; case CRYPTO_RSA512: return 512; case CRYPTO_RSA1024: return 1024; case CRYPTO_RSA2048: return 2048; case CRYPTO_RSA3072: return 3072; case CRYPTO_RSA4096: return 4096; case CRYPTO_SM2: return 256; case CRYPTO_ECC_192R1: return 192; case CRYPTO_ECC_224R1: return 224; case CRYPTO_ECC_256R1: return 256; } printf("Unknown crypto algorithm: 0x%x\n", algo); return 0; } struct udevice *crypto_get_device(u32 capability) { bool preferred_secure = false; bool cur_secure = false; const struct dm_crypto_ops *ops; struct udevice *best_fit_dev = NULL; struct udevice *dev; struct uclass *uc; int ret; u32 cap; #if defined(CONFIG_SPL_BUILD) preferred_secure = true; #else preferred_secure = false; #endif ret = uclass_get(UCLASS_CRYPTO, &uc); if (ret) return NULL; for (uclass_first_device(UCLASS_CRYPTO, &dev); dev; uclass_next_device(&dev)) { ops = device_get_ops(dev); if (!ops || !ops->capability) continue; cur_secure = ops->is_secure ? ops->is_secure(dev) : false; cap = ops->capability(dev); if ((cap & capability) == capability) { if (!best_fit_dev) { best_fit_dev = dev; continue; } if (preferred_secure == cur_secure) best_fit_dev = dev; } } return best_fit_dev; } int crypto_sha_init(struct udevice *dev, sha_context *ctx) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (ctx && !ctx->length) return 0; if (!ops || !ops->sha_init) return -ENOSYS; return ops->sha_init(dev, ctx); } int crypto_sha_update(struct udevice *dev, u32 *input, u32 len) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!len) return 0; if (!ops || !ops->sha_update) return -ENOSYS; return ops->sha_update(dev, input, len); } int crypto_sha_final(struct udevice *dev, sha_context *ctx, u8 *output) { const struct dm_crypto_ops *ops = device_get_ops(dev); const u8 *null_hash = NULL; u32 hash_size = 0; if (ctx && !ctx->length && output) { switch (ctx->algo) { case CRYPTO_MD5: null_hash = null_hash_md5_value; hash_size = sizeof(null_hash_md5_value); break; case CRYPTO_SHA1: null_hash = null_hash_sha1_value; hash_size = sizeof(null_hash_sha1_value); break; case CRYPTO_SHA256: null_hash = null_hash_sha256_value; hash_size = sizeof(null_hash_sha256_value); break; case CRYPTO_SHA512: null_hash = null_hash_sha512_value; hash_size = sizeof(null_hash_sha512_value); break; case CRYPTO_SM3: null_hash = null_hash_sm3_value; hash_size = sizeof(null_hash_sm3_value); break; default: return -EINVAL; } memcpy(output, null_hash, hash_size); return 0; } if (!ops || !ops->sha_final) return -ENOSYS; return ops->sha_final(dev, ctx, output); } int crypto_hmac_init(struct udevice *dev, sha_context *ctx, u8 *key, u32 key_len) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (ctx && !ctx->length) return -EINVAL; if (!ops || !ops->hmac_init) return -ENOSYS; return ops->hmac_init(dev, ctx, key, key_len); } int crypto_hmac_update(struct udevice *dev, u32 *input, u32 len) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!len) return 0; if (!ops || !ops->hmac_update) return -ENOSYS; return ops->hmac_update(dev, input, len); } int crypto_hmac_final(struct udevice *dev, sha_context *ctx, u8 *output) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->hmac_final) return -ENOSYS; return ops->hmac_final(dev, ctx, output); } int crypto_sha_csum(struct udevice *dev, sha_context *ctx, char *input, u32 input_len, u8 *output) { int ret; ret = crypto_sha_init(dev, ctx); if (ret) return ret; ret = crypto_sha_update(dev, (u32 *)input, input_len); if (ret) return ret; ret = crypto_sha_final(dev, ctx, output); return ret; } int crypto_sha_regions_csum(struct udevice *dev, sha_context *ctx, const struct image_region region[], int region_count, u8 *output) { int i, ret; ctx->length = 0; for (i = 0; i < region_count; i++) ctx->length += region[i].size; ret = crypto_sha_init(dev, ctx); if (ret) return ret; for (i = 0; i < region_count; i++) { ret = crypto_sha_update(dev, (void *)region[i].data, region[i].size); if (ret) return ret; } return crypto_sha_final(dev, ctx, output); } int crypto_rsa_verify(struct udevice *dev, rsa_key *ctx, u8 *sign, u8 *output) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->rsa_verify) return -ENOSYS; if (!ctx || !ctx->n || !ctx->e || !sign || !output) return -EINVAL; return ops->rsa_verify(dev, ctx, sign, output); } int crypto_ec_verify(struct udevice *dev, ec_key *ctx, u8 *hash, u32 hash_len, u8 *sign) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->ec_verify) return -ENOSYS; if (!ctx || !ctx->x || !ctx->y || !ctx->y || !hash || hash_len == 0 || !sign) return -EINVAL; return ops->ec_verify(dev, ctx, hash, hash_len, sign); } int crypto_cipher(struct udevice *dev, cipher_context *ctx, const u8 *in, u8 *out, u32 len, bool enc) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->cipher_crypt) return -ENOSYS; if (!ctx || !ctx->key || ctx->key_len == 0) return -EINVAL; return ops->cipher_crypt(dev, ctx, in, out, len, enc); } int crypto_mac(struct udevice *dev, cipher_context *ctx, const u8 *in, u32 len, u8 *tag) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->cipher_mac) return -ENOSYS; if (!ctx || !ctx->key || ctx->key_len == 0) return -EINVAL; return ops->cipher_mac(dev, ctx, in, len, tag); } int crypto_ae(struct udevice *dev, cipher_context *ctx, const u8 *in, u32 len, const u8 *aad, u32 aad_len, u8 *out, u8 *tag) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->cipher_ae) return -ENOSYS; if (!ctx || !ctx->key || ctx->key_len == 0) return -EINVAL; return ops->cipher_ae(dev, ctx, in, len, aad, aad_len, out, tag); } int crypto_fw_cipher(struct udevice *dev, cipher_fw_context *ctx, const u8 *in, u8 *out, u32 len, bool enc) { #if CONFIG_IS_ENABLED(DM_KEYLAD) const struct dm_crypto_ops *ops = device_get_ops(dev); struct udevice *keylad_dev; if (!ops || !ops->cipher_fw_crypt) return -ENOSYS; if (!ops->is_secure || !ops->is_secure(dev)) { printf("Only secure crypto support fwkey cipher.\n"); return -ENOSYS; } keylad_dev = keylad_get_device(); if (!keylad_dev) { printf("No keylad device found.\n"); return -ENOSYS; } if (keylad_transfer_fwkey(keylad_dev, crypto_keytable_addr(dev), ctx->fw_keyid, ctx->key_len)) { printf("Failed to transfer key from keylad.\n"); return -ENOSYS; } return ops->cipher_fw_crypt(dev, ctx, in, out, len, enc); #else return -ENOSYS; #endif } ulong crypto_keytable_addr(struct udevice *dev) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->keytable_addr) return 0; return ops->keytable_addr(dev); } bool crypto_is_secure(struct udevice *dev) { const struct dm_crypto_ops *ops = device_get_ops(dev); if (!ops || !ops->is_secure) return false; return ops->is_secure(dev); } UCLASS_DRIVER(crypto) = { .id = UCLASS_CRYPTO, .name = "crypto", };