/* * Copyright (c) 2024-2025, Linaro Limited. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include "qemu_private.h" /* default platform version is 0.0 */ static int platform_version_major; static int platform_version_minor; static uint64_t gic_its_addr; static struct qemu_platform_info dynamic_platform_info; void sbsa_set_gic_bases(const uintptr_t gicd_base, const uintptr_t gicr_base); /* * QEMU provides us with minimal information about hardware platform using * minimalistic DeviceTree. This is not a Linux DeviceTree. It is not even * a firmware DeviceTree. * * It is information passed from QEMU to describe the information a hardware * platform would have other mechanisms to discover at runtime, that are * affected by the QEMU command line. * * Ultimately this device tree will be replaced by IPC calls to an emulated SCP. * And when we do that, we won't then have to rewrite Normal world firmware to * cope. */ static void read_cpu_topology_from_dt(void *dtb) { int node; /* * QEMU gives us this DeviceTree node when we config: * -smp 16,sockets=2,clusters=2,cores=2,threads=2 * * topology { * threads = <0x02>; * cores = <0x02>; * clusters = <0x02>; * sockets = <0x02>; * }; */ node = fdt_path_offset(dtb, "/cpus/topology"); if (node > 0) { dynamic_platform_info.cpu_topo.sockets = fdt_read_uint32_default(dtb, node, "sockets", 0); dynamic_platform_info.cpu_topo.clusters = fdt_read_uint32_default(dtb, node, "clusters", 0); dynamic_platform_info.cpu_topo.cores = fdt_read_uint32_default(dtb, node, "cores", 0); dynamic_platform_info.cpu_topo.threads = fdt_read_uint32_default(dtb, node, "threads", 0); } INFO("Cpu topology: sockets: %d, clusters: %d, cores: %d, threads: %d\n", dynamic_platform_info.cpu_topo.sockets, dynamic_platform_info.cpu_topo.clusters, dynamic_platform_info.cpu_topo.cores, dynamic_platform_info.cpu_topo.threads); } static void read_cpuinfo_from_dt(void *dtb) { int node; int prev; int cpu = 0; uintptr_t mpidr; /* * QEMU gives us this DeviceTree node: * numa-node-id entries are only when NUMA config is used * * cpus { * #size-cells = <0x00>; * #address-cells = <0x02>; * * cpu@0 { * numa-node-id = <0x00>; * reg = <0x00 0x00>; * }; * * cpu@1 { * numa-node-id = <0x03>; * reg = <0x00 0x01>; * }; * }; */ node = fdt_path_offset(dtb, "/cpus"); if (node < 0) { ERROR("No information about cpus in DeviceTree.\n"); panic(); } /* * QEMU numbers cpus from 0 and there can be /cpus/cpu-map present so we * cannot use fdt_first_subnode() here */ node = fdt_path_offset(dtb, "/cpus/cpu@0"); while (node > 0) { if (fdt_getprop(dtb, node, "reg", NULL)) { fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL); } else { ERROR("Incomplete information for cpu %d in DeviceTree.\n", cpu); panic(); } dynamic_platform_info.cpu[cpu].mpidr = mpidr; dynamic_platform_info.cpu[cpu].nodeid = fdt_read_uint32_default(dtb, node, "numa-node-id", 0); INFO("CPU %d: node-id: %d, mpidr: %ld\n", cpu, dynamic_platform_info.cpu[cpu].nodeid, mpidr); cpu++; prev = node; node = fdt_next_subnode(dtb, prev); } dynamic_platform_info.num_cpus = cpu; INFO("Found %d cpus\n", dynamic_platform_info.num_cpus); read_cpu_topology_from_dt(dtb); } static void read_meminfo_from_dt(void *dtb) { const fdt32_t *prop; const char *type; int prev, node; int len; uint32_t memnode = 0; uint32_t higher_value, lower_value; uint64_t cur_base, cur_size; /* * QEMU gives us this DeviceTree node: * * memory@100c0000000 { * numa-node-id = <0x01>; * reg = <0x100 0xc0000000 0x00 0x40000000>; * device_type = "memory"; * }; * * memory@10000000000 { * numa-node-id = <0x00>; * reg = <0x100 0x00 0x00 0xc0000000>; * device_type = "memory"; * } */ for (prev = 0;; prev = node) { node = fdt_next_node(dtb, prev, NULL); if (node < 0) { break; } type = fdt_getprop(dtb, node, "device_type", &len); if (type && strncmp(type, "memory", len) == 0) { dynamic_platform_info.memory[memnode].nodeid = fdt_read_uint32_default(dtb, node, "numa-node-id", 0); /* * Get the 'reg' property of this node and * assume two 8 bytes for base and size. */ prop = fdt_getprop(dtb, node, "reg", &len); if (prop != 0 && len == (2 * sizeof(int64_t))) { higher_value = fdt32_to_cpu(*prop); lower_value = fdt32_to_cpu(*(prop + 1)); cur_base = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); higher_value = fdt32_to_cpu(*(prop + 2)); lower_value = fdt32_to_cpu(*(prop + 3)); cur_size = (uint64_t)(lower_value | ((uint64_t)higher_value) << 32); dynamic_platform_info.memory[memnode].addr_base = cur_base; dynamic_platform_info.memory[memnode].addr_size = cur_size; INFO("RAM %d: node-id: %d, address: 0x%lx - 0x%lx\n", memnode, dynamic_platform_info.memory[memnode].nodeid, dynamic_platform_info.memory[memnode].addr_base, dynamic_platform_info.memory[memnode].addr_base + dynamic_platform_info.memory[memnode].addr_size - 1); } memnode++; } } dynamic_platform_info.num_memnodes = memnode; } static void read_platform_config_from_dt(void *dtb) { int node; const fdt64_t *data; int err; uintptr_t gicd_base; uintptr_t gicr_base; /* * QEMU gives us this DeviceTree node: * * intc { * reg = < 0x00 0x40060000 0x00 0x10000 * 0x00 0x40080000 0x00 0x4000000>; * its { * reg = <0x00 0x44081000 0x00 0x20000>; * }; * }; */ node = fdt_path_offset(dtb, "/intc"); if (node < 0) { return; } data = fdt_getprop(dtb, node, "reg", NULL); if (data == NULL) { return; } err = fdt_get_reg_props_by_index(dtb, node, 0, &gicd_base, NULL); if (err < 0) { ERROR("Failed to read GICD reg property of GIC node\n"); return; } INFO("GICD base = 0x%lx\n", gicd_base); err = fdt_get_reg_props_by_index(dtb, node, 1, &gicr_base, NULL); if (err < 0) { ERROR("Failed to read GICR reg property of GIC node\n"); return; } INFO("GICR base = 0x%lx\n", gicr_base); sbsa_set_gic_bases(gicd_base, gicr_base); node = fdt_path_offset(dtb, "/intc/its"); if (node < 0) { return; } err = fdt_get_reg_props_by_index(dtb, node, 0, &gic_its_addr, NULL); if (err < 0) { ERROR("Failed to read GICI reg property of GIC node\n"); return; } INFO("GICI base = 0x%lx\n", gic_its_addr); } static void read_platform_version(void *dtb) { int node; node = fdt_path_offset(dtb, "/"); if (node >= 0) { platform_version_major = fdt_read_uint32_default(dtb, node, "machine-version-major", 0); platform_version_minor = fdt_read_uint32_default(dtb, node, "machine-version-minor", 0); } } #if !ENABLE_RME static int set_system_memory_base(void *dtb, uintptr_t new_base) { (void)dtb; (void)new_base; return 0; } #else /* !ENABLE_RME */ static int set_system_memory_base(void *dtb, uintptr_t new_base) { uint64_t cur_base, cur_size, new_size, delta; int len, prev, node, ret; const fdt32_t *prop; uint32_t node_id; const char *type; fdt64_t new[2]; /* * QEMU gives us this DeviceTree node: * * memory@100c0000000 { * numa-node-id = <0x01>; * reg = <0x100 0xc0000000 0x00 0x40000000>; * device_type = "memory"; * }; * * memory@10000000000 { * numa-node-id = <0x00>; * reg = <0x100 0x00 0x00 0xc0000000>; * device_type = "memory"; * } */ for (prev = 0;; prev = node) { node = fdt_next_node(dtb, prev, NULL); if (node < 0) { return node; } type = fdt_getprop(dtb, node, "device_type", &len); if (type && strncmp(type, "memory", len) == 0) { /* * We are looking for numa node 0, i.e the start of the * system memory. If a "numa-node-id" doesn't exists we * take the first one. */ node_id = fdt_read_uint32_default(dtb, node, "numa-node-id", 0); if (node_id == 0) { break; } } } /* * Get the 'reg' property of this node and * assume two 8 bytes for base and size. */ prop = fdt_getprop(dtb, node, "reg", &len); if (!prop || len < 0) { return len; } if (len != (2 * sizeof(uint64_t))) { return -FDT_ERR_BADVALUE; } ret = fdt_get_reg_props_by_index(dtb, node, 0, &cur_base, &cur_size); if (ret < 0) return ret; /* * @cur_base is the base of the NS RAM given to us by QEMU, we can't * go lower than that. */ if (new_base < cur_base) { return -FDT_ERR_BADVALUE; } if (new_base == cur_base) { return 0; } /* * The new base is higher than the base set by QEMU, i.e we are moving * the base memory up and shrinking the size. */ delta = (size_t)(new_base - cur_base); /* * Make sure the new base is still within the base memory node, i.e * the base memory node is big enough for the RMM. */ if (delta >= cur_size) { ERROR("Not enough space in base memory node for RMM\n"); return -FDT_ERR_BADVALUE; } new_size = cur_size - delta; new[0] = cpu_to_fdt64(new_base); new[1] = cpu_to_fdt64(new_size); ret = fdt_setprop(dtb, node, "reg", new, len); if (ret < 0) { return ret; } return fdt_pack(dtb); } #endif /* !ENABLE_RME */ void sbsa_platform_init(void) { /* Read DeviceTree data before MMU is enabled */ void *dtb = plat_qemu_dt_runtime_address(); int err; err = fdt_open_into(dtb, dtb, PLAT_QEMU_DT_MAX_SIZE); if (err < 0) { ERROR("Invalid Device Tree at %p: error %d\n", dtb, err); return; } err = fdt_check_header(dtb); if (err < 0) { ERROR("Invalid DTB file passed\n"); return; } read_platform_version(dtb); INFO("Platform version: %d.%d\n", platform_version_major, platform_version_minor); if (set_system_memory_base(dtb, NS_DRAM0_BASE)) { ERROR("Failed to set system memory in Device Tree\n"); return; } read_platform_config_from_dt(dtb); read_cpuinfo_from_dt(dtb); read_meminfo_from_dt(dtb); } int sbsa_platform_version_major(void) { return platform_version_major; } int sbsa_platform_version_minor(void) { return platform_version_minor; } uint32_t sbsa_platform_num_cpus(void) { return dynamic_platform_info.num_cpus; } uint32_t sbsa_platform_num_memnodes(void) { return dynamic_platform_info.num_memnodes; } uint64_t sbsa_platform_gic_its_addr(void) { return gic_its_addr; } struct platform_cpu_data sbsa_platform_cpu_node(uint64_t index) { return dynamic_platform_info.cpu[index]; } struct platform_memory_data sbsa_platform_memory_node(uint64_t index) { return dynamic_platform_info.memory[index]; } struct platform_cpu_topology sbsa_platform_cpu_topology(void) { return dynamic_platform_info.cpu_topo; }