/* * Copyright 2024 NXP * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include #include #include #include #define MAX_STACK_DEPTH (15U) /* This is used for floating-point precision calculations. */ #define FP_PRECISION (100000000UL) struct s32cc_clk_drv { uintptr_t fxosc_base; uintptr_t armpll_base; }; static int update_stack_depth(unsigned int *depth) { if (*depth == 0U) { return -ENOMEM; } (*depth)--; return 0; } static struct s32cc_clk_drv *get_drv(void) { static struct s32cc_clk_drv driver = { .fxosc_base = FXOSC_BASE_ADDR, .armpll_base = ARMPLL_BASE_ADDR, }; return &driver; } static int enable_module(const struct s32cc_clk_obj *module, unsigned int *depth); static int enable_clk_module(const struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int *depth) { const struct s32cc_clk *clk = s32cc_obj2clk(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (clk == NULL) { return -EINVAL; } if (clk->module != NULL) { return enable_module(clk->module, depth); } if (clk->pclock != NULL) { return enable_clk_module(&clk->pclock->desc, drv, depth); } return -EINVAL; } static int get_base_addr(enum s32cc_clk_source id, const struct s32cc_clk_drv *drv, uintptr_t *base) { int ret = 0; switch (id) { case S32CC_FXOSC: *base = drv->fxosc_base; break; case S32CC_ARM_PLL: *base = drv->armpll_base; break; case S32CC_CGM1: ret = -ENOTSUP; break; case S32CC_FIRC: break; case S32CC_SIRC: break; default: ret = -EINVAL; break; } if (ret != 0) { ERROR("Unknown clock source id: %u\n", id); } return ret; } static void enable_fxosc(const struct s32cc_clk_drv *drv) { uintptr_t fxosc_base = drv->fxosc_base; uint32_t ctrl; ctrl = mmio_read_32(FXOSC_CTRL(fxosc_base)); if ((ctrl & FXOSC_CTRL_OSCON) != U(0)) { return; } ctrl = FXOSC_CTRL_COMP_EN; ctrl &= ~FXOSC_CTRL_OSC_BYP; ctrl |= FXOSC_CTRL_EOCV(0x1); ctrl |= FXOSC_CTRL_GM_SEL(0x7); mmio_write_32(FXOSC_CTRL(fxosc_base), ctrl); /* Switch ON the crystal oscillator. */ mmio_setbits_32(FXOSC_CTRL(fxosc_base), FXOSC_CTRL_OSCON); /* Wait until the clock is stable. */ while ((mmio_read_32(FXOSC_STAT(fxosc_base)) & FXOSC_STAT_OSC_STAT) == U(0)) { } } static int enable_osc(const struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int *depth) { const struct s32cc_osc *osc = s32cc_obj2osc(module); int ret = 0; ret = update_stack_depth(depth); if (ret != 0) { return ret; } switch (osc->source) { case S32CC_FXOSC: enable_fxosc(drv); break; /* FIRC and SIRC oscillators are enabled by default */ case S32CC_FIRC: break; case S32CC_SIRC: break; default: ERROR("Invalid oscillator %d\n", osc->source); ret = -EINVAL; break; }; return ret; } static int get_pll_mfi_mfn(unsigned long pll_vco, unsigned long ref_freq, uint32_t *mfi, uint32_t *mfn) { unsigned long vco; unsigned long mfn64; /* FRAC-N mode */ *mfi = (uint32_t)(pll_vco / ref_freq); /* MFN formula : (double)(pll_vco % ref_freq) / ref_freq * 18432.0 */ mfn64 = pll_vco % ref_freq; mfn64 *= FP_PRECISION; mfn64 /= ref_freq; mfn64 *= 18432UL; mfn64 /= FP_PRECISION; if (mfn64 > UINT32_MAX) { return -EINVAL; } *mfn = (uint32_t)mfn64; vco = ((unsigned long)*mfn * FP_PRECISION) / 18432UL; vco += (unsigned long)*mfi * FP_PRECISION; vco *= ref_freq; vco /= FP_PRECISION; if (vco != pll_vco) { ERROR("Failed to find MFI and MFN settings for PLL freq %lu. Nearest freq = %lu\n", pll_vco, vco); return -EINVAL; } return 0; } static struct s32cc_clkmux *get_pll_mux(const struct s32cc_pll *pll) { const struct s32cc_clk_obj *source = pll->source; const struct s32cc_clk *clk; if (source == NULL) { ERROR("Failed to identify PLL's parent\n"); return NULL; } if (source->type != s32cc_clk_t) { ERROR("The parent of the PLL isn't a clock\n"); return NULL; } clk = s32cc_obj2clk(source); if (clk->module == NULL) { ERROR("The clock isn't connected to a module\n"); return NULL; } source = clk->module; if ((source->type != s32cc_clkmux_t) && (source->type != s32cc_shared_clkmux_t)) { ERROR("The parent of the PLL isn't a MUX\n"); return NULL; } return s32cc_obj2clkmux(source); } static void disable_odiv(uintptr_t pll_addr, uint32_t div_index) { mmio_clrbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE); } static void enable_odiv(uintptr_t pll_addr, uint32_t div_index) { mmio_setbits_32(PLLDIG_PLLODIV(pll_addr, div_index), PLLDIG_PLLODIV_DE); } static void disable_odivs(uintptr_t pll_addr, uint32_t ndivs) { uint32_t i; for (i = 0; i < ndivs; i++) { disable_odiv(pll_addr, i); } } static void enable_pll_hw(uintptr_t pll_addr) { /* Enable the PLL. */ mmio_write_32(PLLDIG_PLLCR(pll_addr), 0x0); /* Poll until PLL acquires lock. */ while ((mmio_read_32(PLLDIG_PLLSR(pll_addr)) & PLLDIG_PLLSR_LOCK) == 0U) { } } static void disable_pll_hw(uintptr_t pll_addr) { mmio_write_32(PLLDIG_PLLCR(pll_addr), PLLDIG_PLLCR_PLLPD); } static int program_pll(const struct s32cc_pll *pll, uintptr_t pll_addr, const struct s32cc_clk_drv *drv, uint32_t sclk_id, unsigned long sclk_freq) { uint32_t rdiv = 1, mfi, mfn; int ret; ret = get_pll_mfi_mfn(pll->vco_freq, sclk_freq, &mfi, &mfn); if (ret != 0) { return -EINVAL; } /* Disable ODIVs*/ disable_odivs(pll_addr, pll->ndividers); /* Disable PLL */ disable_pll_hw(pll_addr); /* Program PLLCLKMUX */ mmio_write_32(PLLDIG_PLLCLKMUX(pll_addr), sclk_id); /* Program VCO */ mmio_clrsetbits_32(PLLDIG_PLLDV(pll_addr), PLLDIG_PLLDV_RDIV_MASK | PLLDIG_PLLDV_MFI_MASK, PLLDIG_PLLDV_RDIV_SET(rdiv) | PLLDIG_PLLDV_MFI(mfi)); mmio_write_32(PLLDIG_PLLFD(pll_addr), PLLDIG_PLLFD_MFN_SET(mfn) | PLLDIG_PLLFD_SMDEN); enable_pll_hw(pll_addr); return ret; } static int enable_pll(const struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int *depth) { const struct s32cc_pll *pll = s32cc_obj2pll(module); const struct s32cc_clkmux *mux; uintptr_t pll_addr = UL(0x0); unsigned long sclk_freq; uint32_t sclk_id; int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } mux = get_pll_mux(pll); if (mux == NULL) { return -EINVAL; } if (pll->instance != mux->module) { ERROR("MUX type is not in sync with PLL ID\n"); return -EINVAL; } ret = get_base_addr(pll->instance, drv, &pll_addr); if (ret != 0) { ERROR("Failed to detect PLL instance\n"); return ret; } switch (mux->source_id) { case S32CC_CLK_FIRC: sclk_freq = 48U * MHZ; sclk_id = 0; break; case S32CC_CLK_FXOSC: sclk_freq = 40U * MHZ; sclk_id = 1; break; default: ERROR("Invalid source selection for PLL 0x%lx\n", pll_addr); return -EINVAL; }; return program_pll(pll, pll_addr, drv, sclk_id, sclk_freq); } static inline struct s32cc_pll *get_div_pll(const struct s32cc_pll_out_div *pdiv) { const struct s32cc_clk_obj *parent; parent = pdiv->parent; if (parent == NULL) { ERROR("Failed to identify PLL divider's parent\n"); return NULL; } if (parent->type != s32cc_pll_t) { ERROR("The parent of the divider is not a PLL instance\n"); return NULL; } return s32cc_obj2pll(parent); } static void config_pll_out_div(uintptr_t pll_addr, uint32_t div_index, uint32_t dc) { uint32_t pllodiv; uint32_t pdiv; pllodiv = mmio_read_32(PLLDIG_PLLODIV(pll_addr, div_index)); pdiv = PLLDIG_PLLODIV_DIV(pllodiv); if (((pdiv + 1U) == dc) && ((pllodiv & PLLDIG_PLLODIV_DE) != 0U)) { return; } if ((pllodiv & PLLDIG_PLLODIV_DE) != 0U) { disable_odiv(pll_addr, div_index); } pllodiv = PLLDIG_PLLODIV_DIV_SET(dc - 1U); mmio_write_32(PLLDIG_PLLODIV(pll_addr, div_index), pllodiv); enable_odiv(pll_addr, div_index); } static int enable_pll_div(const struct s32cc_clk_obj *module, const struct s32cc_clk_drv *drv, unsigned int *depth) { const struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); uintptr_t pll_addr = 0x0ULL; const struct s32cc_pll *pll; uint32_t dc; int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } pll = get_div_pll(pdiv); if (pll == NULL) { ERROR("The parent of the PLL DIV is invalid\n"); return 0; } ret = get_base_addr(pll->instance, drv, &pll_addr); if (ret != 0) { ERROR("Failed to detect PLL instance\n"); return -EINVAL; } dc = (uint32_t)(pll->vco_freq / pdiv->freq); config_pll_out_div(pll_addr, pdiv->index, dc); return 0; } static int enable_module(const struct s32cc_clk_obj *module, unsigned int *depth) { const struct s32cc_clk_drv *drv = get_drv(); int ret = 0; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (drv == NULL) { return -EINVAL; } switch (module->type) { case s32cc_osc_t: ret = enable_osc(module, drv, depth); break; case s32cc_clk_t: ret = enable_clk_module(module, drv, depth); break; case s32cc_pll_t: ret = enable_pll(module, drv, depth); break; case s32cc_pll_out_div_t: ret = enable_pll_div(module, drv, depth); break; case s32cc_clkmux_t: ret = -ENOTSUP; break; case s32cc_shared_clkmux_t: ret = -ENOTSUP; break; case s32cc_fixed_div_t: ret = -ENOTSUP; break; default: ret = -EINVAL; break; } return ret; } static int s32cc_clk_enable(unsigned long id) { unsigned int depth = MAX_STACK_DEPTH; const struct s32cc_clk *clk; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } return enable_module(&clk->desc, &depth); } static void s32cc_clk_disable(unsigned long id) { } static bool s32cc_clk_is_enabled(unsigned long id) { return false; } static unsigned long s32cc_clk_get_rate(unsigned long id) { return 0; } static int set_module_rate(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth); static int set_osc_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_osc *osc = s32cc_obj2osc(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if ((osc->freq != 0UL) && (rate != osc->freq)) { ERROR("Already initialized oscillator. freq = %lu\n", osc->freq); return -EINVAL; } osc->freq = rate; *orate = osc->freq; return 0; } static int set_clk_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { const struct s32cc_clk *clk = s32cc_obj2clk(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if ((clk->min_freq != 0UL) && (clk->max_freq != 0UL) && ((rate < clk->min_freq) || (rate > clk->max_freq))) { ERROR("%lu frequency is out of the allowed range: [%lu:%lu]\n", rate, clk->min_freq, clk->max_freq); return -EINVAL; } if (clk->module != NULL) { return set_module_rate(clk->module, rate, orate, depth); } if (clk->pclock != NULL) { return set_clk_freq(&clk->pclock->desc, rate, orate, depth); } return -EINVAL; } static int set_pll_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_pll *pll = s32cc_obj2pll(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if ((pll->vco_freq != 0UL) && (pll->vco_freq != rate)) { ERROR("PLL frequency was already set\n"); return -EINVAL; } pll->vco_freq = rate; *orate = pll->vco_freq; return 0; } static int set_pll_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { struct s32cc_pll_out_div *pdiv = s32cc_obj2plldiv(module); const struct s32cc_pll *pll; unsigned long prate, dc; int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (pdiv->parent == NULL) { ERROR("Failed to identify PLL divider's parent\n"); return -EINVAL; } pll = s32cc_obj2pll(pdiv->parent); if (pll == NULL) { ERROR("The parent of the PLL DIV is invalid\n"); return -EINVAL; } prate = pll->vco_freq; /** * The PLL is not initialized yet, so let's take a risk * and accept the proposed rate. */ if (prate == 0UL) { pdiv->freq = rate; *orate = rate; return 0; } /* Decline in case the rate cannot fit PLL's requirements. */ dc = prate / rate; if ((prate / dc) != rate) { return -EINVAL; } pdiv->freq = rate; *orate = pdiv->freq; return 0; } static int set_fixed_div_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { const struct s32cc_fixed_div *fdiv = s32cc_obj2fixeddiv(module); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (fdiv->parent == NULL) { ERROR("The divider doesn't have a valid parent\b"); return -EINVAL; } ret = set_module_rate(fdiv->parent, rate * fdiv->rate_div, orate, depth); /* Update the output rate based on the parent's rate */ *orate /= fdiv->rate_div; return ret; } static int set_mux_freq(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { const struct s32cc_clkmux *mux = s32cc_obj2clkmux(module); const struct s32cc_clk *clk = s32cc_get_arch_clk(mux->source_id); int ret; ret = update_stack_depth(depth); if (ret != 0) { return ret; } if (clk == NULL) { ERROR("Mux (id:%" PRIu8 ") without a valid source (%lu)\n", mux->index, mux->source_id); return -EINVAL; } return set_module_rate(&clk->desc, rate, orate, depth); } static int set_module_rate(const struct s32cc_clk_obj *module, unsigned long rate, unsigned long *orate, unsigned int *depth) { int ret = 0; ret = update_stack_depth(depth); if (ret != 0) { return ret; } switch (module->type) { case s32cc_clk_t: ret = set_clk_freq(module, rate, orate, depth); break; case s32cc_osc_t: ret = set_osc_freq(module, rate, orate, depth); break; case s32cc_pll_t: ret = set_pll_freq(module, rate, orate, depth); break; case s32cc_pll_out_div_t: ret = set_pll_div_freq(module, rate, orate, depth); break; case s32cc_fixed_div_t: ret = set_fixed_div_freq(module, rate, orate, depth); break; case s32cc_clkmux_t: ret = set_mux_freq(module, rate, orate, depth); break; case s32cc_shared_clkmux_t: ret = set_mux_freq(module, rate, orate, depth); break; default: ret = -EINVAL; break; } return ret; } static int s32cc_clk_set_rate(unsigned long id, unsigned long rate, unsigned long *orate) { unsigned int depth = MAX_STACK_DEPTH; const struct s32cc_clk *clk; int ret; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } ret = set_module_rate(&clk->desc, rate, orate, &depth); if (ret != 0) { ERROR("Failed to set frequency (%lu MHz) for clock %lu\n", rate, id); } return ret; } static int s32cc_clk_get_parent(unsigned long id) { return -ENOTSUP; } static int s32cc_clk_set_parent(unsigned long id, unsigned long parent_id) { const struct s32cc_clk *parent; const struct s32cc_clk *clk; bool valid_source = false; struct s32cc_clkmux *mux; uint8_t i; clk = s32cc_get_arch_clk(id); if (clk == NULL) { return -EINVAL; } parent = s32cc_get_arch_clk(parent_id); if (parent == NULL) { return -EINVAL; } if (!is_s32cc_clk_mux(clk)) { ERROR("Clock %lu is not a mux\n", id); return -EINVAL; } mux = s32cc_clk2mux(clk); if (mux == NULL) { ERROR("Failed to cast clock %lu to clock mux\n", id); return -EINVAL; } for (i = 0; i < mux->nclks; i++) { if (mux->clkids[i] == parent_id) { valid_source = true; break; } } if (!valid_source) { ERROR("Clock %lu is not a valid clock for mux %lu\n", parent_id, id); return -EINVAL; } mux->source_id = parent_id; return 0; } void s32cc_clk_register_drv(void) { static const struct clk_ops s32cc_clk_ops = { .enable = s32cc_clk_enable, .disable = s32cc_clk_disable, .is_enabled = s32cc_clk_is_enabled, .get_rate = s32cc_clk_get_rate, .set_rate = s32cc_clk_set_rate, .get_parent = s32cc_clk_get_parent, .set_parent = s32cc_clk_set_parent, }; clk_register(&s32cc_clk_ops); }