/* * Copyright (c) 2023, Arm Limited. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include /* mbed TLS headers */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LIB_NAME "mbed TLS PSA" #if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \ CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC /* * CRYPTO_MD_MAX_SIZE value is as per current stronger algorithm available * so make sure that mbed TLS MD maximum size must be lesser than this. */ CASSERT(CRYPTO_MD_MAX_SIZE >= MBEDTLS_MD_MAX_SIZE, assert_mbedtls_md_size_overflow); #endif /* * CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \ * CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */ static inline psa_algorithm_t mbedtls_md_psa_alg_from_type( mbedtls_md_type_t md_type) { assert((md_type == MBEDTLS_MD_SHA256) || (md_type == MBEDTLS_MD_SHA384) || (md_type == MBEDTLS_MD_SHA512)); return PSA_ALG_CATEGORY_HASH | (psa_algorithm_t) (md_type + 0x5); } /* * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, * parameters ANY DEFINED BY algorithm OPTIONAL * } * * SubjectPublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * subjectPublicKey BIT STRING * } * * DigestInfo ::= SEQUENCE { * digestAlgorithm AlgorithmIdentifier, * digest OCTET STRING * } */ /* * We pretend using an external RNG (through MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG * mbedTLS config option) so we need to provide an implementation of * mbedtls_psa_external_get_random(). Provide a fake one, since we do not * actually have any external RNG and TF-A itself doesn't engage in * cryptographic operations that demands randomness. */ psa_status_t mbedtls_psa_external_get_random( mbedtls_psa_external_random_context_t *context, uint8_t *output, size_t output_size, size_t *output_length) { return PSA_ERROR_INSUFFICIENT_ENTROPY; } /* * Initialize the library and export the descriptor */ static void init(void) { /* Initialize mbed TLS */ mbedtls_init(); /* Initialise PSA mbedTLS */ psa_status_t status = psa_crypto_init(); if (status != PSA_SUCCESS) { ERROR("Failed to initialize %s crypto (%d).\n", LIB_NAME, status); panic(); } INFO("PSA crypto initialized successfully!\n"); } #if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \ CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC static void construct_psa_key_alg_and_type(mbedtls_pk_type_t pk_alg, mbedtls_md_type_t md_alg, psa_algorithm_t *psa_alg, psa_key_type_t *psa_key_type) { psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg); switch (pk_alg) { case MBEDTLS_PK_RSASSA_PSS: *psa_alg = PSA_ALG_RSA_PSS(psa_md_alg); *psa_key_type = PSA_KEY_TYPE_RSA_PUBLIC_KEY; break; default: *psa_alg = PSA_ALG_NONE; *psa_key_type = PSA_KEY_TYPE_NONE; break; } } /* * Verify a signature. * * Parameters are passed using the DER encoding format following the ASN.1 * structures detailed above. */ static int verify_signature(void *data_ptr, unsigned int data_len, void *sig_ptr, unsigned int sig_len, void *sig_alg, unsigned int sig_alg_len, void *pk_ptr, unsigned int pk_len) { mbedtls_asn1_buf sig_oid, sig_params; mbedtls_asn1_buf signature; mbedtls_md_type_t md_alg; mbedtls_pk_type_t pk_alg; int rc; void *sig_opts = NULL; unsigned char *p, *end; /* construct PSA key algo and type */ psa_status_t status = PSA_SUCCESS; psa_key_attributes_t psa_key_attr = PSA_KEY_ATTRIBUTES_INIT; psa_key_id_t psa_key_id = PSA_KEY_ID_NULL; psa_key_type_t psa_key_type; psa_algorithm_t psa_alg; /* Get pointers to signature OID and parameters */ p = (unsigned char *)sig_alg; end = (unsigned char *)(p + sig_alg_len); rc = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params); if (rc != 0) { return CRYPTO_ERR_SIGNATURE; } /* Get the actual signature algorithm (MD + PK) */ rc = mbedtls_x509_get_sig_alg(&sig_oid, &sig_params, &md_alg, &pk_alg, &sig_opts); if (rc != 0) { return CRYPTO_ERR_SIGNATURE; } /* Get the signature (bitstring) */ p = (unsigned char *)sig_ptr; end = (unsigned char *)(p + sig_len); signature.tag = *p; rc = mbedtls_asn1_get_bitstring_null(&p, end, &signature.len); if ((rc != 0) || ((size_t)(end - p) != signature.len)) { rc = CRYPTO_ERR_SIGNATURE; goto end2; } signature.p = p; /* Convert this pk_alg and md_alg to PSA key type and key algorithm */ construct_psa_key_alg_and_type(pk_alg, md_alg, &psa_alg, &psa_key_type); if ((psa_alg == PSA_ALG_NONE) || (psa_key_type == PSA_KEY_TYPE_NONE)) { rc = CRYPTO_ERR_SIGNATURE; goto end2; } /* filled-in key_attributes */ psa_set_key_algorithm(&psa_key_attr, psa_alg); psa_set_key_type(&psa_key_attr, psa_key_type); psa_set_key_usage_flags(&psa_key_attr, PSA_KEY_USAGE_VERIFY_MESSAGE); /* Get the key_id using import API */ status = psa_import_key(&psa_key_attr, pk_ptr, (size_t)pk_len, &psa_key_id); if (status != PSA_SUCCESS) { rc = CRYPTO_ERR_SIGNATURE; goto end2; } /* * Hash calculation and Signature verification of the given data payload * is wrapped under the psa_verify_message function. */ status = psa_verify_message(psa_key_id, psa_alg, data_ptr, data_len, signature.p, signature.len); if (status != PSA_SUCCESS) { rc = CRYPTO_ERR_SIGNATURE; goto end1; } /* Signature verification success */ rc = CRYPTO_SUCCESS; end1: /* * Destroy the key if it is created successfully */ psa_destroy_key(psa_key_id); end2: mbedtls_free(sig_opts); return rc; } /* * Match a hash * * Digest info is passed in DER format following the ASN.1 structure detailed * above. */ static int verify_hash(void *data_ptr, unsigned int data_len, void *digest_info_ptr, unsigned int digest_info_len) { mbedtls_asn1_buf hash_oid, params; mbedtls_md_type_t md_alg; unsigned char *p, *end, *hash; size_t len; int rc; psa_status_t status; psa_algorithm_t psa_md_alg; /* * Digest info should be an MBEDTLS_ASN1_SEQUENCE, but padding after * it is allowed. This is necessary to support multiple hash * algorithms. */ p = (unsigned char *)digest_info_ptr; end = p + digest_info_len; rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); if (rc != 0) { return CRYPTO_ERR_HASH; } end = p + len; /* Get the hash algorithm */ rc = mbedtls_asn1_get_alg(&p, end, &hash_oid, ¶ms); if (rc != 0) { return CRYPTO_ERR_HASH; } /* Hash should be octet string type and consume all bytes */ rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); if ((rc != 0) || ((size_t)(end - p) != len)) { return CRYPTO_ERR_HASH; } hash = p; rc = mbedtls_oid_get_md_alg(&hash_oid, &md_alg); if (rc != 0) { return CRYPTO_ERR_HASH; } /* convert the md_alg to psa_algo */ psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg); /* Length of hash must match the algorithm's size */ if (len != PSA_HASH_LENGTH(psa_md_alg)) { return CRYPTO_ERR_HASH; } /* * Calculate Hash and compare it against the retrieved hash from * the certificate (one shot API). */ status = psa_hash_compare(psa_md_alg, data_ptr, (size_t)data_len, (const uint8_t *)hash, len); if (status != PSA_SUCCESS) { return CRYPTO_ERR_HASH; } return CRYPTO_SUCCESS; } #endif /* * CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \ * CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */ #if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \ CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC /* * Map a generic crypto message digest algorithm to the corresponding macro used * by Mbed TLS. */ static inline mbedtls_md_type_t md_type(enum crypto_md_algo algo) { switch (algo) { case CRYPTO_MD_SHA512: return MBEDTLS_MD_SHA512; case CRYPTO_MD_SHA384: return MBEDTLS_MD_SHA384; case CRYPTO_MD_SHA256: return MBEDTLS_MD_SHA256; default: /* Invalid hash algorithm. */ return MBEDTLS_MD_NONE; } } /* * Calculate a hash * * output points to the computed hash */ static int calc_hash(enum crypto_md_algo md_algo, void *data_ptr, unsigned int data_len, unsigned char output[CRYPTO_MD_MAX_SIZE]) { size_t hash_length; psa_status_t status; psa_algorithm_t psa_md_alg; /* convert the md_alg to psa_algo */ psa_md_alg = mbedtls_md_psa_alg_from_type(md_type(md_algo)); /* * Calculate the hash of the data, it is safe to pass the * 'output' hash buffer pointer considering its size is always * bigger than or equal to MBEDTLS_MD_MAX_SIZE. */ status = psa_hash_compute(psa_md_alg, data_ptr, (size_t)data_len, (uint8_t *)output, CRYPTO_MD_MAX_SIZE, &hash_length); if (status != PSA_SUCCESS) { return CRYPTO_ERR_HASH; } return CRYPTO_SUCCESS; } #endif /* * CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \ * CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */ #if TF_MBEDTLS_USE_AES_GCM /* * Stack based buffer allocation for decryption operation. It could * be configured to balance stack usage vs execution speed. */ #define DEC_OP_BUF_SIZE 128 static int aes_gcm_decrypt(void *data_ptr, size_t len, const void *key, unsigned int key_len, const void *iv, unsigned int iv_len, const void *tag, unsigned int tag_len) { mbedtls_gcm_context ctx; mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES; unsigned char buf[DEC_OP_BUF_SIZE]; unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE]; unsigned char *pt = data_ptr; size_t dec_len; int diff, i, rc; size_t output_length __unused; mbedtls_gcm_init(&ctx); rc = mbedtls_gcm_setkey(&ctx, cipher, key, key_len * 8); if (rc != 0) { rc = CRYPTO_ERR_DECRYPTION; goto exit_gcm; } #if (MBEDTLS_VERSION_MAJOR < 3) rc = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT, iv, iv_len, NULL, 0); #else rc = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT, iv, iv_len); #endif if (rc != 0) { rc = CRYPTO_ERR_DECRYPTION; goto exit_gcm; } while (len > 0) { dec_len = MIN(sizeof(buf), len); #if (MBEDTLS_VERSION_MAJOR < 3) rc = mbedtls_gcm_update(&ctx, dec_len, pt, buf); #else rc = mbedtls_gcm_update(&ctx, pt, dec_len, buf, sizeof(buf), &output_length); #endif if (rc != 0) { rc = CRYPTO_ERR_DECRYPTION; goto exit_gcm; } memcpy(pt, buf, dec_len); pt += dec_len; len -= dec_len; } #if (MBEDTLS_VERSION_MAJOR < 3) rc = mbedtls_gcm_finish(&ctx, tag_buf, sizeof(tag_buf)); #else rc = mbedtls_gcm_finish(&ctx, NULL, 0, &output_length, tag_buf, sizeof(tag_buf)); #endif if (rc != 0) { rc = CRYPTO_ERR_DECRYPTION; goto exit_gcm; } /* Check tag in "constant-time" */ for (diff = 0, i = 0; i < tag_len; i++) diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i]; if (diff != 0) { rc = CRYPTO_ERR_DECRYPTION; goto exit_gcm; } /* GCM decryption success */ rc = CRYPTO_SUCCESS; exit_gcm: mbedtls_gcm_free(&ctx); return rc; } /* * Authenticated decryption of an image */ static int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr, size_t len, const void *key, unsigned int key_len, unsigned int key_flags, const void *iv, unsigned int iv_len, const void *tag, unsigned int tag_len) { int rc; assert((key_flags & ENC_KEY_IS_IDENTIFIER) == 0); switch (dec_algo) { case CRYPTO_GCM_DECRYPT: rc = aes_gcm_decrypt(data_ptr, len, key, key_len, iv, iv_len, tag, tag_len); if (rc != 0) return rc; break; default: return CRYPTO_ERR_DECRYPTION; } return CRYPTO_SUCCESS; } #endif /* TF_MBEDTLS_USE_AES_GCM */ /* * Register crypto library descriptor */ #if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC #if TF_MBEDTLS_USE_AES_GCM REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash, auth_decrypt, NULL); #else REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash, NULL, NULL); #endif #elif CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY #if TF_MBEDTLS_USE_AES_GCM REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL, auth_decrypt, NULL); #else REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL, NULL, NULL); #endif #elif CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY REGISTER_CRYPTO_LIB(LIB_NAME, init, NULL, NULL, calc_hash, NULL, NULL); #endif /* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */