#!/usr/bin/env python # SPDX-License-Identifier: BSD-2-Clause # # Copyright (c) 2015, Linaro Limited def get_args(): import argparse parser = argparse.ArgumentParser() parser.add_argument( '--prefix', required=True, help='Prefix for the public key exponent and modulus in c file') parser.add_argument( '--out', required=True, help='Name of c file for the public key') parser.add_argument('--key', required=True, help='Name of key file') return parser.parse_args() def main(): import array from Crypto.PublicKey import RSA from Crypto.Util.number import long_to_bytes args = get_args() with open(args.key, 'r') as f: key = RSA.importKey(f.read()) # Refuse public exponent with more than 32 bits. Otherwise the C # compiler may simply truncate the value and proceed. # This will lead to TAs seemingly having invalid signatures with a # possible security issue for any e = k*2^32 + 1 (for any integer k). if key.publickey().e > 0xffffffff: raise ValueError( 'Unsupported large public exponent detected. ' + 'OP-TEE handles only public exponents up to 2^32 - 1.') with open(args.out, 'w') as f: f.write("#include \n") f.write("#include \n\n") f.write("const uint32_t " + args.prefix + "_exponent = " + str(key.publickey().e) + ";\n\n") f.write("const uint8_t " + args.prefix + "_modulus[] = {\n") i = 0 for x in array.array("B", long_to_bytes(key.publickey().n)): f.write("0x" + '{0:02x}'.format(x) + ",") i = i + 1 if i % 8 == 0: f.write("\n") else: f.write(" ") f.write("};\n") f.write("const size_t " + args.prefix + "_modulus_size = sizeof(" + args.prefix + "_modulus);\n") if __name__ == "__main__": main()