/* * Copyright (c) 2014, STMicroelectronics International N.V. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Big Numbers, used by LTC, allocation size */ #define LTC_BIGNUMBERS_ALLOC_SIZE \ ((mpa_StaticVarSizeInU32(LTC_MAX_BITS_PER_VARIABLE)) * sizeof(uint32_t)) /* * Set the allocation bytes used for a big number. This is the first uint32_t * member of the array representing the big number * Equals the total allocation size * minus 4 for the 'alloc' member * minus 4 for the 'size' member */ #define SET_MPA_ALLOCSIZE(_x) \ ((uint32_t *)(_x))[0] = (LTC_BIGNUMBERS_ALLOC_SIZE - 8) /* Set an attribute on an object */ #define SET_ATTRIBUTE(_object, _props, _attr) \ (_object)->have_attrs |= \ (1 << (tee_svc_cryp_obj_find_type_attr_idx((_attr), (_props)))) /* Get an attribute on an object */ #define GET_ATTRIBUTE(_object, _props, _attr) \ ((_object)->have_attrs & \ (1 << (tee_svc_cryp_obj_find_type_attr_idx((_attr), (_props))))) #define TEE_USAGE_DEFAULT 0xffffffff #define TEE_ATTR_BIT_PROTECTED (1 << 28) typedef void (*tee_cryp_ctx_finalize_func_t) (void *ctx, uint32_t algo); struct tee_cryp_state { TAILQ_ENTRY(tee_cryp_state) link; uint32_t algo; uint32_t mode; uint32_t key1; uint32_t key2; size_t ctx_size; void *ctx; tee_cryp_ctx_finalize_func_t ctx_finalize; }; struct tee_cryp_obj_secret { uint32_t key_size; /* * Pseudo code visualize layout of structure * Next follows data, such as: * uint8_t data[key_size] * key_size must never exceed * (obj->data_size - sizeof(struct tee_cryp_obj_secret)). */ }; /* * Following set of structures contains the "plain" data used by LibTomCrypt * Translation to the real LTC types (that is only a collection of pointers) * is then straightforward */ struct ltc_bignumbers { uint8_t b[LTC_BIGNUMBERS_ALLOC_SIZE]; }; /* * RSA key pair. Contains the public and private keys. * rsa_key is the original type from LTC */ struct tee_ltc_rsa_key_pair { struct ltc_bignumbers e; /* the public exponent */ struct ltc_bignumbers d; /* The private exponent */ struct ltc_bignumbers N; /* The modulus */ /* Next are the CRT parameters, that are optional */ struct ltc_bignumbers p; /* The p factor of N */ struct ltc_bignumbers q; /* The q factor of N */ struct ltc_bignumbers qP; /* The 1/q mod p */ struct ltc_bignumbers dP; /* The d mod (p - 1) */ struct ltc_bignumbers dQ; /* The d mod (q - 1) */ }; /* * RSA public key. rsa_key is the original type from LTC, with type PK_PUBLIC */ struct tee_ltc_rsa_public_key { struct ltc_bignumbers e; /* the public exponent */ struct ltc_bignumbers N; /* The modulus */ }; /* * DSA key pair. dsa_key is the original type from LTC, with type PK_PRIVATE */ struct tee_ltc_dsa_key_pair { struct ltc_bignumbers g; /* Base generator */ struct ltc_bignumbers p; /* Prime modulus */ struct ltc_bignumbers q; /* Order of subgroup */ struct ltc_bignumbers y; /* Public key */ struct ltc_bignumbers x; /* Private key */ }; /* * DSA public key. dsa_key is the original type from LTC, with type PK_PUBLIC */ struct tee_ltc_dsa_public_key { struct ltc_bignumbers g; /* Base generator */ struct ltc_bignumbers p; /* Prime modulus */ struct ltc_bignumbers q; /* Order of subgroup */ struct ltc_bignumbers y; /* Public key */ }; /* * DH key pair. dsa_key is the original type from LTC, with type PK_PRIVATE */ struct tee_ltc_dh_key_pair { struct ltc_bignumbers g; /* Base generator */ struct ltc_bignumbers p; /* Prime modulus */ struct ltc_bignumbers x; /* Private key */ struct ltc_bignumbers y; /* Public key */ /* other parameters */ struct ltc_bignumbers q; /* Sub Prime */ uint32_t xbits; }; #define TEE_TYPE_ATTR_OPTIONAL 0x0 #define TEE_TYPE_ATTR_REQUIRED 0x1 #define TEE_TYPE_ATTR_OPTIONAL_GROUP 0x2 #define TEE_TYPE_ATTR_SIZE_INDICATOR 0x4 #define TEE_TYPE_ATTR_GEN_KEY_OPT 0x8 #define TEE_TYPE_ATTR_GEN_KEY_REQ 0x10 #define TEE_TYPE_CONV_FUNC_NONE 0 /* Handle storing of generic secret keys of varying lengths */ #define TEE_TYPE_CONV_FUNC_SECRET 1 /* Convert Array of bytes to/from Big Number from mpa (used by LTC). */ #define TEE_TYPE_CONV_FUNC_BIGINT 2 /* Convert to/from value attribute depending on direction */ #define TEE_TYPE_CONV_FUNC_VALUE 4 struct tee_cryp_obj_type_attrs { uint32_t attr_id; uint16_t flags; uint16_t conv_func; uint16_t raw_offs; uint16_t raw_size; }; #define RAW_DATA(_x, _y) \ .raw_offs = offsetof(_x, _y), .raw_size = TEE_MEMBER_SIZE(_x, _y) static const struct tee_cryp_obj_type_attrs tee_cryp_obj_secret_value_attrs[] = { { .attr_id = TEE_ATTR_SECRET_VALUE, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, .conv_func = TEE_TYPE_CONV_FUNC_SECRET, .raw_offs = 0, .raw_size = 0 }, }; static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_pub_key_attrs[] = { { .attr_id = TEE_ATTR_RSA_MODULUS, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_public_key, N) }, { .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_public_key, e) }, }; static const struct tee_cryp_obj_type_attrs tee_cryp_obj_rsa_keypair_attrs[] = { { .attr_id = TEE_ATTR_RSA_MODULUS, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, N) }, { .attr_id = TEE_ATTR_RSA_PUBLIC_EXPONENT, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, e) }, { .attr_id = TEE_ATTR_RSA_PRIVATE_EXPONENT, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, d) }, { .attr_id = TEE_ATTR_RSA_PRIME1, .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, p) }, { .attr_id = TEE_ATTR_RSA_PRIME2, .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, q) }, { .attr_id = TEE_ATTR_RSA_EXPONENT1, .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, dP) }, { .attr_id = TEE_ATTR_RSA_EXPONENT2, .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, dQ) }, { .attr_id = TEE_ATTR_RSA_COEFFICIENT, .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_rsa_key_pair, qP) }, }; static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_pub_key_attrs[] = { { .attr_id = TEE_ATTR_DSA_PRIME, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_public_key, p) }, { .attr_id = TEE_ATTR_DSA_SUBPRIME, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_public_key, q) }, { .attr_id = TEE_ATTR_DSA_BASE, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_public_key, g) }, { .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_public_key, y) }, }; static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dsa_keypair_attrs[] = { { .attr_id = TEE_ATTR_DSA_PRIME, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_key_pair, p) }, { .attr_id = TEE_ATTR_DSA_SUBPRIME, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | TEE_TYPE_ATTR_GEN_KEY_REQ, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_key_pair, q) }, { .attr_id = TEE_ATTR_DSA_BASE, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_key_pair, g) }, { .attr_id = TEE_ATTR_DSA_PRIVATE_VALUE, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_key_pair, x) }, { .attr_id = TEE_ATTR_DSA_PUBLIC_VALUE, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dsa_key_pair, y) }, }; static const struct tee_cryp_obj_type_attrs tee_cryp_obj_dh_keypair_attrs[] = { { .attr_id = TEE_ATTR_DH_PRIME, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_SIZE_INDICATOR | TEE_TYPE_ATTR_GEN_KEY_REQ, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dh_key_pair, p) }, { .attr_id = TEE_ATTR_DH_BASE, .flags = TEE_TYPE_ATTR_REQUIRED | TEE_TYPE_ATTR_GEN_KEY_REQ, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dh_key_pair, g) }, { .attr_id = TEE_ATTR_DH_PUBLIC_VALUE, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dh_key_pair, y) }, { .attr_id = TEE_ATTR_DH_PRIVATE_VALUE, .flags = TEE_TYPE_ATTR_REQUIRED, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dh_key_pair, x) }, { .attr_id = TEE_ATTR_DH_SUBPRIME, .flags = TEE_TYPE_ATTR_OPTIONAL_GROUP | TEE_TYPE_ATTR_GEN_KEY_OPT, .conv_func = TEE_TYPE_CONV_FUNC_BIGINT, RAW_DATA(struct tee_ltc_dh_key_pair, q) }, { .attr_id = TEE_ATTR_DH_X_BITS, .flags = TEE_TYPE_ATTR_GEN_KEY_OPT, .conv_func = TEE_TYPE_CONV_FUNC_VALUE, RAW_DATA(struct tee_ltc_dh_key_pair, xbits) }, }; struct tee_cryp_obj_type_props { TEE_ObjectType obj_type; uint16_t min_size; /* may not be smaller than this */ uint16_t max_size; /* may not be larger than this */ uint16_t alloc_size; /* this many bytes are allocated to hold data */ uint8_t quanta; /* may only be an multiple of this */ uint8_t num_type_attrs; const struct tee_cryp_obj_type_attrs *type_attrs; }; #define PROP(obj_type, quanta, min_size, max_size, alloc_size, type_attrs) \ { (obj_type), (min_size), (max_size), (alloc_size), (quanta), \ TEE_ARRAY_SIZE(type_attrs), (type_attrs) } static const struct tee_cryp_obj_type_props tee_cryp_obj_props[] = { PROP(TEE_TYPE_AES, 64, 128, 256, /* valid sizes 128, 192, 256 */ 256 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_DES, 56, 56, 56, /* * Valid size 56 without parity, note that we still allocate * for 64 bits since the key is supplied with parity. */ 64 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_DES3, 56, 112, 168, /* * Valid sizes 112, 168 without parity, note that we still * allocate for with space for the parity since the key is * supplied with parity. */ 192 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_HMAC_MD5, 8, 64, 512, 512 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_HMAC_SHA1, 8, 80, 512, 512 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_HMAC_SHA224, 8, 112, 512, 512 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_HMAC_SHA256, 8, 192, 1024, 1024 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_HMAC_SHA384, 8, 256, 1024, 1024 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_HMAC_SHA512, 8, 256, 1024, 1024 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_GENERIC_SECRET, 8, 0, 4096, 4096 / 8 + sizeof(struct tee_cryp_obj_secret), tee_cryp_obj_secret_value_attrs), PROP(TEE_TYPE_RSA_PUBLIC_KEY, 1, 256, 2048, sizeof(struct tee_ltc_rsa_public_key), tee_cryp_obj_rsa_pub_key_attrs), PROP(TEE_TYPE_RSA_KEYPAIR, 1, 256, 2048, sizeof(struct tee_ltc_rsa_key_pair), tee_cryp_obj_rsa_keypair_attrs), PROP(TEE_TYPE_DSA_PUBLIC_KEY, 64, 512, 1024, sizeof(struct tee_ltc_dsa_public_key), tee_cryp_obj_dsa_pub_key_attrs), PROP(TEE_TYPE_DSA_KEYPAIR, 64, 512, 1024, sizeof(struct tee_ltc_dsa_key_pair), tee_cryp_obj_dsa_keypair_attrs), PROP(TEE_TYPE_DH_KEYPAIR, 1, 256, 2048, sizeof(struct tee_ltc_dh_key_pair), tee_cryp_obj_dh_keypair_attrs), }; /* * Populate the pointers in ltc_key, given struct tee_ltc_rsa_key_pair */ static void tee_populate_rsa_key_pair( rsa_key *ltc_key, struct tee_ltc_rsa_key_pair *tee_key, bool crt) { ltc_key->type = PK_PRIVATE; ltc_key->e = (char *)&tee_key->e; ltc_key->d = (char *)&tee_key->d; ltc_key->N = (char *)&tee_key->N; if (crt) { ltc_key->p = (char *)&tee_key->p; ltc_key->q = (char *)&tee_key->q; ltc_key->qP = (char *)&tee_key->qP; ltc_key->dP = (char *)&tee_key->dP; ltc_key->dQ = (char *)&tee_key->dQ; } else { ltc_key->p = 0; ltc_key->q = 0; ltc_key->qP = 0; ltc_key->dP = 0; ltc_key->dQ = 0; } SET_MPA_ALLOCSIZE(&tee_key->e); SET_MPA_ALLOCSIZE(&tee_key->d); SET_MPA_ALLOCSIZE(&tee_key->N); SET_MPA_ALLOCSIZE(&tee_key->p); SET_MPA_ALLOCSIZE(&tee_key->q); SET_MPA_ALLOCSIZE(&tee_key->qP); SET_MPA_ALLOCSIZE(&tee_key->dP); SET_MPA_ALLOCSIZE(&tee_key->dQ); } static void tee_populate_rsa_public_key( rsa_key *ltc_key, struct tee_ltc_rsa_public_key *tee_key) { ltc_key->type = PK_PUBLIC; ltc_key->e = (char *)&tee_key->e; ltc_key->N = (char *)&tee_key->N; SET_MPA_ALLOCSIZE(&tee_key->e); SET_MPA_ALLOCSIZE(&tee_key->N); } static void tee_populate_dsa_key_pair( dsa_key *ltc_key, struct tee_ltc_dsa_key_pair *tee_key) { ltc_key->type = PK_PRIVATE; ltc_key->g = (char *)&tee_key->g; ltc_key->p = (char *)&tee_key->p; ltc_key->q = (char *)&tee_key->q; ltc_key->y = (char *)&tee_key->y; ltc_key->x = (char *)&tee_key->x; SET_MPA_ALLOCSIZE(&tee_key->g); SET_MPA_ALLOCSIZE(&tee_key->p); SET_MPA_ALLOCSIZE(&tee_key->q); SET_MPA_ALLOCSIZE(&tee_key->y); SET_MPA_ALLOCSIZE(&tee_key->x); ltc_key->qord = mp_unsigned_bin_size(&tee_key->g); } static void tee_populate_dsa_public_key( dsa_key *ltc_key, struct tee_ltc_dsa_public_key *tee_key) { ltc_key->type = PK_PUBLIC; ltc_key->g = (char *)&tee_key->g; ltc_key->p = (char *)&tee_key->p; ltc_key->q = (char *)&tee_key->q; ltc_key->y = (char *)&tee_key->y; SET_MPA_ALLOCSIZE(&tee_key->g); SET_MPA_ALLOCSIZE(&tee_key->p); SET_MPA_ALLOCSIZE(&tee_key->q); SET_MPA_ALLOCSIZE(&tee_key->y); ltc_key->qord = mp_unsigned_bin_size(&tee_key->g); } static void tee_populate_dh_key_pair( dh_key *ltc_key, struct tee_ltc_dh_key_pair *tee_key) { ltc_key->type = PK_PRIVATE; ltc_key->g = (char *)&tee_key->g; ltc_key->p = (char *)&tee_key->p; ltc_key->x = (char *)&tee_key->x; ltc_key->y = (char *)&tee_key->y; SET_MPA_ALLOCSIZE(&tee_key->g); SET_MPA_ALLOCSIZE(&tee_key->p); SET_MPA_ALLOCSIZE(&tee_key->x); SET_MPA_ALLOCSIZE(&tee_key->y); /* * q and xbits are not part of the dh key. They are only used to * generate a key pair * Alloc size must be set on 'q' anyway */ SET_MPA_ALLOCSIZE(&tee_key->q); } TEE_Result tee_svc_cryp_obj_get_info(uint32_t obj, TEE_ObjectInfo *info) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *o; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return res; return tee_svc_copy_to_user(sess, info, &o->info, sizeof(o->info)); } TEE_Result tee_svc_cryp_obj_restrict_usage(uint32_t obj, uint32_t usage) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *o; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return res; o->info.objectUsage &= usage; return TEE_SUCCESS; } static TEE_Result tee_svc_cryp_obj_get_raw_data( struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, size_t idx, void **data, size_t *size) { const struct tee_cryp_obj_type_attrs *type_attr = type_props->type_attrs + idx; if (type_attr->raw_size == 0) { struct tee_cryp_obj_secret *key = (struct tee_cryp_obj_secret *)o->data; /* Handle generic secret */ if (type_attr->raw_offs != 0) return TEE_ERROR_BAD_STATE; *size = key->key_size; } else { *size = type_attr->raw_size; } *data = (uint8_t *)o->data + type_attr->raw_offs; return TEE_SUCCESS; } static int tee_svc_cryp_obj_find_type_attr_idx( uint32_t attr_id, const struct tee_cryp_obj_type_props *type_props) { size_t n; for (n = 0; n < type_props->num_type_attrs; n++) { if (attr_id == type_props->type_attrs[n].attr_id) return n; } return -1; } static const struct tee_cryp_obj_type_props *tee_svc_find_type_props( TEE_ObjectType obj_type) { size_t n; for (n = 0; n < TEE_ARRAY_SIZE(tee_cryp_obj_props); n++) { if (tee_cryp_obj_props[n].obj_type == obj_type) return tee_cryp_obj_props + n; } return NULL; } static TEE_Result tee_svc_cryp_obj_copy_out(struct tee_ta_session *sess, void *buffer, size_t *size, uint16_t conv_func, void *raw_data, size_t raw_data_size) { TEE_Result res; size_t s; res = tee_svc_copy_from_user(sess, &s, size, sizeof(size_t)); if (res != TEE_SUCCESS) return res; switch (conv_func) { case TEE_TYPE_CONV_FUNC_NONE: res = tee_svc_copy_to_user(sess, size, &raw_data_size, sizeof(size_t)); if (res != TEE_SUCCESS) return res; if (s < raw_data_size) return TEE_ERROR_SHORT_BUFFER; return tee_svc_copy_to_user(sess, buffer, raw_data, raw_data_size); case TEE_TYPE_CONV_FUNC_SECRET: { struct tee_cryp_obj_secret *obj; size_t key_size; if (!TEE_ALIGNMENT_IS_OK (raw_data, struct tee_cryp_obj_secret)) return TEE_ERROR_BAD_STATE; obj = (struct tee_cryp_obj_secret *)(void *)raw_data; key_size = obj->key_size; res = tee_svc_copy_to_user(sess, size, &key_size, sizeof(size_t)); if (res != TEE_SUCCESS) return res; if (s < key_size) return TEE_ERROR_SHORT_BUFFER; return tee_svc_copy_to_user(sess, buffer, obj + 1, key_size); } case TEE_TYPE_CONV_FUNC_BIGINT: { size_t req_size; SET_MPA_ALLOCSIZE(raw_data); req_size = mp_unsigned_bin_size(raw_data); if (req_size == 0) return TEE_SUCCESS; res = tee_svc_copy_to_user( sess, size, &req_size, sizeof(size_t)); if (res != TEE_SUCCESS) return res; /* Check that the converted result fits the user buffer. */ if (s < req_size) return TEE_ERROR_SHORT_BUFFER; /* Check we can access data using supplied user mode pointer */ res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)buffer, req_size); if (res != TEE_SUCCESS) return res; /* * write the mpa number (stored in raw data) into an array of * bytes (stored in buffer) */ mp_to_unsigned_bin(raw_data, buffer); return TEE_SUCCESS; } case TEE_TYPE_CONV_FUNC_VALUE: { uint32_t value[2] = { 0, 0 }; size_t n = sizeof(value); /* * a value attribute consists of two uint32 but have not * seen anything that actaully would need that so this * fills in one with data and the other with zero */ TEE_ASSERT(raw_data_size == sizeof(uint32_t)); value[0] = *(uint32_t *)raw_data; res = tee_svc_copy_to_user(sess, size, &n, sizeof(size_t)); if (res != TEE_SUCCESS) return res; /* Check that the converted result fits the user buf */ if (s < n) return TEE_ERROR_SHORT_BUFFER; return tee_svc_copy_to_user(sess, buffer, &value, n); } default: return TEE_ERROR_BAD_STATE; } } TEE_Result tee_svc_cryp_obj_get_attr(uint32_t obj, uint32_t attr_id, void *buffer, size_t *size) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *o; const struct tee_cryp_obj_type_props *type_props; int idx; size_t raw_size; void *raw_data; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return TEE_ERROR_ITEM_NOT_FOUND; /* Check that the object is initialized */ if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_ITEM_NOT_FOUND; /* Check that getting the attribute is allowed */ if ((attr_id & TEE_ATTR_BIT_PROTECTED) == 0 && (o->info.objectUsage & TEE_USAGE_EXTRACTABLE) == 0) return TEE_ERROR_ACCESS_DENIED; type_props = tee_svc_find_type_props(o->info.objectType); if (type_props == NULL) { /* Unknown object type, "can't happen" */ return TEE_ERROR_BAD_STATE; } idx = tee_svc_cryp_obj_find_type_attr_idx(attr_id, type_props); if ((idx < 0) || ((o->have_attrs & (1 << idx)) == 0)) return TEE_ERROR_ITEM_NOT_FOUND; res = tee_svc_cryp_obj_get_raw_data(o, type_props, idx, &raw_data, &raw_size); if (res != TEE_SUCCESS) return res; return tee_svc_cryp_obj_copy_out(sess, buffer, size, type_props->type_attrs[idx].conv_func, raw_data, raw_size); } TEE_Result tee_svc_cryp_obj_alloc(TEE_ObjectType obj_type, uint32_t max_obj_size, uint32_t *obj) { TEE_Result res; struct tee_ta_session *sess; const struct tee_cryp_obj_type_props *type_props; struct tee_obj *o; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; /* * Verify that maxObjectSize is supported and find out how * much should be allocated. */ /* Find description of object */ type_props = tee_svc_find_type_props(obj_type); if (type_props == NULL) return TEE_ERROR_NOT_SUPPORTED; /* Check that maxObjectSize follows restrictions */ if (max_obj_size % type_props->quanta != 0) return TEE_ERROR_NOT_SUPPORTED; if (max_obj_size < type_props->min_size) return TEE_ERROR_NOT_SUPPORTED; if (max_obj_size > type_props->max_size) return TEE_ERROR_NOT_SUPPORTED; o = calloc(1, sizeof(*o)); if (o == NULL) return TEE_ERROR_OUT_OF_MEMORY; o->data = calloc(1, type_props->alloc_size); if (o->data == NULL) { free(o); return TEE_ERROR_OUT_OF_MEMORY; } o->data_size = type_props->alloc_size; o->info.objectType = obj_type; o->info.maxObjectSize = max_obj_size; o->info.objectUsage = TEE_USAGE_DEFAULT; o->info.handleFlags = 0; o->fd = -1; tee_obj_add(sess->ctx, o); res = tee_svc_copy_to_user(sess, obj, &o, sizeof(o)); if (res != TEE_SUCCESS) tee_obj_close(sess->ctx, o); return res; } TEE_Result tee_svc_cryp_obj_close(uint32_t obj) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *o; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return res; /* * If it's busy it's used by an operation, a client should never have * this handle. */ if (o->busy) return TEE_ERROR_ITEM_NOT_FOUND; tee_obj_close(sess->ctx, o); return TEE_SUCCESS; } TEE_Result tee_svc_cryp_obj_reset(uint32_t obj) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *o; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return res; if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) == 0) { memset(o->data, 0, o->data_size); o->info.objectSize = 0; o->info.objectUsage = TEE_USAGE_DEFAULT; } else { return TEE_ERROR_BAD_PARAMETERS; } return TEE_SUCCESS; } static TEE_Result tee_svc_cryp_obj_store_attr_raw(struct tee_ta_session *sess, uint16_t conv_func, const TEE_Attribute *attr, void *data, size_t data_size) { TEE_Result res; if (attr == NULL) return TEE_ERROR_BAD_STATE; if (conv_func != TEE_TYPE_CONV_FUNC_VALUE && attr->content.ref.buffer == NULL) return TEE_ERROR_BAD_PARAMETERS; switch (conv_func) { case TEE_TYPE_CONV_FUNC_NONE: /* No conversion data size has to match exactly */ if (attr->content.ref.length != data_size) return TEE_ERROR_BAD_PARAMETERS; return tee_svc_copy_from_user(sess, data, attr->content.ref.buffer, data_size); case TEE_TYPE_CONV_FUNC_SECRET: { struct tee_cryp_obj_secret *obj; if (!TEE_ALIGNMENT_IS_OK (data, struct tee_cryp_obj_secret)) return TEE_ERROR_BAD_STATE; obj = (struct tee_cryp_obj_secret *)(void *)data; /* Data size has to fit in allocated buffer */ if (attr->content.ref.length > (data_size - sizeof(struct tee_cryp_obj_secret))) return TEE_ERROR_BAD_PARAMETERS; res = tee_svc_copy_from_user(sess, obj + 1, attr->content.ref.buffer, attr->content.ref.length); if (res == TEE_SUCCESS) obj->key_size = attr->content.ref.length; return res; } case TEE_TYPE_CONV_FUNC_BIGINT: /* * Check that the converted result fits in the * allocated buffer */ if (attr->content.ref.length > (data_size + sizeof(uint32_t) * MPA_NUMBASE_METADATA_SIZE_IN_U32)) return TEE_ERROR_BAD_PARAMETERS; /* Check data can be accessed */ res = tee_mmu_check_access_rights( sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)attr->content.ref.buffer, attr->content.ref.length); if (res != TEE_SUCCESS) return res; /* * read the array of bytes (stored in attr->content.ref.buffer) * and save it as a mpa number (stored in data) */ SET_MPA_ALLOCSIZE(data); mp_read_unsigned_bin( data, attr->content.ref.buffer, attr->content.ref.length); return TEE_SUCCESS; case TEE_TYPE_CONV_FUNC_VALUE: /* * a value attribute consists of two uint32 but have not * seen anything that actaully would need that so this fills * the data from the first value and discards the second value */ *(uint32_t *)data = attr->content.value.a; return TEE_SUCCESS; default: return TEE_ERROR_BAD_STATE; } } enum attr_usage { ATTR_USAGE_POPULATE, ATTR_USAGE_GENERATE_KEY }; static TEE_Result tee_svc_cryp_check_attr( enum attr_usage usage, const struct tee_cryp_obj_type_props *type_props, TEE_Attribute *attrs, uint32_t attr_count) { uint32_t required_flag; uint32_t opt_flag; bool all_opt_needed; uint32_t req_attrs = 0; uint32_t opt_grp_attrs = 0; uint32_t attrs_found = 0; size_t n; if (usage == ATTR_USAGE_POPULATE) { required_flag = TEE_TYPE_ATTR_REQUIRED; opt_flag = TEE_TYPE_ATTR_OPTIONAL_GROUP; all_opt_needed = true; } else { required_flag = TEE_TYPE_ATTR_GEN_KEY_REQ; opt_flag = TEE_TYPE_ATTR_GEN_KEY_OPT; all_opt_needed = false; } /* * First find out which attributes are required and which belong to * the optional group */ for (n = 0; n < type_props->num_type_attrs; n++) { uint32_t bit = 1 << n; uint32_t flags = type_props->type_attrs[n].flags; if (flags & required_flag) req_attrs |= bit; else if (flags & opt_flag) opt_grp_attrs |= bit; } /* * Verify that all required attributes are in place and * that the same attribute isn't repeated. */ for (n = 0; n < attr_count; n++) { int idx = tee_svc_cryp_obj_find_type_attr_idx(attrs[n].attributeID, type_props); if (idx >= 0) { uint32_t bit = 1 << idx; if ((attrs_found & bit) != 0) return TEE_ERROR_ITEM_NOT_FOUND; attrs_found |= bit; } } /* Required attribute missing */ if ((attrs_found & req_attrs) != req_attrs) return TEE_ERROR_ITEM_NOT_FOUND; /* * If the flag says that "if one of the optional attributes are included * all of them has to be included" this must be checked. */ if (all_opt_needed && (attrs_found & opt_grp_attrs) != 0 && (attrs_found & opt_grp_attrs) != opt_grp_attrs) return TEE_ERROR_ITEM_NOT_FOUND; return TEE_SUCCESS; } static TEE_Result tee_svc_cryp_obj_populate_type( struct tee_ta_session *sess, struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, const TEE_Attribute *attrs, uint32_t attr_count) { TEE_Result res; uint32_t have_attrs = 0; size_t obj_size = 0; size_t n; for (n = 0; n < attr_count; n++) { size_t raw_size; void *raw_data; int idx = tee_svc_cryp_obj_find_type_attr_idx(attrs[n].attributeID, type_props); if (idx < 0) continue; have_attrs |= 1 << idx; res = tee_svc_cryp_obj_get_raw_data(o, type_props, idx, &raw_data, &raw_size); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_obj_store_attr_raw( sess, type_props->type_attrs[idx].conv_func, attrs + n, raw_data, raw_size); if (res != TEE_SUCCESS) return res; /* * First attr_idx signifies the attribute that gives the size * of the object */ if (type_props->type_attrs[idx].flags & TEE_TYPE_ATTR_SIZE_INDICATOR) { obj_size += attrs[n].content.ref.length * 8; } } /* * We have to do it like this because the parity bits aren't counted * when telling the size of the key in bits. */ if (o->info.objectType == TEE_TYPE_DES || o->info.objectType == TEE_TYPE_DES3) obj_size -= obj_size / 8; /* Exclude parity in size of key */ o->have_attrs = have_attrs; o->info.objectSize = obj_size; return TEE_SUCCESS; } TEE_Result tee_svc_cryp_obj_populate(uint32_t obj, TEE_Attribute *attrs, uint32_t attr_count) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *o; const struct tee_cryp_obj_type_props *type_props; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return res; /* Must be a transient object */ if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) return TEE_ERROR_BAD_PARAMETERS; /* Must not be initialized already */ if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) return TEE_ERROR_BAD_PARAMETERS; type_props = tee_svc_find_type_props(o->info.objectType); if (type_props == NULL) return TEE_ERROR_NOT_IMPLEMENTED; res = tee_svc_cryp_check_attr(ATTR_USAGE_POPULATE, type_props, attrs, attr_count); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_obj_populate_type(sess, o, type_props, attrs, attr_count); if (res == TEE_SUCCESS) o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; return res; } TEE_Result tee_svc_cryp_obj_copy(uint32_t dst, uint32_t src) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *dst_o; struct tee_obj *src_o; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, dst, &dst_o); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, src, &src_o); if (res != TEE_SUCCESS) return res; if ((src_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_BAD_PARAMETERS; if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) return TEE_ERROR_BAD_PARAMETERS; if ((dst_o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) return TEE_ERROR_BAD_PARAMETERS; if (dst_o->info.objectType == src_o->info.objectType) { /* Generic case */ if (dst_o->data_size != src_o->data_size) return TEE_ERROR_BAD_STATE; dst_o->have_attrs = src_o->have_attrs; memcpy(dst_o->data, src_o->data, src_o->data_size); } else if (dst_o->info.objectType == TEE_TYPE_RSA_PUBLIC_KEY && src_o->info.objectType == TEE_TYPE_RSA_KEYPAIR) { /* Extract public key from RSA key pair */ struct tee_ltc_rsa_key_pair *key_pair = src_o->data; struct tee_ltc_rsa_public_key *pub_key = dst_o->data; size_t n; memcpy(&pub_key->e, &key_pair->e, sizeof(pub_key->e)); memcpy(&pub_key->N, &key_pair->N, sizeof(pub_key->N)); /* Set the attributes */ dst_o->have_attrs = 0; for (n = 0; n < TEE_ARRAY_SIZE(tee_cryp_obj_rsa_pub_key_attrs); n++) dst_o->have_attrs |= 1 << n; } else if (dst_o->info.objectType == TEE_TYPE_DSA_PUBLIC_KEY && src_o->info.objectType == TEE_TYPE_DSA_KEYPAIR) { /* Extract public key from DSA key pair */ struct tee_ltc_dsa_key_pair *key_pair = src_o->data; struct tee_ltc_dsa_public_key *pub_key = dst_o->data; size_t n; memcpy(&pub_key->g, &key_pair->g, sizeof(pub_key->g)); memcpy(&pub_key->p, &key_pair->p, sizeof(pub_key->p)); memcpy(&pub_key->q, &key_pair->q, sizeof(pub_key->q)); memcpy(&pub_key->y, &key_pair->y, sizeof(pub_key->y)); /* Set the attributes */ dst_o->have_attrs = 0; for (n = 0; n < TEE_ARRAY_SIZE(tee_cryp_obj_dsa_pub_key_attrs); n++) dst_o->have_attrs |= 1 << n; } else return TEE_ERROR_BAD_PARAMETERS; dst_o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; dst_o->info.objectSize = src_o->info.objectSize; dst_o->info.objectUsage = src_o->info.objectUsage; return TEE_SUCCESS; } static TEE_Result tee_svc_obj_generate_key_rsa( struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, uint32_t key_size) { TEE_Result res; struct tee_ltc_rsa_key_pair *tee_rsa_key; rsa_key ltc_rsa_key; TEE_ASSERT(sizeof(struct tee_ltc_rsa_key_pair) == o->data_size); tee_rsa_key = (struct tee_ltc_rsa_key_pair *)o->data; tee_populate_rsa_key_pair(<c_rsa_key, tee_rsa_key, true); res = tee_acipher_gen_rsa_keys(<c_rsa_key, key_size); if (res != TEE_SUCCESS) return res; /* Set bits for all known attributes for this object type */ o->have_attrs = (1 << type_props->num_type_attrs) - 1; return TEE_SUCCESS; } static TEE_Result tee_svc_obj_generate_key_dsa( struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, uint32_t key_size) { TEE_Result res; struct tee_ltc_dsa_key_pair *tee_dsa_key; dsa_key ltc_dsa_key; TEE_ASSERT(sizeof(struct tee_ltc_dsa_key_pair) == o->data_size); tee_dsa_key = (struct tee_ltc_dsa_key_pair *)o->data; tee_populate_dsa_key_pair(<c_dsa_key, tee_dsa_key); res = tee_acipher_gen_dsa_keys(<c_dsa_key, key_size); if (res != TEE_SUCCESS) return res; /* Set bits for all known attributes for this object type */ o->have_attrs = (1 << type_props->num_type_attrs) - 1; return TEE_SUCCESS; } static TEE_Result tee_svc_obj_generate_key_dh( struct tee_ta_session *sess, struct tee_obj *o, const struct tee_cryp_obj_type_props *type_props, uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) { TEE_Result res; struct tee_ltc_dh_key_pair *tee_dh_key; dh_key ltc_dh_key; struct ltc_bignumbers *dh_q = NULL; uint32_t dh_xbits = 0; TEE_ASSERT(sizeof(struct tee_ltc_dh_key_pair) == o->data_size); /* Copy the present attributes into the obj before starting */ res = tee_svc_cryp_obj_populate_type( sess, o, type_props, params, param_count); if (res != TEE_SUCCESS) return res; tee_dh_key = (struct tee_ltc_dh_key_pair *)o->data; tee_populate_dh_key_pair(<c_dh_key, tee_dh_key); if (GET_ATTRIBUTE(o, type_props, TEE_ATTR_DH_SUBPRIME)) dh_q = &tee_dh_key->q; if (GET_ATTRIBUTE(o, type_props, TEE_ATTR_DH_X_BITS)) dh_xbits = tee_dh_key->xbits; res = tee_acipher_gen_dh_keys(<c_dh_key, dh_q, dh_xbits); if (res != TEE_SUCCESS) return res; /* Set bits for the generated public and private key */ SET_ATTRIBUTE(o, type_props, TEE_ATTR_DH_PUBLIC_VALUE); SET_ATTRIBUTE(o, type_props, TEE_ATTR_DH_PRIVATE_VALUE); SET_ATTRIBUTE(o, type_props, TEE_ATTR_DH_X_BITS); return TEE_SUCCESS; } TEE_Result tee_svc_obj_generate_key( uint32_t obj, uint32_t key_size, const TEE_Attribute *params, uint32_t param_count) { TEE_Result res; struct tee_ta_session *sess; const struct tee_cryp_obj_type_props *type_props; struct tee_obj *o; struct tee_cryp_obj_secret *key; size_t byte_size; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, obj, &o); if (res != TEE_SUCCESS) return res; /* Must be a transient object */ if ((o->info.handleFlags & TEE_HANDLE_FLAG_PERSISTENT) != 0) return TEE_ERROR_BAD_STATE; /* Must not be initialized already */ if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) != 0) return TEE_ERROR_BAD_STATE; /* Find description of object */ type_props = tee_svc_find_type_props(o->info.objectType); if (type_props == NULL) return TEE_ERROR_NOT_SUPPORTED; /* Check that maxObjectSize follows restrictions */ if (key_size % type_props->quanta != 0) return TEE_ERROR_NOT_SUPPORTED; if (key_size < type_props->min_size) return TEE_ERROR_NOT_SUPPORTED; if (key_size > type_props->max_size) return TEE_ERROR_NOT_SUPPORTED; res = tee_svc_cryp_check_attr(ATTR_USAGE_GENERATE_KEY, type_props, (TEE_Attribute *)params, param_count); if (res != TEE_SUCCESS) return res; switch (o->info.objectType) { case TEE_TYPE_AES: case TEE_TYPE_DES: case TEE_TYPE_DES3: case TEE_TYPE_HMAC_MD5: case TEE_TYPE_HMAC_SHA1: case TEE_TYPE_HMAC_SHA224: case TEE_TYPE_HMAC_SHA256: case TEE_TYPE_HMAC_SHA384: case TEE_TYPE_HMAC_SHA512: case TEE_TYPE_GENERIC_SECRET: byte_size = key_size / 8; /* * We have to do it like this because the parity bits aren't * counted when telling the size of the key in bits. */ if (o->info.objectType == TEE_TYPE_DES || o->info.objectType == TEE_TYPE_DES3) { byte_size = (key_size + key_size / 7) / 8; } key = (struct tee_cryp_obj_secret *)o->data; if (byte_size > (o->data_size - sizeof(*key))) return TEE_ERROR_EXCESS_DATA; res = get_rng_array((void *)(key + 1), byte_size); if (res != TEE_SUCCESS) return res; /* Force the last bit to have exactly a value on byte_size */ ((char *)key)[sizeof(key->key_size) + byte_size - 1] |= 0x80; key->key_size = byte_size; /* Set bits for all known attributes for this object type */ o->have_attrs = (1 << type_props->num_type_attrs) - 1; break; case TEE_TYPE_RSA_KEYPAIR: res = tee_svc_obj_generate_key_rsa(o, type_props, key_size); if (res != TEE_SUCCESS) return res; break; case TEE_TYPE_DSA_KEYPAIR: res = tee_svc_obj_generate_key_dsa(o, type_props, key_size); if (res != TEE_SUCCESS) return res; break; case TEE_TYPE_DH_KEYPAIR: res = tee_svc_obj_generate_key_dh( sess, o, type_props, key_size, params, param_count); if (res != TEE_SUCCESS) return res; break; default: return TEE_ERROR_BAD_FORMAT; } o->info.objectSize = key_size; o->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; return TEE_SUCCESS; } static TEE_Result tee_svc_cryp_get_state(struct tee_ta_session *sess, uint32_t state_id, struct tee_cryp_state **state) { struct tee_cryp_state *s; TAILQ_FOREACH(s, &sess->ctx->cryp_states, link) { if (state_id == (uint32_t) s) { *state = s; return TEE_SUCCESS; } } return TEE_ERROR_BAD_PARAMETERS; } static void cryp_state_free(struct tee_ta_ctx *ctx, struct tee_cryp_state *cs) { struct tee_obj *o; if (tee_obj_get(ctx, cs->key1, &o) == TEE_SUCCESS) tee_obj_close(ctx, o); if (tee_obj_get(ctx, cs->key2, &o) == TEE_SUCCESS) tee_obj_close(ctx, o); TAILQ_REMOVE(&ctx->cryp_states, cs, link); if (cs->ctx_finalize != NULL) cs->ctx_finalize(cs->ctx, cs->algo); free(cs->ctx); free(cs); } static TEE_Result tee_svc_cryp_check_key_type(const struct tee_obj *o, uint32_t algo, TEE_OperationMode mode) { uint32_t req_key_type; switch (TEE_ALG_GET_MAIN_ALG(algo)) { case TEE_MAIN_ALGO_MD5: req_key_type = TEE_TYPE_HMAC_MD5; break; case TEE_MAIN_ALGO_SHA1: req_key_type = TEE_TYPE_HMAC_SHA1; break; case TEE_MAIN_ALGO_SHA224: req_key_type = TEE_TYPE_HMAC_SHA224; break; case TEE_MAIN_ALGO_SHA256: req_key_type = TEE_TYPE_HMAC_SHA256; break; case TEE_MAIN_ALGO_SHA384: req_key_type = TEE_TYPE_HMAC_SHA384; break; case TEE_MAIN_ALGO_SHA512: req_key_type = TEE_TYPE_HMAC_SHA512; break; case TEE_MAIN_ALGO_AES: req_key_type = TEE_TYPE_AES; break; case TEE_MAIN_ALGO_DES: req_key_type = TEE_TYPE_DES; break; case TEE_MAIN_ALGO_DES3: req_key_type = TEE_TYPE_DES3; break; case TEE_MAIN_ALGO_RSA: if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) req_key_type = TEE_TYPE_RSA_PUBLIC_KEY; else req_key_type = TEE_TYPE_RSA_KEYPAIR; break; case TEE_MAIN_ALGO_DSA: if (mode == TEE_MODE_ENCRYPT || mode == TEE_MODE_VERIFY) req_key_type = TEE_TYPE_DSA_PUBLIC_KEY; else req_key_type = TEE_TYPE_DSA_KEYPAIR; break; case TEE_MAIN_ALGO_DH: req_key_type = TEE_TYPE_DH_KEYPAIR; break; default: return TEE_ERROR_BAD_PARAMETERS; } if (req_key_type != o->info.objectType) return TEE_ERROR_BAD_PARAMETERS; return TEE_SUCCESS; } TEE_Result tee_svc_cryp_state_alloc(uint32_t algo, uint32_t mode, uint32_t key1, uint32_t key2, uint32_t *state) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; struct tee_obj *o1 = NULL; struct tee_obj *o2 = NULL; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; if (key1 != 0) { res = tee_obj_get(sess->ctx, key1, &o1); if (res != TEE_SUCCESS) return res; if (o1->busy) return TEE_ERROR_BAD_PARAMETERS; res = tee_svc_cryp_check_key_type(o1, algo, mode); if (res != TEE_SUCCESS) return res; } if (key2 != 0) { res = tee_obj_get(sess->ctx, key2, &o2); if (res != TEE_SUCCESS) return res; if (o2->busy) return TEE_ERROR_BAD_PARAMETERS; res = tee_svc_cryp_check_key_type(o2, algo, mode); if (res != TEE_SUCCESS) return res; } cs = calloc(1, sizeof(struct tee_cryp_state)); if (cs == NULL) return TEE_ERROR_OUT_OF_MEMORY; TAILQ_INSERT_TAIL(&sess->ctx->cryp_states, cs, link); cs->algo = algo; cs->mode = mode; switch (TEE_ALG_GET_CLASS(algo)) { case TEE_OPERATION_CIPHER: if ((algo == TEE_ALG_AES_XTS && (key1 == 0 || key2 == 0)) || (algo != TEE_ALG_AES_XTS && (key1 == 0 || key2 != 0))) { res = TEE_ERROR_BAD_PARAMETERS; } else { res = tee_cipher_get_ctx_size(algo, &cs->ctx_size); if (res != TEE_SUCCESS) break; cs->ctx = calloc(1, cs->ctx_size); if (cs->ctx == NULL) res = TEE_ERROR_OUT_OF_MEMORY; } break; case TEE_OPERATION_AE: if (key1 == 0 || key2 != 0) { res = TEE_ERROR_BAD_PARAMETERS; } else { res = tee_authenc_get_ctx_size(algo, &cs->ctx_size); if (res != TEE_SUCCESS) break; cs->ctx = calloc(1, cs->ctx_size); if (cs->ctx == NULL) res = TEE_ERROR_OUT_OF_MEMORY; } break; case TEE_OPERATION_MAC: if (key1 == 0 || key2 != 0) { res = TEE_ERROR_BAD_PARAMETERS; } else { res = tee_mac_get_ctx_size(algo, &cs->ctx_size); if (res != TEE_SUCCESS) break; cs->ctx = calloc(1, cs->ctx_size); if (cs->ctx == NULL) res = TEE_ERROR_OUT_OF_MEMORY; } break; case TEE_OPERATION_DIGEST: if (key1 != 0 || key2 != 0) { res = TEE_ERROR_BAD_PARAMETERS; } else { res = tee_hash_get_ctx_size(algo, &cs->ctx_size); if (res != TEE_SUCCESS) break; cs->ctx = calloc(1, cs->ctx_size); if (cs->ctx == NULL) res = TEE_ERROR_OUT_OF_MEMORY; } break; case TEE_OPERATION_ASYMMETRIC_CIPHER: case TEE_OPERATION_ASYMMETRIC_SIGNATURE: if (key1 == 0 || key2 != 0) res = TEE_ERROR_BAD_PARAMETERS; break; case TEE_OPERATION_KEY_DERIVATION: if (key1 == 0 || key2 != 0) res = TEE_ERROR_BAD_PARAMETERS; break; default: res = TEE_ERROR_NOT_SUPPORTED; break; } if (res != TEE_SUCCESS) goto out; res = tee_svc_copy_to_user(sess, state, &cs, sizeof(uint32_t)); if (res != TEE_SUCCESS) goto out; /* Register keys */ if (o1 != NULL) { o1->busy = true; cs->key1 = key1; } if (o2 != NULL) { o2->busy = true; cs->key2 = key2; } out: if (res != TEE_SUCCESS) cryp_state_free(sess->ctx, cs); return res; } TEE_Result tee_svc_cryp_state_copy(uint32_t dst, uint32_t src) { TEE_Result res; struct tee_cryp_state *cs_dst; struct tee_cryp_state *cs_src; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, dst, &cs_dst); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, src, &cs_src); if (res != TEE_SUCCESS) return res; if (cs_dst->algo != cs_src->algo || cs_dst->mode != cs_src->mode) return TEE_ERROR_BAD_PARAMETERS; /* "Can't happen" */ if (cs_dst->ctx_size != cs_src->ctx_size) return TEE_ERROR_BAD_STATE; memcpy(cs_dst->ctx, cs_src->ctx, cs_src->ctx_size); return TEE_SUCCESS; } void tee_svc_cryp_free_states(struct tee_ta_ctx *ctx) { struct tee_cryp_state_head *states = &ctx->cryp_states; while (!TAILQ_EMPTY(states)) cryp_state_free(ctx, TAILQ_FIRST(states)); } TEE_Result tee_svc_cryp_state_free(uint32_t state) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; cryp_state_free(sess->ctx, cs); return TEE_SUCCESS; } /* iv and iv_len are ignored for some algorithms */ TEE_Result tee_svc_hash_init(uint32_t state, const void *iv, size_t iv_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; switch (TEE_ALG_GET_CLASS(cs->algo)) { case TEE_OPERATION_DIGEST: res = tee_hash_init(cs->ctx, cs->algo); if (res != TEE_SUCCESS) return res; break; case TEE_OPERATION_MAC: { struct tee_obj *o; struct tee_cryp_obj_secret *key; res = tee_obj_get(sess->ctx, cs->key1, &o); if (res != TEE_SUCCESS) return res; if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_BAD_PARAMETERS; key = (struct tee_cryp_obj_secret *)o->data; res = tee_mac_init(cs->ctx, cs->algo, (void *)(key + 1), key->key_size); if (res != TEE_SUCCESS) return res; break; } default: return TEE_ERROR_BAD_PARAMETERS; } return TEE_SUCCESS; } TEE_Result tee_svc_hash_update(uint32_t state, const void *chunk, size_t chunk_size) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)chunk, chunk_size); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; switch (TEE_ALG_GET_CLASS(cs->algo)) { case TEE_OPERATION_DIGEST: res = tee_hash_update(cs->ctx, cs->algo, chunk, chunk_size); if (res != TEE_SUCCESS) return res; break; case TEE_OPERATION_MAC: res = tee_mac_update(cs->ctx, cs->algo, chunk, chunk_size); if (res != TEE_SUCCESS) return res; break; default: return TEE_ERROR_BAD_PARAMETERS; } return TEE_SUCCESS; } TEE_Result tee_svc_hash_final(uint32_t state, const void *chunk, size_t chunk_size, void *hash, size_t *hash_len) { TEE_Result res, res2; size_t hash_size; size_t hlen; struct tee_cryp_state *cs; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)chunk, chunk_size); if (res != TEE_SUCCESS) return res; res = tee_svc_copy_from_user(sess, &hlen, hash_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)hash, hlen); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; switch (TEE_ALG_GET_CLASS(cs->algo)) { case TEE_OPERATION_DIGEST: res = tee_hash_get_digest_size(cs->algo, &hash_size); if (res != TEE_SUCCESS) return res; if (*hash_len < hash_size) { res = TEE_ERROR_SHORT_BUFFER; goto out; } res = tee_hash_update(cs->ctx, cs->algo, chunk, chunk_size); if (res != TEE_SUCCESS) return res; res = tee_hash_final(cs->ctx, cs->algo, hash, hash_size); if (res != TEE_SUCCESS) return res; break; case TEE_OPERATION_MAC: res = tee_mac_get_digest_size(cs->algo, &hash_size); if (res != TEE_SUCCESS) return res; if (*hash_len < hash_size) { res = TEE_ERROR_SHORT_BUFFER; goto out; } res = tee_mac_final(cs->ctx, cs->algo, chunk, chunk_size, hash, hash_size); if (res != TEE_SUCCESS) return res; break; default: return TEE_ERROR_BAD_PARAMETERS; } out: res2 = tee_svc_copy_to_user(sess, hash_len, &hash_size, sizeof(*hash_len)); if (res2 != TEE_SUCCESS) return res2; return res; } TEE_Result tee_svc_cipher_init(uint32_t state, const void *iv, size_t iv_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; struct tee_obj *o; struct tee_cryp_obj_secret *key1; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t) iv, iv_len); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, cs->key1, &o); if (res != TEE_SUCCESS) return res; if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_BAD_PARAMETERS; key1 = (struct tee_cryp_obj_secret *)o->data; if (tee_obj_get(sess->ctx, cs->key2, &o) == TEE_SUCCESS) { struct tee_cryp_obj_secret *key2 = (struct tee_cryp_obj_secret *)o->data; if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_BAD_PARAMETERS; res = tee_cipher_init3(cs->ctx, cs->algo, cs->mode, (uint8_t *)(key1 + 1), key1->key_size, (uint8_t *)(key2 + 1), key2->key_size, iv, iv_len); } else { res = tee_cipher_init2(cs->ctx, cs->algo, cs->mode, (uint8_t *)(key1 + 1), key1->key_size, iv, iv_len); } if (res != TEE_SUCCESS) return res; cs->ctx_finalize = (tee_cryp_ctx_finalize_func_t) tee_cipher_final; return TEE_SUCCESS; } static TEE_Result tee_svc_cipher_update_helper(uint32_t state, bool last_block, const void *src, size_t src_len, void *dst, size_t *dst_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; size_t dlen; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)src, src_len); if (res != TEE_SUCCESS) return res; if (dst_len == NULL) { dlen = 0; } else { res = tee_svc_copy_from_user(sess, &dlen, dst_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)dst, dlen); if (res != TEE_SUCCESS) return res; } if (dlen < src_len) { res = TEE_ERROR_SHORT_BUFFER; goto out; } if (src_len > 0) { /* Permit src_len == 0 to finalize the operation */ res = tee_cipher_update(cs->ctx, cs->algo, cs->mode, last_block, src, src_len, dst); } if (last_block && cs->ctx_finalize != NULL) { cs->ctx_finalize(cs->ctx, cs->mode); cs->ctx_finalize = NULL; } out: if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && dst_len != NULL) { TEE_Result res2 = tee_svc_copy_to_user(sess, dst_len, &src_len, sizeof(size_t)); if (res2 != TEE_SUCCESS) res = res2; } return res; } TEE_Result tee_svc_cipher_update(uint32_t state, const void *src, size_t src_len, void *dst, size_t *dst_len) { return tee_svc_cipher_update_helper(state, false /* last_block */, src, src_len, dst, dst_len); } TEE_Result tee_svc_cipher_final(uint32_t state, const void *src, size_t src_len, void *dst, size_t *dst_len) { return tee_svc_cipher_update_helper(state, true /* last_block */, src, src_len, dst, dst_len); } TEE_Result tee_svc_cryp_derive_key(uint32_t state, const TEE_Attribute *params, uint32_t param_count, uint32_t derived_key) { TEE_Result res; struct tee_ta_session *sess; struct tee_obj *ko; struct tee_obj *so; struct tee_cryp_state *cs; struct tee_cryp_obj_secret *sk; const struct tee_cryp_obj_type_props *type_props; struct ltc_bignumbers publicvalue; struct ltc_bignumbers sharedsecret; struct tee_ltc_dh_key_pair *tee_dh_key; dh_key ltc_dh_key; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; if ((param_count != 1) || (params[0].attributeID != TEE_ATTR_DH_PUBLIC_VALUE)) return TEE_ERROR_BAD_PARAMETERS; /* get key set in operation */ res = tee_obj_get(sess->ctx, cs->key1, &ko); if (res != TEE_SUCCESS) return res; tee_dh_key = (struct tee_ltc_dh_key_pair *)ko->data; tee_populate_dh_key_pair(<c_dh_key, tee_dh_key); res = tee_obj_get(sess->ctx, derived_key, &so); if (res != TEE_SUCCESS) return res; /* find information needed about the object to initialize */ sk = (struct tee_cryp_obj_secret *)so->data; /* Find description of object */ type_props = tee_svc_find_type_props(so->info.objectType); if (type_props == NULL) return TEE_ERROR_NOT_SUPPORTED; SET_MPA_ALLOCSIZE(&publicvalue); SET_MPA_ALLOCSIZE(&sharedsecret); /* extract information from the attributes passed to the function */ mp_read_unsigned_bin( &publicvalue, params[0].content.ref.buffer, params[0].content.ref.length); res = tee_derive_dh_shared_secret( <c_dh_key, &publicvalue, &sharedsecret); if (res == TEE_SUCCESS) { sk->key_size = mp_unsigned_bin_size(&sharedsecret); mp_to_unsigned_bin(&sharedsecret, (uint8_t *)(sk + 1)); so->info.handleFlags |= TEE_HANDLE_FLAG_INITIALIZED; SET_ATTRIBUTE(so, type_props, TEE_ATTR_SECRET_VALUE); } return res; } TEE_Result get_rng_array(void *buffer, int len) { char *buf_char = buffer; int i; if (buf_char == NULL) return TEE_ERROR_BAD_PARAMETERS; for (i = 0; i < len; i++) buf_char[i] = hw_get_random_byte(); return TEE_SUCCESS; } TEE_Result tee_svc_cryp_random_number_generate(void *buf, size_t blen) { TEE_Result res; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)buf, blen); if (res != TEE_SUCCESS) return res; res = get_rng_array(buf, blen); if (res != TEE_SUCCESS) return res; return res; } TEE_Result tee_svc_authenc_init(uint32_t state, const void *nonce, size_t nonce_len, size_t tag_len, size_t aad_len, size_t payload_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; struct tee_obj *o; struct tee_cryp_obj_secret *key; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, cs->key1, &o); if (res != TEE_SUCCESS) return res; if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_BAD_PARAMETERS; key = (struct tee_cryp_obj_secret *)o->data; res = tee_authenc_init(cs->ctx, cs->algo, cs->mode, (uint8_t *)(key + 1), key->key_size, nonce, nonce_len, tag_len, aad_len, payload_len); if (res != TEE_SUCCESS) return res; cs->ctx_finalize = (tee_cryp_ctx_finalize_func_t)tee_authenc_final; return TEE_SUCCESS; } TEE_Result tee_svc_authenc_update_aad(uint32_t state, const void *aad_data, size_t aad_data_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t) aad_data, aad_data_len); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; res = tee_authenc_update_aad(cs->ctx, cs->algo, cs->mode, aad_data, aad_data_len); if (res != TEE_SUCCESS) return res; return TEE_SUCCESS; } TEE_Result tee_svc_authenc_update_payload(uint32_t state, const void *src_data, size_t src_len, void *dst_data, size_t *dst_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; size_t dlen; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t) src_data, src_len); if (res != TEE_SUCCESS) return res; res = tee_svc_copy_from_user(sess, &dlen, dst_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)dst_data, dlen); if (res != TEE_SUCCESS) return res; if (dlen < src_len) { res = TEE_ERROR_SHORT_BUFFER; goto out; } res = tee_authenc_update_payload(cs->ctx, cs->algo, cs->mode, src_data, src_len, dst_data); out: if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { TEE_Result res2 = tee_svc_copy_to_user(sess, dst_len, &src_len, sizeof(size_t)); if (res2 != TEE_SUCCESS) res = res2; } return res; } TEE_Result tee_svc_authenc_enc_final(uint32_t state, const void *src_data, size_t src_len, void *dst_data, size_t *dst_len, void *tag, size_t *tag_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; size_t dlen; size_t tlen; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; if (cs->mode != TEE_MODE_ENCRYPT) return TEE_ERROR_BAD_PARAMETERS; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)src_data, src_len); if (res != TEE_SUCCESS) return res; if (dst_len == NULL) { dlen = 0; } else { res = tee_svc_copy_from_user(sess, &dlen, dst_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)dst_data, dlen); if (res != TEE_SUCCESS) return res; } if (dlen < src_len) { res = TEE_ERROR_SHORT_BUFFER; goto out; } res = tee_svc_copy_from_user(sess, &tlen, tag_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)tag, tlen); if (res != TEE_SUCCESS) return res; res = tee_authenc_enc_final(cs->ctx, cs->algo, src_data, src_len, dst_data, tag, &tlen); out: if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { TEE_Result res2; if (dst_len != NULL) { res2 = tee_svc_copy_to_user(sess, dst_len, &src_len, sizeof(size_t)); if (res2 != TEE_SUCCESS) return res2; } res2 = tee_svc_copy_to_user(sess, tag_len, &tlen, sizeof(size_t)); if (res2 != TEE_SUCCESS) return res2; } return res; } TEE_Result tee_svc_authenc_dec_final(uint32_t state, const void *src_data, size_t src_len, void *dst_data, size_t *dst_len, const void *tag, size_t tag_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; size_t dlen; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; if (cs->mode != TEE_MODE_DECRYPT) return TEE_ERROR_BAD_PARAMETERS; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)src_data, src_len); if (res != TEE_SUCCESS) return res; if (dst_len == NULL) { dlen = 0; } else { res = tee_svc_copy_from_user(sess, &dlen, dst_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)dst_data, dlen); if (res != TEE_SUCCESS) return res; } if (dlen < src_len) { res = TEE_ERROR_SHORT_BUFFER; goto out; } res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)tag, tag_len); if (res != TEE_SUCCESS) return res; res = tee_authenc_dec_final(cs->ctx, cs->algo, src_data, src_len, dst_data, tag, tag_len); out: if ((res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) && dst_len != NULL) { TEE_Result res2; res2 = tee_svc_copy_to_user(sess, dst_len, &src_len, sizeof(size_t)); if (res2 != TEE_SUCCESS) return res2; } return res; } static void tee_svc_asymm_pkcs1_get_salt_len(const TEE_Attribute *params, uint32_t num_params, int *salt_len) { size_t n; for (n = 0; n < num_params; n++) { if (params[n].attributeID == TEE_ATTR_RSA_PSS_SALT_LENGTH) { *salt_len = params[n].content.value.a; return; } } *salt_len = -1; } static TEE_Result tee_svc_asymm_rsa_check_crt_exist(struct tee_obj *o, bool *crt_exist) { const struct tee_cryp_obj_type_props *type_props; int i; type_props = tee_svc_find_type_props(o->info.objectType); if (type_props == NULL) return TEE_ERROR_BAD_PARAMETERS; /* * if one crt attribute exits all must exists and this is * checked when populating it */ i = tee_svc_cryp_obj_find_type_attr_idx(TEE_ATTR_RSA_PRIME1, type_props); if ((o->have_attrs & (1 << i)) != 0) *crt_exist = true; else *crt_exist = false; return TEE_SUCCESS; } TEE_Result tee_svc_asymm_operate(uint32_t state, const TEE_Attribute *params, uint32_t num_params, const void *src_data, size_t src_len, void *dst_data, size_t *dst_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; size_t dlen; struct tee_obj *o; struct tee_ltc_rsa_public_key *tee_rsa_public_key; struct tee_ltc_rsa_key_pair *tee_rsa_key_pair; struct tee_ltc_dsa_key_pair *tee_dsa_key; union { rsa_key ltc_rsa_key; dsa_key ltc_dsa_key; } key_type; void *label = NULL; size_t label_len = 0; size_t n; bool crt_exist; int salt_len; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights( sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t) src_data, src_len); if (res != TEE_SUCCESS) return res; res = tee_svc_copy_from_user(sess, &dlen, dst_len, sizeof(size_t)); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights( sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_WRITE | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t) dst_data, dlen); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, cs->key1, &o); if (res != TEE_SUCCESS) return res; if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_GENERIC; switch (cs->algo) { case TEE_ALG_RSA_NOPAD: if (cs->mode == TEE_MODE_ENCRYPT) { tee_rsa_public_key = o->data; tee_populate_rsa_public_key( &key_type.ltc_rsa_key, tee_rsa_public_key); } else if (cs->mode == TEE_MODE_DECRYPT) { tee_rsa_key_pair = o->data; res = tee_svc_asymm_rsa_check_crt_exist(o, &crt_exist); if (res != TEE_SUCCESS) return res; tee_populate_rsa_key_pair( &key_type.ltc_rsa_key, tee_rsa_key_pair, crt_exist); } else { /* * We will panic because "the mode is not compatible * with the function" */ return TEE_ERROR_GENERIC; } res = tee_acipher_rsadorep( &key_type.ltc_rsa_key, src_data, src_len, dst_data, &dlen); break; case TEE_ALG_RSAES_PKCS1_V1_5: case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA1: case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA224: case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA256: case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA384: case TEE_ALG_RSAES_PKCS1_OAEP_MGF1_SHA512: for (n = 0; n < num_params; n++) { if (params[n].attributeID == TEE_ATTR_RSA_OAEP_LABEL) { label = params[n].content.ref.buffer; label_len = params[n].content.ref.length; break; } } if (cs->mode == TEE_MODE_ENCRYPT) { tee_rsa_public_key = o->data; tee_populate_rsa_public_key( &key_type.ltc_rsa_key, tee_rsa_public_key); res = tee_acipher_rsaes_encrypt( cs->algo, &key_type.ltc_rsa_key, label, label_len, src_data, src_len, dst_data, &dlen); } else if (cs->mode == TEE_MODE_DECRYPT) { tee_rsa_key_pair = o->data; res = tee_svc_asymm_rsa_check_crt_exist(o, &crt_exist); if (res != TEE_SUCCESS) return res; tee_populate_rsa_key_pair( &key_type.ltc_rsa_key, tee_rsa_key_pair, crt_exist); res = tee_acipher_rsaes_decrypt( cs->algo, &key_type.ltc_rsa_key, label, label_len, src_data, src_len, dst_data, &dlen); } else { res = TEE_ERROR_BAD_PARAMETERS; } break; case TEE_ALG_RSASSA_PKCS1_V1_5_MD5: case TEE_ALG_RSASSA_PKCS1_V1_5_SHA1: case TEE_ALG_RSASSA_PKCS1_V1_5_SHA224: case TEE_ALG_RSASSA_PKCS1_V1_5_SHA256: case TEE_ALG_RSASSA_PKCS1_V1_5_SHA384: case TEE_ALG_RSASSA_PKCS1_V1_5_SHA512: case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA1: case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA224: case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA256: case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA384: case TEE_ALG_RSASSA_PKCS1_PSS_MGF1_SHA512: if (cs->mode != TEE_MODE_SIGN) { res = TEE_ERROR_BAD_PARAMETERS; break; } tee_rsa_key_pair = o->data; res = tee_svc_asymm_rsa_check_crt_exist(o, &crt_exist); if (res != TEE_SUCCESS) return res; tee_populate_rsa_key_pair( &key_type.ltc_rsa_key, tee_rsa_key_pair, crt_exist); tee_svc_asymm_pkcs1_get_salt_len(params, num_params, &salt_len); res = tee_acipher_rsassa_sign( cs->algo, &key_type.ltc_rsa_key, salt_len, src_data, src_len, dst_data, &dlen); break; case TEE_ALG_DSA_SHA1: tee_dsa_key = o->data; tee_populate_dsa_key_pair(&key_type.ltc_dsa_key, tee_dsa_key); res = tee_acipher_dsa_sign( cs->algo, &key_type.ltc_dsa_key, src_data, src_len, dst_data, &dlen); break; default: res = TEE_ERROR_BAD_PARAMETERS; break; } if (res == TEE_SUCCESS || res == TEE_ERROR_SHORT_BUFFER) { TEE_Result res2; res2 = tee_svc_copy_to_user(sess, dst_len, &dlen, sizeof(size_t)); if (res2 != TEE_SUCCESS) return res2; } return res; } TEE_Result tee_svc_asymm_verify(uint32_t state, const TEE_Attribute *params, uint32_t num_params, const void *data, size_t data_len, const void *sig, size_t sig_len) { TEE_Result res; struct tee_cryp_state *cs; struct tee_ta_session *sess; struct tee_obj *o; size_t hash_size; struct tee_ltc_rsa_public_key *tee_rsa_key; int salt_len; struct tee_ltc_dsa_public_key *tee_dsa_key; union { rsa_key ltc_rsa_key; dsa_key ltc_dsa_key; } key_type; res = tee_ta_get_current_session(&sess); if (res != TEE_SUCCESS) return res; res = tee_svc_cryp_get_state(sess, state, &cs); if (res != TEE_SUCCESS) return res; if (cs->mode != TEE_MODE_VERIFY) return TEE_ERROR_BAD_PARAMETERS; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)data, data_len); if (res != TEE_SUCCESS) return res; res = tee_mmu_check_access_rights(sess->ctx, TEE_MEMORY_ACCESS_READ | TEE_MEMORY_ACCESS_ANY_OWNER, (tee_uaddr_t)sig, sig_len); if (res != TEE_SUCCESS) return res; res = tee_obj_get(sess->ctx, cs->key1, &o); if (res != TEE_SUCCESS) return res; if ((o->info.handleFlags & TEE_HANDLE_FLAG_INITIALIZED) == 0) return TEE_ERROR_BAD_PARAMETERS; res = tee_hash_get_digest_size(TEE_DIGEST_HASH_TO_ALGO(cs->algo), &hash_size); if (res != TEE_SUCCESS) return res; if (data_len != hash_size) return TEE_ERROR_BAD_PARAMETERS; switch (TEE_ALG_GET_MAIN_ALG(cs->algo)) { case TEE_MAIN_ALGO_RSA: tee_rsa_key = o->data; tee_svc_asymm_pkcs1_get_salt_len(params, num_params, &salt_len); tee_populate_rsa_public_key(&key_type.ltc_rsa_key, tee_rsa_key); res = tee_acipher_rsassa_verify( cs->algo, &key_type.ltc_rsa_key, salt_len, data, data_len, sig, sig_len); break; case TEE_MAIN_ALGO_DSA: tee_dsa_key = o->data; tee_populate_dsa_public_key(&key_type.ltc_dsa_key, tee_dsa_key); res = tee_acipher_dsa_verify( cs->algo, &key_type.ltc_dsa_key, data, data_len, sig, sig_len); break; default: res = TEE_ERROR_NOT_SUPPORTED; } return res; }