// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2016-2022, Linaro Limited * Copyright (c) 2014, STMicroelectronics International N.V. * Copyright (c) 2020-2021, Arm Limited */ #include #include #include #include #include #include #include #include #include #include #include struct thread_ctx threads[CFG_NUM_THREADS]; struct thread_core_local thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss; /* * Stacks * * [Lower addresses on the left] * * [ STACK_CANARY_SIZE/2 | STACK_CHECK_EXTRA | STACK_XXX_SIZE | STACK_CANARY_SIZE/2 ] * ^ ^ ^ ^ * stack_xxx[n] "hard" top "soft" top bottom */ static uint32_t start_canary_value = 0xdedede00; static uint32_t end_canary_value = 0xababab00; #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \ linkage uint32_t name[num_stacks] \ [ROUNDUP(stack_size + STACK_CANARY_SIZE + STACK_CHECK_EXTRA, \ STACK_ALIGNMENT) / sizeof(uint32_t)] \ __attribute__((section(".nozi_stack." # name), \ aligned(STACK_ALIGNMENT))) DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE, /* global linkage */); DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static); #ifndef CFG_WITH_PAGER DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static); #endif #define GET_STACK_BOTTOM(stack, n) ((vaddr_t)&(stack)[n] + sizeof(stack[n]) - \ STACK_CANARY_SIZE / 2) const uint32_t stack_tmp_stride __section(".identity_map.stack_tmp_stride") = sizeof(stack_tmp[0]); /* * This stack setup info is required by secondary boot cores before they * each locally enable the pager (the mmu). Hence kept in pager sections. */ DECLARE_KEEP_PAGER(stack_tmp_stride); static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK; static size_t stack_size_to_alloc_size(size_t stack_size) { return ROUNDUP(stack_size + STACK_CANARY_SIZE + STACK_CHECK_EXTRA, STACK_ALIGNMENT); } static vaddr_t stack_end_va_to_top_hard(size_t stack_size, vaddr_t end_va) { size_t l = stack_size_to_alloc_size(stack_size); return end_va - l + STACK_CANARY_SIZE; } static vaddr_t stack_end_va_to_top_soft(size_t stack_size, vaddr_t end_va) { return stack_end_va_to_top_hard(stack_size, end_va) + STACK_CHECK_EXTRA; } static vaddr_t stack_end_va_to_bottom(size_t stack_size __unused, vaddr_t end_va) { return end_va; } static uint32_t *stack_end_va_to_start_canary(size_t stack_size, vaddr_t end_va) { return (uint32_t *)(stack_end_va_to_top_hard(stack_size, end_va) - STACK_CANARY_SIZE / 2); } static uint32_t *stack_end_va_to_end_canary(size_t stack_size __unused, vaddr_t end_va) { return (uint32_t *)(end_va + STACK_CANARY_SIZE / 2 - sizeof(uint32_t)); } static void init_canaries(size_t stack_size, vaddr_t va_end) { uint32_t *canary = NULL; assert(va_end); canary = stack_end_va_to_start_canary(stack_size, va_end); *canary = start_canary_value; canary = stack_end_va_to_end_canary(stack_size, va_end); *canary = end_canary_value; } void thread_init_canaries(void) { vaddr_t va = 0; size_t n = 0; if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) { for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) { if (thread_core_local[n].tmp_stack_va_end) { va = thread_core_local[n].tmp_stack_va_end + STACK_TMP_OFFS; init_canaries(STACK_TMP_SIZE, va); } va = thread_core_local[n].abt_stack_va_end; if (va) init_canaries(STACK_ABT_SIZE, va); } } if (IS_ENABLED(CFG_WITH_STACK_CANARIES) && !IS_ENABLED(CFG_WITH_PAGER) && !IS_ENABLED(CFG_NS_VIRTUALIZATION)) { for (n = 0; n < CFG_NUM_THREADS; n++) { va = threads[n].stack_va_end; if (va) init_canaries(STACK_THREAD_SIZE, va); } } } #if defined(CFG_WITH_STACK_CANARIES) void thread_update_canaries(void) { uint32_t canary[2] = { }; uint32_t exceptions = 0; plat_get_random_stack_canaries(canary, ARRAY_SIZE(canary), sizeof(canary[0])); exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); thread_check_canaries(); start_canary_value = canary[0]; end_canary_value = canary[1]; thread_init_canaries(); thread_unmask_exceptions(exceptions); } #endif static void check_stack_canary(const char *stack_name __maybe_unused, size_t n __maybe_unused, size_t stack_size, vaddr_t end_va) { uint32_t *canary = NULL; canary = stack_end_va_to_start_canary(stack_size, end_va); if (*canary != start_canary_value) { EMSG_RAW("Dead canary at start of '%s[%zu]' (%p)", stack_name, n, (void *)canary); panic(); } canary = stack_end_va_to_end_canary(stack_size, end_va); if (*canary != end_canary_value) { EMSG_RAW("Dead canary at end of '%s[%zu]' (%p)", stack_name, n, (void *)canary); panic(); } } void thread_check_canaries(void) { vaddr_t va = 0; size_t n = 0; if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) { for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) { if (thread_core_local[n].tmp_stack_va_end) { va = thread_core_local[n].tmp_stack_va_end + STACK_TMP_OFFS; check_stack_canary("tmp_stack", n, STACK_TMP_SIZE, va); } va = thread_core_local[n].abt_stack_va_end; if (va) check_stack_canary("abt_stack", n, STACK_ABT_SIZE, va); } } if (IS_ENABLED(CFG_WITH_STACK_CANARIES) && !IS_ENABLED(CFG_WITH_PAGER) && !IS_ENABLED(CFG_NS_VIRTUALIZATION)) { for (n = 0; n < CFG_NUM_THREADS; n++) { va = threads[n].stack_va_end; if (va) check_stack_canary("thread_stack", n, STACK_THREAD_SIZE, va); } } } void thread_lock_global(void) { cpu_spin_lock(&thread_global_lock); } void thread_unlock_global(void) { cpu_spin_unlock(&thread_global_lock); } static struct thread_core_local * __nostackcheck get_core_local(unsigned int pos) { /* * Foreign interrupts must be disabled before playing with core_local * since we otherwise may be rescheduled to a different core in the * middle of this function. */ assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR); assert(pos < CFG_TEE_CORE_NB_CORE); return &thread_core_local[pos]; } struct thread_core_local * __nostackcheck thread_get_core_local(void) { unsigned int pos = get_core_pos(); return get_core_local(pos); } #ifdef CFG_CORE_DEBUG_CHECK_STACKS static void print_stack_limits(void) { size_t n = 0; vaddr_t __maybe_unused start = 0; vaddr_t __maybe_unused end = 0; vaddr_t va = 0; for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) { va = thread_core_local[n].tmp_stack_va_end + STACK_TMP_OFFS; start = stack_end_va_to_top_soft(STACK_TMP_SIZE, va); end = stack_end_va_to_bottom(STACK_TMP_SIZE, va); DMSG("tmp [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end); va = thread_core_local[n].abt_stack_va_end; start = stack_end_va_to_top_soft(STACK_ABT_SIZE, va); end = stack_end_va_to_bottom(STACK_ABT_SIZE, va); DMSG("abt [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end); } for (n = 0; n < CFG_NUM_THREADS; n++) { va = threads[n].stack_va_end; start = stack_end_va_to_top_soft(STACK_THREAD_SIZE, va); end = stack_end_va_to_bottom(STACK_THREAD_SIZE, va); DMSG("thr [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end); } } static void check_stack_limits(void) { vaddr_t stack_start = 0; vaddr_t stack_end = 0; /* Any value in the current stack frame will do */ vaddr_t current_sp = (vaddr_t)&stack_start; if (!get_stack_soft_limits(&stack_start, &stack_end)) panic("Unknown stack limits"); if (current_sp < stack_start || current_sp > stack_end) { EMSG("Stack pointer out of range: 0x%" PRIxVA " not in [0x%" PRIxVA " .. 0x%" PRIxVA "]", current_sp, stack_start, stack_end); print_stack_limits(); panic(); } } static bool * __nostackcheck get_stackcheck_recursion_flag(void) { uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); unsigned int pos = get_core_pos(); struct thread_core_local *l = get_core_local(pos); int ct = l->curr_thread; bool *p = NULL; if (l->flags & (THREAD_CLF_ABORT | THREAD_CLF_TMP)) p = &l->stackcheck_recursion; else if (!l->flags) p = &threads[ct].tsd.stackcheck_recursion; thread_unmask_exceptions(exceptions); return p; } void __cyg_profile_func_enter(void *this_fn, void *call_site); void __nostackcheck __cyg_profile_func_enter(void *this_fn __unused, void *call_site __unused) { bool *p = get_stackcheck_recursion_flag(); assert(p); if (*p) return; *p = true; check_stack_limits(); *p = false; } void __cyg_profile_func_exit(void *this_fn, void *call_site); void __nostackcheck __cyg_profile_func_exit(void *this_fn __unused, void *call_site __unused) { } #else static void print_stack_limits(void) { } #endif void thread_init_boot_thread(void) { struct thread_core_local *l = thread_get_core_local(); thread_init_threads(); l->curr_thread = 0; threads[0].state = THREAD_STATE_ACTIVE; } void __nostackcheck thread_clr_boot_thread(void) { struct thread_core_local *l = thread_get_core_local(); assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS); assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE); threads[l->curr_thread].state = THREAD_STATE_FREE; l->curr_thread = THREAD_ID_INVALID; } void __nostackcheck *thread_get_tmp_sp(void) { struct thread_core_local *l = thread_get_core_local(); /* * Called from assembly when switching to the temporary stack, so flags * need updating */ l->flags |= THREAD_CLF_TMP; return (void *)l->tmp_stack_va_end; } vaddr_t thread_stack_start(void) { struct thread_ctx *thr; int ct = thread_get_id_may_fail(); if (ct == THREAD_ID_INVALID) return 0; thr = threads + ct; return stack_end_va_to_top_soft(STACK_THREAD_SIZE, thr->stack_va_end); } size_t thread_stack_size(void) { return STACK_THREAD_SIZE; } bool get_stack_limits(vaddr_t *start, vaddr_t *end, bool hard) { uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); unsigned int pos = get_core_pos(); struct thread_core_local *l = get_core_local(pos); int ct = l->curr_thread; size_t stack_size = 0; bool ret = true; vaddr_t va = 0; if (l->flags & THREAD_CLF_TMP) { va = l->tmp_stack_va_end + STACK_TMP_OFFS; stack_size = STACK_TMP_SIZE; } else if (l->flags & THREAD_CLF_ABORT) { va = l->abt_stack_va_end; stack_size = STACK_ABT_SIZE; } else if (!l->flags && ct >= 0 && ct < CFG_NUM_THREADS) { va = threads[ct].stack_va_end; stack_size = STACK_THREAD_SIZE; } else { ret = false; goto out; } *end = stack_end_va_to_bottom(stack_size, va); if (hard) *start = stack_end_va_to_top_hard(stack_size, va); else *start = stack_end_va_to_top_soft(stack_size, va); out: thread_unmask_exceptions(exceptions); return ret; } bool thread_is_from_abort_mode(void) { struct thread_core_local *l = thread_get_core_local(); return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT; } /* * This function should always be accurate, but it might be possible to * implement a more efficient depending on cpu architecture. */ bool __weak thread_is_in_normal_mode(void) { uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); struct thread_core_local *l = thread_get_core_local(); bool ret; /* * If any bit in l->flags is set aside from THREAD_CLF_TMP we're * handling some exception. */ ret = (l->curr_thread != THREAD_ID_INVALID) && !(l->flags & ~THREAD_CLF_TMP); thread_unmask_exceptions(exceptions); return ret; } short int __noprof thread_get_id_may_fail(void) { /* * thread_get_core_local() requires foreign interrupts to be disabled */ uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); struct thread_core_local *l = thread_get_core_local(); short int ct = l->curr_thread; thread_unmask_exceptions(exceptions); return ct; } short int __noprof thread_get_id(void) { short int ct = thread_get_id_may_fail(); /* Thread ID has to fit in a short int */ COMPILE_TIME_ASSERT(CFG_NUM_THREADS <= SHRT_MAX); assert(ct >= 0 && ct < CFG_NUM_THREADS); return ct; } #ifdef CFG_WITH_PAGER static void init_thread_stacks(void) { size_t n = 0; /* * Allocate virtual memory for thread stacks. */ for (n = 0; n < CFG_NUM_THREADS; n++) { tee_mm_entry_t *mm = NULL; vaddr_t sp = 0; size_t num_pages = 0; struct fobj *fobj = NULL; /* Find vmem for thread stack and its protection gap */ mm = tee_mm_alloc(&core_virt_mem_pool, SMALL_PAGE_SIZE + STACK_THREAD_SIZE); assert(mm); /* Claim eventual physical page */ tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm), true); num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1; fobj = fobj_locked_paged_alloc(num_pages); /* Add the region to the pager */ tee_pager_add_core_region(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE, PAGED_REGION_TYPE_LOCK, fobj); fobj_put(fobj); /* init effective stack */ sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm); asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp); threads[n].stack_va_end = sp; } } #else static void init_thread_stacks(void) { vaddr_t va = 0; size_t n = 0; /* Assign the thread stacks */ for (n = 0; n < CFG_NUM_THREADS; n++) { va = GET_STACK_BOTTOM(stack_thread, n); threads[n].stack_va_end = va; if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) init_canaries(STACK_THREAD_SIZE, va); } } #endif /*CFG_WITH_PAGER*/ void thread_init_threads(void) { size_t n = 0; init_thread_stacks(); print_stack_limits(); pgt_init(); mutex_lockdep_init(); for (n = 0; n < CFG_NUM_THREADS; n++) TAILQ_INIT(&threads[n].tsd.sess_stack); } vaddr_t __nostackcheck thread_get_abt_stack(void) { return GET_STACK_BOTTOM(stack_abt, get_core_pos()); } #ifdef CFG_BOOT_INIT_CURRENT_THREAD_CORE_LOCAL void thread_init_thread_core_local(void) { struct thread_core_local *tcl = thread_core_local; const size_t core_pos = get_core_pos(); vaddr_t va = 0; size_t n = 0; for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) { if (n == core_pos) continue; /* Already initialized */ tcl[n].curr_thread = THREAD_ID_INVALID; tcl[n].flags = THREAD_CLF_TMP; va = GET_STACK_BOTTOM(stack_tmp, n); tcl[n].tmp_stack_va_end = va - STACK_TMP_OFFS; if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) init_canaries(STACK_TMP_SIZE, va); va = GET_STACK_BOTTOM(stack_abt, n); tcl[n].abt_stack_va_end = va; if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) init_canaries(STACK_ABT_SIZE, va); } } #else void __nostackcheck thread_init_thread_core_local(void) { size_t n = 0; struct thread_core_local *tcl = thread_core_local; for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) { tcl[n].curr_thread = THREAD_ID_INVALID; tcl[n].flags = THREAD_CLF_TMP; } tcl[0].tmp_stack_va_end = GET_STACK_BOTTOM(stack_tmp, 0); } void __nostackcheck thread_init_core_local_stacks(void) { size_t n = 0; struct thread_core_local *tcl = thread_core_local; for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) { tcl[n].tmp_stack_va_end = GET_STACK_BOTTOM(stack_tmp, n) - STACK_TMP_OFFS; tcl[n].abt_stack_va_end = GET_STACK_BOTTOM(stack_abt, n); } } #endif /*CFG_BOOT_INIT_CURRENT_THREAD_CORE_LOCAL*/ #if defined(CFG_CORE_PAUTH) void thread_init_thread_pauth_keys(void) { size_t n = 0; for (n = 0; n < CFG_NUM_THREADS; n++) if (crypto_rng_read(&threads[n].keys, sizeof(threads[n].keys))) panic("Failed to init thread pauth keys"); } void thread_init_core_local_pauth_keys(void) { struct thread_core_local *tcl = thread_core_local; size_t n = 0; for (n = 0; n < CFG_TEE_CORE_NB_CORE; n++) if (crypto_rng_read(&tcl[n].keys, sizeof(tcl[n].keys))) panic("Failed to init core local pauth keys"); } #endif struct thread_specific_data * __noprof thread_get_tsd(void) { return &threads[thread_get_id()].tsd; } struct thread_ctx_regs * __nostackcheck thread_get_ctx_regs(void) { struct thread_core_local *l = thread_get_core_local(); assert(l->curr_thread != THREAD_ID_INVALID); return &threads[l->curr_thread].regs; } void thread_set_foreign_intr(bool enable) { /* thread_get_core_local() requires foreign interrupts to be disabled */ uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); struct thread_core_local *l; l = thread_get_core_local(); assert(l->curr_thread != THREAD_ID_INVALID); if (enable) { threads[l->curr_thread].flags |= THREAD_FLAGS_FOREIGN_INTR_ENABLE; thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); } else { /* * No need to disable foreign interrupts here since they're * already disabled above. */ threads[l->curr_thread].flags &= ~THREAD_FLAGS_FOREIGN_INTR_ENABLE; } } void thread_restore_foreign_intr(void) { /* thread_get_core_local() requires foreign interrupts to be disabled */ uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR); struct thread_core_local *l; l = thread_get_core_local(); assert(l->curr_thread != THREAD_ID_INVALID); if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE) thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR); } static struct mobj *alloc_shm(enum thread_shm_type shm_type, size_t size) { switch (shm_type) { case THREAD_SHM_TYPE_APPLICATION: return thread_rpc_alloc_payload(size); case THREAD_SHM_TYPE_KERNEL_PRIVATE: return thread_rpc_alloc_kernel_payload(size); case THREAD_SHM_TYPE_GLOBAL: return thread_rpc_alloc_global_payload(size); default: return NULL; } } static void clear_shm_cache_entry(struct thread_shm_cache_entry *ce) { if (ce->mobj) { switch (ce->type) { case THREAD_SHM_TYPE_APPLICATION: thread_rpc_free_payload(ce->mobj); break; case THREAD_SHM_TYPE_KERNEL_PRIVATE: thread_rpc_free_kernel_payload(ce->mobj); break; case THREAD_SHM_TYPE_GLOBAL: thread_rpc_free_global_payload(ce->mobj); break; default: assert(0); /* "can't happen" */ break; } } ce->mobj = NULL; ce->size = 0; } static struct thread_shm_cache_entry * get_shm_cache_entry(enum thread_shm_cache_user user) { struct thread_shm_cache *cache = &threads[thread_get_id()].shm_cache; struct thread_shm_cache_entry *ce = NULL; SLIST_FOREACH(ce, cache, link) if (ce->user == user) return ce; ce = calloc(1, sizeof(*ce)); if (ce) { ce->user = user; SLIST_INSERT_HEAD(cache, ce, link); } return ce; } void *thread_rpc_shm_cache_alloc(enum thread_shm_cache_user user, enum thread_shm_type shm_type, size_t size, struct mobj **mobj) { struct thread_shm_cache_entry *ce = NULL; size_t sz = size; paddr_t p = 0; void *va = NULL; if (!size) return NULL; ce = get_shm_cache_entry(user); if (!ce) return NULL; /* * Always allocate in page chunks as normal world allocates payload * memory as complete pages. */ sz = ROUNDUP(size, SMALL_PAGE_SIZE); if (ce->type != shm_type || sz > ce->size) { clear_shm_cache_entry(ce); ce->mobj = alloc_shm(shm_type, sz); if (!ce->mobj) return NULL; if (mobj_get_pa(ce->mobj, 0, 0, &p)) goto err; if (!IS_ALIGNED_WITH_TYPE(p, uint64_t)) goto err; va = mobj_get_va(ce->mobj, 0, sz); if (!va) goto err; ce->size = sz; ce->type = shm_type; } else { va = mobj_get_va(ce->mobj, 0, sz); if (!va) goto err; } *mobj = ce->mobj; return va; err: clear_shm_cache_entry(ce); return NULL; } void thread_rpc_shm_cache_clear(struct thread_shm_cache *cache) { while (true) { struct thread_shm_cache_entry *ce = SLIST_FIRST(cache); if (!ce) break; SLIST_REMOVE_HEAD(cache, link); clear_shm_cache_entry(ce); free(ce); } }