// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2019, STMicroelectronics */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TIMEOUT_US_1MS 1000 #define SCMI_CLOCK_NAME_SIZE 16 #define SCMI_RD_NAME_SIZE 16 /* * struct stm32_scmi_clk - Data for the exposed clock * @clock_id: Clock identifier in RCC clock driver * @name: Clock string ID exposed to agent * @enabled: State of the SCMI clock */ struct stm32_scmi_clk { unsigned long clock_id; const char *name; bool enabled; }; /* * struct stm32_scmi_rd - Data for the exposed reset controller * @reset_id: Reset identifier in RCC reset driver * @name: Reset string ID exposed to agent */ struct stm32_scmi_rd { unsigned long reset_id; const char *name; }; /* Locate all non-secure SMT message buffers in last page of SYSRAM */ #define SMT_BUFFER_BASE CFG_STM32MP1_SCMI_SHM_BASE #define SMT_BUFFER0_BASE SMT_BUFFER_BASE #define SMT_BUFFER1_BASE (SMT_BUFFER_BASE + 0x200) #if (SMT_BUFFER1_BASE + SMT_BUF_SLOT_SIZE > \ CFG_STM32MP1_SCMI_SHM_BASE + CFG_STM32MP1_SCMI_SHM_SIZE) #error "SCMI shared memory mismatch" #endif register_phys_mem(MEM_AREA_IO_NSEC, CFG_STM32MP1_SCMI_SHM_BASE, CFG_STM32MP1_SCMI_SHM_SIZE); static struct scmi_msg_channel scmi_channel[] = { [0] = { .agent_name = "stm32mp1-agent-0", .shm_addr = { .pa = SMT_BUFFER0_BASE, }, .shm_size = SMT_BUF_SLOT_SIZE, }, [1] = { .agent_name = "stm32mp1-agent-1", .shm_addr = { .pa = SMT_BUFFER1_BASE, }, .shm_size = SMT_BUF_SLOT_SIZE, }, }; struct scmi_msg_channel *plat_scmi_get_channel(unsigned int agent_id) { assert(agent_id < ARRAY_SIZE(scmi_channel)); return &scmi_channel[agent_id]; } #define CLOCK_CELL(_scmi_id, _id, _name, _init_enabled) \ [_scmi_id] = { \ .clock_id = _id, \ .name = _name, \ .enabled = _init_enabled, \ } struct stm32_scmi_clk stm32_scmi0_clock[] = { CLOCK_CELL(CK_SCMI0_HSE, CK_HSE, "ck_hse", true), CLOCK_CELL(CK_SCMI0_HSI, CK_HSI, "ck_hsi", true), CLOCK_CELL(CK_SCMI0_CSI, CK_CSI, "ck_csi", true), CLOCK_CELL(CK_SCMI0_LSE, CK_LSE, "ck_lse", true), CLOCK_CELL(CK_SCMI0_LSI, CK_LSI, "ck_lsi", true), CLOCK_CELL(CK_SCMI0_PLL2_Q, PLL2_Q, "pll2_q", true), CLOCK_CELL(CK_SCMI0_PLL2_R, PLL2_R, "pll2_r", true), CLOCK_CELL(CK_SCMI0_MPU, CK_MPU, "ck_mpu", true), CLOCK_CELL(CK_SCMI0_AXI, CK_AXI, "ck_axi", true), CLOCK_CELL(CK_SCMI0_BSEC, BSEC, "bsec", true), CLOCK_CELL(CK_SCMI0_CRYP1, CRYP1, "cryp1", false), CLOCK_CELL(CK_SCMI0_GPIOZ, GPIOZ, "gpioz", false), CLOCK_CELL(CK_SCMI0_HASH1, HASH1, "hash1", false), CLOCK_CELL(CK_SCMI0_I2C4, I2C4_K, "i2c4_k", false), CLOCK_CELL(CK_SCMI0_I2C6, I2C6_K, "i2c6_k", false), CLOCK_CELL(CK_SCMI0_IWDG1, IWDG1, "iwdg1", false), CLOCK_CELL(CK_SCMI0_RNG1, RNG1_K, "rng1_k", true), CLOCK_CELL(CK_SCMI0_RTC, RTC, "ck_rtc", true), CLOCK_CELL(CK_SCMI0_RTCAPB, RTCAPB, "rtcapb", true), CLOCK_CELL(CK_SCMI0_SPI6, SPI6_K, "spi6_k", false), CLOCK_CELL(CK_SCMI0_USART1, USART1_K, "usart1_k", false), }; struct stm32_scmi_clk stm32_scmi1_clock[] = { CLOCK_CELL(CK_SCMI1_PLL3_Q, PLL3_Q, "pll3_q", true), CLOCK_CELL(CK_SCMI1_PLL3_R, PLL3_R, "pll3_r", true), CLOCK_CELL(CK_SCMI1_MCU, CK_MCU, "ck_mcu", false), }; #define RESET_CELL(_scmi_id, _id, _name) \ [_scmi_id] = { \ .reset_id = _id, \ .name = _name, \ } struct stm32_scmi_rd stm32_scmi0_reset_domain[] = { RESET_CELL(RST_SCMI0_SPI6, SPI6_R, "spi6"), RESET_CELL(RST_SCMI0_I2C4, I2C4_R, "i2c4"), RESET_CELL(RST_SCMI0_I2C6, I2C6_R, "i2c6"), RESET_CELL(RST_SCMI0_USART1, USART1_R, "usart1"), RESET_CELL(RST_SCMI0_STGEN, STGEN_R, "stgen"), RESET_CELL(RST_SCMI0_GPIOZ, GPIOZ_R, "gpioz"), RESET_CELL(RST_SCMI0_CRYP1, CRYP1_R, "cryp1"), RESET_CELL(RST_SCMI0_HASH1, HASH1_R, "hash1"), RESET_CELL(RST_SCMI0_RNG1, RNG1_R, "rng1"), RESET_CELL(RST_SCMI0_MDMA, MDMA_R, "mdma"), RESET_CELL(RST_SCMI0_MCU, MCU_R, "mcu"), }; struct scmi_agent_resources { struct stm32_scmi_clk *clock; size_t clock_count; struct stm32_scmi_rd *rd; size_t rd_count; struct stm32_scmi_pd *pd; size_t pd_count; struct stm32_scmi_perfs *perfs; size_t perfs_count; }; const struct scmi_agent_resources agent_resources[] = { [0] = { .clock = stm32_scmi0_clock, .clock_count = ARRAY_SIZE(stm32_scmi0_clock), .rd = stm32_scmi0_reset_domain, .rd_count = ARRAY_SIZE(stm32_scmi0_reset_domain), }, [1] = { .clock = stm32_scmi1_clock, .clock_count = ARRAY_SIZE(stm32_scmi1_clock), }, }; static const struct scmi_agent_resources *find_resource(unsigned int agent_id) { assert(agent_id < ARRAY_SIZE(agent_resources)); return &agent_resources[agent_id]; } static size_t __maybe_unused plat_scmi_protocol_count_paranoid(void) { unsigned int n = 0; unsigned int count = 0; const size_t agent_count = ARRAY_SIZE(agent_resources); for (n = 0; n < agent_count; n++) if (agent_resources[n].clock_count) break; if (n < agent_count) count++; for (n = 0; n < agent_count; n++) if (agent_resources[n].rd_count) break; if (n < agent_count) count++; for (n = 0; n < agent_count; n++) if (agent_resources[n].pd_count) break; if (n < agent_count) count++; for (n = 0; n < agent_count; n++) if (agent_resources[n].perfs_count) break; if (n < agent_count) count++; return count; } static const char vendor[] = "ST"; static const char sub_vendor[] = ""; const char *plat_scmi_vendor_name(void) { return vendor; } const char *plat_scmi_sub_vendor_name(void) { return sub_vendor; } /* Currently supporting Clocks and Reset Domains */ static const uint8_t plat_protocol_list[] = { SCMI_PROTOCOL_ID_CLOCK, SCMI_PROTOCOL_ID_RESET_DOMAIN, 0 /* Null termination */ }; size_t plat_scmi_protocol_count(void) { const size_t count = ARRAY_SIZE(plat_protocol_list) - 1; assert(count == plat_scmi_protocol_count_paranoid()); return count; } const uint8_t *plat_scmi_protocol_list(unsigned int agent_id __unused) { assert(plat_scmi_protocol_count_paranoid() == (ARRAY_SIZE(plat_protocol_list) - 1)); return plat_protocol_list; } /* * Platform SCMI clocks */ static struct stm32_scmi_clk *find_clock(unsigned int agent_id, unsigned int scmi_id) { const struct scmi_agent_resources *resource = find_resource(agent_id); size_t n = 0; if (resource) { for (n = 0U; n < resource->clock_count; n++) if (n == scmi_id) return &resource->clock[n]; } return NULL; } size_t plat_scmi_clock_count(unsigned int agent_id) { const struct scmi_agent_resources *resource = find_resource(agent_id); if (!resource) return 0; return resource->clock_count; } const char *plat_scmi_clock_get_name(unsigned int agent_id, unsigned int scmi_id) { struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id); if (!clock || !stm32mp_nsec_can_access_clock(clock->clock_id)) return NULL; return clock->name; } int32_t plat_scmi_clock_rates_array(unsigned int agent_id, unsigned int scmi_id, unsigned long *array, size_t *nb_elts) { struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id); if (!clock) return SCMI_NOT_FOUND; if (!stm32mp_nsec_can_access_clock(clock->clock_id)) return SCMI_DENIED; if (!array) *nb_elts = 1; else if (*nb_elts == 1) *array = stm32_clock_get_rate(clock->clock_id); else return SCMI_GENERIC_ERROR; return SCMI_SUCCESS; } unsigned long plat_scmi_clock_get_rate(unsigned int agent_id, unsigned int scmi_id) { struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id); if (!clock || !stm32mp_nsec_can_access_clock(clock->clock_id)) return 0; return stm32_clock_get_rate(clock->clock_id); } int32_t plat_scmi_clock_get_state(unsigned int agent_id, unsigned int scmi_id) { struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id); if (!clock || !stm32mp_nsec_can_access_clock(clock->clock_id)) return 0; return (int32_t)clock->enabled; } int32_t plat_scmi_clock_set_state(unsigned int agent_id, unsigned int scmi_id, bool enable_not_disable) { struct stm32_scmi_clk *clock = find_clock(agent_id, scmi_id); if (!clock) return SCMI_NOT_FOUND; if (!stm32mp_nsec_can_access_clock(clock->clock_id)) return SCMI_DENIED; if (enable_not_disable) { if (!clock->enabled) { DMSG("SCMI clock %u enable", scmi_id); stm32_clock_enable(clock->clock_id); clock->enabled = true; } } else { if (clock->enabled) { DMSG("SCMI clock %u disable", scmi_id); stm32_clock_disable(clock->clock_id); clock->enabled = false; } } return SCMI_SUCCESS; } /* * Platform SCMI reset domains */ static struct stm32_scmi_rd *find_rd(unsigned int agent_id, unsigned int scmi_id) { const struct scmi_agent_resources *resource = find_resource(agent_id); size_t n = 0; if (resource) { for (n = 0; n < resource->rd_count; n++) if (n == scmi_id) return &resource->rd[n]; } return NULL; } const char *plat_scmi_rd_get_name(unsigned int agent_id, unsigned int scmi_id) { const struct stm32_scmi_rd *rd = find_rd(agent_id, scmi_id); if (!rd) return NULL; return rd->name; } size_t plat_scmi_rd_count(unsigned int agent_id) { const struct scmi_agent_resources *resource = find_resource(agent_id); if (!resource) return 0; return resource->rd_count; } int32_t plat_scmi_rd_autonomous(unsigned int agent_id, unsigned int scmi_id, uint32_t state) { const struct stm32_scmi_rd *rd = find_rd(agent_id, scmi_id); if (!rd) return SCMI_NOT_FOUND; if (!stm32mp_nsec_can_access_reset(rd->reset_id)) return SCMI_DENIED; /* Supports only reset with context loss */ if (state) return SCMI_NOT_SUPPORTED; DMSG("SCMI reset %u cycle", scmi_id); if (stm32_reset_assert(rd->reset_id, TIMEOUT_US_1MS)) return SCMI_HARDWARE_ERROR; if (stm32_reset_deassert(rd->reset_id, TIMEOUT_US_1MS)) return SCMI_HARDWARE_ERROR; return SCMI_SUCCESS; } int32_t plat_scmi_rd_set_state(unsigned int agent_id, unsigned int scmi_id, bool assert_not_deassert) { const struct stm32_scmi_rd *rd = find_rd(agent_id, scmi_id); if (!rd) return SCMI_NOT_FOUND; if (!stm32mp_nsec_can_access_reset(rd->reset_id)) return SCMI_DENIED; if (assert_not_deassert) { DMSG("SCMI reset %u set", scmi_id); stm32_reset_set(rd->reset_id); } else { DMSG("SCMI reset %u release", scmi_id); stm32_reset_release(rd->reset_id); } return SCMI_SUCCESS; } /* * Initialize platform SCMI resources */ static TEE_Result stm32mp1_init_scmi_server(void) { size_t i = 0; size_t j = 0; for (i = 0; i < ARRAY_SIZE(scmi_channel); i++) { struct scmi_msg_channel *chan = &scmi_channel[i]; /* Enforce non-secure shm mapped as device memory */ chan->shm_addr.va = (vaddr_t)phys_to_virt(chan->shm_addr.pa, MEM_AREA_IO_NSEC); assert(chan->shm_addr.va); scmi_smt_init_agent_channel(chan); } for (i = 0; i < ARRAY_SIZE(agent_resources); i++) { const struct scmi_agent_resources *res = &agent_resources[i]; for (j = 0; j < res->clock_count; j++) { struct stm32_scmi_clk *clk = &res->clock[j]; if (!clk->name || strlen(clk->name) >= SCMI_CLOCK_NAME_SIZE) panic("SCMI clock name invalid"); /* Sync SCMI clocks with their targeted initial state */ if (clk->enabled && stm32mp_nsec_can_access_clock(clk->clock_id)) stm32_clock_enable(clk->clock_id); } for (j = 0; j < res->rd_count; j++) { struct stm32_scmi_rd *rd = &res->rd[j]; if (!rd->name || strlen(rd->name) >= SCMI_RD_NAME_SIZE) panic("SCMI reset domain name invalid"); } } return TEE_SUCCESS; } driver_init_late(stm32mp1_init_scmi_server);