// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2016, Linaro Limited * Copyright (c) 2014, STMicroelectronics International N.V. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct tee_pager_area_head tee_pager_area_head = TAILQ_HEAD_INITIALIZER(tee_pager_area_head); #define INVALID_PGIDX UINT_MAX #define PMEM_FLAG_DIRTY BIT(0) #define PMEM_FLAG_HIDDEN BIT(1) /* * struct tee_pager_pmem - Represents a physical page used for paging. * * @flags flags defined by PMEM_FLAG_* above * @fobj_pgidx index of the page in the @fobj * @fobj File object of which a page is made visible. * @va_alias Virtual address where the physical page always is aliased. * Used during remapping of the page when the content need to * be updated before it's available at the new location. */ struct tee_pager_pmem { unsigned int flags; unsigned int fobj_pgidx; struct fobj *fobj; void *va_alias; TAILQ_ENTRY(tee_pager_pmem) link; }; /* The list of physical pages. The first page in the list is the oldest */ TAILQ_HEAD(tee_pager_pmem_head, tee_pager_pmem); static struct tee_pager_pmem_head tee_pager_pmem_head = TAILQ_HEAD_INITIALIZER(tee_pager_pmem_head); static struct tee_pager_pmem_head tee_pager_lock_pmem_head = TAILQ_HEAD_INITIALIZER(tee_pager_lock_pmem_head); /* number of pages hidden */ #define TEE_PAGER_NHIDE (tee_pager_npages / 3) /* Number of registered physical pages, used hiding pages. */ static size_t tee_pager_npages; #ifdef CFG_WITH_STATS static struct tee_pager_stats pager_stats; static inline void incr_ro_hits(void) { pager_stats.ro_hits++; } static inline void incr_rw_hits(void) { pager_stats.rw_hits++; } static inline void incr_hidden_hits(void) { pager_stats.hidden_hits++; } static inline void incr_zi_released(void) { pager_stats.zi_released++; } static inline void incr_npages_all(void) { pager_stats.npages_all++; } static inline void set_npages(void) { pager_stats.npages = tee_pager_npages; } void tee_pager_get_stats(struct tee_pager_stats *stats) { *stats = pager_stats; pager_stats.hidden_hits = 0; pager_stats.ro_hits = 0; pager_stats.rw_hits = 0; pager_stats.zi_released = 0; } #else /* CFG_WITH_STATS */ static inline void incr_ro_hits(void) { } static inline void incr_rw_hits(void) { } static inline void incr_hidden_hits(void) { } static inline void incr_zi_released(void) { } static inline void incr_npages_all(void) { } static inline void set_npages(void) { } void tee_pager_get_stats(struct tee_pager_stats *stats) { memset(stats, 0, sizeof(struct tee_pager_stats)); } #endif /* CFG_WITH_STATS */ #define TBL_NUM_ENTRIES (CORE_MMU_PGDIR_SIZE / SMALL_PAGE_SIZE) #define TBL_LEVEL CORE_MMU_PGDIR_LEVEL #define TBL_SHIFT SMALL_PAGE_SHIFT #define EFFECTIVE_VA_SIZE \ (ROUNDUP(VCORE_START_VA + TEE_RAM_VA_SIZE, CORE_MMU_PGDIR_SIZE) - \ ROUNDDOWN(VCORE_START_VA, CORE_MMU_PGDIR_SIZE)) static struct pager_table { struct pgt pgt; struct core_mmu_table_info tbl_info; } *pager_tables; static unsigned int num_pager_tables; static unsigned pager_spinlock = SPINLOCK_UNLOCK; /* Defines the range of the alias area */ static tee_mm_entry_t *pager_alias_area; /* * Physical pages are added in a stack like fashion to the alias area, * @pager_alias_next_free gives the address of next free entry if * @pager_alias_next_free is != 0 */ static uintptr_t pager_alias_next_free; #ifdef CFG_TEE_CORE_DEBUG #define pager_lock(ai) pager_lock_dldetect(__func__, __LINE__, ai) static uint32_t pager_lock_dldetect(const char *func, const int line, struct abort_info *ai) { uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); unsigned int retries = 0; unsigned int reminder = 0; while (!cpu_spin_trylock(&pager_spinlock)) { retries++; if (!retries) { /* wrapped, time to report */ trace_printf(func, line, TRACE_ERROR, true, "possible spinlock deadlock reminder %u", reminder); if (reminder < UINT_MAX) reminder++; if (ai) abort_print(ai); } } return exceptions; } #else static uint32_t pager_lock(struct abort_info __unused *ai) { return cpu_spin_lock_xsave(&pager_spinlock); } #endif static uint32_t pager_lock_check_stack(size_t stack_size) { if (stack_size) { int8_t buf[stack_size]; size_t n; /* * Make sure to touch all pages of the stack that we expect * to use with this lock held. We need to take eventual * page faults before the lock is taken or we'll deadlock * the pager. The pages that are populated in this way will * eventually be released at certain save transitions of * the thread. */ for (n = 0; n < stack_size; n += SMALL_PAGE_SIZE) io_write8((vaddr_t)buf + n, 1); io_write8((vaddr_t)buf + stack_size - 1, 1); } return pager_lock(NULL); } static void pager_unlock(uint32_t exceptions) { cpu_spin_unlock_xrestore(&pager_spinlock, exceptions); } void *tee_pager_phys_to_virt(paddr_t pa) { struct core_mmu_table_info ti; unsigned idx; uint32_t a; paddr_t p; vaddr_t v; size_t n; /* * Most addresses are mapped lineary, try that first if possible. */ if (!tee_pager_get_table_info(pa, &ti)) return NULL; /* impossible pa */ idx = core_mmu_va2idx(&ti, pa); core_mmu_get_entry(&ti, idx, &p, &a); if ((a & TEE_MATTR_VALID_BLOCK) && p == pa) return (void *)core_mmu_idx2va(&ti, idx); n = 0; idx = core_mmu_va2idx(&pager_tables[n].tbl_info, TEE_RAM_VA_START); while (true) { while (idx < TBL_NUM_ENTRIES) { v = core_mmu_idx2va(&pager_tables[n].tbl_info, idx); if (v >= (TEE_RAM_VA_START + TEE_RAM_VA_SIZE)) return NULL; core_mmu_get_entry(&pager_tables[n].tbl_info, idx, &p, &a); if ((a & TEE_MATTR_VALID_BLOCK) && p == pa) return (void *)v; idx++; } n++; if (n >= num_pager_tables) return NULL; idx = 0; } return NULL; } static bool pmem_is_hidden(struct tee_pager_pmem *pmem) { return pmem->flags & PMEM_FLAG_HIDDEN; } static bool pmem_is_dirty(struct tee_pager_pmem *pmem) { return pmem->flags & PMEM_FLAG_DIRTY; } static bool pmem_is_covered_by_area(struct tee_pager_pmem *pmem, struct tee_pager_area *area) { if (pmem->fobj != area->fobj) return false; if (pmem->fobj_pgidx < area->fobj_pgoffs) return false; if ((pmem->fobj_pgidx - area->fobj_pgoffs) >= (area->size >> SMALL_PAGE_SHIFT)) return false; return true; } static size_t pmem_get_area_tblidx(struct tee_pager_pmem *pmem, struct tee_pager_area *area) { size_t tbloffs = (area->base & CORE_MMU_PGDIR_MASK) >> SMALL_PAGE_SHIFT; return pmem->fobj_pgidx - area->fobj_pgoffs + tbloffs; } static struct pager_table *find_pager_table_may_fail(vaddr_t va) { size_t n; const vaddr_t mask = CORE_MMU_PGDIR_MASK; if (!pager_tables) return NULL; n = ((va & ~mask) - pager_tables[0].tbl_info.va_base) >> CORE_MMU_PGDIR_SHIFT; if (n >= num_pager_tables) return NULL; assert(va >= pager_tables[n].tbl_info.va_base && va <= (pager_tables[n].tbl_info.va_base | mask)); return pager_tables + n; } static struct pager_table *find_pager_table(vaddr_t va) { struct pager_table *pt = find_pager_table_may_fail(va); assert(pt); return pt; } bool tee_pager_get_table_info(vaddr_t va, struct core_mmu_table_info *ti) { struct pager_table *pt = find_pager_table_may_fail(va); if (!pt) return false; *ti = pt->tbl_info; return true; } static struct core_mmu_table_info *find_table_info(vaddr_t va) { return &find_pager_table(va)->tbl_info; } static struct pgt *find_core_pgt(vaddr_t va) { return &find_pager_table(va)->pgt; } void tee_pager_set_alias_area(tee_mm_entry_t *mm) { struct pager_table *pt; unsigned idx; vaddr_t smem = tee_mm_get_smem(mm); size_t nbytes = tee_mm_get_bytes(mm); vaddr_t v; uint32_t a = 0; DMSG("0x%" PRIxVA " - 0x%" PRIxVA, smem, smem + nbytes); assert(!pager_alias_area); pager_alias_area = mm; pager_alias_next_free = smem; /* Clear all mapping in the alias area */ pt = find_pager_table(smem); idx = core_mmu_va2idx(&pt->tbl_info, smem); while (pt <= (pager_tables + num_pager_tables - 1)) { while (idx < TBL_NUM_ENTRIES) { v = core_mmu_idx2va(&pt->tbl_info, idx); if (v >= (smem + nbytes)) goto out; core_mmu_get_entry(&pt->tbl_info, idx, NULL, &a); core_mmu_set_entry(&pt->tbl_info, idx, 0, 0); if (a & TEE_MATTR_VALID_BLOCK) pgt_dec_used_entries(&pt->pgt); idx++; } pt++; idx = 0; } out: tlbi_mva_range(smem, nbytes, SMALL_PAGE_SIZE); } static size_t tbl_usage_count(struct core_mmu_table_info *ti) { size_t n; uint32_t a = 0; size_t usage = 0; for (n = 0; n < ti->num_entries; n++) { core_mmu_get_entry(ti, n, NULL, &a); if (a & TEE_MATTR_VALID_BLOCK) usage++; } return usage; } static void area_get_entry(struct tee_pager_area *area, size_t idx, paddr_t *pa, uint32_t *attr) { assert(area->pgt); assert(idx < TBL_NUM_ENTRIES); core_mmu_get_entry_primitive(area->pgt->tbl, TBL_LEVEL, idx, pa, attr); } static void area_set_entry(struct tee_pager_area *area, size_t idx, paddr_t pa, uint32_t attr) { assert(area->pgt); assert(idx < TBL_NUM_ENTRIES); core_mmu_set_entry_primitive(area->pgt->tbl, TBL_LEVEL, idx, pa, attr); } static size_t area_va2idx(struct tee_pager_area *area, vaddr_t va) { return (va - (area->base & ~CORE_MMU_PGDIR_MASK)) >> SMALL_PAGE_SHIFT; } static vaddr_t area_idx2va(struct tee_pager_area *area, size_t idx) { return (idx << SMALL_PAGE_SHIFT) + (area->base & ~CORE_MMU_PGDIR_MASK); } static void area_tlbi_entry(struct tee_pager_area *area, size_t idx) { vaddr_t va = area_idx2va(area, idx); #if defined(CFG_PAGED_USER_TA) assert(area->pgt); if (area->pgt->ctx) { uint32_t asid = to_user_mode_ctx(area->pgt->ctx)->vm_info.asid; tlbi_mva_asid(va, asid); return; } #endif tlbi_mva_allasid(va); } static void pmem_unmap(struct tee_pager_pmem *pmem, struct pgt *only_this_pgt) { struct tee_pager_area *area = NULL; size_t tblidx = 0; uint32_t a = 0; TAILQ_FOREACH(area, &pmem->fobj->areas, fobj_link) { /* * If only_this_pgt points to a pgt then the pgt of this * area has to match or we'll skip over it. */ if (only_this_pgt && area->pgt != only_this_pgt) continue; if (!area->pgt || !pmem_is_covered_by_area(pmem, area)) continue; tblidx = pmem_get_area_tblidx(pmem, area); area_get_entry(area, tblidx, NULL, &a); if (a & TEE_MATTR_VALID_BLOCK) { area_set_entry(area, tblidx, 0, 0); pgt_dec_used_entries(area->pgt); area_tlbi_entry(area, tblidx); } } } void tee_pager_early_init(void) { size_t n = 0; num_pager_tables = EFFECTIVE_VA_SIZE / CORE_MMU_PGDIR_SIZE; pager_tables = calloc(num_pager_tables, sizeof(*pager_tables)); if (!pager_tables) panic("Cannot allocate pager_tables"); /* * Note that this depends on add_pager_vaspace() adding vaspace * after end of memory. */ for (n = 0; n < num_pager_tables; n++) { if (!core_mmu_find_table(NULL, VCORE_START_VA + n * CORE_MMU_PGDIR_SIZE, UINT_MAX, &pager_tables[n].tbl_info)) panic("can't find mmu tables"); if (pager_tables[n].tbl_info.shift != TBL_SHIFT) panic("Unsupported page size in translation table"); assert(pager_tables[n].tbl_info.num_entries == TBL_NUM_ENTRIES); assert(pager_tables[n].tbl_info.level == TBL_LEVEL); pager_tables[n].pgt.tbl = pager_tables[n].tbl_info.table; pgt_set_used_entries(&pager_tables[n].pgt, tbl_usage_count(&pager_tables[n].tbl_info)); } } static void *pager_add_alias_page(paddr_t pa) { unsigned idx; struct core_mmu_table_info *ti; /* Alias pages mapped without write permission: runtime will care */ uint32_t attr = TEE_MATTR_VALID_BLOCK | (TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT) | TEE_MATTR_SECURE | TEE_MATTR_PR; DMSG("0x%" PRIxPA, pa); ti = find_table_info(pager_alias_next_free); idx = core_mmu_va2idx(ti, pager_alias_next_free); core_mmu_set_entry(ti, idx, pa, attr); pgt_inc_used_entries(find_core_pgt(pager_alias_next_free)); pager_alias_next_free += SMALL_PAGE_SIZE; if (pager_alias_next_free >= (tee_mm_get_smem(pager_alias_area) + tee_mm_get_bytes(pager_alias_area))) pager_alias_next_free = 0; return (void *)core_mmu_idx2va(ti, idx); } static void area_insert(struct tee_pager_area_head *head, struct tee_pager_area *area, struct tee_pager_area *a_prev) { uint32_t exceptions = pager_lock_check_stack(8); if (a_prev) TAILQ_INSERT_AFTER(head, a_prev, area, link); else TAILQ_INSERT_HEAD(head, area, link); TAILQ_INSERT_TAIL(&area->fobj->areas, area, fobj_link); pager_unlock(exceptions); } DECLARE_KEEP_PAGER(area_insert); void tee_pager_add_core_area(vaddr_t base, enum tee_pager_area_type type, struct fobj *fobj) { struct tee_pager_area *area = NULL; uint32_t flags = 0; size_t fobj_pgoffs = 0; vaddr_t b = base; size_t s = 0; size_t s2 = 0; assert(fobj); s = fobj->num_pages * SMALL_PAGE_SIZE; DMSG("0x%" PRIxPTR " - 0x%" PRIxPTR " : type %d", base, base + s, type); if (base & SMALL_PAGE_MASK || !s) { EMSG("invalid pager area [%" PRIxVA " +0x%zx]", base, s); panic(); } switch (type) { case PAGER_AREA_TYPE_RO: flags = TEE_MATTR_PRX; break; case PAGER_AREA_TYPE_RW: case PAGER_AREA_TYPE_LOCK: flags = TEE_MATTR_PRW; break; default: panic(); } while (s) { s2 = MIN(CORE_MMU_PGDIR_SIZE - (b & CORE_MMU_PGDIR_MASK), s); area = calloc(1, sizeof(*area)); if (!area) panic("alloc_area"); area->fobj = fobj_get(fobj); area->fobj_pgoffs = fobj_pgoffs; area->type = type; area->pgt = find_core_pgt(b); area->base = b; area->size = s2; area->flags = flags; area_insert(&tee_pager_area_head, area, NULL); b += s2; s -= s2; fobj_pgoffs += s2 / SMALL_PAGE_SIZE; } } static struct tee_pager_area *find_area(struct tee_pager_area_head *areas, vaddr_t va) { struct tee_pager_area *area; if (!areas) return NULL; TAILQ_FOREACH(area, areas, link) { if (core_is_buffer_inside(va, 1, area->base, area->size)) return area; } return NULL; } #ifdef CFG_PAGED_USER_TA static struct tee_pager_area *find_uta_area(vaddr_t va) { struct ts_ctx *ctx = thread_get_tsd()->ctx; if (!is_user_mode_ctx(ctx)) return NULL; return find_area(to_user_mode_ctx(ctx)->areas, va); } #else static struct tee_pager_area *find_uta_area(vaddr_t va __unused) { return NULL; } #endif /*CFG_PAGED_USER_TA*/ static uint32_t get_area_mattr(uint32_t area_flags) { uint32_t attr = TEE_MATTR_VALID_BLOCK | TEE_MATTR_SECURE | TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT | (area_flags & (TEE_MATTR_PRWX | TEE_MATTR_URWX)); return attr; } static paddr_t get_pmem_pa(struct tee_pager_pmem *pmem) { struct core_mmu_table_info *ti; paddr_t pa; unsigned idx; ti = find_table_info((vaddr_t)pmem->va_alias); idx = core_mmu_va2idx(ti, (vaddr_t)pmem->va_alias); core_mmu_get_entry(ti, idx, &pa, NULL); return pa; } static void tee_pager_load_page(struct tee_pager_area *area, vaddr_t page_va, void *va_alias) { size_t fobj_pgoffs = ((page_va - area->base) >> SMALL_PAGE_SHIFT) + area->fobj_pgoffs; struct core_mmu_table_info *ti; uint32_t attr_alias; paddr_t pa_alias; unsigned int idx_alias; /* Insure we are allowed to write to aliased virtual page */ ti = find_table_info((vaddr_t)va_alias); idx_alias = core_mmu_va2idx(ti, (vaddr_t)va_alias); core_mmu_get_entry(ti, idx_alias, &pa_alias, &attr_alias); if (!(attr_alias & TEE_MATTR_PW)) { attr_alias |= TEE_MATTR_PW; core_mmu_set_entry(ti, idx_alias, pa_alias, attr_alias); tlbi_mva_allasid((vaddr_t)va_alias); } asan_tag_access(va_alias, (uint8_t *)va_alias + SMALL_PAGE_SIZE); if (fobj_load_page(area->fobj, fobj_pgoffs, va_alias)) { EMSG("PH 0x%" PRIxVA " failed", page_va); panic(); } switch (area->type) { case PAGER_AREA_TYPE_RO: incr_ro_hits(); /* Forbid write to aliases for read-only (maybe exec) pages */ attr_alias &= ~TEE_MATTR_PW; core_mmu_set_entry(ti, idx_alias, pa_alias, attr_alias); tlbi_mva_allasid((vaddr_t)va_alias); break; case PAGER_AREA_TYPE_RW: incr_rw_hits(); break; case PAGER_AREA_TYPE_LOCK: break; default: panic(); } asan_tag_no_access(va_alias, (uint8_t *)va_alias + SMALL_PAGE_SIZE); } static void tee_pager_save_page(struct tee_pager_pmem *pmem) { if (pmem_is_dirty(pmem)) { asan_tag_access(pmem->va_alias, (uint8_t *)pmem->va_alias + SMALL_PAGE_SIZE); if (fobj_save_page(pmem->fobj, pmem->fobj_pgidx, pmem->va_alias)) panic("fobj_save_page"); asan_tag_no_access(pmem->va_alias, (uint8_t *)pmem->va_alias + SMALL_PAGE_SIZE); } } #ifdef CFG_PAGED_USER_TA static void unlink_area(struct tee_pager_area_head *area_head, struct tee_pager_area *area) { uint32_t exceptions = pager_lock_check_stack(64); TAILQ_REMOVE(area_head, area, link); TAILQ_REMOVE(&area->fobj->areas, area, fobj_link); pager_unlock(exceptions); } DECLARE_KEEP_PAGER(unlink_area); static void free_area(struct tee_pager_area *area) { fobj_put(area->fobj); free(area); } static TEE_Result pager_add_um_area(struct user_mode_ctx *uctx, vaddr_t base, struct fobj *fobj, uint32_t prot) { struct tee_pager_area *a_prev = NULL; struct tee_pager_area *area = NULL; vaddr_t b = base; size_t fobj_pgoffs = 0; size_t s = fobj->num_pages * SMALL_PAGE_SIZE; if (!uctx->areas) { uctx->areas = malloc(sizeof(*uctx->areas)); if (!uctx->areas) return TEE_ERROR_OUT_OF_MEMORY; TAILQ_INIT(uctx->areas); } area = TAILQ_FIRST(uctx->areas); while (area) { if (core_is_buffer_intersect(b, s, area->base, area->size)) return TEE_ERROR_BAD_PARAMETERS; if (b < area->base) break; a_prev = area; area = TAILQ_NEXT(area, link); } while (s) { size_t s2; s2 = MIN(CORE_MMU_PGDIR_SIZE - (b & CORE_MMU_PGDIR_MASK), s); area = calloc(1, sizeof(*area)); if (!area) return TEE_ERROR_OUT_OF_MEMORY; /* Table info will be set when the context is activated. */ area->fobj = fobj_get(fobj); area->fobj_pgoffs = fobj_pgoffs; area->type = PAGER_AREA_TYPE_RW; area->base = b; area->size = s2; area->flags = prot; area_insert(uctx->areas, area, a_prev); a_prev = area; b += s2; s -= s2; fobj_pgoffs += s2 / SMALL_PAGE_SIZE; } return TEE_SUCCESS; } TEE_Result tee_pager_add_um_area(struct user_mode_ctx *uctx, vaddr_t base, struct fobj *fobj, uint32_t prot) { TEE_Result res = TEE_SUCCESS; struct thread_specific_data *tsd = thread_get_tsd(); struct tee_pager_area *area = NULL; struct core_mmu_table_info dir_info = { NULL }; if (uctx->ts_ctx != tsd->ctx) { /* * Changes are to an utc that isn't active. Just add the * areas page tables will be dealt with later. */ return pager_add_um_area(uctx, base, fobj, prot); } /* * Assign page tables before adding areas to be able to tell which * are newly added and should be removed in case of failure. */ tee_pager_assign_um_tables(uctx); res = pager_add_um_area(uctx, base, fobj, prot); if (res) { struct tee_pager_area *next_a; /* Remove all added areas */ TAILQ_FOREACH_SAFE(area, uctx->areas, link, next_a) { if (!area->pgt) { unlink_area(uctx->areas, area); free_area(area); } } return res; } /* * Assign page tables to the new areas and make sure that the page * tables are registered in the upper table. */ tee_pager_assign_um_tables(uctx); core_mmu_get_user_pgdir(&dir_info); TAILQ_FOREACH(area, uctx->areas, link) { paddr_t pa; size_t idx; uint32_t attr; idx = core_mmu_va2idx(&dir_info, area->pgt->vabase); core_mmu_get_entry(&dir_info, idx, &pa, &attr); /* * Check if the page table already is used, if it is, it's * already registered. */ if (area->pgt->num_used_entries) { assert(attr & TEE_MATTR_TABLE); assert(pa == virt_to_phys(area->pgt->tbl)); continue; } attr = TEE_MATTR_SECURE | TEE_MATTR_TABLE; pa = virt_to_phys(area->pgt->tbl); assert(pa); /* * Note that the update of the table entry is guaranteed to * be atomic. */ core_mmu_set_entry(&dir_info, idx, pa, attr); } return TEE_SUCCESS; } static void split_area(struct tee_pager_area_head *area_head, struct tee_pager_area *area, struct tee_pager_area *a2, vaddr_t va) { uint32_t exceptions = pager_lock_check_stack(64); size_t diff = va - area->base; a2->fobj = fobj_get(area->fobj); a2->fobj_pgoffs = area->fobj_pgoffs + diff / SMALL_PAGE_SIZE; a2->type = area->type; a2->flags = area->flags; a2->base = va; a2->size = area->size - diff; a2->pgt = area->pgt; area->size = diff; TAILQ_INSERT_AFTER(area_head, area, a2, link); TAILQ_INSERT_AFTER(&area->fobj->areas, area, a2, fobj_link); pager_unlock(exceptions); } DECLARE_KEEP_PAGER(split_area); TEE_Result tee_pager_split_um_region(struct user_mode_ctx *uctx, vaddr_t va) { struct tee_pager_area *area = NULL; struct tee_pager_area *a2 = NULL; if (va & SMALL_PAGE_MASK) return TEE_ERROR_BAD_PARAMETERS; TAILQ_FOREACH(area, uctx->areas, link) { if (va == area->base || va == area->base + area->size) return TEE_SUCCESS; if (va > area->base && va < area->base + area->size) { a2 = calloc(1, sizeof(*a2)); if (!a2) return TEE_ERROR_OUT_OF_MEMORY; split_area(uctx->areas, area, a2, va); return TEE_SUCCESS; } } return TEE_SUCCESS; } static void merge_area_with_next(struct tee_pager_area_head *area_head, struct tee_pager_area *a, struct tee_pager_area *a_next) { uint32_t exceptions = pager_lock_check_stack(64); TAILQ_REMOVE(area_head, a_next, link); TAILQ_REMOVE(&a_next->fobj->areas, a_next, fobj_link); a->size += a_next->size; pager_unlock(exceptions); } DECLARE_KEEP_PAGER(merge_area_with_next); void tee_pager_merge_um_region(struct user_mode_ctx *uctx, vaddr_t va, size_t len) { struct tee_pager_area *a_next = NULL; struct tee_pager_area *a = NULL; vaddr_t end_va = 0; if ((va | len) & SMALL_PAGE_MASK) return; if (ADD_OVERFLOW(va, len, &end_va)) return; for (a = TAILQ_FIRST(uctx->areas);; a = a_next) { a_next = TAILQ_NEXT(a, link); if (!a_next) return; /* Try merging with the area just before va */ if (a->base + a->size < va) continue; /* * If a->base is well past our range we're done. * Note that if it's just the page after our range we'll * try to merge. */ if (a->base > end_va) return; if (a->base + a->size != a_next->base) continue; if (a->fobj != a_next->fobj || a->type != a_next->type || a->flags != a_next->flags || a->pgt != a_next->pgt) continue; if (a->fobj_pgoffs + a->size / SMALL_PAGE_SIZE != a_next->fobj_pgoffs) continue; merge_area_with_next(uctx->areas, a, a_next); free_area(a_next); a_next = a; } } static void rem_area(struct tee_pager_area_head *area_head, struct tee_pager_area *area) { struct tee_pager_pmem *pmem; size_t last_pgoffs = area->fobj_pgoffs + (area->size >> SMALL_PAGE_SHIFT) - 1; uint32_t exceptions; size_t idx = 0; uint32_t a = 0; exceptions = pager_lock_check_stack(64); TAILQ_REMOVE(area_head, area, link); TAILQ_REMOVE(&area->fobj->areas, area, fobj_link); TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) { if (pmem->fobj != area->fobj || pmem->fobj_pgidx < area->fobj_pgoffs || pmem->fobj_pgidx > last_pgoffs) continue; idx = pmem_get_area_tblidx(pmem, area); area_get_entry(area, idx, NULL, &a); if (!(a & TEE_MATTR_VALID_BLOCK)) continue; area_set_entry(area, idx, 0, 0); area_tlbi_entry(area, idx); pgt_dec_used_entries(area->pgt); } pager_unlock(exceptions); free_area(area); } DECLARE_KEEP_PAGER(rem_area); void tee_pager_rem_um_region(struct user_mode_ctx *uctx, vaddr_t base, size_t size) { struct tee_pager_area *area; struct tee_pager_area *next_a; size_t s = ROUNDUP(size, SMALL_PAGE_SIZE); TAILQ_FOREACH_SAFE(area, uctx->areas, link, next_a) { if (core_is_buffer_inside(area->base, area->size, base, s)) rem_area(uctx->areas, area); } tlbi_asid(uctx->vm_info.asid); } void tee_pager_rem_um_areas(struct user_mode_ctx *uctx) { struct tee_pager_area *area = NULL; if (!uctx->areas) return; while (true) { area = TAILQ_FIRST(uctx->areas); if (!area) break; unlink_area(uctx->areas, area); free_area(area); } free(uctx->areas); } static bool __maybe_unused same_context(struct tee_pager_pmem *pmem) { struct tee_pager_area *a = TAILQ_FIRST(&pmem->fobj->areas); void *ctx = a->pgt->ctx; do { a = TAILQ_NEXT(a, fobj_link); if (!a) return true; } while (a->pgt->ctx == ctx); return false; } bool tee_pager_set_um_area_attr(struct user_mode_ctx *uctx, vaddr_t base, size_t size, uint32_t flags) { bool ret = false; vaddr_t b = base; size_t s = size; size_t s2 = 0; struct tee_pager_area *area = find_area(uctx->areas, b); uint32_t exceptions = 0; struct tee_pager_pmem *pmem = NULL; uint32_t a = 0; uint32_t f = 0; uint32_t mattr = 0; uint32_t f2 = 0; size_t tblidx = 0; f = (flags & TEE_MATTR_URWX) | TEE_MATTR_UR | TEE_MATTR_PR; if (f & TEE_MATTR_UW) f |= TEE_MATTR_PW; mattr = get_area_mattr(f); exceptions = pager_lock_check_stack(SMALL_PAGE_SIZE); while (s) { s2 = MIN(CORE_MMU_PGDIR_SIZE - (b & CORE_MMU_PGDIR_MASK), s); if (!area || area->base != b || area->size != s2) { ret = false; goto out; } b += s2; s -= s2; if (area->flags == f) goto next_area; TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) { if (!pmem_is_covered_by_area(pmem, area)) continue; tblidx = pmem_get_area_tblidx(pmem, area); area_get_entry(area, tblidx, NULL, &a); if (a == f) continue; area_set_entry(area, tblidx, 0, 0); area_tlbi_entry(area, tblidx); pmem->flags &= ~PMEM_FLAG_HIDDEN; if (pmem_is_dirty(pmem)) f2 = mattr; else f2 = mattr & ~(TEE_MATTR_UW | TEE_MATTR_PW); area_set_entry(area, tblidx, get_pmem_pa(pmem), f2); if (!(a & TEE_MATTR_VALID_BLOCK)) pgt_inc_used_entries(area->pgt); /* * Make sure the table update is visible before * continuing. */ dsb_ishst(); /* * Here's a problem if this page already is shared. * We need do icache invalidate for each context * in which it is shared. In practice this will * never happen. */ if (flags & TEE_MATTR_UX) { void *va = (void *)area_idx2va(area, tblidx); /* Assert that the pmem isn't shared. */ assert(same_context(pmem)); dcache_clean_range_pou(va, SMALL_PAGE_SIZE); icache_inv_user_range(va, SMALL_PAGE_SIZE); } } area->flags = f; next_area: area = TAILQ_NEXT(area, link); } ret = true; out: pager_unlock(exceptions); return ret; } DECLARE_KEEP_PAGER(tee_pager_set_um_area_attr); #endif /*CFG_PAGED_USER_TA*/ void tee_pager_invalidate_fobj(struct fobj *fobj) { struct tee_pager_pmem *pmem; uint32_t exceptions; exceptions = pager_lock_check_stack(64); TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) { if (pmem->fobj == fobj) { pmem->fobj = NULL; pmem->fobj_pgidx = INVALID_PGIDX; } } pager_unlock(exceptions); } DECLARE_KEEP_PAGER(tee_pager_invalidate_fobj); static struct tee_pager_pmem *pmem_find(struct tee_pager_area *area, unsigned int tblidx) { struct tee_pager_pmem *pmem = NULL; TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) if (pmem->fobj == area->fobj && pmem_get_area_tblidx(pmem, area) == tblidx) return pmem; return NULL; } static bool tee_pager_unhide_page(struct tee_pager_area *area, unsigned int tblidx) { struct tee_pager_pmem *pmem = pmem_find(area, tblidx); uint32_t a = get_area_mattr(area->flags); uint32_t attr = 0; paddr_t pa = 0; if (!pmem) return false; area_get_entry(area, tblidx, NULL, &attr); if (attr & TEE_MATTR_VALID_BLOCK) return false; /* * The page is hidden, or not not mapped yet. Unhide the page and * move it to the tail. * * Since the page isn't mapped there doesn't exist a valid TLB entry * for this address, so no TLB invalidation is required after setting * the new entry. A DSB is needed though, to make the write visible. * * For user executable pages it's more complicated. Those pages can * be shared between multiple TA mappings and thus populated by * another TA. The reference manual states that: * * "instruction cache maintenance is required only after writing * new data to a physical address that holds an instruction." * * So for hidden pages we would not need to invalidate i-cache, but * for newly populated pages we do. Since we don't know which we * have to assume the worst and always invalidate the i-cache. We * don't need to clean the d-cache though, since that has already * been done earlier. * * Additional bookkeeping to tell if the i-cache invalidation is * needed or not is left as a future optimization. */ /* If it's not a dirty block, then it should be read only. */ if (!pmem_is_dirty(pmem)) a &= ~(TEE_MATTR_PW | TEE_MATTR_UW); pa = get_pmem_pa(pmem); pmem->flags &= ~PMEM_FLAG_HIDDEN; if (area->flags & TEE_MATTR_UX) { void *va = (void *)area_idx2va(area, tblidx); /* Set a temporary read-only mapping */ assert(!(a & (TEE_MATTR_UW | TEE_MATTR_PW))); area_set_entry(area, tblidx, pa, a & ~TEE_MATTR_UX); dsb_ishst(); icache_inv_user_range(va, SMALL_PAGE_SIZE); /* Set the final mapping */ area_set_entry(area, tblidx, pa, a); area_tlbi_entry(area, tblidx); } else { area_set_entry(area, tblidx, pa, a); dsb_ishst(); } pgt_inc_used_entries(area->pgt); TAILQ_REMOVE(&tee_pager_pmem_head, pmem, link); TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link); incr_hidden_hits(); return true; } static void tee_pager_hide_pages(void) { struct tee_pager_pmem *pmem = NULL; size_t n = 0; TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) { if (n >= TEE_PAGER_NHIDE) break; n++; /* we cannot hide pages when pmem->fobj is not defined. */ if (!pmem->fobj) continue; if (pmem_is_hidden(pmem)) continue; pmem->flags |= PMEM_FLAG_HIDDEN; pmem_unmap(pmem, NULL); } } static unsigned int __maybe_unused num_areas_with_pmem(struct tee_pager_pmem *pmem) { struct tee_pager_area *a = NULL; unsigned int num_matches = 0; TAILQ_FOREACH(a, &pmem->fobj->areas, fobj_link) if (pmem_is_covered_by_area(pmem, a)) num_matches++; return num_matches; } /* * Find mapped pmem, hide and move to pageble pmem. * Return false if page was not mapped, and true if page was mapped. */ static bool tee_pager_release_one_phys(struct tee_pager_area *area, vaddr_t page_va) { struct tee_pager_pmem *pmem; size_t tblidx = 0; size_t pgidx = area_va2idx(area, page_va) + area->fobj_pgoffs - ((area->base & CORE_MMU_PGDIR_MASK) >> SMALL_PAGE_SHIFT); TAILQ_FOREACH(pmem, &tee_pager_lock_pmem_head, link) { if (pmem->fobj != area->fobj || pmem->fobj_pgidx != pgidx) continue; /* * Locked pages may not be shared. We're asserting that the * number of areas using this pmem is one and only one as * we're about to unmap it. */ assert(num_areas_with_pmem(pmem) == 1); tblidx = pmem_get_area_tblidx(pmem, area); area_set_entry(area, tblidx, 0, 0); pgt_dec_used_entries(area->pgt); TAILQ_REMOVE(&tee_pager_lock_pmem_head, pmem, link); pmem->fobj = NULL; pmem->fobj_pgidx = INVALID_PGIDX; tee_pager_npages++; set_npages(); TAILQ_INSERT_HEAD(&tee_pager_pmem_head, pmem, link); incr_zi_released(); return true; } return false; } /* Finds the oldest page and unmaps it from all tables */ static struct tee_pager_pmem *tee_pager_get_page(enum tee_pager_area_type at) { struct tee_pager_pmem *pmem; pmem = TAILQ_FIRST(&tee_pager_pmem_head); if (!pmem) { EMSG("No pmem entries"); return NULL; } if (pmem->fobj) { pmem_unmap(pmem, NULL); tee_pager_save_page(pmem); } TAILQ_REMOVE(&tee_pager_pmem_head, pmem, link); pmem->fobj = NULL; pmem->fobj_pgidx = INVALID_PGIDX; pmem->flags = 0; if (at == PAGER_AREA_TYPE_LOCK) { /* Move page to lock list */ if (tee_pager_npages <= 0) panic("running out of page"); tee_pager_npages--; set_npages(); TAILQ_INSERT_TAIL(&tee_pager_lock_pmem_head, pmem, link); } else { /* move page to back */ TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link); } return pmem; } static bool pager_update_permissions(struct tee_pager_area *area, struct abort_info *ai, bool *handled) { unsigned int pgidx = area_va2idx(area, ai->va); struct tee_pager_pmem *pmem = NULL; uint32_t attr = 0; paddr_t pa = 0; *handled = false; area_get_entry(area, pgidx, &pa, &attr); /* Not mapped */ if (!(attr & TEE_MATTR_VALID_BLOCK)) return false; /* Not readable, should not happen */ if (abort_is_user_exception(ai)) { if (!(attr & TEE_MATTR_UR)) return true; } else { if (!(attr & TEE_MATTR_PR)) { abort_print_error(ai); panic(); } } switch (core_mmu_get_fault_type(ai->fault_descr)) { case CORE_MMU_FAULT_TRANSLATION: case CORE_MMU_FAULT_READ_PERMISSION: if (ai->abort_type == ABORT_TYPE_PREFETCH) { /* Check attempting to execute from an NOX page */ if (abort_is_user_exception(ai)) { if (!(attr & TEE_MATTR_UX)) return true; } else { if (!(attr & TEE_MATTR_PX)) { abort_print_error(ai); panic(); } } } /* Since the page is mapped now it's OK */ break; case CORE_MMU_FAULT_WRITE_PERMISSION: /* Check attempting to write to an RO page */ pmem = pmem_find(area, pgidx); if (!pmem) panic(); if (abort_is_user_exception(ai)) { if (!(area->flags & TEE_MATTR_UW)) return true; if (!(attr & TEE_MATTR_UW)) { FMSG("Dirty %p", (void *)(ai->va & ~SMALL_PAGE_MASK)); pmem->flags |= PMEM_FLAG_DIRTY; area_set_entry(area, pgidx, pa, get_area_mattr(area->flags)); area_tlbi_entry(area, pgidx); } } else { if (!(area->flags & TEE_MATTR_PW)) { abort_print_error(ai); panic(); } if (!(attr & TEE_MATTR_PW)) { FMSG("Dirty %p", (void *)(ai->va & ~SMALL_PAGE_MASK)); pmem->flags |= PMEM_FLAG_DIRTY; area_set_entry(area, pgidx, pa, get_area_mattr(area->flags)); tlbi_mva_allasid(ai->va & ~SMALL_PAGE_MASK); } } /* Since permissions has been updated now it's OK */ break; default: /* Some fault we can't deal with */ if (abort_is_user_exception(ai)) return true; abort_print_error(ai); panic(); } *handled = true; return true; } #ifdef CFG_TEE_CORE_DEBUG static void stat_handle_fault(void) { static size_t num_faults; static size_t min_npages = SIZE_MAX; static size_t total_min_npages = SIZE_MAX; num_faults++; if ((num_faults % 1024) == 0 || tee_pager_npages < total_min_npages) { DMSG("nfaults %zu npages %zu (min %zu)", num_faults, tee_pager_npages, min_npages); min_npages = tee_pager_npages; /* reset */ } if (tee_pager_npages < min_npages) min_npages = tee_pager_npages; if (tee_pager_npages < total_min_npages) total_min_npages = tee_pager_npages; } #else static void stat_handle_fault(void) { } #endif bool tee_pager_handle_fault(struct abort_info *ai) { struct tee_pager_area *area; vaddr_t page_va = ai->va & ~SMALL_PAGE_MASK; uint32_t exceptions; bool ret; bool clean_user_cache = false; #ifdef TEE_PAGER_DEBUG_PRINT if (!abort_is_user_exception(ai)) abort_print(ai); #endif /* * We're updating pages that can affect several active CPUs at a * time below. We end up here because a thread tries to access some * memory that isn't available. We have to be careful when making * that memory available as other threads may succeed in accessing * that address the moment after we've made it available. * * That means that we can't just map the memory and populate the * page, instead we use the aliased mapping to populate the page * and once everything is ready we map it. */ exceptions = pager_lock(ai); stat_handle_fault(); /* check if the access is valid */ if (abort_is_user_exception(ai)) { area = find_uta_area(ai->va); clean_user_cache = true; } else { area = find_area(&tee_pager_area_head, ai->va); if (!area) { area = find_uta_area(ai->va); clean_user_cache = true; } } if (!area || !area->pgt) { ret = false; goto out; } if (!tee_pager_unhide_page(area, area_va2idx(area, page_va))) { struct tee_pager_pmem *pmem = NULL; uint32_t attr = 0; paddr_t pa = 0; size_t tblidx = 0; /* * The page wasn't hidden, but some other core may have * updated the table entry before we got here or we need * to make a read-only page read-write (dirty). */ if (pager_update_permissions(area, ai, &ret)) { /* * Nothing more to do with the abort. The problem * could already have been dealt with from another * core or if ret is false the TA will be paniced. */ goto out; } pmem = tee_pager_get_page(area->type); if (!pmem) { abort_print(ai); panic(); } /* load page code & data */ tee_pager_load_page(area, page_va, pmem->va_alias); pmem->fobj = area->fobj; pmem->fobj_pgidx = area_va2idx(area, page_va) + area->fobj_pgoffs - ((area->base & CORE_MMU_PGDIR_MASK) >> SMALL_PAGE_SHIFT); tblidx = pmem_get_area_tblidx(pmem, area); attr = get_area_mattr(area->flags); /* * Pages from PAGER_AREA_TYPE_RW starts read-only to be * able to tell when they are updated and should be tagged * as dirty. */ if (area->type == PAGER_AREA_TYPE_RW) attr &= ~(TEE_MATTR_PW | TEE_MATTR_UW); pa = get_pmem_pa(pmem); /* * We've updated the page using the aliased mapping and * some cache maintenence is now needed if it's an * executable page. * * Since the d-cache is a Physically-indexed, * physically-tagged (PIPT) cache we can clean either the * aliased address or the real virtual address. In this * case we choose the real virtual address. * * The i-cache can also be PIPT, but may be something else * too like VIPT. The current code requires the caches to * implement the IVIPT extension, that is: * "instruction cache maintenance is required only after * writing new data to a physical address that holds an * instruction." * * To portably invalidate the icache the page has to * be mapped at the final virtual address but not * executable. */ if (area->flags & (TEE_MATTR_PX | TEE_MATTR_UX)) { uint32_t mask = TEE_MATTR_PX | TEE_MATTR_UX | TEE_MATTR_PW | TEE_MATTR_UW; void *va = (void *)page_va; /* Set a temporary read-only mapping */ area_set_entry(area, tblidx, pa, attr & ~mask); area_tlbi_entry(area, tblidx); dcache_clean_range_pou(va, SMALL_PAGE_SIZE); if (clean_user_cache) icache_inv_user_range(va, SMALL_PAGE_SIZE); else icache_inv_range(va, SMALL_PAGE_SIZE); /* Set the final mapping */ area_set_entry(area, tblidx, pa, attr); area_tlbi_entry(area, tblidx); } else { area_set_entry(area, tblidx, pa, attr); /* * No need to flush TLB for this entry, it was * invalid. We should use a barrier though, to make * sure that the change is visible. */ dsb_ishst(); } pgt_inc_used_entries(area->pgt); FMSG("Mapped 0x%" PRIxVA " -> 0x%" PRIxPA, page_va, pa); } tee_pager_hide_pages(); ret = true; out: pager_unlock(exceptions); return ret; } void tee_pager_add_pages(vaddr_t vaddr, size_t npages, bool unmap) { size_t n; DMSG("0x%" PRIxVA " - 0x%" PRIxVA " : %d", vaddr, vaddr + npages * SMALL_PAGE_SIZE, (int)unmap); /* setup memory */ for (n = 0; n < npages; n++) { struct core_mmu_table_info *ti; struct tee_pager_pmem *pmem; vaddr_t va = vaddr + n * SMALL_PAGE_SIZE; unsigned int pgidx; paddr_t pa; uint32_t attr; ti = find_table_info(va); pgidx = core_mmu_va2idx(ti, va); /* * Note that we can only support adding pages in the * valid range of this table info, currently not a problem. */ core_mmu_get_entry(ti, pgidx, &pa, &attr); /* Ignore unmapped pages/blocks */ if (!(attr & TEE_MATTR_VALID_BLOCK)) continue; pmem = calloc(1, sizeof(struct tee_pager_pmem)); if (!pmem) panic("out of mem"); pmem->va_alias = pager_add_alias_page(pa); if (unmap) { pmem->fobj = NULL; pmem->fobj_pgidx = INVALID_PGIDX; core_mmu_set_entry(ti, pgidx, 0, 0); pgt_dec_used_entries(find_core_pgt(va)); } else { struct tee_pager_area *area = NULL; /* * The page is still mapped, let's assign the area * and update the protection bits accordingly. */ area = find_area(&tee_pager_area_head, va); assert(area && area->pgt == find_core_pgt(va)); pmem->fobj = area->fobj; pmem->fobj_pgidx = pgidx + area->fobj_pgoffs - ((area->base & CORE_MMU_PGDIR_MASK) >> SMALL_PAGE_SHIFT); assert(pgidx == pmem_get_area_tblidx(pmem, area)); assert(pa == get_pmem_pa(pmem)); area_set_entry(area, pgidx, pa, get_area_mattr(area->flags)); } tee_pager_npages++; incr_npages_all(); set_npages(); TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link); } /* * As this is done at inits, invalidate all TLBs once instead of * targeting only the modified entries. */ tlbi_all(); } #ifdef CFG_PAGED_USER_TA static struct pgt *find_pgt(struct pgt *pgt, vaddr_t va) { struct pgt *p = pgt; while (p && (va & ~CORE_MMU_PGDIR_MASK) != p->vabase) p = SLIST_NEXT(p, link); return p; } void tee_pager_assign_um_tables(struct user_mode_ctx *uctx) { struct tee_pager_area *area = NULL; struct pgt *pgt = NULL; if (!uctx->areas) return; pgt = SLIST_FIRST(&thread_get_tsd()->pgt_cache); TAILQ_FOREACH(area, uctx->areas, link) { if (!area->pgt) area->pgt = find_pgt(pgt, area->base); else assert(area->pgt == find_pgt(pgt, area->base)); if (!area->pgt) panic(); } } void tee_pager_pgt_save_and_release_entries(struct pgt *pgt) { struct tee_pager_pmem *pmem = NULL; struct tee_pager_area *area = NULL; struct tee_pager_area_head *areas = NULL; uint32_t exceptions = pager_lock_check_stack(SMALL_PAGE_SIZE); if (!pgt->num_used_entries) goto out; TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) { if (pmem->fobj) pmem_unmap(pmem, pgt); } assert(!pgt->num_used_entries); out: areas = to_user_mode_ctx(pgt->ctx)->areas; if (areas) { TAILQ_FOREACH(area, areas, link) { if (area->pgt == pgt) area->pgt = NULL; } } pager_unlock(exceptions); } DECLARE_KEEP_PAGER(tee_pager_pgt_save_and_release_entries); #endif /*CFG_PAGED_USER_TA*/ void tee_pager_release_phys(void *addr, size_t size) { bool unmaped = false; vaddr_t va = (vaddr_t)addr; vaddr_t begin = ROUNDUP(va, SMALL_PAGE_SIZE); vaddr_t end = ROUNDDOWN(va + size, SMALL_PAGE_SIZE); struct tee_pager_area *area; uint32_t exceptions; if (end <= begin) return; exceptions = pager_lock_check_stack(128); for (va = begin; va < end; va += SMALL_PAGE_SIZE) { area = find_area(&tee_pager_area_head, va); if (!area) panic(); unmaped |= tee_pager_release_one_phys(area, va); } if (unmaped) tlbi_mva_range(begin, end - begin, SMALL_PAGE_SIZE); pager_unlock(exceptions); } DECLARE_KEEP_PAGER(tee_pager_release_phys); void *tee_pager_alloc(size_t size) { tee_mm_entry_t *mm = NULL; uint8_t *smem = NULL; size_t num_pages = 0; struct fobj *fobj = NULL; if (!size) return NULL; mm = tee_mm_alloc(&tee_mm_vcore, ROUNDUP(size, SMALL_PAGE_SIZE)); if (!mm) return NULL; smem = (uint8_t *)tee_mm_get_smem(mm); num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE; fobj = fobj_locked_paged_alloc(num_pages); if (!fobj) { tee_mm_free(mm); return NULL; } tee_pager_add_core_area((vaddr_t)smem, PAGER_AREA_TYPE_LOCK, fobj); fobj_put(fobj); asan_tag_access(smem, smem + num_pages * SMALL_PAGE_SIZE); return smem; }