// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2020-2024, Arm Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BOUNCE_BUFFER_SIZE 4096 #define SP_MANIFEST_ATTR_READ BIT(0) #define SP_MANIFEST_ATTR_WRITE BIT(1) #define SP_MANIFEST_ATTR_EXEC BIT(2) #define SP_MANIFEST_ATTR_NSEC BIT(3) #define SP_MANIFEST_ATTR_GP BIT(4) #define SP_MANIFEST_ATTR_RO (SP_MANIFEST_ATTR_READ) #define SP_MANIFEST_ATTR_RW (SP_MANIFEST_ATTR_READ | \ SP_MANIFEST_ATTR_WRITE) #define SP_MANIFEST_ATTR_RX (SP_MANIFEST_ATTR_READ | \ SP_MANIFEST_ATTR_EXEC) #define SP_MANIFEST_ATTR_RWX (SP_MANIFEST_ATTR_READ | \ SP_MANIFEST_ATTR_WRITE | \ SP_MANIFEST_ATTR_EXEC) #define SP_MANIFEST_FLAG_NOBITS BIT(0) #define SP_MANIFEST_NS_INT_QUEUED (0x0) #define SP_MANIFEST_NS_INT_MANAGED_EXIT (0x1) #define SP_MANIFEST_NS_INT_SIGNALED (0x2) #define SP_MANIFEST_EXEC_STATE_AARCH64 (0x0) #define SP_MANIFEST_EXEC_STATE_AARCH32 (0x1) #define SP_MANIFEST_DIRECT_REQ_RECEIVE BIT(0) #define SP_MANIFEST_DIRECT_REQ_SEND BIT(1) #define SP_MANIFEST_INDIRECT_REQ BIT(2) #define SP_MANIFEST_VM_CREATED_MSG BIT(0) #define SP_MANIFEST_VM_DESTROYED_MSG BIT(1) #define SP_PKG_HEADER_MAGIC (0x474b5053) #define SP_PKG_HEADER_VERSION_V1 (0x1) #define SP_PKG_HEADER_VERSION_V2 (0x2) struct sp_pkg_header { uint32_t magic; uint32_t version; uint32_t pm_offset; uint32_t pm_size; uint32_t img_offset; uint32_t img_size; }; struct fip_sp_head fip_sp_list = STAILQ_HEAD_INITIALIZER(fip_sp_list); static const struct ts_ops sp_ops; /* List that holds all of the loaded SP's */ static struct sp_sessions_head open_sp_sessions = TAILQ_HEAD_INITIALIZER(open_sp_sessions); static const struct embedded_ts *find_secure_partition(const TEE_UUID *uuid) { const struct sp_image *sp = NULL; const struct fip_sp *fip_sp = NULL; for_each_secure_partition(sp) { if (!memcmp(&sp->image.uuid, uuid, sizeof(*uuid))) return &sp->image; } for_each_fip_sp(fip_sp) { if (!memcmp(&fip_sp->sp_img.image.uuid, uuid, sizeof(*uuid))) return &fip_sp->sp_img.image; } return NULL; } bool is_sp_ctx(struct ts_ctx *ctx) { return ctx && (ctx->ops == &sp_ops); } static void set_sp_ctx_ops(struct ts_ctx *ctx) { ctx->ops = &sp_ops; } struct sp_session *sp_get_session(uint32_t session_id) { struct sp_session *s = NULL; TAILQ_FOREACH(s, &open_sp_sessions, link) { if (s->endpoint_id == session_id) return s; } return NULL; } TEE_Result sp_partition_info_get(uint32_t ffa_vers, void *buf, size_t buf_size, const TEE_UUID *ffa_uuid, size_t *elem_count, bool count_only) { TEE_Result res = TEE_SUCCESS; struct sp_session *s = NULL; TAILQ_FOREACH(s, &open_sp_sessions, link) { if (ffa_uuid && memcmp(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid))) continue; if (s->state == sp_dead) continue; if (!count_only && !res) { uint32_t uuid_words[4] = { 0 }; tee_uuid_to_octets((uint8_t *)uuid_words, &s->ffa_uuid); res = spmc_fill_partition_entry(ffa_vers, buf, buf_size, *elem_count, s->endpoint_id, 1, s->props, uuid_words); } *elem_count += 1; } return res; } bool sp_has_exclusive_access(struct sp_mem_map_region *mem, struct user_mode_ctx *uctx) { /* * Check that we have access to the region if it is supposed to be * mapped to the current context. */ if (uctx) { struct vm_region *region = NULL; /* Make sure that each mobj belongs to the SP */ TAILQ_FOREACH(region, &uctx->vm_info.regions, link) { if (region->mobj == mem->mobj) break; } if (!region) return false; } /* Check that it is not shared with another SP */ return !sp_mem_is_shared(mem); } static bool endpoint_id_is_valid(uint32_t id) { /* * These IDs are assigned at the SPMC init so already have valid values * by the time this function gets first called */ return id != spmd_id && id != spmc_id && id != optee_endpoint_id && id >= FFA_SWD_ID_MIN && id <= FFA_SWD_ID_MAX; } static TEE_Result new_session_id(uint16_t *endpoint_id) { uint32_t id = 0; /* Find the first available endpoint id */ for (id = FFA_SWD_ID_MIN; id <= FFA_SWD_ID_MAX; id++) { if (endpoint_id_is_valid(id) && !sp_get_session(id)) { *endpoint_id = id; return TEE_SUCCESS; } } return TEE_ERROR_BAD_FORMAT; } static TEE_Result sp_create_ctx(const TEE_UUID *bin_uuid, struct sp_session *s) { TEE_Result res = TEE_SUCCESS; struct sp_ctx *spc = NULL; /* Register context */ spc = calloc(1, sizeof(struct sp_ctx)); if (!spc) return TEE_ERROR_OUT_OF_MEMORY; spc->open_session = s; s->ts_sess.ctx = &spc->ts_ctx; spc->ts_ctx.uuid = *bin_uuid; res = vm_info_init(&spc->uctx, &spc->ts_ctx); if (res) goto err; set_sp_ctx_ops(&spc->ts_ctx); #ifdef CFG_TA_PAUTH crypto_rng_read(&spc->uctx.keys, sizeof(spc->uctx.keys)); #endif return TEE_SUCCESS; err: free(spc); return res; } /* * Insert a new sp_session to the sessions list, so that it is ordered * by boot_order. */ static void insert_session_ordered(struct sp_sessions_head *open_sessions, struct sp_session *session) { struct sp_session *s = NULL; if (!open_sessions || !session) return; TAILQ_FOREACH(s, &open_sp_sessions, link) { if (s->boot_order > session->boot_order) break; } if (!s) TAILQ_INSERT_TAIL(open_sessions, session, link); else TAILQ_INSERT_BEFORE(s, session, link); } static TEE_Result sp_create_session(struct sp_sessions_head *open_sessions, const TEE_UUID *bin_uuid, const uint32_t boot_order, struct sp_session **sess) { TEE_Result res = TEE_SUCCESS; struct sp_session *s = calloc(1, sizeof(struct sp_session)); if (!s) return TEE_ERROR_OUT_OF_MEMORY; s->boot_order = boot_order; /* Other properties are filled later, based on the SP's manifest */ s->props = FFA_PART_PROP_IS_PE_ID; res = new_session_id(&s->endpoint_id); if (res) goto err; DMSG("Loading Secure Partition %pUl", (void *)bin_uuid); res = sp_create_ctx(bin_uuid, s); if (res) goto err; insert_session_ordered(open_sessions, s); *sess = s; return TEE_SUCCESS; err: free(s); return res; } static TEE_Result sp_init_set_registers(struct sp_ctx *ctx) { struct thread_ctx_regs *sp_regs = &ctx->sp_regs; memset(sp_regs, 0, sizeof(*sp_regs)); sp_regs->sp = ctx->uctx.stack_ptr; sp_regs->pc = ctx->uctx.entry_func; return TEE_SUCCESS; } TEE_Result sp_map_shared(struct sp_session *s, struct sp_mem_receiver *receiver, struct sp_mem *smem, uint64_t *va) { TEE_Result res = TEE_SUCCESS; struct sp_ctx *ctx = NULL; uint32_t perm = TEE_MATTR_UR; struct sp_mem_map_region *reg = NULL; ctx = to_sp_ctx(s->ts_sess.ctx); /* Get the permission */ if (receiver->perm.perm & FFA_MEM_ACC_EXE) perm |= TEE_MATTR_UX; if (receiver->perm.perm & FFA_MEM_ACC_RW) { if (receiver->perm.perm & FFA_MEM_ACC_EXE) return TEE_ERROR_ACCESS_CONFLICT; perm |= TEE_MATTR_UW; } /* * Currently we don't support passing a va. We can't guarantee that the * full region will be mapped in a contiguous region. A smem->region can * have multiple mobj for one share. Currently there doesn't seem to be * an option to guarantee that these will be mapped in a contiguous va * space. */ if (*va) return TEE_ERROR_NOT_SUPPORTED; SLIST_FOREACH(reg, &smem->regions, link) { res = vm_map(&ctx->uctx, va, reg->page_count * SMALL_PAGE_SIZE, perm, 0, reg->mobj, reg->page_offset); if (res != TEE_SUCCESS) { EMSG("Failed to map memory region %#"PRIx32, res); return res; } } return TEE_SUCCESS; } TEE_Result sp_unmap_ffa_regions(struct sp_session *s, struct sp_mem *smem) { TEE_Result res = TEE_SUCCESS; vaddr_t vaddr = 0; size_t len = 0; struct sp_ctx *ctx = to_sp_ctx(s->ts_sess.ctx); struct sp_mem_map_region *reg = NULL; SLIST_FOREACH(reg, &smem->regions, link) { vaddr = (vaddr_t)sp_mem_get_va(&ctx->uctx, reg->page_offset, reg->mobj); len = reg->page_count * SMALL_PAGE_SIZE; res = vm_unmap(&ctx->uctx, vaddr, len); if (res != TEE_SUCCESS) return res; } return TEE_SUCCESS; } static TEE_Result sp_dt_get_u64(const void *fdt, int node, const char *property, uint64_t *value) { const fdt64_t *p = NULL; int len = 0; p = fdt_getprop(fdt, node, property, &len); if (!p) return TEE_ERROR_ITEM_NOT_FOUND; if (len != sizeof(*p)) return TEE_ERROR_BAD_FORMAT; *value = fdt64_ld(p); return TEE_SUCCESS; } static TEE_Result sp_dt_get_u32(const void *fdt, int node, const char *property, uint32_t *value) { const fdt32_t *p = NULL; int len = 0; p = fdt_getprop(fdt, node, property, &len); if (!p) return TEE_ERROR_ITEM_NOT_FOUND; if (len != sizeof(*p)) return TEE_ERROR_BAD_FORMAT; *value = fdt32_to_cpu(*p); return TEE_SUCCESS; } static TEE_Result sp_dt_get_u16(const void *fdt, int node, const char *property, uint16_t *value) { const fdt16_t *p = NULL; int len = 0; p = fdt_getprop(fdt, node, property, &len); if (!p) return TEE_ERROR_ITEM_NOT_FOUND; if (len != sizeof(*p)) return TEE_ERROR_BAD_FORMAT; *value = fdt16_to_cpu(*p); return TEE_SUCCESS; } static TEE_Result sp_dt_get_uuid(const void *fdt, int node, const char *property, TEE_UUID *uuid) { uint32_t uuid_array[4] = { 0 }; const fdt32_t *p = NULL; int len = 0; int i = 0; p = fdt_getprop(fdt, node, property, &len); if (!p) return TEE_ERROR_ITEM_NOT_FOUND; if (len != sizeof(TEE_UUID)) return TEE_ERROR_BAD_FORMAT; for (i = 0; i < 4; i++) uuid_array[i] = fdt32_to_cpu(p[i]); tee_uuid_from_octets(uuid, (uint8_t *)uuid_array); return TEE_SUCCESS; } static TEE_Result sp_is_elf_format(const void *fdt, int sp_node, bool *is_elf_format) { TEE_Result res = TEE_SUCCESS; uint32_t elf_format = 0; res = sp_dt_get_u32(fdt, sp_node, "elf-format", &elf_format); if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) return res; *is_elf_format = (elf_format != 0); return TEE_SUCCESS; } static TEE_Result sp_binary_open(const TEE_UUID *uuid, const struct ts_store_ops **ops, struct ts_store_handle **handle) { TEE_Result res = TEE_ERROR_ITEM_NOT_FOUND; SCATTERED_ARRAY_FOREACH(*ops, sp_stores, struct ts_store_ops) { res = (*ops)->open(uuid, handle); if (res != TEE_ERROR_ITEM_NOT_FOUND && res != TEE_ERROR_STORAGE_NOT_AVAILABLE) break; } return res; } static TEE_Result load_binary_sp(struct ts_session *s, struct user_mode_ctx *uctx) { size_t bin_size = 0, bin_size_rounded = 0, bin_page_count = 0; size_t bb_size = ROUNDUP(BOUNCE_BUFFER_SIZE, SMALL_PAGE_SIZE); size_t bb_num_pages = bb_size / SMALL_PAGE_SIZE; const struct ts_store_ops *store_ops = NULL; struct ts_store_handle *handle = NULL; TEE_Result res = TEE_SUCCESS; tee_mm_entry_t *mm = NULL; struct fobj *fobj = NULL; struct mobj *mobj = NULL; uaddr_t base_addr = 0; uint32_t vm_flags = 0; unsigned int idx = 0; vaddr_t va = 0; if (!s || !uctx) return TEE_ERROR_BAD_PARAMETERS; DMSG("Loading raw binary format SP %pUl", &uctx->ts_ctx->uuid); /* Initialize the bounce buffer */ fobj = fobj_sec_mem_alloc(bb_num_pages); mobj = mobj_with_fobj_alloc(fobj, NULL, TEE_MATTR_MEM_TYPE_TAGGED); fobj_put(fobj); if (!mobj) return TEE_ERROR_OUT_OF_MEMORY; res = vm_map(uctx, &va, bb_size, TEE_MATTR_PRW, 0, mobj, 0); mobj_put(mobj); if (res) return res; uctx->bbuf = (uint8_t *)va; uctx->bbuf_size = BOUNCE_BUFFER_SIZE; vm_set_ctx(uctx->ts_ctx); /* Find TS store and open SP binary */ res = sp_binary_open(&uctx->ts_ctx->uuid, &store_ops, &handle); if (res != TEE_SUCCESS) { EMSG("Failed to open SP binary"); return res; } /* Query binary size and calculate page count */ res = store_ops->get_size(handle, &bin_size); if (res != TEE_SUCCESS) goto err; if (ROUNDUP_OVERFLOW(bin_size, SMALL_PAGE_SIZE, &bin_size_rounded)) { res = TEE_ERROR_OVERFLOW; goto err; } bin_page_count = bin_size_rounded / SMALL_PAGE_SIZE; /* Allocate memory */ mm = phys_mem_ta_alloc(bin_size_rounded); if (!mm) { res = TEE_ERROR_OUT_OF_MEMORY; goto err; } base_addr = tee_mm_get_smem(mm); /* Create mobj */ mobj = sp_mem_new_mobj(bin_page_count, TEE_MATTR_MEM_TYPE_CACHED, true); if (!mobj) { res = TEE_ERROR_OUT_OF_MEMORY; goto err_free_tee_mm; } res = sp_mem_add_pages(mobj, &idx, base_addr, bin_page_count); if (res) goto err_free_mobj; /* Map memory area for the SP binary */ va = 0; res = vm_map(uctx, &va, bin_size_rounded, TEE_MATTR_URWX, vm_flags, mobj, 0); if (res) goto err_free_mobj; /* Read SP binary into the previously mapped memory area */ res = store_ops->read(handle, NULL, (void *)va, bin_size); if (res) goto err_unmap; /* Set memory protection to allow execution */ res = vm_set_prot(uctx, va, bin_size_rounded, TEE_MATTR_UX); if (res) goto err_unmap; mobj_put(mobj); store_ops->close(handle); /* The entry point must be at the beginning of the SP binary. */ uctx->entry_func = va; uctx->load_addr = va; uctx->is_32bit = false; s->handle_scall = s->ctx->ops->handle_scall; return TEE_SUCCESS; err_unmap: vm_unmap(uctx, va, bin_size_rounded); err_free_mobj: mobj_put(mobj); err_free_tee_mm: tee_mm_free(mm); err: store_ops->close(handle); return res; } static TEE_Result sp_open_session(struct sp_session **sess, struct sp_sessions_head *open_sessions, const TEE_UUID *ffa_uuid, const TEE_UUID *bin_uuid, const uint32_t boot_order, const void *fdt) { TEE_Result res = TEE_SUCCESS; struct sp_session *s = NULL; struct sp_ctx *ctx = NULL; bool is_elf_format = false; if (!find_secure_partition(bin_uuid)) return TEE_ERROR_ITEM_NOT_FOUND; res = sp_create_session(open_sessions, bin_uuid, boot_order, &s); if (res != TEE_SUCCESS) { DMSG("sp_create_session failed %#"PRIx32, res); return res; } ctx = to_sp_ctx(s->ts_sess.ctx); assert(ctx); if (!ctx) return TEE_ERROR_TARGET_DEAD; *sess = s; ts_push_current_session(&s->ts_sess); res = sp_is_elf_format(fdt, 0, &is_elf_format); if (res == TEE_SUCCESS) { if (is_elf_format) { /* Load the SP using ldelf. */ ldelf_load_ldelf(&ctx->uctx); res = ldelf_init_with_ldelf(&s->ts_sess, &ctx->uctx); } else { /* Raw binary format SP */ res = load_binary_sp(&s->ts_sess, &ctx->uctx); } } else { EMSG("Failed to detect SP format"); } if (res != TEE_SUCCESS) { EMSG("Failed loading SP %#"PRIx32, res); ts_pop_current_session(); return TEE_ERROR_TARGET_DEAD; } /* * Make the SP ready for its first run. * Set state to busy to prevent other endpoints from sending messages to * the SP before its boot phase is done. */ s->state = sp_busy; s->caller_id = 0; sp_init_set_registers(ctx); memcpy(&s->ffa_uuid, ffa_uuid, sizeof(*ffa_uuid)); ts_pop_current_session(); return TEE_SUCCESS; } static TEE_Result fdt_get_uuid(const void * const fdt, TEE_UUID *uuid) { const struct fdt_property *description = NULL; int description_name_len = 0; if (fdt_node_check_compatible(fdt, 0, "arm,ffa-manifest-1.0")) { EMSG("Failed loading SP, manifest not found"); return TEE_ERROR_BAD_PARAMETERS; } description = fdt_get_property(fdt, 0, "description", &description_name_len); if (description) DMSG("Loading SP: %s", description->data); if (sp_dt_get_uuid(fdt, 0, "uuid", uuid)) { EMSG("Missing or invalid UUID in SP manifest"); return TEE_ERROR_BAD_FORMAT; } return TEE_SUCCESS; } static TEE_Result copy_and_map_fdt(struct sp_ctx *ctx, const void * const fdt, void **fdt_copy, size_t *mapped_size) { size_t total_size = ROUNDUP(fdt_totalsize(fdt), SMALL_PAGE_SIZE); size_t num_pages = total_size / SMALL_PAGE_SIZE; uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; TEE_Result res = TEE_SUCCESS; struct mobj *m = NULL; struct fobj *f = NULL; vaddr_t va = 0; f = fobj_sec_mem_alloc(num_pages); m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); fobj_put(f); if (!m) return TEE_ERROR_OUT_OF_MEMORY; res = vm_map(&ctx->uctx, &va, total_size, perm, 0, m, 0); mobj_put(m); if (res) return res; if (fdt_open_into(fdt, (void *)va, total_size)) return TEE_ERROR_GENERIC; *fdt_copy = (void *)va; *mapped_size = total_size; return res; } static void fill_boot_info_1_0(vaddr_t buf, const void *fdt) { struct ffa_boot_info_1_0 *info = (struct ffa_boot_info_1_0 *)buf; static const char fdt_name[16] = "TYPE_DT\0\0\0\0\0\0\0\0"; memcpy(&info->magic, "FF-A", 4); info->count = 1; COMPILE_TIME_ASSERT(sizeof(info->nvp[0].name) == sizeof(fdt_name)); memcpy(info->nvp[0].name, fdt_name, sizeof(fdt_name)); info->nvp[0].value = (uintptr_t)fdt; info->nvp[0].size = fdt_totalsize(fdt); } static void fill_boot_info_1_1(vaddr_t buf, const void *fdt) { size_t desc_offs = ROUNDUP(sizeof(struct ffa_boot_info_header_1_1), 8); struct ffa_boot_info_header_1_1 *header = (struct ffa_boot_info_header_1_1 *)buf; struct ffa_boot_info_1_1 *desc = (struct ffa_boot_info_1_1 *)(buf + desc_offs); header->signature = FFA_BOOT_INFO_SIGNATURE; header->version = FFA_BOOT_INFO_VERSION; header->blob_size = desc_offs + sizeof(struct ffa_boot_info_1_1); header->desc_size = sizeof(struct ffa_boot_info_1_1); header->desc_count = 1; header->desc_offset = desc_offs; memset(&desc[0].name, 0, sizeof(desc[0].name)); /* Type: Standard boot info (bit[7] == 0), FDT type */ desc[0].type = FFA_BOOT_INFO_TYPE_ID_FDT; /* Flags: Contents field contains an address */ desc[0].flags = FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_ADDR << FFA_BOOT_INFO_FLAG_CONTENT_FORMAT_SHIFT; desc[0].size = fdt_totalsize(fdt); desc[0].contents = (uintptr_t)fdt; } static TEE_Result create_and_map_boot_info(struct sp_ctx *ctx, const void *fdt, struct thread_smc_args *args, vaddr_t *va, size_t *mapped_size, uint32_t sp_ffa_version) { size_t total_size = ROUNDUP(CFG_SP_INIT_INFO_MAX_SIZE, SMALL_PAGE_SIZE); size_t num_pages = total_size / SMALL_PAGE_SIZE; uint32_t perm = TEE_MATTR_UR | TEE_MATTR_PRW; TEE_Result res = TEE_SUCCESS; struct fobj *f = NULL; struct mobj *m = NULL; uint32_t info_reg = 0; f = fobj_sec_mem_alloc(num_pages); m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); fobj_put(f); if (!m) return TEE_ERROR_OUT_OF_MEMORY; res = vm_map(&ctx->uctx, va, total_size, perm, 0, m, 0); mobj_put(m); if (res) return res; *mapped_size = total_size; switch (sp_ffa_version) { case MAKE_FFA_VERSION(1, 0): fill_boot_info_1_0(*va, fdt); break; case MAKE_FFA_VERSION(1, 1): fill_boot_info_1_1(*va, fdt); break; default: EMSG("Unknown FF-A version: %#"PRIx32, sp_ffa_version); return TEE_ERROR_NOT_SUPPORTED; } res = sp_dt_get_u32(fdt, 0, "gp-register-num", &info_reg); if (res) { if (res == TEE_ERROR_ITEM_NOT_FOUND) { /* If the property is not present, set default to x0 */ info_reg = 0; } else { return TEE_ERROR_BAD_FORMAT; } } switch (info_reg) { case 0: args->a0 = *va; break; case 1: args->a1 = *va; break; case 2: args->a2 = *va; break; case 3: args->a3 = *va; break; default: EMSG("Invalid register selected for passing boot info"); return TEE_ERROR_BAD_FORMAT; } return TEE_SUCCESS; } static TEE_Result handle_fdt_load_relative_mem_regions(struct sp_ctx *ctx, const void *fdt) { int node = 0; int subnode = 0; tee_mm_entry_t *mm = NULL; TEE_Result res = TEE_SUCCESS; /* * Memory regions are optional in the SP manifest, it's not an error if * we don't find any. */ node = fdt_node_offset_by_compatible(fdt, 0, "arm,ffa-manifest-memory-regions"); if (node < 0) return TEE_SUCCESS; fdt_for_each_subnode(subnode, fdt, node) { uint64_t load_rel_offset = 0; uint32_t attributes = 0; uint64_t base_addr = 0; uint32_t pages_cnt = 0; uint32_t flags = 0; uint32_t perm = 0; size_t size = 0; vaddr_t va = 0; mm = NULL; /* Load address relative offset of a memory region */ if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", &load_rel_offset)) { va = ctx->uctx.load_addr + load_rel_offset; } else { /* Skip non load address relative memory regions */ continue; } if (!sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { EMSG("Both base-address and load-address-relative-offset fields are set"); return TEE_ERROR_BAD_FORMAT; } /* Size of memory region as count of 4K pages */ if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { EMSG("Mandatory field is missing: pages-count"); return TEE_ERROR_BAD_FORMAT; } if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) return TEE_ERROR_OVERFLOW; /* Memory region attributes */ if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { EMSG("Mandatory field is missing: attributes"); return TEE_ERROR_BAD_FORMAT; } /* Check instruction and data access permissions */ switch (attributes & SP_MANIFEST_ATTR_RWX) { case SP_MANIFEST_ATTR_RO: perm = TEE_MATTR_UR; break; case SP_MANIFEST_ATTR_RW: perm = TEE_MATTR_URW; break; case SP_MANIFEST_ATTR_RX: perm = TEE_MATTR_URX; break; default: EMSG("Invalid memory access permissions"); return TEE_ERROR_BAD_FORMAT; } if (IS_ENABLED(CFG_TA_BTI) && attributes & SP_MANIFEST_ATTR_GP) { if (!(attributes & SP_MANIFEST_ATTR_RX)) { EMSG("Guard only executable region"); return TEE_ERROR_BAD_FORMAT; } perm |= TEE_MATTR_GUARDED; } res = sp_dt_get_u32(fdt, subnode, "load-flags", &flags); if (res != TEE_SUCCESS && res != TEE_ERROR_ITEM_NOT_FOUND) { EMSG("Optional field with invalid value: flags"); return TEE_ERROR_BAD_FORMAT; } /* Load relative regions must be secure */ if (attributes & SP_MANIFEST_ATTR_NSEC) { EMSG("Invalid memory security attribute"); return TEE_ERROR_BAD_FORMAT; } if (flags & SP_MANIFEST_FLAG_NOBITS) { /* * NOBITS flag is set, which means that loaded binary * doesn't contain this area, so it's need to be * allocated. */ struct mobj *m = NULL; unsigned int idx = 0; mm = phys_mem_ta_alloc(size); if (!mm) return TEE_ERROR_OUT_OF_MEMORY; base_addr = tee_mm_get_smem(mm); m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, true); if (!m) { res = TEE_ERROR_OUT_OF_MEMORY; goto err_mm_free; } res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); if (res) { mobj_put(m); goto err_mm_free; } res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); mobj_put(m); if (res) goto err_mm_free; } else { /* * If NOBITS is not present the memory area is already * mapped and only need to set the correct permissions. */ res = vm_set_prot(&ctx->uctx, va, size, perm); if (res) return res; } } return TEE_SUCCESS; err_mm_free: tee_mm_free(mm); return res; } static TEE_Result handle_fdt_dev_regions(struct sp_ctx *ctx, void *fdt) { int node = 0; int subnode = 0; TEE_Result res = TEE_SUCCESS; const char *dt_device_match_table = { "arm,ffa-manifest-device-regions", }; /* * Device regions are optional in the SP manifest, it's not an error if * we don't find any */ node = fdt_node_offset_by_compatible(fdt, 0, dt_device_match_table); if (node < 0) return TEE_SUCCESS; fdt_for_each_subnode(subnode, fdt, node) { uint64_t base_addr = 0; uint32_t pages_cnt = 0; uint32_t attributes = 0; struct mobj *m = NULL; bool is_secure = true; uint32_t perm = 0; vaddr_t va = 0; unsigned int idx = 0; /* * Physical base address of a device MMIO region. * Currently only physically contiguous region is supported. */ if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) { EMSG("Mandatory field is missing: base-address"); return TEE_ERROR_BAD_FORMAT; } /* Total size of MMIO region as count of 4K pages */ if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { EMSG("Mandatory field is missing: pages-count"); return TEE_ERROR_BAD_FORMAT; } /* Data access, instruction access and security attributes */ if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { EMSG("Mandatory field is missing: attributes"); return TEE_ERROR_BAD_FORMAT; } /* Check instruction and data access permissions */ switch (attributes & SP_MANIFEST_ATTR_RWX) { case SP_MANIFEST_ATTR_RO: perm = TEE_MATTR_UR; break; case SP_MANIFEST_ATTR_RW: perm = TEE_MATTR_URW; break; default: EMSG("Invalid memory access permissions"); return TEE_ERROR_BAD_FORMAT; } /* * The SP is a secure endpoint, security attribute can be * secure or non-secure */ if (attributes & SP_MANIFEST_ATTR_NSEC) is_secure = false; /* Memory attributes must be Device-nGnRnE */ m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_STRONGLY_O, is_secure); if (!m) return TEE_ERROR_OUT_OF_MEMORY; res = sp_mem_add_pages(m, &idx, (paddr_t)base_addr, pages_cnt); if (res) { mobj_put(m); return res; } res = vm_map(&ctx->uctx, &va, pages_cnt * SMALL_PAGE_SIZE, perm, 0, m, 0); mobj_put(m); if (res) return res; /* * Overwrite the device region's PA in the fdt with the VA. This * fdt will be passed to the SP. */ res = fdt_setprop_u64(fdt, subnode, "base-address", va); /* * Unmap the region if the overwrite failed since the SP won't * be able to access it without knowing the VA. */ if (res) { vm_unmap(&ctx->uctx, va, pages_cnt * SMALL_PAGE_SIZE); return res; } } return TEE_SUCCESS; } static TEE_Result swap_sp_endpoints(uint32_t endpoint_id, uint32_t new_endpoint_id) { struct sp_session *session = sp_get_session(endpoint_id); uint32_t manifest_endpoint_id = 0; /* * We don't know in which order the SPs are loaded. The endpoint ID * defined in the manifest could already be generated by * new_session_id() and used by another SP. If this is the case, we swap * the ID's of the two SPs. We also have to make sure that the ID's are * not defined twice in the manifest. */ /* The endpoint ID was not assigned yet */ if (!session) return TEE_SUCCESS; /* * Read the manifest file from the SP who originally had the endpoint. * We can safely swap the endpoint ID's if the manifest file doesn't * have an endpoint ID defined. */ if (!sp_dt_get_u32(session->fdt, 0, "id", &manifest_endpoint_id)) { assert(manifest_endpoint_id == endpoint_id); EMSG("SP: Found duplicated endpoint ID %#"PRIx32, endpoint_id); return TEE_ERROR_ACCESS_CONFLICT; } session->endpoint_id = new_endpoint_id; return TEE_SUCCESS; } static TEE_Result read_manifest_endpoint_id(struct sp_session *s) { uint32_t endpoint_id = 0; /* * The endpoint ID can be optionally defined in the manifest file. We * have to map the ID inside the manifest to the SP if it's defined. * If not, the endpoint ID generated inside new_session_id() will be * used. */ if (!sp_dt_get_u32(s->fdt, 0, "id", &endpoint_id)) { TEE_Result res = TEE_ERROR_GENERIC; if (!endpoint_id_is_valid(endpoint_id)) { EMSG("Invalid endpoint ID 0x%"PRIx32, endpoint_id); return TEE_ERROR_BAD_FORMAT; } res = swap_sp_endpoints(endpoint_id, s->endpoint_id); if (res) return res; DMSG("SP: endpoint ID (0x%"PRIx32") found in manifest", endpoint_id); /* Assign the endpoint ID to the current SP */ s->endpoint_id = endpoint_id; } return TEE_SUCCESS; } static TEE_Result handle_fdt_mem_regions(struct sp_ctx *ctx, void *fdt) { int node = 0; int subnode = 0; tee_mm_entry_t *mm = NULL; TEE_Result res = TEE_SUCCESS; /* * Memory regions are optional in the SP manifest, it's not an error if * we don't find any. */ node = fdt_node_offset_by_compatible(fdt, 0, "arm,ffa-manifest-memory-regions"); if (node < 0) return TEE_SUCCESS; fdt_for_each_subnode(subnode, fdt, node) { uint64_t load_rel_offset = 0; bool alloc_needed = false; uint32_t attributes = 0; uint64_t base_addr = 0; uint32_t pages_cnt = 0; bool is_secure = true; struct mobj *m = NULL; unsigned int idx = 0; uint32_t perm = 0; size_t size = 0; vaddr_t va = 0; mm = NULL; /* Load address relative offset of a memory region */ if (!sp_dt_get_u64(fdt, subnode, "load-address-relative-offset", &load_rel_offset)) { /* * At this point the memory region is already mapped by * handle_fdt_load_relative_mem_regions. * Only need to set the base-address in the manifest and * then skip the rest of the mapping process. */ va = ctx->uctx.load_addr + load_rel_offset; res = fdt_setprop_u64(fdt, subnode, "base-address", va); if (res) return res; continue; } /* * Base address of a memory region. * If not present, we have to allocate the specified memory. * If present, this field could specify a PA or VA. Currently * only a PA is supported. */ if (sp_dt_get_u64(fdt, subnode, "base-address", &base_addr)) alloc_needed = true; /* Size of memory region as count of 4K pages */ if (sp_dt_get_u32(fdt, subnode, "pages-count", &pages_cnt)) { EMSG("Mandatory field is missing: pages-count"); return TEE_ERROR_BAD_FORMAT; } if (MUL_OVERFLOW(pages_cnt, SMALL_PAGE_SIZE, &size)) return TEE_ERROR_OVERFLOW; /* * Memory region attributes: * - Instruction/data access permissions * - Cacheability/shareability attributes * - Security attributes * * Cacheability/shareability attributes can be ignored for now. * OP-TEE only supports a single type for normal cached memory * and currently there is no use case that would require to * change this. */ if (sp_dt_get_u32(fdt, subnode, "attributes", &attributes)) { EMSG("Mandatory field is missing: attributes"); return TEE_ERROR_BAD_FORMAT; } /* Check instruction and data access permissions */ switch (attributes & SP_MANIFEST_ATTR_RWX) { case SP_MANIFEST_ATTR_RO: perm = TEE_MATTR_UR; break; case SP_MANIFEST_ATTR_RW: perm = TEE_MATTR_URW; break; case SP_MANIFEST_ATTR_RX: perm = TEE_MATTR_URX; break; default: EMSG("Invalid memory access permissions"); return TEE_ERROR_BAD_FORMAT; } if (IS_ENABLED(CFG_TA_BTI) && attributes & SP_MANIFEST_ATTR_GP) { if (!(attributes & SP_MANIFEST_ATTR_RX)) { EMSG("Guard only executable region"); return TEE_ERROR_BAD_FORMAT; } perm |= TEE_MATTR_GUARDED; } /* * The SP is a secure endpoint, security attribute can be * secure or non-secure. * The SPMC cannot allocate non-secure memory, i.e. if the base * address is missing this attribute must be secure. */ if (attributes & SP_MANIFEST_ATTR_NSEC) { if (alloc_needed) { EMSG("Invalid memory security attribute"); return TEE_ERROR_BAD_FORMAT; } is_secure = false; } if (alloc_needed) { /* Base address is missing, we have to allocate */ mm = phys_mem_ta_alloc(size); if (!mm) return TEE_ERROR_OUT_OF_MEMORY; base_addr = tee_mm_get_smem(mm); } m = sp_mem_new_mobj(pages_cnt, TEE_MATTR_MEM_TYPE_CACHED, is_secure); if (!m) { res = TEE_ERROR_OUT_OF_MEMORY; goto err_mm_free; } res = sp_mem_add_pages(m, &idx, base_addr, pages_cnt); if (res) { mobj_put(m); goto err_mm_free; } res = vm_map(&ctx->uctx, &va, size, perm, 0, m, 0); mobj_put(m); if (res) goto err_mm_free; /* * Overwrite the memory region's base address in the fdt with * the VA. This fdt will be passed to the SP. * If the base-address field was not present in the original * fdt, this function will create it. This doesn't cause issues * since the necessary extra space has been allocated when * opening the fdt. */ res = fdt_setprop_u64(fdt, subnode, "base-address", va); /* * Unmap the region if the overwrite failed since the SP won't * be able to access it without knowing the VA. */ if (res) { vm_unmap(&ctx->uctx, va, size); goto err_mm_free; } } return TEE_SUCCESS; err_mm_free: tee_mm_free(mm); return res; } static TEE_Result handle_tpm_event_log(struct sp_ctx *ctx, void *fdt) { uint32_t perm = TEE_MATTR_URW | TEE_MATTR_PRW; uint32_t dummy_size __maybe_unused = 0; TEE_Result res = TEE_SUCCESS; size_t page_count = 0; struct fobj *f = NULL; struct mobj *m = NULL; vaddr_t log_addr = 0; size_t log_size = 0; int node = 0; node = fdt_node_offset_by_compatible(fdt, 0, "arm,tpm_event_log"); if (node < 0) return TEE_SUCCESS; /* Checking the existence and size of the event log properties */ if (sp_dt_get_u64(fdt, node, "tpm_event_log_addr", &log_addr)) { EMSG("tpm_event_log_addr not found or has invalid size"); return TEE_ERROR_BAD_FORMAT; } if (sp_dt_get_u32(fdt, node, "tpm_event_log_size", &dummy_size)) { EMSG("tpm_event_log_size not found or has invalid size"); return TEE_ERROR_BAD_FORMAT; } /* Validating event log */ res = tpm_get_event_log_size(&log_size); if (res) return res; if (!log_size) { EMSG("Empty TPM event log was provided"); return TEE_ERROR_ITEM_NOT_FOUND; } /* Allocating memory area for the event log to share with the SP */ page_count = ROUNDUP_DIV(log_size, SMALL_PAGE_SIZE); f = fobj_sec_mem_alloc(page_count); m = mobj_with_fobj_alloc(f, NULL, TEE_MATTR_MEM_TYPE_TAGGED); fobj_put(f); if (!m) return TEE_ERROR_OUT_OF_MEMORY; res = vm_map(&ctx->uctx, &log_addr, log_size, perm, 0, m, 0); mobj_put(m); if (res) return res; /* Copy event log */ res = tpm_get_event_log((void *)log_addr, &log_size); if (res) goto err_unmap; /* Setting event log details in the manifest */ res = fdt_setprop_u64(fdt, node, "tpm_event_log_addr", log_addr); if (res) goto err_unmap; res = fdt_setprop_u32(fdt, node, "tpm_event_log_size", log_size); if (res) goto err_unmap; return TEE_SUCCESS; err_unmap: vm_unmap(&ctx->uctx, log_addr, log_size); return res; } /* * Note: this function is called only on the primary CPU. It assumes that the * features present on the primary CPU are available on all of the secondary * CPUs as well. */ static TEE_Result handle_hw_features(void *fdt) { uint32_t val __maybe_unused = 0; TEE_Result res = TEE_SUCCESS; int node = 0; /* * HW feature descriptions are optional in the SP manifest, it's not an * error if we don't find any. */ node = fdt_node_offset_by_compatible(fdt, 0, "arm,hw-features"); if (node < 0) return TEE_SUCCESS; /* Modify the crc32 property only if it's already present */ if (!sp_dt_get_u32(fdt, node, "crc32", &val)) { res = fdt_setprop_u32(fdt, node, "crc32", feat_crc32_implemented()); if (res) return res; } /* Modify the property only if it's already present */ if (!sp_dt_get_u32(fdt, node, "bti", &val)) { res = fdt_setprop_u32(fdt, node, "bti", feat_bti_is_implemented()); if (res) return res; } /* Modify the property only if it's already present */ if (!sp_dt_get_u32(fdt, node, "pauth", &val)) { res = fdt_setprop_u32(fdt, node, "pauth", feat_pauth_is_implemented()); if (res) return res; } return TEE_SUCCESS; } static TEE_Result read_ns_interrupts_action(const void *fdt, struct sp_session *s) { TEE_Result res = TEE_ERROR_BAD_PARAMETERS; res = sp_dt_get_u32(fdt, 0, "ns-interrupts-action", &s->ns_int_mode); if (res) { EMSG("Mandatory property is missing: ns-interrupts-action"); return res; } switch (s->ns_int_mode) { case SP_MANIFEST_NS_INT_QUEUED: case SP_MANIFEST_NS_INT_SIGNALED: /* OK */ break; case SP_MANIFEST_NS_INT_MANAGED_EXIT: EMSG("Managed exit is not implemented"); return TEE_ERROR_NOT_IMPLEMENTED; default: EMSG("Invalid ns-interrupts-action value: %"PRIu32, s->ns_int_mode); return TEE_ERROR_BAD_PARAMETERS; } return TEE_SUCCESS; } static TEE_Result read_ffa_version(const void *fdt, struct sp_session *s) { TEE_Result res = TEE_ERROR_BAD_PARAMETERS; uint32_t ffa_version = 0; res = sp_dt_get_u32(fdt, 0, "ffa-version", &ffa_version); if (res) { EMSG("Mandatory property is missing: ffa-version"); return res; } if (ffa_version != FFA_VERSION_1_0 && ffa_version != FFA_VERSION_1_1) { EMSG("Invalid FF-A version value: 0x%08"PRIx32, ffa_version); return TEE_ERROR_BAD_PARAMETERS; } s->rxtx.ffa_vers = ffa_version; return TEE_SUCCESS; } static TEE_Result read_sp_exec_state(const void *fdt, struct sp_session *s) { TEE_Result res = TEE_ERROR_BAD_PARAMETERS; uint32_t exec_state = 0; res = sp_dt_get_u32(fdt, 0, "execution-state", &exec_state); if (res) { EMSG("Mandatory property is missing: execution-state"); return res; } /* Currently only AArch64 SPs are supported */ if (exec_state == SP_MANIFEST_EXEC_STATE_AARCH64) { s->props |= FFA_PART_PROP_AARCH64_STATE; } else { EMSG("Invalid execution-state value: %"PRIu32, exec_state); return TEE_ERROR_BAD_PARAMETERS; } return TEE_SUCCESS; } static TEE_Result read_sp_msg_types(const void *fdt, struct sp_session *s) { TEE_Result res = TEE_ERROR_BAD_PARAMETERS; uint32_t msg_method = 0; res = sp_dt_get_u32(fdt, 0, "messaging-method", &msg_method); if (res) { EMSG("Mandatory property is missing: messaging-method"); return res; } if (msg_method & SP_MANIFEST_DIRECT_REQ_RECEIVE) s->props |= FFA_PART_PROP_DIRECT_REQ_RECV; if (msg_method & SP_MANIFEST_DIRECT_REQ_SEND) s->props |= FFA_PART_PROP_DIRECT_REQ_SEND; if (msg_method & SP_MANIFEST_INDIRECT_REQ) IMSG("Indirect messaging is not supported"); return TEE_SUCCESS; } static TEE_Result read_vm_availability_msg(const void *fdt, struct sp_session *s) { TEE_Result res = TEE_ERROR_BAD_PARAMETERS; uint32_t v = 0; res = sp_dt_get_u32(fdt, 0, "vm-availability-messages", &v); /* This field in the manifest is optional */ if (res == TEE_ERROR_ITEM_NOT_FOUND) return TEE_SUCCESS; if (res) return res; if (v & ~(SP_MANIFEST_VM_CREATED_MSG | SP_MANIFEST_VM_DESTROYED_MSG)) { EMSG("Invalid vm-availability-messages value: %"PRIu32, v); return TEE_ERROR_BAD_PARAMETERS; } if (v & SP_MANIFEST_VM_CREATED_MSG) s->props |= FFA_PART_PROP_NOTIF_CREATED; if (v & SP_MANIFEST_VM_DESTROYED_MSG) s->props |= FFA_PART_PROP_NOTIF_DESTROYED; return TEE_SUCCESS; } static TEE_Result sp_init_uuid(const TEE_UUID *bin_uuid, const void * const fdt) { TEE_Result res = TEE_SUCCESS; struct sp_session *sess = NULL; TEE_UUID ffa_uuid = {}; uint16_t boot_order = 0; uint32_t boot_order_arg = 0; res = fdt_get_uuid(fdt, &ffa_uuid); if (res) return res; res = sp_dt_get_u16(fdt, 0, "boot-order", &boot_order); if (res == TEE_SUCCESS) { boot_order_arg = boot_order; } else if (res == TEE_ERROR_ITEM_NOT_FOUND) { boot_order_arg = UINT32_MAX; } else { EMSG("Failed reading boot-order property err:%#"PRIx32, res); return res; } res = sp_open_session(&sess, &open_sp_sessions, &ffa_uuid, bin_uuid, boot_order_arg, fdt); if (res) return res; sess->fdt = fdt; res = read_manifest_endpoint_id(sess); if (res) return res; DMSG("endpoint is 0x%"PRIx16, sess->endpoint_id); res = read_ns_interrupts_action(fdt, sess); if (res) return res; res = read_ffa_version(fdt, sess); if (res) return res; res = read_sp_exec_state(fdt, sess); if (res) return res; res = read_sp_msg_types(fdt, sess); if (res) return res; res = read_vm_availability_msg(fdt, sess); if (res) return res; return TEE_SUCCESS; } static TEE_Result sp_first_run(struct sp_session *sess) { TEE_Result res = TEE_SUCCESS; struct thread_smc_args args = { }; struct sp_ctx *ctx = NULL; vaddr_t boot_info_va = 0; size_t boot_info_size = 0; void *fdt_copy = NULL; size_t fdt_size = 0; ctx = to_sp_ctx(sess->ts_sess.ctx); ts_push_current_session(&sess->ts_sess); sess->is_initialized = false; /* * Load relative memory regions must be handled before doing any other * mapping to prevent conflicts in the VA space. */ res = handle_fdt_load_relative_mem_regions(ctx, sess->fdt); if (res) { ts_pop_current_session(); return res; } res = copy_and_map_fdt(ctx, sess->fdt, &fdt_copy, &fdt_size); if (res) goto out; res = handle_fdt_dev_regions(ctx, fdt_copy); if (res) goto out; res = handle_fdt_mem_regions(ctx, fdt_copy); if (res) goto out; if (IS_ENABLED(CFG_CORE_TPM_EVENT_LOG)) { res = handle_tpm_event_log(ctx, fdt_copy); if (res) goto out; } res = handle_hw_features(fdt_copy); if (res) goto out; res = create_and_map_boot_info(ctx, fdt_copy, &args, &boot_info_va, &boot_info_size, sess->rxtx.ffa_vers); if (res) goto out; ts_pop_current_session(); res = sp_enter(&args, sess); if (res) { ts_push_current_session(&sess->ts_sess); goto out; } spmc_sp_msg_handler(&args, sess); ts_push_current_session(&sess->ts_sess); sess->is_initialized = true; out: /* Free the boot info page from the SP memory */ vm_unmap(&ctx->uctx, boot_info_va, boot_info_size); vm_unmap(&ctx->uctx, (vaddr_t)fdt_copy, fdt_size); ts_pop_current_session(); return res; } TEE_Result sp_enter(struct thread_smc_args *args, struct sp_session *sp) { TEE_Result res = TEE_SUCCESS; struct sp_ctx *ctx = to_sp_ctx(sp->ts_sess.ctx); ctx->sp_regs.x[0] = args->a0; ctx->sp_regs.x[1] = args->a1; ctx->sp_regs.x[2] = args->a2; ctx->sp_regs.x[3] = args->a3; ctx->sp_regs.x[4] = args->a4; ctx->sp_regs.x[5] = args->a5; ctx->sp_regs.x[6] = args->a6; ctx->sp_regs.x[7] = args->a7; #ifdef CFG_TA_PAUTH ctx->sp_regs.apiakey_hi = ctx->uctx.keys.apia_hi; ctx->sp_regs.apiakey_lo = ctx->uctx.keys.apia_lo; #endif res = sp->ts_sess.ctx->ops->enter_invoke_cmd(&sp->ts_sess, 0); args->a0 = ctx->sp_regs.x[0]; args->a1 = ctx->sp_regs.x[1]; args->a2 = ctx->sp_regs.x[2]; args->a3 = ctx->sp_regs.x[3]; args->a4 = ctx->sp_regs.x[4]; args->a5 = ctx->sp_regs.x[5]; args->a6 = ctx->sp_regs.x[6]; args->a7 = ctx->sp_regs.x[7]; return res; } /* * According to FF-A v1.1 section 8.3.1.4 if a caller requires less permissive * active on NS interrupt than the callee, the callee must inherit the caller's * configuration. * Each SP's own NS action setting is stored in ns_int_mode. The effective * action will be MIN([self action], [caller's action]) which is stored in the * ns_int_mode_inherited field. */ static void sp_cpsr_configure_foreign_interrupts(struct sp_session *s, struct ts_session *caller, uint64_t *cpsr) { if (caller) { struct sp_session *caller_sp = to_sp_session(caller); s->ns_int_mode_inherited = MIN(caller_sp->ns_int_mode_inherited, s->ns_int_mode); } else { s->ns_int_mode_inherited = s->ns_int_mode; } if (s->ns_int_mode_inherited == SP_MANIFEST_NS_INT_QUEUED) *cpsr |= SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, ARM32_CPSR_F_SHIFT); else *cpsr &= ~SHIFT_U32(THREAD_EXCP_FOREIGN_INTR, ARM32_CPSR_F_SHIFT); } static TEE_Result sp_enter_invoke_cmd(struct ts_session *s, uint32_t cmd __unused) { struct sp_ctx *ctx = to_sp_ctx(s->ctx); TEE_Result res = TEE_SUCCESS; uint32_t exceptions = 0; struct sp_session *sp_s = to_sp_session(s); struct ts_session *sess = NULL; struct thread_ctx_regs *sp_regs = NULL; uint32_t thread_id = THREAD_ID_INVALID; struct ts_session *caller = NULL; uint32_t rpc_target_info = 0; uint32_t panicked = false; uint32_t panic_code = 0; sp_regs = &ctx->sp_regs; ts_push_current_session(s); exceptions = thread_mask_exceptions(THREAD_EXCP_ALL); /* Enable/disable foreign interrupts in CPSR/SPSR */ caller = ts_get_calling_session(); sp_cpsr_configure_foreign_interrupts(sp_s, caller, &sp_regs->cpsr); /* * Store endpoint ID and thread ID in rpc_target_info. This will be used * as w1 in FFA_INTERRUPT in case of a foreign interrupt. */ rpc_target_info = thread_get_tsd()->rpc_target_info; thread_id = thread_get_id(); assert(thread_id <= UINT16_MAX); thread_get_tsd()->rpc_target_info = FFA_TARGET_INFO_SET(sp_s->endpoint_id, thread_id); __thread_enter_user_mode(sp_regs, &panicked, &panic_code); /* Restore rpc_target_info */ thread_get_tsd()->rpc_target_info = rpc_target_info; thread_unmask_exceptions(exceptions); thread_user_clear_vfp(&ctx->uctx); if (panicked) { DMSG("SP panicked with code %#"PRIx32, panic_code); abort_print_current_ts(); sess = ts_pop_current_session(); cpu_spin_lock(&sp_s->spinlock); sp_s->state = sp_dead; cpu_spin_unlock(&sp_s->spinlock); return TEE_ERROR_TARGET_DEAD; } sess = ts_pop_current_session(); assert(sess == s); return res; } /* We currently don't support 32 bits */ #ifdef ARM64 static void sp_svc_store_registers(struct thread_scall_regs *regs, struct thread_ctx_regs *sp_regs) { COMPILE_TIME_ASSERT(sizeof(sp_regs->x[0]) == sizeof(regs->x0)); memcpy(sp_regs->x, ®s->x0, 31 * sizeof(regs->x0)); sp_regs->pc = regs->elr; sp_regs->sp = regs->sp_el0; } #endif static bool sp_handle_scall(struct thread_scall_regs *regs) { struct ts_session *ts = ts_get_current_session(); struct sp_ctx *uctx = to_sp_ctx(ts->ctx); struct sp_session *s = uctx->open_session; assert(s); sp_svc_store_registers(regs, &uctx->sp_regs); regs->x0 = 0; regs->x1 = 0; /* panic */ regs->x2 = 0; /* panic code */ /* * All the registers of the SP are saved in the SP session by the SVC * handler. * We always return to S-El1 after handling the SVC. We will continue * in sp_enter_invoke_cmd() (return from __thread_enter_user_mode). * The sp_enter() function copies the FF-A parameters (a0-a7) from the * saved registers to the thread_smc_args. The thread_smc_args object is * afterward used by the spmc_sp_msg_handler() to handle the * FF-A message send by the SP. */ return false; } static void sp_dump_state(struct ts_ctx *ctx) { struct sp_ctx *utc = to_sp_ctx(ctx); if (utc->uctx.dump_entry_func) { TEE_Result res = ldelf_dump_state(&utc->uctx); if (!res || res == TEE_ERROR_TARGET_DEAD) return; } user_mode_ctx_print_mappings(&utc->uctx); } static const struct ts_ops sp_ops = { .enter_invoke_cmd = sp_enter_invoke_cmd, .handle_scall = sp_handle_scall, .dump_state = sp_dump_state, }; static TEE_Result process_sp_pkg(uint64_t sp_pkg_pa, TEE_UUID *sp_uuid) { enum teecore_memtypes mtype = MEM_AREA_TA_RAM; struct sp_pkg_header *sp_pkg_hdr = NULL; struct fip_sp *sp = NULL; uint64_t sp_fdt_end = 0; size_t sp_pkg_size = 0; vaddr_t sp_pkg_va = 0; /* Process the first page which contains the SP package header */ sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, SMALL_PAGE_SIZE); if (!sp_pkg_va) { EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); return TEE_ERROR_GENERIC; } sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; if (sp_pkg_hdr->magic != SP_PKG_HEADER_MAGIC) { EMSG("Invalid SP package magic"); return TEE_ERROR_BAD_FORMAT; } if (sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V1 && sp_pkg_hdr->version != SP_PKG_HEADER_VERSION_V2) { EMSG("Invalid SP header version"); return TEE_ERROR_BAD_FORMAT; } if (ADD_OVERFLOW(sp_pkg_hdr->img_offset, sp_pkg_hdr->img_size, &sp_pkg_size)) { EMSG("Invalid SP package size"); return TEE_ERROR_BAD_FORMAT; } if (ADD_OVERFLOW(sp_pkg_hdr->pm_offset, sp_pkg_hdr->pm_size, &sp_fdt_end) || sp_fdt_end > sp_pkg_hdr->img_offset) { EMSG("Invalid SP manifest size"); return TEE_ERROR_BAD_FORMAT; } /* Process the whole SP package now that the size is known */ sp_pkg_va = (vaddr_t)phys_to_virt(sp_pkg_pa, mtype, sp_pkg_size); if (!sp_pkg_va) { EMSG("Cannot find mapping for PA %#" PRIxPA, sp_pkg_pa); return TEE_ERROR_GENERIC; } sp_pkg_hdr = (struct sp_pkg_header *)sp_pkg_va; sp = calloc(1, sizeof(struct fip_sp)); if (!sp) return TEE_ERROR_OUT_OF_MEMORY; memcpy(&sp->sp_img.image.uuid, sp_uuid, sizeof(*sp_uuid)); sp->sp_img.image.ts = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->img_offset); sp->sp_img.image.size = sp_pkg_hdr->img_size; sp->sp_img.image.flags = 0; sp->sp_img.fdt = (uint8_t *)(sp_pkg_va + sp_pkg_hdr->pm_offset); STAILQ_INSERT_TAIL(&fip_sp_list, sp, link); return TEE_SUCCESS; } static TEE_Result fip_sp_init_all(void) { TEE_Result res = TEE_SUCCESS; uint64_t sp_pkg_addr = 0; const void *fdt = NULL; TEE_UUID sp_uuid = { }; int sp_pkgs_node = 0; int subnode = 0; int root = 0; fdt = get_manifest_dt(); if (!fdt) { EMSG("No SPMC manifest found"); return TEE_ERROR_GENERIC; } root = fdt_path_offset(fdt, "/"); if (root < 0) return TEE_ERROR_BAD_FORMAT; if (fdt_node_check_compatible(fdt, root, "arm,ffa-core-manifest-1.0")) return TEE_ERROR_BAD_FORMAT; /* SP packages are optional, it's not an error if we don't find any */ sp_pkgs_node = fdt_node_offset_by_compatible(fdt, root, "arm,sp_pkg"); if (sp_pkgs_node < 0) return TEE_SUCCESS; fdt_for_each_subnode(subnode, fdt, sp_pkgs_node) { res = sp_dt_get_u64(fdt, subnode, "load-address", &sp_pkg_addr); if (res) { EMSG("Invalid FIP SP load address"); return res; } res = sp_dt_get_uuid(fdt, subnode, "uuid", &sp_uuid); if (res) { EMSG("Invalid FIP SP uuid"); return res; } res = process_sp_pkg(sp_pkg_addr, &sp_uuid); if (res) { EMSG("Invalid FIP SP package"); return res; } } return TEE_SUCCESS; } static void fip_sp_deinit_all(void) { while (!STAILQ_EMPTY(&fip_sp_list)) { struct fip_sp *sp = STAILQ_FIRST(&fip_sp_list); STAILQ_REMOVE_HEAD(&fip_sp_list, link); free(sp); } } static TEE_Result sp_init_all(void) { TEE_Result res = TEE_SUCCESS; const struct sp_image *sp = NULL; const struct fip_sp *fip_sp = NULL; char __maybe_unused msg[60] = { '\0', }; struct sp_session *s = NULL; struct sp_session *prev_sp = NULL; for_each_secure_partition(sp) { if (sp->image.uncompressed_size) snprintf(msg, sizeof(msg), " (compressed, uncompressed %u)", sp->image.uncompressed_size); else msg[0] = '\0'; DMSG("SP %pUl size %u%s", (void *)&sp->image.uuid, sp->image.size, msg); res = sp_init_uuid(&sp->image.uuid, sp->fdt); if (res != TEE_SUCCESS) { EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, &sp->image.uuid, res); if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) panic(); } } res = fip_sp_init_all(); if (res) panic("Failed initializing FIP SPs"); for_each_fip_sp(fip_sp) { sp = &fip_sp->sp_img; DMSG("SP %pUl size %u", (void *)&sp->image.uuid, sp->image.size); res = sp_init_uuid(&sp->image.uuid, sp->fdt); if (res != TEE_SUCCESS) { EMSG("Failed initializing SP(%pUl) err:%#"PRIx32, &sp->image.uuid, res); if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) panic(); } } /* * At this point all FIP SPs are loaded by ldelf or by the raw binary SP * loader, so the original images (loaded by BL2) are not needed anymore */ fip_sp_deinit_all(); /* * Now that all SPs are loaded, check through the boot order values, * and warn in case there is a non-unique value. */ TAILQ_FOREACH(s, &open_sp_sessions, link) { /* User specified boot-order values are uint16 */ if (s->boot_order > UINT16_MAX) break; if (prev_sp && prev_sp->boot_order == s->boot_order) IMSG("WARNING: duplicated boot-order (%pUl vs %pUl)", &prev_sp->ts_sess.ctx->uuid, &s->ts_sess.ctx->uuid); prev_sp = s; } /* Continue the initialization and run the SP */ TAILQ_FOREACH(s, &open_sp_sessions, link) { DMSG("Starting SP: 0x%"PRIx16, s->endpoint_id); res = sp_first_run(s); if (res != TEE_SUCCESS) { EMSG("Failed starting SP(0x%"PRIx16") err:%#"PRIx32, s->endpoint_id, res); if (!IS_ENABLED(CFG_SP_SKIP_FAILED)) panic(); } } return TEE_SUCCESS; } boot_final(sp_init_all); static TEE_Result secure_partition_open(const TEE_UUID *uuid, struct ts_store_handle **h) { return emb_ts_open(uuid, h, find_secure_partition); } REGISTER_SP_STORE(2) = { .description = "SP store", .open = secure_partition_open, .get_size = emb_ts_get_size, .get_tag = emb_ts_get_tag, .read = emb_ts_read, .close = emb_ts_close, };