Lines Matching full:deg

106 	unsigned int deg;    /* polynomial degree */  member
315 static inline int deg(unsigned int poly) in deg() function
398 i = deg(poly); in compute_syndromes()
413 memcpy(dst, src, GF_POLY_SZ(src->deg)); in gf_poly_copy()
430 pelp->deg = 0; in compute_error_locator_polynomial()
432 elp->deg = 0; in compute_error_locator_polynomial()
436 for (i = 0; (i < t) && (elp->deg <= t); i++) { in compute_error_locator_polynomial()
442 for (j = 0; j <= pelp->deg; j++) { in compute_error_locator_polynomial()
449 tmp = pelp->deg+k; in compute_error_locator_polynomial()
450 if (tmp > elp->deg) { in compute_error_locator_polynomial()
451 elp->deg = tmp; in compute_error_locator_polynomial()
460 for (j = 1; j <= elp->deg; j++) in compute_error_locator_polynomial()
465 return (elp->deg > t) ? -1 : (int)elp->deg; in compute_error_locator_polynomial()
623 i = deg(v); in find_poly_deg2_roots()
742 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); in gf_poly_logrep()
757 const unsigned int d = b->deg; in gf_poly_mod()
759 if (a->deg < d) in gf_poly_mod()
768 for (j = a->deg; j >= d; j--) { in gf_poly_mod()
780 a->deg = d-1; in gf_poly_mod()
781 while (!c[a->deg] && a->deg) in gf_poly_mod()
782 a->deg--; in gf_poly_mod()
791 if (a->deg >= b->deg) { in gf_poly_div()
792 q->deg = a->deg-b->deg; in gf_poly_div()
796 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); in gf_poly_div()
798 q->deg = 0; in gf_poly_div()
813 if (a->deg < b->deg) { in gf_poly_gcd()
819 while (b->deg > 0) { in gf_poly_gcd()
843 z->deg = 1; in compute_trace_bk_mod()
847 out->deg = 0; in compute_trace_bk_mod()
848 memset(out, 0, GF_POLY_SZ(f->deg)); in compute_trace_bk_mod()
855 for (j = z->deg; j >= 0; j--) { in compute_trace_bk_mod()
860 if (z->deg > out->deg) in compute_trace_bk_mod()
861 out->deg = z->deg; in compute_trace_bk_mod()
864 z->deg *= 2; in compute_trace_bk_mod()
869 while (!out->c[out->deg] && out->deg) in compute_trace_bk_mod()
870 out->deg--; in compute_trace_bk_mod()
895 if (tk->deg > 0) { in factor_polynomial()
899 if (gcd->deg < f->deg) { in factor_polynomial()
903 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; in factor_polynomial()
920 switch (poly->deg) { in find_poly_roots()
937 if (poly->deg && (k <= GF_M(bch))) { in find_poly_roots()
963 bch->cache[p->deg] = 0; in chien_search()
964 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); in chien_search()
968 for (j = 1, syn = syn0; j <= p->deg; j++) { in chien_search()
975 if (count == p->deg) in chien_search()
979 return (count == p->deg) ? count : 0; in chien_search()
1093 const unsigned int k = 1 << deg(poly); in build_gf_tables()
1131 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ in build_mod8_tables()
1135 d = deg(data); in build_mod8_tables()
1136 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ in build_mod8_tables()
1231 g->deg = 0; in compute_generator_polynomial()
1237 g->c[g->deg+1] = 1; in compute_generator_polynomial()
1238 for (j = g->deg; j > 0; j--) in compute_generator_polynomial()
1242 g->deg++; in compute_generator_polynomial()
1246 n = g->deg+1; in compute_generator_polynomial()
1258 bch->ecc_bits = g->deg; in compute_generator_polynomial()