Lines Matching full:compute
19 * Call encode_bch to compute and store ecc parity bytes to a given buffer.
110 /* given its degree, compute a polynomial size in bytes */
375 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
393 /* compute v(a^j) for j=1 .. 2t-1 */ in compute_syndromes()
448 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ in compute_error_locator_polynomial()
533 /* compute unique solution */ in solve_linear_system()
583 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
598 * compute roots of a degree 2 polynomial over GF(2^m)
615 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): in find_poly_deg2_roots()
629 /* reverse z=a/bX transformation and compute log(1/r) */ in find_poly_deg2_roots()
640 * compute roots of a degree 3 polynomial over GF(2^m)
673 * compute roots of a degree 4 polynomial over GF(2^m)
695 /* compute e such that e^2 = c/a */ in find_poly_deg4_roots()
750 * compute polynomial Euclidean division remainder in GF(2^m)[X]
762 /* reuse or compute log representation of denominator */ in gf_poly_mod()
786 * compute polynomial Euclidean division quotient in GF(2^m)[X]
793 /* compute a mod b (modifies a) */ in gf_poly_div()
804 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
832 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
850 /* compute f log representation only once */ in compute_trace_bk_mod()
854 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ in compute_trace_bk_mod()
896 /* compute g = gcd(f, tk) (destructive operation) */ in factor_polynomial()
900 /* compute h=f/gcd(f,tk); this will modify f and q */ in factor_polynomial()
967 /* compute elp(a^i) */ in chien_search()
998 * Depending on the available hw BCH support and the need to compute @calc_ecc
1039 /* if caller does not provide syndromes, compute them */ in decode_bch()
1042 /* compute received data ecc into an internal buffer */ in decode_bch()
1116 * compute generator polynomial remainder tables for fast encoding
1131 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ in build_mod8_tables()
1201 * compute generator polynomial for given (m,t) parameters.