Lines Matching +full:abs +full:- +full:flat

1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
26 #include "input-compat.h"
27 #include "input-poller.h"
70 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
73 if (value > old_val - fuzz && value < old_val + fuzz)
76 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
85 if (test_bit(EV_REP, dev->evbit) &&
86 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
87 dev->timer.function) {
88 dev->repeat_key = code;
89 mod_timer(&dev->timer,
90 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
96 del_timer(&dev->timer);
102 * dev->event_lock held and interrupts disabled.
107 struct input_handler *handler = handle->handler;
111 if (handler->filter) {
113 if (handler->filter(handle, v->type, v->code, v->value))
119 count = end - vals;
125 if (handler->events)
126 handler->events(handle, vals, count);
127 else if (handler->event)
129 handler->event(handle, v->type, v->code, v->value);
137 * dev->event_lock held and interrupts disabled.
150 handle = rcu_dereference(dev->grab);
154 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
155 if (handle->open) {
165 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
167 if (v->type == EV_KEY && v->value != 2) {
168 if (v->value)
169 input_start_autorepeat(dev, v->code);
187 * dev->event_lock here to avoid racing with input_event
195 spin_lock_irqsave(&dev->event_lock, flags);
197 if (test_bit(dev->repeat_key, dev->key) &&
198 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
200 { EV_KEY, dev->repeat_key, 2 },
207 if (dev->rep[REP_PERIOD])
208 mod_timer(&dev->timer, jiffies +
209 msecs_to_jiffies(dev->rep[REP_PERIOD]));
212 spin_unlock_irqrestore(&dev->event_lock, flags);
225 struct input_mt *mt = dev->mt;
234 if (mt && *pval >= 0 && *pval < mt->num_slots)
235 mt->slot = *pval;
243 pold = &dev->absinfo[code].value;
245 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
248 * Bypass filtering for multi-touch events when
256 dev->absinfo[code].fuzz);
264 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
265 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
296 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
298 /* auto-repeat bypasses state updates */
304 if (!!test_bit(code, dev->key) != !!value) {
306 __change_bit(code, dev->key);
313 if (is_event_supported(code, dev->swbit, SW_MAX) &&
314 !!test_bit(code, dev->sw) != !!value) {
316 __change_bit(code, dev->sw);
322 if (is_event_supported(code, dev->absbit, ABS_MAX))
328 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
334 if (is_event_supported(code, dev->mscbit, MSC_MAX))
340 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
341 !!test_bit(code, dev->led) != !!value) {
343 __change_bit(code, dev->led);
349 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
351 if (!!test_bit(code, dev->snd) != !!value)
352 __change_bit(code, dev->snd);
358 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
359 dev->rep[code] = value;
386 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
387 dev->event(dev, type, code, value);
389 if (!dev->vals)
396 v = &dev->vals[dev->num_vals++];
397 v->type = EV_ABS;
398 v->code = ABS_MT_SLOT;
399 v->value = dev->mt->slot;
402 v = &dev->vals[dev->num_vals++];
403 v->type = type;
404 v->code = code;
405 v->value = value;
409 if (dev->num_vals >= 2)
410 input_pass_values(dev, dev->vals, dev->num_vals);
411 dev->num_vals = 0;
418 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
419 } else if (dev->num_vals >= dev->max_vals - 2) {
420 dev->vals[dev->num_vals++] = input_value_sync;
421 input_pass_values(dev, dev->vals, dev->num_vals);
422 dev->num_vals = 0;
428 * input_event() - report new input event
449 if (is_event_supported(type, dev->evbit, EV_MAX)) {
451 spin_lock_irqsave(&dev->event_lock, flags);
453 spin_unlock_irqrestore(&dev->event_lock, flags);
459 * input_inject_event() - send input event from input handler
472 struct input_dev *dev = handle->dev;
476 if (is_event_supported(type, dev->evbit, EV_MAX)) {
477 spin_lock_irqsave(&dev->event_lock, flags);
480 grab = rcu_dereference(dev->grab);
485 spin_unlock_irqrestore(&dev->event_lock, flags);
491 * input_alloc_absinfo - allocates array of input_absinfo structs
499 if (dev->absinfo)
502 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
503 if (!dev->absinfo) {
504 dev_err(dev->dev.parent ?: &dev->dev,
509 * device with ABS bits but without absinfo.
516 int min, int max, int fuzz, int flat)
521 if (!dev->absinfo)
524 absinfo = &dev->absinfo[axis];
525 absinfo->minimum = min;
526 absinfo->maximum = max;
527 absinfo->fuzz = fuzz;
528 absinfo->flat = flat;
530 __set_bit(EV_ABS, dev->evbit);
531 __set_bit(axis, dev->absbit);
537 * input_grab_device - grabs device for exclusive use
546 struct input_dev *dev = handle->dev;
549 retval = mutex_lock_interruptible(&dev->mutex);
553 if (dev->grab) {
554 retval = -EBUSY;
558 rcu_assign_pointer(dev->grab, handle);
561 mutex_unlock(&dev->mutex);
568 struct input_dev *dev = handle->dev;
571 grabber = rcu_dereference_protected(dev->grab,
572 lockdep_is_held(&dev->mutex));
574 rcu_assign_pointer(dev->grab, NULL);
578 list_for_each_entry(handle, &dev->h_list, d_node)
579 if (handle->open && handle->handler->start)
580 handle->handler->start(handle);
585 * input_release_device - release previously grabbed device
595 struct input_dev *dev = handle->dev;
597 mutex_lock(&dev->mutex);
599 mutex_unlock(&dev->mutex);
604 * input_open_device - open input device
612 struct input_dev *dev = handle->dev;
615 retval = mutex_lock_interruptible(&dev->mutex);
619 if (dev->going_away) {
620 retval = -ENODEV;
624 handle->open++;
626 if (dev->users++) {
634 if (dev->open) {
635 retval = dev->open(dev);
637 dev->users--;
638 handle->open--;
648 if (dev->poller)
649 input_dev_poller_start(dev->poller);
652 mutex_unlock(&dev->mutex);
659 struct input_dev *dev = handle->dev;
662 retval = mutex_lock_interruptible(&dev->mutex);
666 if (dev->flush)
667 retval = dev->flush(dev, file);
669 mutex_unlock(&dev->mutex);
675 * input_close_device - close input device
683 struct input_dev *dev = handle->dev;
685 mutex_lock(&dev->mutex);
689 if (!--dev->users) {
690 if (dev->poller)
691 input_dev_poller_stop(dev->poller);
693 if (dev->close)
694 dev->close(dev);
697 if (!--handle->open) {
706 mutex_unlock(&dev->mutex);
712 * The function must be called with dev->event_lock held.
719 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
720 for_each_set_bit(code, dev->key, KEY_CNT) {
728 memset(dev->key, 0, sizeof(dev->key));
740 * Mark device as going away. Note that we take dev->mutex here
741 * not to protect access to dev->going_away but rather to ensure
744 mutex_lock(&dev->mutex);
745 dev->going_away = true;
746 mutex_unlock(&dev->mutex);
748 spin_lock_irq(&dev->event_lock);
758 list_for_each_entry(handle, &dev->h_list, d_node)
759 handle->open = 0;
761 spin_unlock_irq(&dev->event_lock);
765 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
777 switch (ke->len) {
779 *scancode = *((u8 *)ke->scancode);
783 *scancode = *((u16 *)ke->scancode);
787 *scancode = *((u32 *)ke->scancode);
791 return -EINVAL;
806 switch (dev->keycodesize) {
808 return ((u8 *)dev->keycode)[index];
811 return ((u16 *)dev->keycode)[index];
814 return ((u32 *)dev->keycode)[index];
824 if (!dev->keycodesize)
825 return -EINVAL;
827 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
828 index = ke->index;
835 if (index >= dev->keycodemax)
836 return -EINVAL;
838 ke->keycode = input_fetch_keycode(dev, index);
839 ke->index = index;
840 ke->len = sizeof(index);
841 memcpy(ke->scancode, &index, sizeof(index));
854 if (!dev->keycodesize)
855 return -EINVAL;
857 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
858 index = ke->index;
865 if (index >= dev->keycodemax)
866 return -EINVAL;
868 if (dev->keycodesize < sizeof(ke->keycode) &&
869 (ke->keycode >> (dev->keycodesize * 8)))
870 return -EINVAL;
872 switch (dev->keycodesize) {
874 u8 *k = (u8 *)dev->keycode;
876 k[index] = ke->keycode;
880 u16 *k = (u16 *)dev->keycode;
882 k[index] = ke->keycode;
886 u32 *k = (u32 *)dev->keycode;
888 k[index] = ke->keycode;
894 __clear_bit(*old_keycode, dev->keybit);
895 for (i = 0; i < dev->keycodemax; i++) {
897 __set_bit(*old_keycode, dev->keybit);
904 __set_bit(ke->keycode, dev->keybit);
909 * input_get_keycode - retrieve keycode currently mapped to a given scancode
921 spin_lock_irqsave(&dev->event_lock, flags);
922 retval = dev->getkeycode(dev, ke);
923 spin_unlock_irqrestore(&dev->event_lock, flags);
930 * input_set_keycode - attribute a keycode to a given scancode
944 if (ke->keycode > KEY_MAX)
945 return -EINVAL;
947 spin_lock_irqsave(&dev->event_lock, flags);
949 retval = dev->setkeycode(dev, ke, &old_keycode);
954 __clear_bit(KEY_RESERVED, dev->keybit);
961 dev_warn(dev->dev.parent ?: &dev->dev,
964 } else if (test_bit(EV_KEY, dev->evbit) &&
965 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
966 __test_and_clear_bit(old_keycode, dev->key)) {
976 spin_unlock_irqrestore(&dev->event_lock, flags);
985 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
986 if (id->bustype != dev->id.bustype)
989 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
990 if (id->vendor != dev->id.vendor)
993 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
994 if (id->product != dev->id.product)
997 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
998 if (id->version != dev->id.version)
1001 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
1002 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
1003 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
1004 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
1005 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
1006 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
1007 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
1008 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
1009 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1010 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1023 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1025 (!handler->match || handler->match(handler, dev))) {
1040 return -ENODEV;
1042 error = handler->connect(handler, dev, id);
1043 if (error && error != -ENODEV)
1045 handler->name, kobject_name(&dev->dev.kobj), error);
1064 len += snprintf(buf + len, max(buf_size - len, 0),
1100 if (file->f_version != input_devices_state) {
1101 file->f_version = input_devices_state;
1118 union input_seq_state *state = (union input_seq_state *)&seq->private;
1121 /* We need to fit into seq->private pointer */
1122 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1126 state->mutex_acquired = false;
1130 state->mutex_acquired = true;
1142 union input_seq_state *state = (union input_seq_state *)&seq->private;
1144 if (state->mutex_acquired)
1157 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1177 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1181 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1183 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1184 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1186 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1189 list_for_each_entry(handle, &dev->h_list, d_node)
1190 seq_printf(seq, "%s ", handle->name);
1193 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1195 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1196 if (test_bit(EV_KEY, dev->evbit))
1197 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1198 if (test_bit(EV_REL, dev->evbit))
1199 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1200 if (test_bit(EV_ABS, dev->evbit))
1201 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1202 if (test_bit(EV_MSC, dev->evbit))
1203 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1204 if (test_bit(EV_LED, dev->evbit))
1205 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1206 if (test_bit(EV_SND, dev->evbit))
1207 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1208 if (test_bit(EV_FF, dev->evbit))
1209 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1210 if (test_bit(EV_SW, dev->evbit))
1211 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1241 union input_seq_state *state = (union input_seq_state *)&seq->private;
1244 /* We need to fit into seq->private pointer */
1245 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1249 state->mutex_acquired = false;
1253 state->mutex_acquired = true;
1254 state->pos = *pos;
1261 union input_seq_state *state = (union input_seq_state *)&seq->private;
1263 state->pos = *pos + 1;
1270 union input_seq_state *state = (union input_seq_state *)&seq->private;
1272 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1273 if (handler->filter)
1275 if (handler->legacy_minors)
1276 seq_printf(seq, " Minor=%d", handler->minor);
1307 return -ENOMEM;
1323 return -ENOMEM;
1347 input_dev->name ? input_dev->name : ""); \
1364 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1374 "input:b%04Xv%04Xp%04Xe%04X-",
1375 id->id.bustype, id->id.vendor,
1376 id->id.product, id->id.version);
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 'e', id->evbit, 0, EV_MAX);
1380 len += input_print_modalias_bits(buf + len, size - len,
1381 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1382 len += input_print_modalias_bits(buf + len, size - len,
1383 'r', id->relbit, 0, REL_MAX);
1384 len += input_print_modalias_bits(buf + len, size - len,
1385 'a', id->absbit, 0, ABS_MAX);
1386 len += input_print_modalias_bits(buf + len, size - len,
1387 'm', id->mscbit, 0, MSC_MAX);
1388 len += input_print_modalias_bits(buf + len, size - len,
1389 'l', id->ledbit, 0, LED_MAX);
1390 len += input_print_modalias_bits(buf + len, size - len,
1391 's', id->sndbit, 0, SND_MAX);
1392 len += input_print_modalias_bits(buf + len, size - len,
1393 'f', id->ffbit, 0, FF_MAX);
1394 len += input_print_modalias_bits(buf + len, size - len,
1395 'w', id->swbit, 0, SW_MAX);
1398 len += snprintf(buf + len, max(size - len, 0), "\n");
1424 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1449 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1478 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1479 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1484 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1495 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1507 input_dev->bm##bit, ev##_MAX, \
1516 INPUT_DEV_CAP_ATTR(ABS, abs);
1555 kfree(dev->poller);
1556 kfree(dev->absinfo);
1557 kfree(dev->vals);
1564 * Input uevent interface - loading event handlers based on
1573 return -ENOMEM;
1575 len = input_print_bitmap(&env->buf[env->buflen - 1],
1576 sizeof(env->buf) - env->buflen,
1578 if (len >= (sizeof(env->buf) - env->buflen))
1579 return -ENOMEM;
1581 env->buflen += len;
1591 return -ENOMEM;
1593 len = input_print_modalias(&env->buf[env->buflen - 1],
1594 sizeof(env->buf) - env->buflen,
1596 if (len >= (sizeof(env->buf) - env->buflen))
1597 return -ENOMEM;
1599 env->buflen += len;
1629 dev->id.bustype, dev->id.vendor,
1630 dev->id.product, dev->id.version);
1631 if (dev->name)
1632 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1633 if (dev->phys)
1634 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1635 if (dev->uniq)
1636 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1638 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1640 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1641 if (test_bit(EV_KEY, dev->evbit))
1642 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1643 if (test_bit(EV_REL, dev->evbit))
1644 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1645 if (test_bit(EV_ABS, dev->evbit))
1646 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1647 if (test_bit(EV_MSC, dev->evbit))
1648 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1649 if (test_bit(EV_LED, dev->evbit))
1650 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1651 if (test_bit(EV_SND, dev->evbit))
1652 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1653 if (test_bit(EV_FF, dev->evbit))
1654 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1655 if (test_bit(EV_SW, dev->evbit))
1656 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1668 if (!test_bit(EV_##type, dev->evbit)) \
1671 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1672 active = test_bit(i, dev->bits); \
1676 dev->event(dev, EV_##type, i, on ? active : 0); \
1682 if (!dev->event)
1688 if (activate && test_bit(EV_REP, dev->evbit)) {
1689 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1690 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1695 * input_reset_device() - reset/restore the state of input device
1706 mutex_lock(&dev->mutex);
1707 spin_lock_irqsave(&dev->event_lock, flags);
1712 spin_unlock_irqrestore(&dev->event_lock, flags);
1713 mutex_unlock(&dev->mutex);
1722 spin_lock_irq(&input_dev->event_lock);
1733 spin_unlock_irq(&input_dev->event_lock);
1742 spin_lock_irq(&input_dev->event_lock);
1747 spin_unlock_irq(&input_dev->event_lock);
1756 spin_lock_irq(&input_dev->event_lock);
1764 spin_unlock_irq(&input_dev->event_lock);
1773 spin_lock_irq(&input_dev->event_lock);
1778 spin_unlock_irq(&input_dev->event_lock);
1813 * input_allocate_device - allocate memory for new input device
1823 static atomic_t input_no = ATOMIC_INIT(-1);
1828 dev->dev.type = &input_dev_type;
1829 dev->dev.class = &input_class;
1830 device_initialize(&dev->dev);
1831 mutex_init(&dev->mutex);
1832 spin_lock_init(&dev->event_lock);
1833 timer_setup(&dev->timer, NULL, 0);
1834 INIT_LIST_HEAD(&dev->h_list);
1835 INIT_LIST_HEAD(&dev->node);
1837 dev_set_name(&dev->dev, "input%lu",
1855 return devres->input == data;
1861 struct input_dev *input = devres->input;
1864 __func__, dev_name(&input->dev));
1869 * devm_input_allocate_device - allocate managed input device
1902 input->dev.parent = dev;
1903 input->devres_managed = true;
1905 devres->input = input;
1913 * input_free_device - free memory occupied by input_dev structure
1929 if (dev->devres_managed)
1930 WARN_ON(devres_destroy(dev->dev.parent,
1940 * input_set_timestamp - set timestamp for input events
1955 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1956 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1957 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1963 * input_get_timestamp - get timestamp for input events
1966 * A valid timestamp is a timestamp of non-zero value.
1972 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1975 return dev->timestamp;
1980 * input_set_capability - mark device as capable of a certain event
1986 * bitmap the function also adjusts dev->evbit.
2000 __set_bit(code, dev->keybit);
2004 __set_bit(code, dev->relbit);
2009 if (!dev->absinfo)
2012 __set_bit(code, dev->absbit);
2016 __set_bit(code, dev->mscbit);
2020 __set_bit(code, dev->swbit);
2024 __set_bit(code, dev->ledbit);
2028 __set_bit(code, dev->sndbit);
2032 __set_bit(code, dev->ffbit);
2045 __set_bit(type, dev->evbit);
2055 if (dev->mt) {
2056 mt_slots = dev->mt->num_slots;
2057 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2058 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2059 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2061 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2069 if (test_bit(EV_ABS, dev->evbit))
2070 for_each_set_bit(i, dev->absbit, ABS_CNT)
2073 if (test_bit(EV_REL, dev->evbit))
2074 events += bitmap_weight(dev->relbit, REL_CNT);
2084 if (!test_bit(EV_##type, dev->evbit)) \
2085 memset(dev->bits##bit, 0, \
2086 sizeof(dev->bits##bit)); \
2093 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2109 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2110 handle->handler->disconnect(handle);
2111 WARN_ON(!list_empty(&dev->h_list));
2113 del_timer_sync(&dev->timer);
2114 list_del_init(&dev->node);
2120 device_del(&dev->dev);
2126 struct input_dev *input = devres->input;
2129 __func__, dev_name(&input->dev));
2134 * input_enable_softrepeat - enable software autorepeat
2143 dev->timer.function = input_repeat_key;
2144 dev->rep[REP_DELAY] = delay;
2145 dev->rep[REP_PERIOD] = period;
2150 * input_register_device - register device with input core
2165 * that tear down of managed input devices is internally a 2-step process:
2180 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2181 dev_err(&dev->dev,
2182 "Absolute device without dev->absinfo, refusing to register\n");
2183 return -EINVAL;
2186 if (dev->devres_managed) {
2190 return -ENOMEM;
2192 devres->input = dev;
2196 __set_bit(EV_SYN, dev->evbit);
2199 __clear_bit(KEY_RESERVED, dev->keybit);
2201 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2205 if (dev->hint_events_per_packet < packet_size)
2206 dev->hint_events_per_packet = packet_size;
2208 dev->max_vals = dev->hint_events_per_packet + 2;
2209 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2210 if (!dev->vals) {
2211 error = -ENOMEM;
2216 * If delay and period are pre-set by the driver, then autorepeating
2219 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2222 if (!dev->getkeycode)
2223 dev->getkeycode = input_default_getkeycode;
2225 if (!dev->setkeycode)
2226 dev->setkeycode = input_default_setkeycode;
2228 if (dev->poller)
2229 input_dev_poller_finalize(dev->poller);
2231 error = device_add(&dev->dev);
2235 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2237 dev->name ? dev->name : "Unspecified device",
2245 list_add_tail(&dev->node, &input_dev_list);
2254 if (dev->devres_managed) {
2255 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2256 __func__, dev_name(&dev->dev));
2257 devres_add(dev->dev.parent, devres);
2262 device_del(&dev->dev);
2264 kfree(dev->vals);
2265 dev->vals = NULL;
2273 * input_unregister_device - unregister previously registered device
2281 if (dev->devres_managed) {
2282 WARN_ON(devres_destroy(dev->dev.parent,
2299 * input_register_handler - register a new input handler
2315 INIT_LIST_HEAD(&handler->h_list);
2317 list_add_tail(&handler->node, &input_handler_list);
2330 * input_unregister_handler - unregisters an input handler
2342 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2343 handler->disconnect(handle);
2344 WARN_ON(!list_empty(&handler->h_list));
2346 list_del_init(&handler->node);
2355 * input_handler_for_each_handle - handle iterator
2361 * it @data and stop when @fn returns a non-zero value. The function is
2374 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2387 * input_register_handle - register a new input handle
2399 struct input_handler *handler = handle->handler;
2400 struct input_dev *dev = handle->dev;
2404 * We take dev->mutex here to prevent race with
2407 error = mutex_lock_interruptible(&dev->mutex);
2415 if (handler->filter)
2416 list_add_rcu(&handle->d_node, &dev->h_list);
2418 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2420 mutex_unlock(&dev->mutex);
2423 * Since we are supposed to be called from ->connect()
2424 * which is mutually exclusive with ->disconnect()
2428 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2430 if (handler->start)
2431 handler->start(handle);
2438 * input_unregister_handle - unregister an input handle
2449 struct input_dev *dev = handle->dev;
2451 list_del_rcu(&handle->h_node);
2454 * Take dev->mutex to prevent race with input_release_device().
2456 mutex_lock(&dev->mutex);
2457 list_del_rcu(&handle->d_node);
2458 mutex_unlock(&dev->mutex);
2465 * input_get_new_minor - allocates a new input minor number
2479 * This function should be called from input handler's ->connect()
2499 * input_free_minor - release previously allocated minor