| #
30019d86 |
| 25-Oct-2023 |
Sona Mathew <sonarebecca.mathew@arm.com> |
feat(cpufeat): add feature detection for FEAT_CSV2_3
This feature provides support to context save the SCXTNUM_ELx register. FEAT_CSV2_3 implies the implementation of FEAT_CSV2_2. FEAT_CSV2_3 is sup
feat(cpufeat): add feature detection for FEAT_CSV2_3
This feature provides support to context save the SCXTNUM_ELx register. FEAT_CSV2_3 implies the implementation of FEAT_CSV2_2. FEAT_CSV2_3 is supported in AArch64 state only and is an optional feature in Arm v8.0 implementations.
This patch adds feature detection for v8.9 feature FEAT_CSV2_3, adds macros for ID_AA64PFR0_EL1.CSV2 bits [59:56] for detecting FEAT_CSV2_3 and macro for ENABLE_FEAT_CSV2_3.
Change-Id: Ida9f31e832b5f11bd89eebd6cc9f10ddad755c14 Signed-off-by: Sona Mathew <sonarebecca.mathew@arm.com>
show more ...
|
| #
61dfdfd4 |
| 24-Jan-2024 |
Manish V Badarkhe <manish.badarkhe@arm.com> |
Merge "refactor(mte): deprecate CTX_INCLUDE_MTE_REGS" into integration
|
| #
0a33adc0 |
| 21-Dec-2023 |
Govindraj Raja <govindraj.raja@arm.com> |
refactor(mte): deprecate CTX_INCLUDE_MTE_REGS
Currently CTX_INCLUDE_MTE_REGS is used for dual purpose, to enable allocation tags register and to context save and restore them and also to check if mt
refactor(mte): deprecate CTX_INCLUDE_MTE_REGS
Currently CTX_INCLUDE_MTE_REGS is used for dual purpose, to enable allocation tags register and to context save and restore them and also to check if mte feature is available.
To make it more meaningful, remove CTX_INCLUDE_MTE_REGS and introduce FEAT_MTE. This would enable allocation tags register when FEAT_MTE is enabled and also supported from platform.
Also arch features can be conditionally enabled disabled based on arch version from `make_helpers/arch_features.mk`
Change-Id: Ibdd2d43874634ad7ddff93c7edad6044ae1631ed Signed-off-by: Govindraj Raja <govindraj.raja@arm.com>
show more ...
|
| #
26d67076 |
| 29-Jun-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge changes from topic "bk/context_refactor" into integration
* changes: refactor(pmu): convert FEAT_MTPMU to C and move to persistent register init feat(pmu): introduce pmuv3 lib/extensions f
Merge changes from topic "bk/context_refactor" into integration
* changes: refactor(pmu): convert FEAT_MTPMU to C and move to persistent register init feat(pmu): introduce pmuv3 lib/extensions folder fix(pmu): make MDCR_EL3.MTPME=1 out of reset refactor(cm): introduce a real manage_extensions_nonsecure()
show more ...
|
| #
83a4dae1 |
| 16-Feb-2023 |
Boyan Karatotev <boyan.karatotev@arm.com> |
refactor(pmu): convert FEAT_MTPMU to C and move to persistent register init
The FEAT_MTPMU feature disable runs very early after reset. This means, it needs to be written in assembly, since the C ru
refactor(pmu): convert FEAT_MTPMU to C and move to persistent register init
The FEAT_MTPMU feature disable runs very early after reset. This means, it needs to be written in assembly, since the C runtime has not been initialised yet.
However, there is no need for it to be initialised so soon. The PMU state is only relevant after TF-A has relinquished control. The code to do this is also very verbose and difficult to read. Delaying the initialisation allows for it to happen with the rest of the PMU. Align with FEAT_STATE in the process.
BREAKING CHANGE: This patch explicitly breaks the EL2 entry path. It is currently unsupported.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com> Change-Id: I2aa659d026fbdb75152469f6d19812ece3488c6f
show more ...
|
| #
c73686a1 |
| 15-Feb-2023 |
Boyan Karatotev <boyan.karatotev@arm.com> |
feat(pmu): introduce pmuv3 lib/extensions folder
The enablement code for the PMU is scattered and difficult to track down. Factor out the feature into its own lib/extensions folder and consolidate t
feat(pmu): introduce pmuv3 lib/extensions folder
The enablement code for the PMU is scattered and difficult to track down. Factor out the feature into its own lib/extensions folder and consolidate the implementation. Treat it is as an architecturally mandatory feature as it is currently.
Additionally, do some cleanup on AArch64. Setting overflow bits in PMCR_EL0 is irrelevant for firmware so don't do it. Then delay the PMU initialisation until the context management stage which simplifies the early environment assembly. One side effect is that the PMU might count before this happens so reset all counters to 0 to prevent any leakage.
Finally, add an enable to manage_extensions_realm() as realm world uses the pmu. This introduces the HPMN fixup to realm world.
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com> Change-Id: Ie13a8625820ecc5fbfa467dc6ca18025bf6a9cd3
show more ...
|
| #
e1c0a472 |
| 06-Jun-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge changes from topic "dummy_feat_aa32" into integration
* changes: feat(cpufeat): deny AArch64-only features when building for AArch32 feat(cpufeat): add AArch32 PAN detection support
|
| #
733d112f |
| 23-May-2023 |
Andre Przywara <andre.przywara@arm.com> |
feat(cpufeat): deny AArch64-only features when building for AArch32
Many newer architecture features are defined for AArch64 only, so cannot be used in an AArch32 build.
To avoid #ifdef-ing every s
feat(cpufeat): deny AArch64-only features when building for AArch32
Many newer architecture features are defined for AArch64 only, so cannot be used in an AArch32 build.
To avoid #ifdef-ing every single user, just provide trivial implementations of the feature check functions is_feat_xxx_supported(), which always return "false" in AArch32. The compiler will then optimise out the dependent code automatically.
Change-Id: I1e7d653fca0e676a11858efd953c2d623f2d5c9e Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
d156c522 |
| 23-May-2023 |
Andre Przywara <andre.przywara@arm.com> |
feat(cpufeat): add AArch32 PAN detection support
FEAT_PAN is implemented in AArch32 as well, provide the helper functions to query the feature availability at runtime.
Change-Id: I375e3eb7b05955ea2
feat(cpufeat): add AArch32 PAN detection support
FEAT_PAN is implemented in AArch32 as well, provide the helper functions to query the feature availability at runtime.
Change-Id: I375e3eb7b05955ea28a092ba99bb93302af48a0e Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
0df3824b |
| 25-Apr-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge "refactor(cpufeat): enable FEAT_DIT for FEAT_STATE_CHECKED" into integration
|
| #
88727fc3 |
| 26-Jan-2023 |
Andre Przywara <andre.przywara@arm.com> |
refactor(cpufeat): enable FEAT_DIT for FEAT_STATE_CHECKED
At the moment we only support FEAT_DIT to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime det
refactor(cpufeat): enable FEAT_DIT for FEAT_STATE_CHECKED
At the moment we only support FEAT_DIT to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime detection (ENABLE_DIT=2), by splitting is_armv8_4_dit_present() into an ID register reading function and a second function to report the support status. That function considers both build time settings and runtime information (if needed).
We use ENABLE_DIT in two occassions in assembly code, where we just set the DIT bit in the DIT system register. Protect those two cases by reading the CPU ID register when ENABLE_DIT is set to 2.
Change the FVP platform default to the now supported dynamic option (=2), so the right decision can be made by the code at runtime.
Change-Id: I506d352f18e23c60db8cdf08edb449f60adbe098 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
e24e42c6 |
| 28-Mar-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge changes from topic "feat_amu_rework" into integration
* changes: refactor(amu): use new AMU feature check routines refactor(amu): unify ENABLE_AMU and ENABLE_FEAT_AMUv1
|
| #
b57e16a4 |
| 03-Mar-2023 |
Andre Przywara <andre.przywara@arm.com> |
refactor(amu): use new AMU feature check routines
The AMU extension code was using its own feature detection routines. Replace them with the generic CPU feature handlers (defined in arch_features.h)
refactor(amu): use new AMU feature check routines
The AMU extension code was using its own feature detection routines. Replace them with the generic CPU feature handlers (defined in arch_features.h), which get updated to cover the v1p1 variant as well.
Change-Id: I8540f1e745d7b02a25a6c6cdf2a39d6f5e21f2aa Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
82f5b509 |
| 27-Mar-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge changes from topic "feat_state_part4" into integration
* changes: refactor(cpufeat): enable FEAT_RNG for FEAT_STATE_CHECKED refactor(cpufeat): align FEAT_SEL2 to new feature handling ref
Merge changes from topic "feat_state_part4" into integration
* changes: refactor(cpufeat): enable FEAT_RNG for FEAT_STATE_CHECKED refactor(cpufeat): align FEAT_SEL2 to new feature handling refactor(cpufeat): enable FEAT_NV2 for FEAT_STATE_CHECKED refactor(cpufeat): enable FEAT_TWED for FEAT_STATE_CHECKED refactor(cpufeat): enable FEAT_CSV2_2 for FEAT_STATE_CHECKED refactor(cpufeat): enable FEAT_ECV for FEAT_STATE_CHECKED refactor(cpufeat): enable FEAT_PAN for FEAT_STATE_CHECKED refactor(cpufeat): align FEAT_SB to new feature handling refactor(cpufeat): use alternative encoding for "SB" barrier refactor(cpufeat): enable SYS_REG_TRACE for FEAT_STATE_CHECKED fix(cpufeat): make stub enable functions "static inline" fix(mpam): feat_detect: support major/minor
show more ...
|
| #
603a0c6f |
| 17-Nov-2022 |
Andre Przywara <andre.przywara@arm.com> |
refactor(cpufeat): enable SYS_REG_TRACE for FEAT_STATE_CHECKED
At the moment we only support access to the trace unit by system registers (SYS_REG_TRACE) to be either unconditionally compiled in, or
refactor(cpufeat): enable SYS_REG_TRACE for FEAT_STATE_CHECKED
At the moment we only support access to the trace unit by system registers (SYS_REG_TRACE) to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime detection (ENABLE_SYS_REG_TRACE_FOR_NS=2), by adding is_feat_sys_reg_trace_supported(). That function considers both build time settings and runtime information (if needed), and is used before we access SYS_REG_TRACE related registers.
The FVP platform decided to compile in support unconditionally (=1), even though this is an optional feature, so it is not available with the FVP model's default command line. Change that to the now supported dynamic option (=2), so the right decision can be made by the code at runtime.
Change-Id: I450a574a4f6bd9fc269887037049c94c906f54b2 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
7419b7a7 |
| 20-Mar-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge changes from topic "feat_state_part3" into integration
* changes: refactor(cpufeat): enable FEAT_VHE for FEAT_STATE_CHECKED refactor(mpam): enable FEAT_MPAM for FEAT_STATE_CHECKED feat(l
Merge changes from topic "feat_state_part3" into integration
* changes: refactor(cpufeat): enable FEAT_VHE for FEAT_STATE_CHECKED refactor(mpam): enable FEAT_MPAM for FEAT_STATE_CHECKED feat(libc): add support for fallthrough statement refactor(spe): enable FEAT_SPE for FEAT_STATE_CHECKED refactor(cpufeat): rename ENABLE_SPE_FOR_LOWER_ELS to ENABLE_SPE_FOR_NS fix(spe): drop SPE EL2 context switch code
show more ...
|
| #
6437a09a |
| 17-Nov-2022 |
Andre Przywara <andre.przywara@arm.com> |
refactor(spe): enable FEAT_SPE for FEAT_STATE_CHECKED
At the moment we only support FEAT_SPE to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime detecti
refactor(spe): enable FEAT_SPE for FEAT_STATE_CHECKED
At the moment we only support FEAT_SPE to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime detection (ENABLE_SPE_FOR_NS=2), by splitting is_armv8_2_feat_spe_present() into an ID register reading function and a second function to report the support status. That function considers both build time settings and runtime information (if needed), and is used before we access SPE related registers.
Previously SPE was enabled unconditionally for all platforms, change this now to the runtime detection version.
Change-Id: I830c094107ce6a398bf1f4aef7ffcb79d4f36552 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
b4fc0410 |
| 28-Feb-2023 |
Manish Pandey <manish.pandey2@arm.com> |
Merge changes from topic "feat_state_part2" into integration
* changes: refactor(trf): enable FEAT_TRF for FEAT_STATE_CHECKED refactor(brbe): enable FEAT_BRBE for FEAT_STATE_CHECKED refactor(t
Merge changes from topic "feat_state_part2" into integration
* changes: refactor(trf): enable FEAT_TRF for FEAT_STATE_CHECKED refactor(brbe): enable FEAT_BRBE for FEAT_STATE_CHECKED refactor(trbe): enable FEAT_TRBE for FEAT_STATE_CHECKED fix(cpufeat): context-switch: move FGT availability check to callers feat(cpufeat): extend check_feature() to deal with min/max refactor(cpufeat): wrap CPU ID register field isolation
show more ...
|
| #
fc8d2d39 |
| 17-Nov-2022 |
Andre Przywara <andre.przywara@arm.com> |
refactor(trf): enable FEAT_TRF for FEAT_STATE_CHECKED
At the moment we only support FEAT_TRF to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime detecti
refactor(trf): enable FEAT_TRF for FEAT_STATE_CHECKED
At the moment we only support FEAT_TRF to be either unconditionally compiled in, or to be not supported at all.
Add support for runtime detection (ENABLE_TRF_FOR_NS=2), by splitting is_feat_trf_present() into an ID register reading function and a second function to report the support status. That function considers both build time settings and runtime information (if needed), and is used before we access TRF related registers. Also move the context saving code from assembly to C, and use the new is_feat_trf_supported() function to guard its execution.
The FVP platform decided to compile in support unconditionally (=1), even though FEAT_TRF is an ARMv8.4 feature, so is not available with the FVP model's default command line. Change that to the now supported dynamic option (=2), so the right decision can be made by the code at runtime.
Change-Id: Ia97b01adbe24970a4d837afd463dc5506b7295a3 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
fd1dd4cb |
| 25-Jan-2023 |
Andre Przywara <andre.przywara@arm.com> |
refactor(cpufeat): wrap CPU ID register field isolation
Some MISRA test complains about our code to isolate CPU ID register fields: the ID registers (and associated masks) are 64 bits wide, but the
refactor(cpufeat): wrap CPU ID register field isolation
Some MISRA test complains about our code to isolate CPU ID register fields: the ID registers (and associated masks) are 64 bits wide, but the eventual field is always 4 bits wide only, so we use an unsigned int to represent that. MISRA dislikes the differing width here.
Since the code to extract a feature field from a CPU ID register is very schematic already, provide a wrapper macro to make this more readable, and do the proper casting in one central place on the way.
While at it, use the same macro for the AArch32 feature detection side.
Change-Id: Ie102a9e7007a386f5879ec65e159ff041504a4ee Signed-off-by: Andre Przywara <andre.przywara@arm.com>
show more ...
|
| #
d636f67e |
| 06-Feb-2019 |
Antonio Niño Díaz <antonio.ninodiaz@arm.com> |
Merge pull request #1805 from antonio-nino-diaz-arm/an/generic-timer
drivers: generic_delay_timer: Assert presence of Generic Timer
|
| #
29a24134 |
| 06-Feb-2019 |
Antonio Nino Diaz <antonio.ninodiaz@arm.com> |
drivers: generic_delay_timer: Assert presence of Generic Timer
The Generic Timer is an optional extension to an ARMv7-A implementation. The generic delay timer can be used from any architecture supp
drivers: generic_delay_timer: Assert presence of Generic Timer
The Generic Timer is an optional extension to an ARMv7-A implementation. The generic delay timer can be used from any architecture supported by the Trusted Firmware. In ARMv7 it is needed to check that this feature is present. In ARMv8 it is always present.
Change-Id: Ib7e8ec13ffbb2f64445d4ee48ed00f26e34b79b7 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
show more ...
|
| #
f2f04434 |
| 15-Jan-2019 |
Antonio Niño Díaz <antonio.ninodiaz@arm.com> |
Merge pull request #1747 from antonio-nino-diaz-arm/an/cnp-dynamic
xlat v2: Dynamically detect need for CnP bit
|
| #
2559b2c8 |
| 11-Jan-2019 |
Antonio Nino Diaz <antonio.ninodiaz@arm.com> |
xlat v2: Dynamically detect need for CnP bit
ARMv8.2-TTCNP is mandatory from ARMv8.2 onwards, but it can be implemented in CPUs that don't implement all mandatory 8.2 features (and so have to claim
xlat v2: Dynamically detect need for CnP bit
ARMv8.2-TTCNP is mandatory from ARMv8.2 onwards, but it can be implemented in CPUs that don't implement all mandatory 8.2 features (and so have to claim to be a lower version).
This patch removes usage of the ARM_ARCH_AT_LEAST() macro and uses system ID registers to detect whether it is needed to set the bit or not.
Change-Id: I7bcbf0c7c937590dfc2ca668cfd9267c50f7d52c Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
show more ...
|